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The term homoeology has been used
inconsistently in historical and modern
contexts.

Homoeologs are pairs of genes that
originated by speciation and were
brought back together in the same
genome by allopolyploidization.

Homoeologs are not necessarily one-
to-one or positionally conserved.

Evolution-based computational meth-
ods have emerged to infer homoeologs
from sequencing data.
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The evolutionary history of nearly all flowering plants includes a polyploidization
event. Homologous genes resulting from allopolyploidy are commonly referred
to as ‘homoeologs’, although this term has not always been used precisely or
consistently in the literature. With several allopolyploid genome sequencing
projects under way, there is a pressing need for computational methods for
homoeology inference. Here we review the definition of homoeology in historical
and modern contexts and propose a precise and testable definition highlighting
the connection between homoeologs and orthologs. In the second part, we
survey experimental and computational methods of homoeolog inference, con-
sidering the strengths and limitations of each approach. Establishing a precise
and evolutionarily meaningful definition of homoeology is essential for under-
standing the evolutionary consequences of polyploidization.

Polyploidization and Homoeology
Many plants – and virtually all angiosperms – have undergone at least one round of polyploidization
in their evolutionary history [1–3]. In particular, numerous important crop species, such as Arachis
hypogaea (peanut), Avena sativa (oat), Brassica juncea (mustard greens), Brassica napus (rape-
seed), Coffea arabica (coffee), Gossypium hirsutum (cotton), Mangifera indica (mango), Nicotiana
tabacum (tobacco), Prunus cerasus (cherry), Triticum turgidum (durum wheat), and Triticum
aestivum (bread wheat), exhibit allopolyploidy (see Glossary), a type of whole-genome duplication
via hybridization followed by genome doubling [4]. This hybridization usually occurs between two
related species, thus merging the genomic content from two divergent species into one (Box 1).

Allopolyploidization has been studied since at least the early 1900s. Some of the first inves-
tigations were about chromosome numbers and pairing patterns of hybrid species [5,6]. The
term homoeologous was coined to distinguish chromosomes that pair readily during meiosis
from those that pair only occasionally during meiosis [7]. However, the definition of homoeology
has varied and at times been used inconsistently.

Homoeology has been broadly used to denote the relationship between ‘corresponding’ genes
or chromosomes derived from different species in an allopolyploid. Accurately identifying
homoeologs is key to studying the genetic consequences of polyploidization; knowing the
evolutionary correspondence between genes across subgenomes allows us to more accu-
rately estimate gene gain or loss after polyploidization (reviewed in [8,9]) and to study the major
structural rearrangements or conservation between homoeologous chromosomes. Additionally,
we can study the functional divergence of homoeologs on polyploidization, particularly in terms
of expression (reviewed in [2,8,10–13]), epigenetic patterns (reviewed in [8,12]), alternative
splicing [14], and diploidization (reviewed in [8]). From a crop improvement viewpoint, identifying
homoeologs that may have been functionally conserved is important for elucidating or engi-
neering the genetic basis for traits of interest [15,16].
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Glossary
Allopolyploidy: polyploidy originating
from interspecific hybridization
followed by genome doubling.
Autopolyploidy: polyploidy
originating from intraspecific genome
doubling.
Cohomoeologs: set of genes in a
subgenome that are all
homoeologous to the same genes in
another subgenome, thus resulting
from subgenome-specific
duplications (i.e., duplications that
have occurred after speciation of the
progenitors).
Comparative mapping: a technique
that uses molecular mapping to show
conservation of gene order along the
chromosomes of related species.
Coorthologs: set of genes found in
a species that are all orthologous to
the same genes in another species,
thus resulting from lineage-specific
duplications (i.e., duplications that
have occurred after the speciation of
the two species in question).
Homoeologs: genes or
chromosomes in the same species
that originated by speciation and
were brought back together in the
same genome by allopolyploidization.
Homologous: genes or
chromosomes related by common
ancestry.
Ohnologs: genes or chromosomes
in the same species that originated
by a whole-genome duplication event
(autopolyploidy).
Orthologs: genes or chromosomes
in different species that originated by
a speciation event.
Paleolog: genes or chromosomes in
the same species that resulted from
an ancient polyploidization event.
Paralogs: genes that originated by a
duplication event.
Positional homoeologs:
homoeologs that have remained in
the same position as they were in the
progenitor common ancestor.
Relationship cardinality: the
number of instances in one entity
related to the number of instances in
the other (e.g., one-to-one, one-to-
many, many-to-many).
Subgenome: one of the genomes in
an allopolyploid, each derived from
different progenitor species.

