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Key points summary: 

• Increased environmental risk factors in conjunction with genetic susceptibility has been 

proposed in Amyotrophic lateral sclerosis (ALS) remarkable variations in mortality 

• In vitro models allow investigating genetically modified counter-regulator of motoneuron 

toxicity and might help in addressing ALS therapy 

• Spinal organotypic slice cultures from SOD1G93A mouse model of ALS allow us to detect 

altered glycinergic inhibition in spinal microcircuits  

• This altered inhibition improved spinal cord excitability affecting motor outputs in early 

SOD1G93A pathogenesis  
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Abstract  

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurological disease characterized by 

progressive degeneration of motoneurons (MNs). In our previous study we developed organotypic 

spinal cultures from an ALS mouse model expressing a mutant form of human superoxide 

dismutase 1 (SOD1G93A). We reported the presence of a significant synaptic rearrangement 

expressed by these embryonic cultured networks, which may lead to altered development of spinal 

synaptic signalling, potentially linked to the adult disease phenotype. Recent studies on the same 

ALS mouse model, reported a selective loss of glycinergic innervation in cultured MNs, suggestive 

of a contribution of synaptic inhibition to MNs dysfunction and degeneration. Here we further 

exploit organotypic cultures from wild type and SOD1G93A mice to investigate the development of 

glycine-receptor mediated synaptic currents recorded from interneurons of the premotor ventral 

circuits. We perform single cell electrophysiology, immunocytochemistry and confocal microscopy 

and we suggest that GABA co-release may speed the decay of glycine responses altering, in 

SOD1G93A developing networks, temporal precision and signal integration at the postsynaptic site. 

Our hypothesis is supported by the finding of an increased MN bursting activity in immature 

SOD1G93A spinal cords and by immunofluorescence microscopy detection of longer persistence of 

GABA in SOD1G93A glycinergic terminals in cultured and ex-vivo spinal slices.  

 

Abbreviations 

ALS, Amyotrophic lateral sclerosis; DRG, dorsal root ganglia; mPSCs, miniature glycinergic 

currents; MNs, motoneurons; gly-PSCs, glycine-receptor mediated synaptic currents; PSC, post 

synaptic current; RT, room temperature; SOD1G93A, mutant form of human superoxide dismutase 1; 

VR, ventral root; WIV, weeks in vitro; WT, wild type;  
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Introduction  

Familial and sporadic forms of amyotrophic lateral sclerosis (ALS) are characterized by progressive 

degeneration of upper and lower motoneurons (MNs; Ling et al., 2013). Many diverse disease 

mechanisms have been proposed (Rothstein, 2009), focusing most recently on specific alterations in 

protein- and/or ribonucleic-metabolic pathways (Robberecht & Philips, 2013), a hypothesis 

supported by genetic analysis, including exome sequencing in sporadic ALS (Cirulli et al., 2015). 

Nevertheless, it is still unclear how different molecular pathologies determine two important 

features of ALS: the great variability in the time of disease onset and the selective vulnerability of 

MNs, with variable patterns across MN pools in the spinal cord (Robberecht & Philips, 2013).  

Around 20% of familial ALS cases are associated with mutations in the superoxide dismutase 1 

(SOD1 OMIM*147450) gene. Transgenic mice expressing additional copies of the human mutant 

gene are good models of adult-onset ALS (McGoldrick et al., 2013). These display 

neurodegenerative processes mimicking human ALS and are the most widely used models to 

investigate the molecular pathways correlated to the disease onset (Rothstein, 2003; Turner & 

Talbot, 2008). A strong case can be made for investigating ALS and other neurodegenerative 

processes in immature neuronal networks, in order to capture pre-symptomatic alterations in 

synaptic signalling (Ben-Ari, 2008). It has recently been reported that spinal synaptic inhibition is 

insufficient in mice expressing a mutated human SOD1, SOD1G93A (Chang & Martin, 2009, 2011; 

Martin & Chang, 2012). Cultured SOD1G93A MNs display selective loss of glycinergic innervation, 

when compared with age-matched wild type (WT) MN (Chang & Martin, 2011). Using organotypic 

cultures from mouse spinal cords to model network development (Avossa et al., 2003; Rosato-Siri 

et al., 2004; Furlan et al., 2007), we reported in mutant SOD1G93A imbalance between synaptic 

excitation and inhibition and an increased MN susceptibility to mild excitotoxic stressors in vitro 

(Avossa et al., 2006). However, it is unknown how the spatio-temporal expression of the 
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glycinergic/GABAergic system and its contribution to early pre-motor network function is affected 

during spinal maturation in SOD1G93A mice. 

