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Abstract

Co-heating is a method of estimating the whole building heat loss coefficient (HLC) of a

dwelling using constant internal temperatures and steady state analysis. Use of the co-heating

method in the UK has provided significant evidence of a fabric performance gap and identified

unexpected mechanisms for heat loss, such as the party wall bypass. However, to date there has

been little assessment of the uncertainties associated with this method, leading to considerable

debate and lack of understanding over its use.

This research draws on the use of both simulated co-heating tests and case study field tests

to understand uncertainty within the co-heating method. A broad range of uncertainties are

assessed under three themes: weather driven, experimental and statistical uncertainties. For

each source of uncertainty identified, the nature, direction and scale is considered. Interactions

to key building characteristics are then explored, including the thermal mass, fabric insulation

and airtightness of a test dwelling. In addition, approaches to both identifying and limiting

these errors are discussed.

In particular, the impact of the prevailing test weather conditions are shown to influence HLC

estimates, particularly solar radiation. These include: the estimation of solar gains, the imper-

fect measurement of solar radiation, the influence of stored solar heating contributions and the

influence of solar driven overheating restricting when reliable HLC estimates can be obtained.

Furthermore, in non-airtight dwellings, the impact of wind is shown to increase variation in

heat loss. Incomplete knowledge of secondary heat flows driven by the external environment

lead to definitional uncertainty in HLC estimates and make comparisons to predicted or design

HLCs more complex. Experimental uncertainties, from non-uniform internal temperatures,

equipment measurement errors and uncoupled heat losses are also shown to potentially provide

large systematic uncertainties if unchecked.
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Having established the presence and nature of these uncertainties the application of the co-

heating method is reviewed. This includes suitable environmental testing conditions, the

required duration for testing and the ability to perform comparisons to design and determine

retrofit improvements. As such issues are a function of the building being tested and its char-

acteristics, a number of archetype dwellings are used to show how the requirements and the

general suitability of co-heating varies between dwellings. However, within a suitable external

environment and avoiding experimental uncertainties, accurate HLC can be obtained with just

72 hours of monitoring. In addition, an approach to providing appropriate uncertainty estimates

to a given co-heating test is developed and the interpretation of the measured HLC is shown to

be when compared to both design predictions and when examining retrofit improvements.

To summarise, theoretically, this research establishes the bounds of the co-heating method

and demonstrates the effectiveness of co-heating tests in understanding building fabric heat

loss. Methodologically, it establishes the role of simulation in the estimation of errors asso-

ciated with measurement procedures and demonstrates the value of applying multi-method

approaches to complex problems arising from the physical performance of buildings. Substan-

tively, this research highlights the need for researchers working in the field to be mindful of the

uncertainty in co-heating tests and understand limits of the measurement and its interpretation.
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Chapter 1

Introduction

Chapter Overview

1.1 Context and relevance of research

This research aims to understand the uncertainty, accuracy and limitations of co-heating heat

loss measurements. Through better understanding it is hoped this method can become a more

valuable tool; improving our knowledge of actual building performance and how to consistently

achieve truly low energy dwellings. Improved thermal performance of the building fabric may

translate to improved thermal comfort and economics of the individual occupants, reduced en-

ergy demand, lower infrastructure costs and improved energy security at a regional and national

level and reduced global pressures on fuels and resources.

A fuller discussion of the surrounding context and motivation for this study can be found

at the beginning of the literature review (section 2.1).

1.2 Problem statement

Co-heating tests have been used to measure the total building heat loss coefficient, or HLC, since

their inception and early development in the 1980s (Palmiter, 1979; Siviour, 1981). Recently,

particularly in the UK, the adoption of co-heating tests has increased following their use in a

number of successful research programmes that uncovered significantly higher measured heat

losses than predicted and unveiled significant unpredicted heat loss pathways (Bell and Lowe,

1998; Lowe et al., 2007; Wingfield et al., 2011). As further dwellings have undergone testing

this trend for measuring higher than predicted heat loss has persisted, enhancing the evidence of

a fabric performance gap (Stafford et al., 2012; Johnston et al., 2013). Understanding and clos-

ing this gap is now thought crucial in meeting reduction targets not just in theory but in practice.
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However, without a full understanding of the accuracy of co-heating heat loss measurements

and estimates of their errors, it has been difficult to define the significance of such measured dis-

crepancies between predicted and measured heat loss. It has therefore been difficult to persuade

the industry to act. Whilst previous work revealing a fabric performance gap has increased the

use and prominence of co-heating tests, it has also highlighted a lack of current understanding

over the reliability of the method and the accuracy of its results. This is confounded by a lack

of research into the method itself, an absence of any official standards, leading to inconsistent

usage, and a lack of published material.

As such, a problem statement can be formulated as follows:

Although a number of co-heating tests have been performed and their results have provided

significant evidence of a fabric performance gap, the method itself has not been rigorously eval-

uated to date. This leaves ambiguity over the accuracy and validity of results and uncertainty

over how the method should be applied to help resolve the performance gap it has previously

helped to identify.

1.3 Research questions
Following from the problem statement presented above, the research question defining the cen-

tral core of this thesis can be written as:

How accurate and reproducible is the steady-state co-heating method at determining a

dwelling’s heat loss coefficient?