Box 1. Allo- versus Autopolyploidy

What Are the Types of Polyploidy?

The criteria for distinguishing and classifying natural polyploids has been subject to a long-standing debate [89,90]. In this
review we adopt the most widespread definition, which is based on a taxonomic framework: allopolyploids result from
genome doubling following a hybridization between two different species (interspecific), whereas autopolyploids result
from genome doubling within one species (intraspecific).

What Are the Biological Differences between Allo- and Autopolyploids?

Historically, polyploid types were distinguished by their chromosome pairing behavior observed under the microscope
during metaphase I of meiosis [91].

Since autopolyploids are formed by genome doubling within the same species, by consequence autopolyploids originate
with an identical set of chromosomes. This means there is an equal opportunity for the homologous chromosomes to pair
at meiosis. Thus, autopolyploids are more likely than allopolyploids to form multivalent chromosome configurations – the
association of three or more chromosomes during the first meiotic division (Figure IA).

By contrast, allopolyploids usually form bivalent chromosome associations during meiosis. Allopolyploids are derived
from different species; thus, the chromosome sets have begun to diverge before the hybridization event. The chromo-
somes are non-identical and this is one reason why there is a tendency for homologous chromosomes to pair over
homoeologous chromosomes, resulting in diploid-like pairing behavior (Figure IB).

Caveats and Risks of Using Chromosome Pairing to Define Homoeologous Chromosomes

Distinguishing autopolyploids from allopolyploids based on chromosome pairing has proved to be inadequate [92]. It is
impossible to make phylogenetic inferences or statements on homology based on chromosome pairing because pairing
behavior is not exact, with many exceptions to the rule. Pairing is at least partially under genetic control, is influenced by
the environment, and can be observed between homoeologous and non-homoeologous chromosomes [93–95].

Autotetraploid
(intraspecific)

(A) Allotetraploid
(interspecific)

(B)

Figure I. Typical Chromosome Associations during Meiosis in (A) Autopolyploids and (B) Allopolyploids.
This high interest in the genetic and evolutionary consequences of polyploidization has driven the
development of several methods for homoeolog inference. However, because of their highly
redundant nature polyploid genomes have been notoriously challenging to sequence and
assemble [17]. Recent breakthroughs in sequencing and assembly methods suggest that
we are finally overcoming this hurdle [18–20] and as increasing numbers of polyploid genomes
are sequenced there will be a growing interest in homoeology inference. Thus, it is necessary to
establish a common framework.
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Here we examine the current and common definitions of homoeology and point out imprecise
usage in the literature, from historical definitions to modern understandings. We advocate a
precise and evolutionarily meaningful definition of homoeology and connect homoeology and
orthology inference. We then review homoeolog inference methods and discuss advantages
and disadvantages of each approach.

What Are Homoeologs?
Historical Definitions and Modern (Mis)Understandings
It is first important to make the distinction between homology and homoeology. The prefix
‘homo-’ comes from the Latin (and ancient Greek) word for ‘same’, whereas the prefix ‘homoeo’
means ‘similar to’ [21]. Homoeology has alternatively been spelled as ‘homeology’ (Box 2). Both
terms have a history of varied and, at times, inconsistent usage in different fields, but in biology it
is now generally accepted that homology indicates ‘common ancestry’; by contrast, ‘homoe-
ology’ is more ambiguous.

The term homoeologous was first used in a cytogenetics study of allopolyploid wheat, where
Huskins (1931) defined it as ‘phylogenetically similar but not strictly homologous chromosomes’
in a hybrid. Huskins goes on to explain further:

To distinguish between chromosomes which come within the commonly accepted meaning
of the term homologous and those which are, as evidenced by their pairing behavior, similar
only in part, the latter might be referred to as homœologous chromosomes, signifying
similarity but not identity. . .This term would include chromosomes of different ‘genomes’
which pair occasionally in allopolyploids, often causing the appearance of mutant or aberrant
forms, and also, as a corollary, chromosomes which pair irregularly in many interspecific
hybrids. [7]
Box 2. Alternative Spellings of Homoeology

To make homoeology even more confusing, there are alternative spellings that exist in the literature. The original spelling
by Huskins [7] uses an ‘œ’ diphthong borrowed from Latin. This ‘œ’ has been transliterated in modern usage to the ‘oe’ in
‘homoeolog’. However, the alternative spelling ‘homeolog’ has also been used extensively.