Here we further exploit organotypic cultures from wild type (WT) and SOD1G93A mice to 

investigate glycine-receptor mediated post synaptic currents (gly-PSCs). We found that the 

speeding up of the decay phase of gly-PSCs with spinal maturation was greater in SOD1G93A 

interneurons than in WT, despite the broadly similar properties of glycinergic single channel 

activity in age-matched WT and SOD1G93A patches. The most likely explanation for the difference 

in gly-PSC decay may be that SOD1G93A synapses retain greater GABA co-expression and co-

release than WT, a hypothesis supported by our observation of the effects of depleting glycinergic 

terminals of GABA and by immunofluorescence microscopy detection of GABA in glycinergic 

terminals. The influence of the greater GABA co-localization on spinal integrated motor outputs 

was examined using isolated WT and SOD1G93A neonatal spinal cords via multiple ventral roots 

(VR) recordings. In developing SOD1G93A spinal cords, spontaneous bursting events in VR 

recordings were longer than in WT. When this activity was recorded in the presence of a GABAA 

receptor antagonist, we also detected in SOD1G93A spinal networks an enhanced excitation, 

characterized by faster bursting. Thus more persistent GABA co-release may affect, in SOD1G93A 

developing networks, temporal precision and signal integration at postsynaptic site. 

 

Methods 

Preparation of spinal tissue cultures and isolated spinal cords 

Transgenic mice (SOD1G93A) expressing a high copy number of the glycine 93 to alanine mutation 

of the hSOD1 gene (B6SJL-TgN(SOD1-G93A)1Gur; Gurney et al., 1994) and non transgenic 

females (B6SJLF1) were purchased from the Jackson Laboratories (Bar Harbor, ME, USA) and 

bred as previously reported (Avossa et al., 2006). The wild type SOD1G93A littermates (WT) were 

used as negative controls for the genetic background (Holasek et al., 2005; Schutz et al., 2005; 

Copray et al., 2003; Rao et al., 2003). Genotyping was determined by PCR analysis as previously 
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reported (Avossa et al., 2006). Briefly, organotypic slice cultures of spinal cord and dorsal root 

ganglia (DRG) were obtained from mouse embryos at days 12-13 of gestation as previously 

described (Avossa et al., 2003, 2006; Furlan et al., 2005, 2007; Rosato-Siri et al., 2004). 

Experiments were performed on WT and SOD1G93A sister cultures at 1, 2 and 3 weeks in vitro 

(WIV). 

For the preparation of acute WT and SOD1G93A spinal slices, mice were sacrificed at P0 by cervical 

dislocation and spinal cords were collected in ice-cold PBS as previously described (Nigro et al., 

2012), then fixed in 4% formaldehyde (prepared from fresh paraformaldehyde, Sigma) in PBS, pH 

7.2 for 6 h at 4°C. Spinal cords were cryoprotected in PBS-30% Sucrose (Sigma) and then 

embedded in Optical Cutting Temperature (OCT; Bio-Optica) inclusion media. Samples were 

stored at -80° C before sectioning at 12 microns. 

For ventral roots recordings, the entire spinal cords were isolated from WT and SOD1G93A neonatal 

mice (P2-P4) as previously reported (Bracci et al., 1996; Beato & Nistri, 1999; Taccola et al., 2008; 

Veeraraghavan & Nistri 2015). Briefly, animals were decapitated, internal organs were removed 

and a laminectomy was performed in order to expose and remove the spinal cord. Preparations were 

continuously superfused with standard Krebs solution containing (in mM): 113 NaCl, 4.5 KCl, 1 

MgCl2.7H2O, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3, 11 glucose, gassed with 95% O2 and 5% CO2 (pH 

7.4) at room temperature (RT). 