The terms accurate and reproducible need careful consideration. We can consider the term

accuracy to describe the closeness of measurement to the unknown true value, a combination

of the trueness, reflecting the degree of systematic errors, and the precision, reflecting the

presence of random errors - see ISO 5725-1:1994 (JCGM, 2008a, ISO, 1994;). In any phys-

ical experiment, as the true value cannot be known, the error between the measured and true

values remains equally unknowable. Instead, it is the uncertainties associated with the random

and systematic effects that give rise to the error that can be evaluated. It is only in simulations

carried out in this work that the true HLC can be known and the accuracy assessed more directly.
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The term reproducible then refers to the the ability to replicate a measurement within a differ-

ence set of conditions. It therefore describes the sensitivity of the co-heating HLC measurement

to the external environment, internal experimental conditions, construction of the test dwelling,

experimental conditions and analysis techniques. These terms and further definitions for terms

describing the uncertainty of measurements can be found in section 3.5.

To fully answer this research question a number of further issues must be addressed. The

answer to this question will very much be a function of the building being tested and the condi-

tions, both environmental and experimental, in which it is tested. This leaves a broad research

landscape that requires narrowing. Firstly, the definition of a dwellings heat loss coefficient

needs to be considered. Providing the first secondary research question:

• A0) How is the HLC defined, in terms of its predicted, measured and true value?

The remaining secondary research questions can be split into two branches, the first, inves-

tigated in chapters 5 - 8, is concerned with understanding the uncertainties in the co-heating

method:

• A1) What is the impact of the non-steady state external environment upon the steady state

HLC estimate? (Chapters 5 and 6)

• A2) How do the experimental conditions achieved in reality deviate from the theoretical

heat balance model and what uncertainties are created as a result? (Chapter 7)

• A3) How do building characteristics of the test dwelling interact with parts A1 and A2

and dictate the accuracy and reliability of the HLC measurement? (Chapters 5 - 7)

• A4) How can sources of uncertainty be identified and subsequently addressed (Chapters

5 - 7)

The second branch, forming the basis of chapter 9, concerns the impact of these uncertainties

on the application and use of the co-heating method (chapter 9):

• B1) Under what environmental conditions can co-heating tests be performed to reliably

estimate a building HLC? (Section 9.1)

• B2) When tested under suitable environmental conditions, how long is required to accu-

rately determine a building HLC? (Section 9.2)



1.4. Objectives 31

• B3) Given the uncertainties that exist, what is the optimum co-heating method, both in

terms of experimental protocol and analysis techniques, within the existing steady state

approach? (Section 9.3)

• B4) How can appropriate uncertainty estimates be derived and stated? (Section 9.4)

• B5) How do the sources of uncertainties identified limit the use of co-heating in compar-

isons to design and to before and after retrofit cases? (Section 9.5)

1.4 Objectives
A number of objectives can be drawn from these secondary questions. The first branch of

research questions (A1 - A4), focus on investigating the sources of uncertainties present in co-

heating tests. Here the first step is to establish the range of environmental and experimental

uncertainties that exists. Subsequently, for all sources identified, determine and demonstrate

the following:

• The nature of the uncertainty (i.e. systematic or random).

• The scale and direction of error.

• The relationship with key building characteristics of the test dwelling and with other

sources of uncertainty.

• The approach to identifying, minimising, correcting or accounting for each source of

uncertainty.

For the second branch of secondary research questions (B1-5), focused on the application of the

methods, the objectives of this work can be defined as follows:

• To define the likely testing season and duration with which reliable HLC estimates can

be made for a representative range of test dwellings.

• To define the optimum analysis method (covering questions such as data aggregation

period and regression type).

• To define requirements of the experimental protocol adopted.

• To demonstrate an appropriate method of uncertainty analysis based upon suitable litera-

ture.
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1.5 Scope
The scope of this thesis is defined by a number of further considerations, defining the boundaries

of this research:

• The co-heating test method considered principally within this thesis is that used most

predominantly in the UK, based upon the early work of Siviour (1981) and Everett

(1985) and later incorporated into the Leeds Metropolitan University Protocol (Wing-

field, 2010a; Johnston et al., 2013). This consists of quasi-steady state conditions, i.e.

constant internal temperatures, data aggregated across periods of at least 24 hours1, and

steady state analysis is conducted through linear regression. Dynamic methods using

short periods of co-heating amongst other sequences are not the focus of this research,

although parallels are drawn and relevant literature reviewed.

• This thesis is concerned with the measurement, through co-heating, of the total building

heat loss or HLC as defined fully in section 3.1. Whilst other parameters and disaggre-

gated heat flows are discussed throughout this work, it is the uncertainties surrounding

the estimation of the whole building HLC that is chiefly of interest.

• The focus of this thesis is on UK housing and a UK climate. Most instances of co-

heating tests, using the method as considered in this thesis, conducted to date have been

performed in the UK, making these conditions the most relevant. Additionally, these are

the conditions in which the author is both most likely to be able to conduct field tests

and in which they have the most familiarity. Many of the issues identified will apply to a

broader scope, albeit their relative significance may alter. An extreme period of weather

in one country may represent typical conditions in another.

• As understanding as-built building heat loss is crucial to closing the fabric performance

gap and therefore to reducing energy demand, this thesis addresses the use of co-heating

as a tool for measuring ‘real’ dwellings in the field. This is as opposed to simply evalu-

ating the use of co-heating in laboratory tests or in dedicated test dwellings. Field tests

conducted as part of this research constitute such tests in dwellings constructed under

normal conditions, reflecting the complexities this may bring.