Which spelling is more popular? Based on our survey of the literature, homoeolog and its derivatives has 1779 mentions,
while homeolog has just 738 mentions (Figure I).

Thus, since it is the most common spelling, we recommend retention of the original homoeology spelling. Regarding
pronunciation, it is more difficult to gauge usage across the community, but the Merriam-Webster medical dictionary
pronounces homoeologous as ‘ho-mee-o-log-ous’ (http://www.merriam-webster.com/medical/homoeologous). Thus,
conveniently, the two alternative spellings are pronounced in the same way.
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Figure I. Usage of Homeo- versus Homoeo- in the Literature. A search was performed via Scopus of the primary
literature up to the end 2015 and included the search terms homoeology, homoeologous, homoeolog, and homoeologue
versus their homeo- forms.
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Two decades later, in the 1949 Dictionary of Genetics, R.L. Knight defines homoeologous
chromosomes as ‘chromosomes that are homologous in parts of their length’ [22].

Thus, in its historical context, a pair of homoeologous chromosomes is thought of as being
similar but exhibiting only infrequent pairing during meiosis. In a survey of 93 studies of
autopolyploids and 78 studies of allopolyploids, multivalent pairing (pairing between more than
two chromosomes) on average occurred more in autopolyploids than in allopolyploids (�29% vs
8%) [23]. Although chromosome pairing patterns give a good indication of homology type, this
should not be used as a criterion (Box 1).

Over the years, the definition of homoeology has evolved and diverged to have different usages
depending on the scientific field of study or topic. The term homoeologous can mean different
things and may not be as simple as ‘genes duplicated by polyploidy’ [24]. Table 1 highlights the
differences between the different definitions of homoeology depending on the context in which it
is used. The variation among definitions depends on the level of biological analysis: at the
chromosome, gene, or sequence level.

Even in modern evolutionary biology contexts, the term homoeolog has been used incon-
sistently. For instance, some have used it not just in the context of allopolyploids but to relate
duplicates created by autopolyploidy as well (for example, [25,26]). This is, however, at
odds with the original description of homoeologs as belonging to an allopolyploid genome
[7]. There are biological differences between genes that arise due to speciation versus
duplication [27] and thus also, conceivably, between allo- versus autopolyploids. Autopo-
lyploids by definition are created by genome doubling, with an exact copy of the genome
formed. By contrast, allopolyploids are formed by the merger of closely related species that
have already started to diverge. Although still poorly understood, these fundamental differ-
ences could have significant effects on the genome of the polyploid. Hybridization can
induce a ‘genome shock’ prompting epigenetic or expression changes that might not be
present with strictly genome doubling per se [8,28–30]. The functional consequences of
genes duplicated by allo- vs autopolyploidy still needs to be investigated, which is why a
clear distinction of terminology between the two is important. Furthermore, this usage of
homoeolog overlaps with another term – ohnologs – used to denote genes resulting from
whole-genome duplication [31].

The term homoeolog has even been used to refer to similar chromosomal regions in different
species [32–34]. Although closely related species do have similar chromosomes and gene
content, this latter usage is unorthodox: the term homoeolog has been overwhelmingly used to
Table 1. Varied Usages of the Term ‘Homoeology’ in Different Areas of Research

Context Definition Refs

Recombination Homoeologous: ‘sequences that are similar but imperfectly matched’ [96]

Cytogenetics Homoeologous chromosomes: ‘those which once were homologous,
i.e. essentially identical, but have become so different that they rarely
pair [during meiosis]’

[97]

Evolutionary biology Homoeologous: ‘duplicated genes or chromosomes that are derived
from different parental species and are related by ancestry’

[98]

Computational biology Homoeologs: ‘orthologs between subgenomes’ [35]

This review Homoeologs: pairs of genes or chromosomes in the same species that
originated by speciation and were brought back together in the
same genome by allopolyploidization
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denote relationships within polyploids, and therefore within a single species rather than between
closely related species. A cross-species definition of homoeology is also redundant with that of
orthology.