Genotyping was performed after the electrophysiological experiments had been performed in order 

to allow the electrophysiological experimenter to be “blind” to animal genotype. PCR analysis was 

then performed as reported (Avossa et al., 2006). 

Ethical Statement 

All experiments were performed in accordance with the EU guidelines (2010/63/UE) and Italian 

law (decree 26/14) and were approved by the local authority veterinary service and by our 

institution (SISSA-ISAS) ethical committee. All efforts were made to minimize animal suffering 
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and to reduce the number of animal used. Animals use was approved by the Italian Ministry of 

Health, in agreement with the EU Recommendation 2007/526/CE. 

Electrophysiological recordings 

For patch clamp recordings (whole-cell, voltage clamp mode) a coverslip with the spinal culture 

was positioned in a recording chamber, mounted on an inverted microscope, and superfused with 

control physiological saline solution containing (in mM): 152 NaCl, 4 KCl, 1 MgCl2, 2 CaCl2, 10 

HEPES and 10 glucose. The pH was adjusted to 7.4 with NaOH (osmolarity 305mOsm). Cells were 

patched with pipettes (4-7 MΩ) filled with a solution of the following composition (in mM): 120 K 

gluconate, 20 KCl, 10 HEPES, 10 EGTA, 2 MgCl2, 2 Na2ATP. The pH was adjusted to 7.3 with 

KOH (295mOsm). All electrophysiological recordings were performed at RT. 

Voltage values indicated in the text and in figures are corrected for the liquid junction potential (-14 

mV) if not otherwise indicated. Series resistance value was <10 MΩ enabling recordings of 

synaptic currents without significant distortion, thus was not compensated for (Streit et al., 1991; 

Furlan et al., 2007). Recordings were performed from ventrally located spinal interneurones 

identified on the basis of previously reported criteria (Ballerini & Galante, 1998; Ballerini et al., 

1999; Galante et al., 2000). Electrophysiological responses were amplified (EPC-7, HEKA; 

Multiclamp 700B, Axon Instruments), sampled and digitized at 10 kHz with the pCLAMP software 

(Axon Instruments) for offline analysis. Single spontaneous synaptic events were detected by the 

use of the AxoGraph X (Axograph Scientific) event detection program (Clements & Bekkers, 1997) 

and by the Clampfit 10 software (pClamp suite, Axon Instruments). On average, ≥ 400 events were 

analysed from each cell in order to obtain mean kinetic and amplitude parameters. From the average 

of these events we measured the rise time defined as the 10–90% time needed to reach the peak of 

the synaptic current, the peak amplitude and the decay time constant (expressed as τ) by fitting a 

mono-exponential function. 

We detected no differences between WT (n=56) and SOD1G93A (n=52) interneurones in membrane 

capacitance (64±6 pF WT, 63±5 pF SOD1G93A) and input membrane resistance (231±32 MΩ WT, 
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228±22 MΩ SOD1G93A). Glycinergic postsynaptic currents (gly-PSCs) were recorded at -84 mV 

holding potential in the presence of CNQX (10 µM; Sigma) and SR-95531 (10 µM; Sigma). In 

order to detect glycinergic miniature postsynaptic currents (mPSCs), tetrodotoxin (TTX, 1 µM; 

Latoxan) was added. Gly-PSCs and mPSCs were abolished by application of 1 µM strychnine 

(Sigma).  

TBOA (30 µM, Tocris Bioscience) was added to the perfusion for ≥10 minutes to deplete GABA 

presynaptic vesicular content.  

For outside-out recordings, the same standard physiological saline solution was used as in whole-

cell recordings; the pipette solution contained (in mM): 140 CsCl, 4 NaCl, 1 MgCl2, 0.5 CaCl2, 5 

EGTA, 10 HEPES, 2 MgATP. The pH was adjusted at 7.3 (290 mOsm). 

Outside-out patches were obtained in the presence of TTX (1 µM), CNQX and SR-95531 (both 10 

µM) in the extracellular medium and 5 µM QX-314 in the intracellular solution and held at -84 mV.  