1Typically meaning daily aggregation (e.g. 24 hours), although periods which are an integer multiple of 24 hours

are also used on occasion (e.g. 48 hours, 72 hours, 1 week etc.)
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• As most co-heating tests to date been performed on modern, low heat loss dwellings, this

type of dwelling represents the main focus of this research. However, more traditional

and higher heat loss dwellings are considered later in the thesis, particularly in reference

to the application of co-heating tests to measuring retrofit improvements.

1.6 Thesis overview

Chapter 2 - Literature review

This chapter reviews the broad context and motivation behind this study (section 2.1) before

covering the history and development of co-heating (2.2) and the details of the co-heating

method as considered in this thesis (2.3). Further details of the co-heating method and its

variations are then discussed (2.4), along with supporting measurements (2.5). To provide a

more rounded perspective on co-heating and to draw useful parallels, both alternative methods

for estimating heat loss (2.6) and dynamic HLC methods (2.7) are reviewed. To complete the

literature review the subject of this thesis is addressed more directly through reviewing work

on uncertainty in co-heating (2.8). The chapter itself is then concluded with major themes

discussed (2.9).

Chapter 3 - Defining the HLC, R, S and uncertainty

To allow subsequent discussions and investigations the building heat loss coefficient, HLC,

solar aperture, R, and the measured solar radiation, S, all need to be considered and properly

defined. This chapter begins by defining the HLC (3.1) as set out in ISO 13789:2007 and

further calculation methodologies (ISO, 1997). This is compared to the definition formed by

the co-heating measurement and the definition of the true HLC, to which measured values can

be assessed. This then includes a brief consideration of the measurement of temperature and

how this relates to definitions of heat loss (3.2).

Subsequently, solar gains, and the second parameter estimated by co-heating tests, the so-

lar aperture are defined (3.3) from the perspective of both their formal calculation and the

statistical co-heating measurement. The measurement of solar radiation and its various compo-

nents and forms are then reviewed (3.4), providing the foundations for their use in the rest of

the thesis.
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Chapter 4 - Research method

Chapter 4, defining the research method adopted for this study, begins by re-stating the research

questions (4.1) defined earlier in this chapter. Following this, a number of potential research

methods are considered, with their strengths and limitations laid out (4.2). This proceeds a

discussion of the research method selected (4.3) and details of both the simulated co-heating

tests (4.4) and field test cases studies (4.6) that make up the full research method. Specific

elements of the research method may be included later with the relevant analysis. The chapter

is again finished with a chapter conclusion (4.7).

Chapters 4, 5, 6 and 7 then explore sources of uncertainty. These are themed around solar

sources of uncertainty, further weather driven sources of uncertainty, experimental sources of

uncertainty and regression based uncertainties.

Chapters 5 - Solar driven sources of uncertainty

Chapter 5 examines the impact of solar radiation on a test dwelling and HLC estimates. This

includes a consideration of solar radiation incident upon a test house under co-heating condi-

tions (5.1) and the resulting uncertainties in determining solar gains through measuring solar

radiation (5.2) and from determining the solar aperture of a dwelling (5.3). Further solar driven

sources of uncertainty are considered in the form of stored solar heating contributions (5.4)

and solar driven experimental overheating (5.5). The main conclusions drawn then close the

chapter (5.6).

Chapters 6 - Further weather driven sources of uncertainty

Chapter 6 considers further weather driven sources of uncertainty, including those from wind

and stack driven infiltration (6.1), dynamic external temperature (6.2) and from long-wave

radiation exchange with the sky (6.3), again with the chapter then concluded (6.4).

Chapters 7 - Experimental sources of uncertainty

Chapter 7 concerns experimental sources of uncertainty. This begins with uncoupled heat loss

pathways (7.1), such as ground losses and heat transfer to adjoining spaces (7.2). Subsequently,

non-uniform (7.3) and non-constant internal temperatures are investigated, including heating

to a quasi-steady state (7.4). Uncertainty associated with equipment measurement errors (7.5),

moisture and latent loads (7.6) and operational uncertainties (7.7) conclude this chapter on

experimental uncertainties, with the outcomes discussed in (7.8).
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Chapters 8 - Regression based uncertainties

Chapter 8 considered a number of uncertainties within the regression process itself, including

those from a forced intercept model (8.1), from attenuation bias associated with errors in the

independent variable S and �T (8.2) and from collinearity between S and �T (8.3).

Chapter 9 - The application of co-heating

Chapter 9 uses the sources of uncertainty revealed in chapters 5 to 8 to readdress the application

of the co-heating method. Importantly, this is considered across a wider range of buildings.

This begins with a consideration of the required environmental conditions (9.1) and monitoring

duration (9.2) for reliable HLC estimation. Subsequently, the optimum co-heating experimental

protocol, analysis technique and reporting standard are reviewed (9.3). A method for calcu-

lating appropriate uncertainty estimates for co-heating tests is then developed (9.4) before the

impact of uncertainties upon comparisons to design and pre and post retrofits (9.5) are consid-

ered. The chapter itself is then again concluded (9.6).

Chapter 10 - Conclusions This thesis is then concluded with a summary of the findings

(10.1) and key conclusions (10.2). The limitations of the research are then discussed (10.3)

along with recommendations for further research (10.4).

1.7 Outputs from this thesis

A number of peer reviewed conference papers have been written as part of this thesis, including:

• Using simulated co-heating tests to understand weather driven sources of uncertainty

within the co-heating test method (ECEEE Summer Study Proceedings, Presqu’ile de

Giens, Toulon/Hyres, France, June 3-8) Initial exploratory work into the impact of various

weather variables upon co-heating tests through full building simulation (Stamp et al.,

2013d).