A Unifying, Evolutionarily Precise Definition of Homoeology
Consequently, there is a need for a unifying, evolutionarily precise definition of homoeology,
formulated in terms of the key events that gave rise to the genes in question. The ideal definition
should be as consistent as possible with the widespread usage of the term and should
complement the other ‘-log’ terms, which have served the community well. We define homoeo-
logs as pairs of genes or chromosomes in the same species that originated by speciation and
were brought back together in the same genome by allopolyploidization. Figure 1 depicts how
this definition complements the other ‘log’ terms. In particular, the analogy between homoeologs
and orthologs implies that homoeologs can be thought of as orthologs between subgenomes of
an allopolyploid [35].

Note that the term ‘paleolog’ is sometimes used to denote ancient polyploidization events. The
term is convenient for plants such as soybean where the polyploidization event occurred more
than a few million years ago and where it is unknown whether these were auto- or allopoly-
ploidization events [36].

Implications of the Definition for Positional Conservation and Relationship Cardinality
Because of the analogy between homoeology and orthology, homoeologs are under the same
common misconceptions that afflict orthologs: the notion that homoeologs necessarily in a one-
to-one relationship or that they have remained strictly in their ancestral positions since
speciation.

Since homoeology is characterized by an initial speciation event, once the progenitor species of
the future allopolyploid begin to diverge, the corresponding genes in each new species that
descended from a common ancestral gene start diverging in sequence (Figure 2). The sequence
divergence will depend on the time since the progenitor divergence and other factors (the same
factors that contribute to ortholog divergence such as selection pressure, duplication events,
and others). In addition to genic sequence divergence, other scale evolutionary events may
occur, including single-gene duplications, deletions, and rearrangements.
Genes that
originated by a

specia�on event

Pairs of genes found in
different species

Pairs of genes found in
the same species

Genes that
originated by a

duplica�on event

Homoeologs Orthologs

Paralogs
Ohnologs

Paralogs

Whole genome duplica�on:

Small scale duplica�on:

Figure 1. Subtypes of Homologous Genes (Genes of Common Ancestry). As the table shows, the definition of
‘homoeologs’ we recommend – genes that originated by speciation and that were subsequently brought back in a single
genome through allopolyploidization – complements well other homology subtypes commonly used in evolutionary biology.
In particular, the table highlights the parallels between homoeologs and orthologs and between homoeologs and ohnologs.

Trends in Plant Science, July 2016, Vol. 21, No. 7 613



Ancestral genome

Species B

Specia�on

Polyploidiza�on
via hybridiza�on

Species A

Allopolyploid species  C

Genes of the same
color between
genomes are

orthologs

Genes of the same
color between

subgenomes are
homoeologs

Gene duplica�ons,
transloca�ons, and

rearrangements

Diploid Diploid

Tetraploid

Ti
m

e

Figure 2. Evolutionary History of an Allopolyploid. An ancestral genome undergoes a speciation event, resulting in two
diploid species. The genes, which descended from a common gene in the ancestor, are orthologs. Evolution occurs after
speciation, including structural rearrangements, gene duplications, and gene movement. On polyploidization, genes that
were once orthologs are now homoeologs. Homoeologous relationships can be one-to-one, one-to-many, or many-to-
many depending on the number of duplications since speciation of the progenitors.
As a consequence, orthologous relationships are not necessarily one-to-one between species
and may exist in one-to-many or many-to-many relationships, especially among highly dupli-
cated plant genomes [37]. The same is true for homoeologous relationships. Depending on the
duplication (and loss) rate since the divergence of the progenitor species, there may be more
than one homoeologous copy of a given gene per subgenome (Figure 2).

In many plant species, a high degree of collinearity, or conservation of gene order [38], has
been observed between homoeologous chromosomes in polyploids. Genes tend to stay in
their ancestral position since divergence, leading to the concept of positional orthology
[39] and, analogously in allopolyploids, of positional homoeology. However, there may
be rearrangement of homoeologs via single-gene duplication/translocation either before or
after polyploidization, going against the widespread notion that homoeologous genes
are always positional (i.e., have remained in their ancestral location), as stated for example
in [25].
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Although we can expect that most homoeologs remain positionally conserved and in a one-to-
one relationship after polyploidization, these are only a subset of the homoeologs. The frequency
of homoeolog duplication may be significantly underestimated in some species due to use of the
best bidirectional hit (BBH) – an approach inherently limited to inferring one-to-one relationships
[40,41].