We recorded for 40 s in control solution, to make sure that the patch did not display any baseline 

channel openings, before applying glycine (15 µM) through the perfusion system. This glycine 

concentration was chosen as the most suitable one to evoke substantial receptor activation, and to 

avoid excessive multichannel activity that would be difficult to analyse.  Under these conditions we 

observed at most 5 simultaneous channel openings at the beginning of the glycine application.  

After one minute of equilibration in glycine solution, traces were analysed for at least 30 s or as 

long as the quality of the recording was sufficient to allow us to measure the amplitude of openings 

clearly. Between 15 and 30 channel openings were measured in each trace. In noisy patches, only 

clear openings were considered. 

Homomeric glycine receptors are known to have higher conductance than heteromers.  In 

conditions similar to the ones we use, eg high symmetrical chloride, homomeric conductance is 

greater than 86 pS and heteromeric conductance is 45-54 pS, regardless the α subunit type 

(Bormann et al., 1993).  
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We classified the patches into three groups, depending on the type of channel openings they 

contained, namely (i) heteromeric GlyR patches, where all openings were between 4 and 5 pA 

(corresponding to a chord conductance of 47-59 pS), (ii) homomeric GlyR patches, where all 

openings were between 7 and 8 pA (83-95 pS) or (iii) mixed GlyR patches where both 4-5 pA and 

7-8 pA openings was detected, suggesting the presence of a mixed population of homomeric and 

heteromeric receptors.    

The main risk in the analysis would be to classify two simultaneous heteromeric openings as a 

single homomeric opening.  We examined the trace at appropriate sweep speed to check whether a 

transition was a double event or not.  If the transition appeared to be a single opening to the larger 

conductance, we validated the classification by further checking that it was followed by a closure of 

the same amplitude.  

Furthermore, this error seems unlikely, given that the amplitude of homomeric openings is less than 

twice that of heteromeric ones: the average current amplitudes were 7.6 ± 0.3 and 4.3 ± 0.2 pA for 

homomeric and heteromeric openings, respectively (n= 13 patches). In traces with homomeric 

channels openings, we occasionally observed openings to a lower conductance (2.9 ± 0.1 pA, n=11 

patches).  These openings were much smaller than heteromeric openings and may represent 

sublevels of the homomeric conductance, as reported by Bormann et al., 1993. 

For the study of motor output from the isolated spinal cord, ventral roots (VRs) of the lumbar 

region segments (L2 and L5) were tightly inserted, by applying a gentle negative pressure, in 

monopolar suction electrodes connected to Ag/Ag-Cl micropellets in glass micropipettes. 

Spontaneous activity was recorded also in the presence of the GABA receptor antagonist SR-95531 

(10 μM) to investigate the network activity controlled by glycinergic transmission as inhibitory 

source. At least 10 min of recordings were used to analyse burst periodicity. Signals were amplified 

(DP-304 differential amplifier, Molecular Devices), digitized at 20 kHz and recorded with 

pCLAMP software for offline analysis. 

 



 9

Immunofluorescence 

WT and SOD1G93A cultures were fixed with 4% formaldehyde (prepared from fresh 

paraformaldehyde) in PBS for 60 minutes at RT and then washed in PBS. Free aldehyde groups 

were quenched in 0.1 M glycine in PBS for 5 minutes. The samples were blocked and 

permeabilized in 3% FBS, 3% BSA and 0.3% Triton-X 100 in PBS for 30 minutes at 37 ºC. 

Samples were incubated with primary antibodies (guinea-pig anti-glycine transporter 2 -GlyT2-, 

Millipore, 1:1000 and rabbit anti-glutamic acid decarboxylase 65 -GAD65-, Santa Cruz 

Biotechnology, 1:50) diluted in PBS with 5% FBS at 4 °C, overnight. Samples were then incubated 

in secondary antibodies (Alexa 488 goat anti-guinea-pig, Invitrogen, 1:400; Alexa 594 goat anti-

rabbit, Invitrogen, 1:400; DAPI, Invitrogen, final concentration 5 µg/ml) for 2 h at 37 ºC and finally 

mounted on glass coverslips using Vectashield hardset mounting medium (Vector laboratories). For 

acute spinal cord slices, the same staining protocol was used, with the exception of the blocking 

step where a solution of 10% horse serum and 0.3% Triton-X 100 in PBS was used to enhance the 

penetration of the antibodies into the tissue. 