• An investigation into the role of thermal mass on the accuracy of co-heating tests through

simulations and field test results (IBPSA Building Simulation 2013, Chambery, France,

August 25-28): An comparative examination of the accuracy of co-heating HLC mea-

surements upon a dwelling of varying thermal mass (Stamp et al., 2013a).
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• Solar driven uncertainty in co-heating (IEA Annex 58, 4th Meeting, April 8th - 10th,

Holzenkirchen, Germany, 2013) Investigation of the solar driven uncertainness upon co-

heating tests (Stamp et al., 2013b).

Additionally, results from this work have fed into the Zero Carbon Hub Performance Gap

Project - Working Group 5b - Testing (see ZCH, 2013; ZCH, 2014a; ZCH, 2014b) and into the

IEA Annex 58 - Subtask 1 - An overview of state-of-the art methods to analyse data of in-situ

measurements for energy performance quantification.

Further papers are also planned from the work within this thesis.



Chapter 2

Literature review

Chapter Overview
Chapter 2, the literature review, is split up into eight parts, each listed below with a brief de-

scription for guidance:

• 2.1 Context & motivation: In which the context behind this thesis is discussed, includ-

ing: space heating demand, building regulations, fabric performance, the performance

gap and verifying performance.

• 2.2 The history & development of co-heating: Reviews the initial development of the

co-heating method from its US and UK origins. Contemporary and future uses are then

discussed.

• 2.3 The co-heating method: The key components of the co-heating method are de-

scribed in full detail, including both the experimental protocol and analysis techniques.

• 2.4 Discussion of the method: The requirements for co-heating testing are reviewed

from literature, including: the duration, testing season, aggregation length and intervals.

• 2.5 Additional co-heating test protocols: Supporting tests typically used in tandem with

co-heating tests are discussed, both in relation to the support they provide to HLC esti-

mates and for broader context around the use of co-heating tests. This includes infiltration

measurements, party wall heat transfer and a review of further supporting methods.

• 2.6 Alternative method of estimating heat loss: In situ U-value measurements and

infrared thermography are briefly discussed to provide comparisons and further context

around co-heating.
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• 2.7 Dynamic methods of estimating building HLC: Dynamic experimental protocols

and analysis techniques are discussed to provide a contrast to the steady state co-heating

method. In particular this includes the PSTAR method.

• 2.8 Research into Uncertainty: Narrowing the focus of the literature review onto the

precise subject of this thesis, pieces of work investigating uncertainty either directly or

indirectly are reviewed.

• 2.9 Conclusions from the literature review: Key conclusions, gaps in the literature and

emergent themes are considered at the end of the chapter.

2.1 Context & motivation

A residential building is intended to provide its occupants with shelter, security and thermal

comfort. To limit both financial and environmental costs, thermal comfort should be achieved

through minimised energy consumption.

Space heating in dwellings forms a significant part of total UK energy demand. Whilst the

domestic sector accounts for 29% of the UK final energy demand (DECC, 2014), records

from 1970 show around two-thirds of household energy use is associated with space heating,

accounting for 62% of the domestic energy consumption, and 19% of the UK’s total energy

consumption in 2013 (DECC, 2013b, table 1.1.5). Reducing domestic energy use and space

heating demand therefore forms a fundamental element in reaching emission reductions laid

out in the 2008 climate change act, i.e. a 34% cut in 1990 greenhouse gas emissions by 2020

and at least an 80% cut by 2050 (DECC, 2013b).

Reducing space heating demand is not only imperative to reaching emission targets and ensur-

ing energy security but also impacts individual households. In 2013, there were 2.35 million

households in fuel poverty, 10.4% of total UK households (DECC, 2015). Adding significant

weight to this statistic, previous studies have shown that between 1988 and 1997 an average of

37,000 annual excess winter deaths have been recorded in the UK (Healy, 2003). The benefits

of healthy, comfortable and thermally efficient homes therefore extend from the health, comfort

and economics of the individual, to national and global issues of energy demand, security of

supply and CO2 emission targets.
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Space heating demand itself is dictated by three factors: the building fabric, the heating system

and the behaviour of the dwelling’s occupants, all within a set of climatic conditions. This

thesis will be focusing on one of these components in isolation - the building fabric. The rest

of section 2.1 will review how space-heating demand may be reduced through improvements

in fabric efficiency, evidence of a fabric performance gap and finally the role of feedback and

verifying performance.

2.1.1 Improved fabric efficiency: Regulation & calculation

To promote cost-effective measures for improved energy performance the Energy Performance

of Buildings Directive (EPBD) was brought into force on the 4th January 2003 and recast in

2010, with the aim of moving towards new and retrofitted nearly-zero energy buildings by 2020,

or 2018 in the case of Public buildings (BRE, 2006; EU, 2010). This has driven the national

targets and calculation methodologies for member states, forming the overarching driver for

improved fabric efficiency.

2.1.1.1 Scrapping of zero carbon homes by 2016

There have been significant recent policy changes altering the UK’s path to meeting the Eu-

ropean Directive. In a policy first announced in 2006, the UK had targeted all new homes to

meet the Zero Carbon Standard by 2016. However, shortly following the election of a new

conservative government, in July 2015 this was effectively scrapped in an effort to reduce

‘net regulation’ on house builders, with the government no longer intending to “proceed with

the zero carbon Allowable Solutions carbon offsetting scheme or the proposed 2016 increase

in on-site energy efficiency standard, but will keep energy efficiency standards under review,

recognising that existing measures to increase the energy efficiency of new buildings should be

allowed time to become established” (HM Treasury, 2015, p.46).