How to Infer Homoeologs
In general, homoeology inference reduces to identifying similar (and therefore likely homologous)
genes within a polyploid genome and inferring whether pairs of homologs started diverging from
one another through speciation, in which case they are homoeologs (and usually located on
different subgenomes), or through duplication, in which case they are paralogs (and usually
located on the same subgenome). The methods for doing so have changed over time with
advances in technology, from low-throughput laboratory techniques to high-throughput compu-
tational ones. In this section we survey these techniques and highlight their relative strengths and
limitations.

Wet Lab Techniques Based on Probe Hybridization or PCR Amplification
Although whole-genome sequencing has become commonplace thanks to next-generation
sequencing (NGS) techniques, many species do not yet have a fully sequenced reference
genome. Techniques used to isolate homoeologous genes from polyploid species before NGS
were based on hybridization, using a probe or primer as a template to retrieve the homoeologs of
interest. However, due to the high sequence similarity of homoeologs as well as paralogs, one
would obtain a mixture of DNA molecules representing homoeologous and paralogous copies,
which then needed to be separated.

One method of separating homoeologous copies from each other in a pool of highly similar DNA
molecules is by using the mixture of homoeologs obtained from PCR to transform into bacteria,
resulting in only a single copy of either homoeolog in each bacterial colony. Colonies can then be
isolated, sequenced, and assigned to subgenomes by using knowledge from diploid progenitor
species, specifically differential (sub)genome restriction patterns [42]. Note that the true pro-
genitors may no longer exist in nature and that the term ‘progenitor’ may refer to their extant,
unhybridized descendant or close relative [43].

Another way of separating homoeologous sequences makes use of restriction-digested DNA
followed by size fractionation on a gel [44]. Minor differences among homoeologous copies can
be expected to result in sequence differences at restriction sites and thus digestion cuts
homoeologous copies into different sizes. This is followed by isolating the DNA from the
separated bands and then amplifying these homoeologous copies by cloning. Alternatively,
isolated homoeologs can be obtained using PCR primers to produce a mixture of homoeol-
ogous copies, and after size fractionation the same primers can be used to amplify individual
homoeolog copies [44].

The above techniques are all performed on a gene-by-gene basis with molecular methods and
therefore are small scale and relatively time-consuming and laborious. A more recent and larger-
scale technique to separate homoeologs, based on hybridization of genomic DNA to an array, is
able to target hundreds or thousands of genes at a time, each individually spotted on the array.
Salmon et al. [45] used this technique to capture homoeologous pairs in G. hirsutum. After
hybridization, the probes on the chip, enriched for homoeologous pairs, were then sequenced
with NGS. Homoeologs could be distinguished by sequence polymorphisms between them.

These experimental techniques have several limitations. First, they are appropriate for studies
focusing on a small number of genes but scale poorly to entire genomes. Additionally, they all
Trends in Plant Science, July 2016, Vol. 21, No. 7 615



require prior sequence information for the gene of interest. If cDNA is used as the starting point,
one can combine homoeolog inference with differential expression studies. However, this works
only for genes that are expressed in the particular condition from which the cDNA library was
made. Homoeologs are assigned to a subgenome by comparing the individual homoeolog
sequences from the polyploid to their orthologous counterparts in the diploid progenitors.
Therefore, these experiments need to be performed on the progenitor species as well, which
may not always be readily available. Finally, it can be difficult to distinguish homoeologous from
paralogous sequences, as the degree of sequence divergence between the two can be slight
and thus not result in a clear difference in hybridization pattern. Thus, these techniques do not
perform well on large gene families.

Comparative Mapping and Positional Homoeology
Before the era of whole-genome sequencing, molecular markers were used to detect synteny
and collinearity between chromosomes. However, molecular mapping is more complicated in a
polyploid than a diploid, as there needs to be sufficient allele polymorphism to distinguish among
the different homoeologs. Several techniques exist to circumvent this problem by comparative
mapping in diploid relatives or by using aneuploid lines [46]. Many studies have been published
using mapping to identify homoeologous relationships between chromosomes or genes in
several allopolyploids, including Gossypium (cotton) [47], B. napus (rapeseed) [48], A. hypogaea
(peanut) [49], and T. aestivum (wheat) [50–54]. Wheat researchers played a major role in
popularizing the term homoeology in the 1990s, with many molecular mapping papers showing
the collinearity between wheat homoeologous chromosomes.