Images were acquired using a Nikon C2 Confocal Microscope equipped with Ar/Kr, He/Ne, and 

UV lasers. Images were acquired with a 40× oil-objective (numerical aperture 1.3) using oil-

mounting medium (1.515 refractive index). Confocal sections were acquired every 0.5 μm up to a 

total sample thickness of 12 μm. Regions of interest were confined to the ventral part of slice. 

Offline analysis of the image z-stack was performed using NIS-Elements AR software (Nikon) and 

the open source image-processing package, FIJI (http://fiji.sc/Fiji). 

To investigate the amount of GlyT2 and GAD65 co-localization in WT and SOD1G93A we used the 

professional image analysis software Volocity (PerkinElmer). In both channels, a threshold was set 

for both the intensity and the object size, thus ensuring that the observed signal indicates the 

presence of genuine GlyT2 and GAD65 signals. We quantified only those voxels that represented 

co-localized GlyT2 signals with GAD65 signals. 
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Statistical analysis 

Results are presented as mean ± S.E., if not otherwise indicated; n= number of neurons are reported 

in the Figure captions. Statistically significant difference between two data sets was assessed by 

Student’s t test (after checking variances homogeneity by Levene’s test) for parametric data and by 

Mann-Whitney’s test for non-parametric ones, at a minimum significance level of P<0.05. 

Chi square test was used to assess the statistically significant differences in outside out experiments. 

 

Results 

Glycinergic synaptic currents in developing WT and SOD1G93A spinal interneurons 

We recorded spontaneous gly-PSCs in isolation by patch-clamping ventral interneurons from WT 

and SOD1G93A spinal cord slices, in the presence of CNQX and SR-95531 to block PSCs mediated 

by AMPA/kainate and GABAA receptors (Figure 1A-B). Organotypic spinal networks mature 

during in vitro culture (Avossa et al., 2003; Furlan et al., 2007). This was reflected in WT cultures 

by a progressive increase in the frequency and peak amplitude of spontaneous gly-PSCs recorded at 

1, 2 and 3WIV (Figure 1A, C-D). These developmental changes were similar in age-matched 

SOD1G93A cultures (Figure 1B-D). WT and SOD1G93A interneurons displayed similar values of gly-

PSC frequency and amplitude in the developmental window analysed. Thus, the mean frequency 

values increased from 3.3±0.7 Hz at 1WIV to 11.1±0.9 Hz at 3WIV and from 1.8±0.5 Hz at 1 WIV 

to 11.6±1.7 Hz at 3WIV for WT and SOD1G93A cultures, respectively, (Figure 1C). The mean peak 

amplitude values increased from 25.0±6.7 pA at 1WIV to 41.0±4.1 pA at 3WIV and from 18.6±5.3 

pA to 45.7±6.6 pA for WT and SOD1G93A cultures, respectively (Figure 1D).  

In the next set of measurements, because of the relatively low frequency of glycinergic events at 

1WIV, we focused on older ages (2 and 3 WIV) to compare the development of the kinetic 

properties of spontaneous gly-PSCs in WT and SOD1G93A slices. It is well established that the 

decay of GlyR-mediated currents speeds up during physiological synaptic development, because of 

a switch from the expression of α2 GlyR subunits (probably forming homomeric GlyRs), to that of 
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the classical adult synaptic GlyR, an α1β heteromer (Malosio et al., 1991; Takahashi et al., 1992; 

Singer et al., 1998; Aguayo et al., 2004; Beato & Sivilotti, 2007; Lynch, 2009). The traces in Figure 

2A show that this process occurs also in our explants, and that the decay time constant (τ) of gly-

PSCs in both WT and SOD1G93A interneurons becomes progressively shorter with in vitro 

maturation. Thus, the τ value of WT gly-PSCs progressively shifted from 14.6 ±1.9 ms at the 

beginning of the 2WIV to 7.6±0.3 ms at the end of the 3WIV; similarly, the decay of SOD1G93A 

gly-PSCs (11.9±1.3 ms at 2 WIV) became faster at 3WIV (5.7±0.3 ms) (Figure 2A, B). In 

SOD1G93A interneurones gly-PSC appeared to decay faster than WT at 2WIV, a difference that 

became highly significant as the variability across neurons decreased at 3WIV (Figure 2B, 

***P=0.000001). The absence of correlation between PSC rise time vs decay time values (Figure 

2C) suggests that that differences in recording conditions, location of synapses or electronic 

filtering are unlikely to have affected our observations.  