Whilst this announcement has caused uncertainty within the industry, it does not alter the fun-

damental context of the research conducted in this thesis. Rather, fabric performance remains

a key factor in overall energy performance and without measurements of thermal performance

control over the delivery of efficient buildings is weakened. In fact, with less ambitious targets

there is perhaps more onus to ensure existing fabric heat loss standards are met. Further, if

current regulations are failing to deliver homes that consistently meet the current standards,

then robust evidence from measurements is needed to inform and amend regulations.



40 Chapter 2. Literature review

2.1.1.2 Heat loss calculations within regulation

The EPBD requires the implementation of a calculation methodology and setting minimum

energy requirements, although the directive does not specify how these requirements should be

set or how they should be arrived at. This is instead decided at a national level.

In the UK these energy requirements are established by the Building Regulations Approved

Documents (DCLG, 2013), with a calculation methodology defined by the Standard Assess-

ment Procedure, SAP (BRE, 2011; BRE, 2014), based upon the BRE domestic energy model,

BREDEM (BRE, 2015). Presently, Building Regulations define a number of backstop U-

values for individual elements, whilst the building as a whole is addressed through its annual

CO2 emissions per m2 of floor area. Essentially, the emissions from a proposed dwelling, the

dwelling emission rate (DER), are compared to a notional dwelling, of the same size, shape

and orientation. The notional dwelling is based upon the requirements of the 2002 Building

Regulations, giving a target emissions rate (TER) which the DER should not exceeded. Both

the TER and DER must be set out and supplied to the Building Control Board prior to con-

struction, and again in an updated as-built version within 5 days of completion, including any

changes made to the specification.

An overall emissions approach is designed to leave plenty of flexibility for designers and

developers. However, in 2013, target and dwelling fabric energy efficiency (TFEE & DFEE)

ratings were introduced into Part L to sit alongside the DER and TER, operating in much

the same way. This increased emphasis on energy efficient building fabric was then slightly

downgraded following responses to this consultation, with a 15% shortfall allowed between the

TFEE & DFEE to restore some design flexibility (BRE, 2014).

Thermal characteristics used as inputs into SAP heat loss calculations (e.g. U-values) are

defined by further calculation methodologies (Anderson, 2006), based on European and Inter-

national standards, e.g. ISO 6946:2007 (ISO, 2007). This is the first point at which physical

measurements are required and form inputs into the chain of calculations used to determine

a building’s total heat loss. Thermal properties, such as the thermal conductivity of the con-

stituent materials or sample elements, are measured in certified laboratories under prescribed

methodologies, e.g. guarded hot box, ISO 8990:1996 (ISO, 1996). Whilst such measure-

ments are well defined, the conditions in which they are performed are likely to differ from the

deployment of such materials in both a full building system and in the full external environment.
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In this framework, thermal performance is then only measured outside of the construction

process, testing individual materials and components in laboratories under certain sets of con-

ditions and only on selected samples. These measured thermal parameters are then adopted

into simplified equations along with further assumptions to yield a whole building heat loss

estimate. If unsuitable, these assumptions and simplified heat loss models may lead to dis-

crepancies between the predicted or modelled heat loss and the as-built dwelling. In addition,

thermal parameters measured in laboratories may no longer be fully applicable, with the ma-

terials now sitting within different constructions, sets of environmental conditions and in a

state influenced by their handling in the construction process. Without measurements within

the construction process and of full buildings, design calculations and assumptions are left

unchecked and may fail in delivering targeted energy performance.

2.1.2 Actual performance and the performance gap

The regulation to drive improved fabric thermal performance discussed so far only enforce

these targets, and the subsequent demand reduction is therefore only met on paper. However,

for almost as long as energy use has been measured, evidence of significant variation from

design predictions has been evident (see Socolow, 1978; Norford et al., 1994; Bordass et al.,

2001). This variation can be driven by all three components that dictate space heating demand:

occupier behaviour, heating system efficiencies and fabric performance. More alarmingly, in

recent years evidence of a ‘performance gap’ has increased, with higher than predicted energy

use potentially undermining the targets set through regulation. For example, assumptions over

assumed occupant behaviour have been found to be limited or unrepresentative (DECC, 2013a;

Huebner et al., 2015; Fabi et al., 2012) and field trials have found evidence of underperformance

across a range of heating systems (Orr et al., 2009; EST, 2010; Trust, 2011). Disentangling

the different contributions to the performance gap from occupant behaviour and system and

fabric performance has proved a difficult task, particularly as a large number of interactions are

present. Direct measurements may therefore be key to improved building performance.

Centrally to this thesis, evidence of a fabric performance gap has emerged through both in-

direct and more direct evidence. There is considerable evidence of fabric defects occurring

from stages across construction (Calcutt, 2007; Josephson, 1999) and of non-compliance with

part L (EEPH, 2006; Mawditt and Palmer, 2008). Further, the expected reductions from retrofit

interventions have not yielded the improvements in airtightness predicted (Hong et al., 2006).
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More directly, in situ U-value measurements of cavity walls have been reported as significantly

higher than predicted (Siviour, 1994; Doran, 2001). Drivers for poor performance have been

demonstrated in twin test houses and laboratory settings, relating complex heat loss processes

to poor workmanship (Rayment, 1995; Hens et al., 2007). In fact links between workmanship

and complex heat transfer processes across a wall, such as forced convection, have been in es-

tablished in a laboratory setting and shown to reduce thermal performance almost four decades

ago (Bankvall, 1977).