Although conservation of position in the genome can be used as another layer of evidence above
sequence similarity to infer homoeology, there are several inherent problems with homoeology
inference based solely on this approach. Mapping homoeologs is possible only if the molecular
markers are able to distinguish sequence polymorphisms between homoeologs. Additionally,
conservation of relative genomic location in itself is not a requirement for homoeology, which
depends only on the type of event that gave rise to the sequences. Due to potential duplications,
chromosomal rearrangements, or other events leading to gene movement [55–57], relying on
positional conservation to infer homoeology may lead to a substantial fraction of missed homoe-
ologous relationships and introduce a bias. Like orthologs or paralogs, positional and non-
positional homoeologs could differ in their biological characteristics. For example, orthologous
genes maintained in the same position have slower evolution rates, are less likely to undergo
positive selection, and are more likely to have a conserved function [58–62]. Additionally, positional
orthologs have been shown to maintain a higher expression level and breadth compared with non-
positional orthologs [63]. Paralogs that have inserted into distant regions of the genome tend to
have a more divergent DNA methylation pattern and expression than tandem duplicates [64,65].

Similarity-Based Computational Techniques
High-throughput sequencing allows fast and affordable production of genome-wide sequence
information, making it possible to identify similar regions and infer homoeology computationally
at a genome-wide scale. However, despite rapid improvements in sequencing technology it
remains a challenge to obtain a high-quality, fully assembled reference genome sequence for
many plant species [66]. This is mainly because of their large, complex genomes, which are
highly repetitive due to duplication and transposon activity [17]. With entire chromosomes in
multiple copies, this difficulty is compounded in polyploid genomes. Because of these issues,
most polyploid plant genome sequences remain in a draft, highly fragmented state, usually
comprising small contigs harboring only a few genes [17].

The identification of homoeologs thus first requires assembling short sequences (e.g., expressed
sequence tags or, increasingly, NGS reads) at low stringency followed by homoeolog
616 Trends in Plant Science, July 2016, Vol. 21, No. 7



discrimination based on sequence polymorphisms between the reads. For example, Udall et al.
assembled ESTs from allotetraploid cotton and the two diploid progenitors. Most assembled
contigs contained four copies: two orthologs from the progenitors and one from each of the
homoeologs. They then assigned the homoeolog ESTs to their appropriate subgenome based on
sequence comparison with the progenitors [67].

In another example [68], homoeologs were distinguished in hexaploid wheat by first assembling,
at a relatively low stringency, transcriptome NGS reads into clusters of sequences containing
homoeologs and close paralogs. The second step was to reassemble each cluster separately
using a more stringent assembler to separate homoeologs.

After discriminating between homoeologous genes, it is generally necessary to map the reads
back to the progenitor species to infer to which subgenome they belong. For example, Akama
et al. [69] sequenced and de novo assembled both Arabidopsis halleri and Arabidopsis lyrata
(progenitors of the allotetraploid Arabidopsis kamchatica). They identified homoeologs by
aligning the allotetraploid reads to both the A. halleri and A. lyrata genomes and considered
high-scoring alignments as homoeologs. A similar technique was performed in hexaploid wheat
taking advantage of the recently sequenced diploid progenitors Triticum urartu and Aegilops
tauschii [70]. Another method of separating contigs into individual homoeolog copies employs
the strategy of ‘post-assembly phasing’ using remapped reads, which detects polymorphisms
in reads and determines whether they were inherited together [71].

Provided that the progenitors’ genomes are known and well separated, techniques based on
short reads and sequence polymorphisms to infer homoeologs can be effective. Because they
tend to be based on RNA-seq reads, one can simultaneously quantify their expression.
However, there will be false negatives if one or both of the homoeologs is unexpressed. Also,
it can be costly to first sequence the progenitor species. Another disadvantage is that, again,
these methods do not establish one-to-many or many-to-many relationships. Additionally, as
with experimental hybridization methods, it can be difficult to distinguish homoeologs from
paralogs.