Figure 2D shows the measurement of the reversal potential of gly-PSCs in WT and SOD1G93A at 

2WIV (top) and at 3WIV (bottom). The theoretical value expected for the Cl- equilibrium potential 

for our intracellular and extracellular chloride concentrations is ~ -50 mV. At 2 and 3WIV the 

measured reversal potentials were more negative (by 5 mV and 10 mV, at 2 and 3 WIV) than the 

calculated one (Figure 2D). However, the reversal potential values and their shifts were identical in 

WT and SOD1G93A neurons, suggesting that local intracellular chloride concentrations are similar. 

The higher gly-PSC frequency in explants after 3WIV allowed us to extend our characterisation to 

the properties of miniature glycinergic currents (mPSCs; recorded in the presence of TTX). The 

results in this group of cells (Figure 2E) confirm that WT and SOD1G93A mPSCs differ in their 

decay kinetics (mPSCs τ value: 6.9±0.3 ms WT and 5.8±0.3 ms SOD1G93A; *P=0.035) in a manner 

similar to that of spontaneous gly-PSCs recorded before TTX treatment (gly-PSCs τ value: 7.0±0.4 

ms WT and 5.3±0.4 ms SOD1G93A).  

The faster decay in glycinergic synaptic currents recorded in SOD1G93A interneurons could be due 

to a difference in the GlyRs that mediates these synaptic events. In order to test for this hypothesis, 
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in an independent set of experiments, we performed outside-out recordings from 2 and 3WIV 

interneurons. Figure 3A shows typical examples of such recordings, where the channel opening are 

downwards. While the density of channels openings was too high to allow us to measure the burst 

length of these channels (and compare it with the PSC decay τ), it was easy to measure the 

amplitude of the openings, and therefore the channel conductance. For glycine channels, 

conductance is a straightforward indication of the homomeric or heteromeric nature of the receptor, 

as it is high for homomers (greater than 86 pS in high symmetrical chloride) than for heteromers 

(45-54 pS, Bormann et al., 1993), irrespective of the α subunit involved. The top trace in Figure 3A 

is from a patch (2WIV) where the predominant channel amplitude was between 4 and 5 pA (see 

horizontal dashed lines). This current amplitude corresponds to a conductance of 58 pS which 

would suggest that the activity arises from heteromeric receptors. The bottom trace shows another 

patch, where the most common openings were large (7 to 8 pA), are therefore likely to stem from 

homomeric receptors. The middle trace shows a recording where channels with small (4 to 5 pA) 

and large (7 to 8 pA) amplitudes coexist, indicating the presence of a mixed population of 

homomeric and heteromeric receptors. 

Thus patches were categorized in three populations depending on the conductances detected: ~50 

pS, ~90 pS or mixed. The prevalence of the different types at different ages in vitro is depicted in 

Figure 3B. Intriguingly, at 2WIV, in WT slices 77% of patches displayed the smaller conductance, 

indicating a more mature GlyR expression (Takahashi et al., 1992), whereas in transgenic cultures 

56% of the patches still showed mostly high conductance channel activity or a mixed population of 

low and high conductance channels, suggesting a delay in GlyRs maturation. This delayed 

maturation implies the persistence of the homomeric channels in transgenic cultures and that, if 

anything, should make gly-PSCs slower than WT in their decay. This was not detected, on the 

contrary, gly-PSCs at 2WIV appeared faster in their decay (not significant), in SOD1G93A explants 

(Figure 2B). At 3WIV the prevalence of the different conductance patterns was similar for patches 
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from WT and SOD1G93A. This rules out the possibility that the difference in decay at 3WIV was due 

to large differences in the GlyRs populations expressed by the two groups (Figure 3A, B). 