Such measurements have not exclusively revealed underperformance. In situ U-value mea-

surements of traditional and solid brick walls (Rye, 2010; Baker, 2011; Birchall, 2011; Li,

2014), have shown significantly better thermal performance than predicted, findings that have

significant policy and economic implications.

Significant evidence of a fabric performance gap has also come from measurements of whole

building heat loss coefficients through the use of co-heating. Researchers at Leeds Beckett Uni-

versity1 drove much of this work and with over 50 tests performed, hold the largest database

of measured HLCs. Whilst such a sample is not representative, the consistency of higher

measured values and the scale of this gap became a source of great concern (Johnston et al.,

2012a). The figure below, taken from Stafford et al. (2012) shows 22 of 34 tested dwellings

with measured values 20% higher than predicted and 14 of the 34 more than 60% higher. More

recent analysis from this database has begun to examine the measured gap together with built

form and construction types (Johnston et al., 2015).

It can be noted here that figure 2.1 does not include any error estimated for either measured

of predicted HLCs, potentially undermining confidence in the evidence presented. Error esti-

mates, typically based upon statistical standard errors, are given in a number of the individual

LBU tests and other practitioners (see table 2.1), but generally this remains an inconsistent and

poorly understood aspect of co-heating tests and is not included in the LBU protocol.

1Formerly Leeds Metropolitan University
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Fig 2.2: Data from Fig.2.1 shown as absolute 
values of measured and predicted heat loss

Fig 2.1: Raw Co-heating test data (tests in order of performance gap)

2. THE PERFORMANCE GAP:
ANALYSIS OF LEEDS METROPOLITAN DATA

Fig. 2.1 shows the performance gap as a percentage 
difference between the measured and predicted heat 
loss coefficient (the total rate of heat loss per degree 
of temperature difference, in units of W/K). This heat 
loss coefficient (both measured and predicted) will 
be affected by parameters such as dwelling size 
and type, but the magnitude of the performance 
gap may also be affected to some extent by these 
parameters. For example, if the primary causes of 
performance gaps in a particular development are 
due to the external wall performance, then detached 
houses may show a greater gap than mid-terraces. 
Conversely if the primary problems are associated 
with party walls, then the opposite may be true. Of 
course, this simple picture is also complicated by the 
fact that the primary problem is not necessarily the 
same either between developments or even within a 
single development, and also that there is likely to be 
a complex mixture of significant factors (see section 
3). The influence of dwelling type is discussed further 
in Section 2.1, and factors relating to dwelling size are 
considered in Section 2.2.

Of the four tests which show a negative discrepancy 
(measured performance apparently exceeds predicted 
performance), the two with the higher negative values 
are both tests which took place on existing dwellings. 
For this reason, less confidence could be placed in 
the predicted values used, as the precise details of 
products, construction methods and thermal bridging 
calculations were not known and had to be estimated 
according to rdSAP² procedures for older dwellings. 
Issues relating to retrofit are discussed in more detail 
in Section 2.3.   

The other two negative discrepancy tests arise as 
a result of a physical intervention (full insulation of 
party walls), but the negative values are small, and 
given the uncertainties in the testing procedures may 
be regarded as zero, thus indicating that in these two 
cases, after the physical intervention, the dwellings 
were in fact effectively meeting the as-designed 
performance expectation.  

Of the 34 tests referred to in the last section, 30 
showed a performance shortfall to some degree. 
Fig. 2.1 shows a simple distribution of the percentage 
performance gap for all the tests performed (i.e. the 
percentage difference between the predicted and 
measured whole house heat loss, including both 
fabric and ventilation losses). While this is a useful 
starting point, clearly it represents highly aggregated 
data which skims over a number of important issues 
and distinctions (discussed in detail in the following 
sections), and therefore caution should be exercised 
in drawing conclusions from this data alone.

The following paragraphs in this section give a brief 
overview of some of the issues which are considered 
in the further analysis of this data.

It has been suggested that expressing the results 
as a percentage obscures the fact that for very low 
energy dwellings a substantial percentage gap may 
represent only a very small absolute additional 
energy consumption (over the design target), while 
for dwellings with a less stringent target, even a 
modest percentage gap may represent a large energy 
loss. This is discussed in more detail in Section 2.5. 
We note here, however, that an alternative method 
of presenting the data is in terms of the absolute 
measured and predicted heat loss for each test.  
Fig. 2.2 below shows the data presented in this  
form, in exactly the same order as in Fig. 2.1.

In Section 2.6 data is presented on the effects of 
remedial interventions, particularly those relating  
to amelioration of the party wall thermal bypass.

Finally, in Section 3, we demonstrate how in-depth 
knowledge of the different contributory causes of 
underperformance can be used to understand and 
characterise the performance gap in individual cases.

2. rdSAP is the version of the National Calculation Method used to 
calculate the energy performance of existing dwellings, where full 
data is not available and therefore standard estimates based on 
factors such as dwelling age are used.

BUILDING CONFIDENCE – A WORKING PAPER. PUBLISHED 2012.08 BUILDING CONFIDENCE – A WORKING PAPER. PUBLISHED 2012. 09

Figure 2.1: Measured vs Predicted HLC values for 34 dwellings measured by LBU. Note this

includes both new builds and existing dwellings. Taken from Stafford et al. (2012)

2.1.3 Verifying performance & feedback

With growing evidence of a fabric performance gap there is a significant risk that regulatory

work is undermined by actual performance. The impact of this risk is magnified by the long

physical lifetimes of dwellings, slow replacement cycles and high costs of retrospective repairs

or improvements, potentially leaving a legacy of poorly performing building fabrics for gener-

ations to come (Johnston et al., 2015).