Evolution-Based Computational Techniques
We indicated above that homoeologs should be defined as pairs of genes within an allopolyploid
that originated by speciation and were reunited by hybridization. Thus, fundamentally, the
relationship between homoeologs is based on evolutionary relationships rather than sequence
similarity. Furthermore, the parallel between homoeologs and orthologs suggests the possibility
of repurposing orthology inference methods – a relatively mature area of research with many
well-established computational methods [72]. These methods, which all work at the genome-
wide scale, are divided into phylogenetic-tree-based (which infer speciation and duplication
nodes on gene trees) and graph-based (which infer the evolutionarily closest genes between
species without explicitly reconstructing trees).

Methods based on phylogenetic trees use the process of gene/species tree reconciliation,
which determines whether each internal node of a given gene tree is a speciation or duplication
node using the phylogeny of the species tree. With this information one can determine whether
any two genes are related through orthology or paralogy; pairs of genes that coalesce at a
speciation node are orthologs, whereas pairs of genes that coalesce at a duplication node are
paralogs [72]. To our knowledge, the only phylogenetic tree-based homoeology inference
approach taken so far is that of Ensembl Genomes, which has repurposed their Compara
phylogenetic tree-based pipeline [73] to distinguish orthologs, paralogs, and homoeologs in
wheat [74]. This is achieved by treating each subgenome as a different species, running their
usual orthology pipeline, and finally relabeling orthologs inferred among subgenomes as
Trends in Plant Science, July 2016, Vol. 21, No. 7 617



homoeologs. This information is found in the ‘location-based display’ on their website under
‘Polyploid view’ (http://plants.ensembl.org/Triticum_aestivum/Info/Index).

In general, graph-based orthology methods comprise inferring and clustering pairs of orthologs
based on sequence similarity [72]. Graph-based orthology methods have also been adapted to
infer homoeologs. One of the simplest and most widely used methods of ortholog detection is by
finding BBHs between pairs of genomes [75]. This method uses BLAST [76] or another
sequence alignment algorithm to find the set of reciprocally highest-scoring pairs of genes
between two genomes. Such an approach was used to infer homoeologs between the
subgenomes of hexaploid wheat, identifying triplets of best bidirectional protein hits between
subgenomes [41]. However, the BBH method has inherent drawbacks. By identifying only the
‘best’ pair, it cannot identify one-to-many or many-to-many homoeology. This is particularly
problematic for highly duplicated plant genomes [77]. As a result, BBH between subgenomes
will at best infer a subset of the homoeologous relationships, thereby yielding false-negatives.
Additionally, differential gene loss among the subgenomes can cause erroneous inference of
paralogs as homoeologs [78]. Finally, using alignment scores is suboptimal in the presence of
many fragmentary genes and sequencing errors [79].

Another graph-based homoeolog inference approach to analyze the wheat genome was
performed in the Orthologous Matrix (OMA) database – a method and resource for inferring
different types of homologous relationships between fully sequenced genomes [35]. This
technique identifies mutually closest homologs based on evolutionary distance while considering
the possibility of differential gene loss or many-to-many relationships [80]. Again, the application
of the orthology inference pipeline was achieved by treating each subgenome as a different
species, running the standard pipeline, and, finally, calling orthologs between subgenomes
homoeologs. Compared with the BBH approach, the OMA algorithm has the advantages of
considering many-to-many homoeology, identifying differential gene losses, and relying on
evolutionary distances rather than alignment score.

The main issue limiting the use of repurposed orthology methods such as Ensembl Compara
and OMA is the requirement for a priori delineation of the subgenomes. If there have been
Box 3. Challenges of Computational Techniques

There are several challenges shared by similarity- and evolution-based computational approaches, which suffer many of
the same challenges as inferring orthologs. For example, errors in sequence assembly can cause problems. Most draft
genome sequences have errors in the number of genes due to fragmented assemblies, repetitive regions, low coverage,
and propagation of bad gene annotations [99,100]. This becomes a problem particularly in plant species, which often
have large, repetitive genomes [101]. Additionally, plant genomes are complex, with large gene families. Paralogs may be
merged into chimeric contigs, resulting in incorrect annotations.

Missing genes can pose a problem for homoeolog inference. Missing genes in one subgenome or differential gene loss
could cause paralogs that were duplicated before the speciation event to appear as homoeologs. This could be a
problem with low-coverage draft genomes [102] or with too-stringent gene prediction methods.