 

GABA co-release tunes glycine PSCs τ in SOD1G93A spinal interneurons 

During antenatal development one-third of the neurons located in the ventral spinal cord co-express 

glycine and GABA (Allain et al., 2006; Sibilla & Ballerini, 2009), thus we tested the ability of this 

amino-acid to shape gly-PSCs, by glycine displacement from GlyRs, when co-released (Lu et al., 

2008). We hypothesized that the faster gly-PSCs τ in SOD1G93A could be due to a delay in the 

maturation of glycine-GABA mixed synapses, and ultimately to the persistence of GABA co-

release. GABA pre-synaptic content was depleted by TBOA (WT and SOD1G93A; Mathews and 

Diamond, 2003) a broad-spectrum competitive antagonist of glutamate transporters (Shimamoto et 

al., 1998), that inhibits the glutamate uptake needed for GABA synthesis. Figure 3C-D shows that 

at 3WIV, TBOA treatment did not affect WT gly-PSCs decay (τvalues: 8.4±0.9 ms and 9.1±1.0 

ms before and after the perfusion with TBOA, respectively), but slowed down SOD1G93A gly-PSCs 

decay (τvalues: 5.7±0.5 ms and 7.4±0.8 ms before and after the addition of TBOA, respectively). 

The difference in decay time between the two genotypes is statistically significant before the 

application of TBOA (P=0.008), whereas following the treatment, the decay values become 

comparable (P=0.22). Our hypothesis was further supported by immunostaining experiments where 

we targeted GlyT2 and GAD65 to quantify the presynaptic co-localization and detect mixed 

glycine-GABA terminals (Dumoulin et al., 2001; Mackie et al., 2003; Dugué et al., 2005). At 3WIV 

co-localization of GlyT2-GAD65 is more common in transgenic cultures than in WT, and this 

supports our electrophysiological results (Figure 4C, E). Notably, a very similar result was obtained 

when we repeated the measurement in acute slices isolated from the spinal cord of WT and 

SOD1G93A neonatal (P0) mice. GABA-glycine co-localization is more prevalent in the transgenic 

tissue, as shown in Figure 4A-B and D, further supporting our electrophysiological results and 
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validating organotypic cultures as an in vitro model to investigate the dynamics of maturation 

processes. 

 

Bursting activity in the isolated SOD1G93A neonatal spinal cord 

Our observations supported the presence of a greater proportion of glycine-GABA mixed synapses 

in organotypic and acute SOD1G93A spinal cord slices when compared to age-matched WT ones. 

Thus, we isolated (at P2-4 postnatal age) the entire spinal cord from WT and SOD1G93A mice (n=7 

and n=5, respectively) to further investigate whether MN outputs were influenced by the more 

prevalent GABA/glycine co-transmission. For this purpose we measured spontaneous VRs 

discharges. At early postnatal ages spinal cords produced sporadic and irregular discharges in 61% 

of WT VRs and in 87% of SOD1G93Aones. In the mutant cords such discharges were characterized 

by significantly longer depolarizing events (Figure 5A, B; event duration: 2.8±0.2 s WT and 

6.3±1.3 s SOD1G93A, P=0.012). In particular, in the presence of GABAA receptor blockade, we 

studied MN outputs changes, potentially reflecting the faster kinetic of glycinergic synaptic events. 

In all WT and SOD1G93A preparations, such MN outputs were transformed in robust synchronous 

bursts in the presence of a GABAA receptor blocker (SR-95531) used to isolate the glycinergic 

contribution (Figure 5C). Notably, in SOD1G93A spinal cords the inter-bursts periods and the bursts 

duration were shorter, suggestive of an increased excitability (Figure 5D; burst duration: 27.6±3.5 s 

WT and 17.3±1.9 s SOD1G93A, P=0.0455; inter burst period: 64.6±8.4 s WT and 39.2±3.5 s 

SOD1G93A, P=0.0284). These results further support that tuning of inhibitory synapses is altered in 

SOD1G93A spinal networks and that this ultimately results in important changes in the whole spinal 

motor output. 