A review into the performance gap was conducted by the Zero Carbon Hub, collating the

views of experts from academia and industry, including insulation manufacturers and associa-

tions, house builders, architects, government and certification and testing organisations (ZCH,

2013; ZCH, 2014a; ZCH, 2014b). This report argued that, “in order to close the Performance

Gap it is critical that real performance can be assessed, measured, tested and demonstrated”

(ZCH, 2014a, p.43). This coincides with an ambition of ensuring designed performance is met

in reality.

“From 2020, be able to demonstrate that at least 90% of all new homes meet or perform

better than the designed energy / carbon performance” (ZCH, 2014a, p.3)

This represents a significant challenge and requires an array of suitable methods for demon-

strating performance. Even prior to this, a better understanding of how this ambition might be

consistently met is required, meaning improved understanding of actual building heat loss and
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the processes behind it. The same report notes “existing diagnostic tests need to be more useful,

useable and consistent, through standardising the application of tests and the interpretation of

results” (ZCH, 2014a, p.43), with a particular need for fabric and services tests at a systems

level to be developed.

There is one area in which thermal performance is already tested as part of the building

regulations. Air permeability can be measured through pressure or blower door tests and since

2006 (HM Government, 2006a; HM Government, 2006b), it has been required that an appro-

priate sample2 of new builds are tested to ensure they meet a backstop compliance value, and

the results are re-inputted into SAP to ensure the overall TER is met. This process is supported

by defined standard protocols (ATTMA, 2010) and requirements for trained persons. Impor-

tantly, a required number of tests must be carried out early enough in the construction process

to prevent repeated failures. When tests do fail, remedial work should be conducted until a

passing test result is obtained.

However, there are fundamental differences between airtightness and whole house fabric heat

loss tests; namely the timescales and complexity of measured parameters. As a result the use

of co-heating tests have remained limited and within a research domain. Furthermore, the

experimental protocol is not as well established or consistently adopted. However, to ensure

that buildings are meeting performance targets overall, not just on airtightness alone, some type

of whole building assessment may be required. To address this, it was suggested as part of the

2012 Building Regulation Consultation that in the future they:

“...might specify a level of sample testing (e.g. whole house fabric co-heating tests or

equivalent carried out post completion but pre-occupation)” (DCLG, 2012, p.51)

Such a statement has perhaps led to concern and debate over the suitability of the co-heating

method. Assurances over the reliability and accuracy of the test method and an understanding

of its limits are required, including the adoption of appropriate estimates of the error within

HLC measurement. It is unlikely policy or developers themselves will act upon any evidence

unless it is robust and can be stated with some estimate of the uncertainty in the measurement.

Furthermore, it needs to be established how and when co-heating tests can best be used. It is

these two themes that this thesis addresses, understanding the uncertainties in the co-heating

method and determining how they can inform its application within the context defined here.

2Either on 3 units of each dwelling type or 50% of all instances of that dwelling type, whichever is less.
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2.2 The history & development of the co-heating method

2.2.1 Early development 1979 - 1988

In the late 1970s, researchers in the US, described a method known as electric co-heating (Son-

deregger and Modera, 1979; Sonderreger et al., 1980). Following studies that had demonstrated

high diversity in the energy used by energy efficient buildings there was growing interest in

being able to disaggregate the potential causes via in situ-measurements of both heating sys-

tem efficiencies and building heat loss coefficients. A method was developed in which a test

dwelling was heated via portable electric heaters to a constant internal temperature. Heaters

were thermostatically controlled with electricity consumption monitored by kWh meters and

external temperatures recorded to allow a building heat loss coefficient to be estimated across

either a single or set of consecutive nights. Subsequently, the regular heating system was oper-

ated and the ensuing load reduction seen in the electric heaters was used to determine the net

heat gain into the house, with the fuel provided to the heating system then used to determine

the heating system efficiency. The term co-heating was adopted to describe this method and its

adoption of this dual heating approach.

This basic method was extended to incorporate sections of not only constant internal tem-

peratures, termed co-heating periods, but with thermal decays or cooldowns and free-floating

periods, a combination developed by Duffy and Saunders (1987) amongst others. This test pro-

cedure was used to recalibrate a building model based on an audit description, in the PSTAR3

method, section 2.7.3 (Subbarao, 1988a; Subbarao, 1988b; Subbarao, 1988c). These additional

stages in the experimental protocol allowed estimates of further parameters, namely the effec-

tive solar gains and effective building thermal mass. Ultimately, this provided a re-calibrated

building model used to improve predictions of long-term energy use.

Meanwhile, researchers in the UK were interested in the performance of passive solar houses

and began to develop similar test methods with which to estimate the building heat loss coef-

ficient and the solar aperture, R, of test dwellings. This work began with Siviour (1981) who

developed a method that adopted an experimental protocol similar to Sonderegger and Modera

(1979)., i.e. constant internal temperatures and electric heating, albeit over much longer time

periods (>1 week) and using the full data set within the analysis, rather than simply night time

data. A simplified energy balance was used (see equation 2.5, section 2.3.1), with both building

parameters then determined via steady state regression analysis, using a form of energy balance

3Primary and Secondary Terms-Analysis and Renormalisation



46 Chapter 2. Literature review

previously suggested by Palmiter (1979).