Perhaps the biggest problem with draft genome assemblies for homoeolog inference is not missing genes but
fragmented genes, where genes are only partially represented in the sequence. Gaps in sequence give rise to many
small contigs, which in turn result in fragmented gene predictions over several contigs. These fragments appear as
multiple genes but are actually one gene [103]. Fragmentation causes an overestimation of genes and this could
cause overestimation of the number of genes with one-to-many and many-to-many orthology. Additionally,
fragmentation makes it harder for algorithms relying on a minimum length of the sequence overlap between
homoeologs.

In summary, just as ‘low-quality assemblies result in low-quality annotations’ [99], low-quality annotations result in low-
quality homoeology inference.
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Outstanding Questions
Can dependable computational meth-
ods be devised to infer from genome
sequence alone whether a polyploid
species originated by allopolyploidiza-
tion or by autopolyploidization?

Certain computational pipelines need
delineation of subgenomes before
homoeology inference. This will, how-
ever, not work if there has been consid-
erable chromosomal rearrangement
between subgenomes after polyploid-
ization. Can one simultaneously detect
rearrangement, separate subgenomes,
and infer homoeologs?

In general, what are the functional dif-
ferences between homoeologs (result-
ing from allopolyploids) and ohnologs
(resulting from autopolyploids)? There
is a growing body of research looking
at the functional implications of poly-
ploidization, but so far a clear answer
remains elusive.
rearrangements across subgenomes since hybridization of the progenitors occurred, this will
cause errors in homoeolog inference because subgenomes can no longer be straightforwardly
treated as individual species. Another problem with both similarity- and evolution-based tech-
niques is that they are highly dependent on the quality of sequence assembly and annotation
used to infer homoeologs (Box 3).

Concluding Remarks
Polyploid species are widespread throughout the plant kingdom. There is much interest in
polyploidy and accurately identifying homoeologs allows us to better study the genetic and
evolutionary consequences on genomes of polyploids. Many exciting findings have been
published recently that provide insights into the structural and functional divergence of homoeo-
logs and the chromosomes they reside on [3,9,81,82]. As a result, polyploidy has emerged as
potentially a major mechanism of adaptation to environmental stresses [9,83–85].

The term homoeologous was first used in 1931 to describe chromosomes related by
allopolyploidy. Since then, the definition has changed over the years and now suffers from
inconsistent interpretation, usage, and spelling. In recent decades there has been increasing
interest in polyploidy and the word homoeology has experienced an increase in usage.
There has been a surge in sequenced plant genomes and polyploid genomes are not
far behind, despite their increased complexity and challenges due to their repetitive
nature [18,86].

Thus, just as it was important to establish clear definitions of orthology and paralogy [87,88], now
is the time to establish common and consistent definitions for homologs that exist in a polyploid.
Based on our survey of the usage of the term and related concepts in evolutionary biology, we
advocate defining homoeologs as pairs of genes that started diverging through speciation but
are now found in the same species due to hybridization.

This evolution-based definition has several implications that call for a fundamental shift in the way
we as biologists, plant breeders, and bioinformaticians think of homoeology. First, homoeolog
inference may suffer from false negatives if inferred solely on the basis of positional conservation.
This is because genes can move and, by definition, different types of homologous relationships
are based on how the genes originated and not where they are located in the genome. Syntenic
conservation is helpful to infer homoeologs but should be used only as a soft criterion to provide
additional evidence that a pair of genes are homoeologs. We recommend using the term
positional homoeolog when referring to the subset of homoeologs with a conserved syntenic
position.

Furthermore, looking at homoeology from an evolutionary perspective has an impact on the
relationship cardinality. Homoeology is not necessarily a one-to-one relationship, espe-
cially in highly duplicated plant genomes. This conceptual change is important because one-
to-one positional homoeologs are likely to have significantly different biological character-
istics than one-to-many, non-positional homoeologs – as has been previously observed with
orthologs.

The establishment of a clear and meaningful definition of homoeology is timely. With rapid
progress in sequence technology, we are at the cusp of an explosion of sequenced polyploid
genomes. However, although assembling allopolyploid genomes might no longer be ‘formida-
ble’ [18], unraveling the evolutionary history of the genes they contain remains resolutely so (see
Outstanding Questions). Overcoming this challenge will require a major coordinated effort
among plant, evolutionary, and computational biology scientists. A common definition and
framework constitutes a first essential step toward that goal.
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