Everett (1985), attempted to speed up and simplify Siviour’s method to expand its application,

with the goal of allowing ‘architects to test their own designs’. However, Everett discovered a

number of challenges within the test procedure, not only experimental but also theoretical and

statistical in nature, concluding that further work was needed. Lowe and Gibbons (1988) then

looked further into the duration required for testing through examining weather statistics, also

at this point apparently applying the name co-heating into UK nomenclature to describe this

longer form of the test.

As funding dropped off, interest in the development and validation of such procedures faded.

In fact, following the Pennyland and Linford projects (Everett, 1985; Chapman et al., 1985),

SERC4 decided that there would be no further large scale and expensive field trials, instead

focusing on dynamic thermal simulation (Bowman and Lomas, 1985; Bowman and Lomas,

1986). Thus the use of co-heating became more sporadic until activity resumed around the turn

of the millennium, particularly in the UK. Before reviewing this more contemporary work, it is

worth briefly defining co-heating as considered in this thesis and noting some broader uses of

the term and method.

2.2.2 Defining co-heating & further afield examples

Typically, but not exclusively, the term co-heating is used to describe periods of constant inter-

nal temperatures, certainly the case within this thesis. The UK method used by Siviour, Everett

and researchers at Leeds Beckett University (LBU) researchers then used a steady state energy

balance and regression to determine the heat loss coefficient, typically over periods exceeding

a week and using data aggregated to at least 24 hour integer periods. This method is described

fully in section 2.3. In contrast, the PSTAR method, utilises short (overnight) co-heating periods

along with further dynamic sequences and parameter identification techniques (see section 2.7).

It is the long-term co-heating method that is the subject of this thesis, although the use of

shorter periods is considered to provide further insight and comparisons. This typically refers

to the use of the PSTAR method, although variations on this method have been used. In ad-

dition, this work centres upon the testing of domestic dwellings, although these have not been

tested exclusively.

4SERC - Science & Engineering Research Council, now the Engineering & Physical Science Research Council
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For example, wider uses of the co-heating method have included the testing of schools; or rather

single classrooms, using overnight periods (Zabot, 1987). In one example, Masy and Lebrun

(2004) adopted a 5 day test sequence, with a night time set back, using network analysis to

account for attic and grounds heat transfer pathways.

2.2.3 Contemporary use: 1998 - present

Interest in the UK was revised around the turn of the millennium through work from a team

of researchers at Leeds Beckett University (LBU) with notable projects at the York Demon-

stration Project (Bell and Lowe, 1998), Stamford Brook (Lowe et al., 2007), Elm Tree Mews

(Wingfield et al., 2011) and Temple Avenue (Miles-Shenton et al., 2010; Miles-Shenton et al.,

2011). Researchers adopting the long-term co-heating tests developed by Siviour and Everett,

produced significant pieces of work through over 50 tests (Johnston et al., 2013), amassing

evidence of a fabric performance gap between designed and measured heat loss (Stafford et al.,

2012) and identifying the party wall bypass (Lowe et al., 2007). In this context co-heating tests

were typically performed alongside further fabric tests, construction observations, forensic

investigations and further building performance evaluation (BPE) techniques.

Interest further peaked following these studies and a wider range of UK based university

research teams adopted the method, particularly through the Good Homes Alliance BPE pro-

gramme, 2009 - 11 (GHA, 2011b), in which LBU participated and provided advisory support,

the AIMC4 Project (AIMC4 Partners, 2013) and the Technology Strategy Board BPE pro-

gramme, 2010 - 2014 (TSB, 2015). This led to a series of guidelines being published by

researchers at LBU, often referred to as the LBU protocol (Wingfield, 2010a; GHA, 2011a;

Johnston et al., 2012b; Johnston et al., 2013). A number of commercial organisations also

began to offer a co-heating testing service, including: BRE, BSRIA, Stroma, Gastec, NBT

Consult (GHA, 2011b) as well as at least one house developer, Wilmott Dixon, testing their

own dwellings.
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2.2.4 Reported co-heating tests within the literature

Published literature on co-heating tests is scarce and of variable depth and quality. This is for

a number of reasons. Firstly, tests have traditionally been performed in partnership with house

builders, architects, etc. This means many of the details, or entire projects, are left unpublished

under confidentiality agreements. Additionally, co-heating results will typically be published

as part of broader BPE reports or papers, with only the inclusion of headline figures and an

absence of technical details. When technical reports are available, without a standard reporting

criteria or even methods, they can be uninformative, often missing information on key pieces

of data. Without adequate details it becomes impossible to assess the reliability of a test and its

result. Co-heating tests that are reported in available literature, along with any relevant details

supplied, are shown in tables 2.1 - 2.5. What is clear is that drawing comparisons between

tests, or performing any meta-analysis, is limited by the lack of consistent details, variations in

method and the small sample size.

Notes on tables 2.1 to 2.5:

• Predicted HLCs are based upon either SAP calculations or Passivhaus Planning Pack-

age (PHPP) calculations, operating along similar lines. Occasionally, these values have

been adjusted to incorporate measured in situ U-values, air infiltration or to account for

construction defects.

• Error estimates are based upon either the standard error of regression (1) or on the stan-

dard deviation of daily estimated HLCs.

• For explanation of analysis methods, MLR, cSLR, Sviour, Simple Average see section

2.3.3.

• For definitions of types of measured solar radiation see section 3.4.

• Infiltration measurements are described in section 2.5.1.
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