 

Discussion  

Chang and Martin (2009, 2011) have shown that glycinergic inhibition of spinal MNs is impaired in 

the SOD1G93A ALS animal model (Chang & Martin, 2009, 2011). Here we used the organotypic 
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cultures obtained from the same SOD1G93A mice to investigate developmental changes in gly-PSCs 

in the pre-motor spinal network of presymptomatic ALS animals (Avossa et al., 2006). We recorded 

from interneurons to assess how changes in the pre-motor modulation of MN activity may 

contribute to the early pathogenesis of ALS. Characterizing ALS animal models throughout their 

development is important to try to pinpoint the earliest alterations in synaptic input and neuronal 

excitability before the pathological process has progressed to denervation (Vinsant et al., 2013). 

The present data show that, during in vitro development, the properties of gly-PSCs recorded from 

SOD1G93A interneurons change in a pattern similar to that reported for WT gly-PSC in cultured and 

ex-vivo samples (Gao & Ziskind-Conhaim, 1995; Gao et al., 1998; Baccei & Fitzgerald, 2004). 

Thus, gly-PSCs become progressively more frequent, larger in amplitude and faster in their decay. 

However, we found that, at 3WIV, an age in cultures roughly equivalent to early postnatal days, 

gly-PSCs and mPSC from ALS model mice decay faster than those from WT neurons, resulting in a 

reduction in charge transfer in the range of 35-20%. 

In order to understand the reason for the observed difference in decay, we examined the main 

variables that change during development and could conceivably affect the kinetic properties of 

glycine receptors and therefore gly-PSC time course. First we excluded the possibility of 

differences in the intracellular chloride concentration that could affect gly-PSC kinetics (Pitt et al., 

2008). Our measurements show that the Cl- reversal potential was similar in the two cultures at 

matching in vitro ages. In both WT and transgenic cultures the Cl- reversal potential differed from 

the predicted theoretical value. In our recording conditions it is not possible to distinguish between 

an impaired pipette/cell solution-exchange due to maturation dependent changes in neuronal 

morphology or a real shift in the internal chloride concentration due to improved extrusion 

(DeFazio et al 2000; Ostroumov et al., 2011).  However, the detected shifts are similar in both WT 

and SOD1G93A interneurones dialysed with a 24 mM Cl- intracellular pipette solution. 

Another well-documented process that changes glycinergic inhibition in the developing CNS is the 

switch from the expression of α2 homomeric channels to that of the adult synaptic α1β heteromeric 
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GlyR (Takahashi et al., 1992, Singer & Berger, 1999). Heteromeric α1β receptors have a faster 

deactivation (Mangin et al. 2003; Pitt et al., 2008; Krashia et al., 2011), which results in a faster 

decaying synaptic current (Zhang et al., 2015). Heteromeric glycine receptors have a smaller 

conductance than homomeric channels (Bormann et al., 1993), and thus we recorded single channel 

activity from outside-out patches to establish if the time course of appearance of heteromeric 

isoforms differed at 2 and 3 WIV in WT and SOD1G93A mice. At 2 WIV the gradual shift towards 

the more mature receptor type appeared to be more pronounced in WT patches, but the proportion 

of heteromeric vs. homomeric patches was very similar at the 3WIV stage of development. These 

data suggest that the faster decay of SOD1G93A gly-PSC cannot be due to an earlier or more 

complete switch to heteromeric channels. However, we must interpret these findings with caution, 

given that outside-out patches are likely to contain mostly extrasynaptic receptors and that by its 

very nature, single channel recording is not an accurate way to estimate the proportion of one type 

of channel vs the other. 

We turned our attention to presynaptic processes that may affect synaptic time course. The timing 

of glycinergic inhibition is known to be regulated by the extent of release synchronization, which 

can make the PSC longer than the channel deactivation (Balakrishnan et al., 2009). Differences in 

release synchronization between WT and SOD1G93A synapses are unlikely to explain our data, as in 

SOD1G93A neurons the decay of gly-PSCs is faster also for unitary synaptic events (mPSCs).  

This leaves the possibility that our findings are explained by differences in GABA co-release, 

namely that this persists longer in SOD1G93A cultures. At auditory synapses, GABA co-release 

makes the PSC faster than the channel deactivation, by the partial agonist action of GABA on 

glycine receptors (Lu et al., 2008). GABA/glycine co-expression is developmentally regulated in 

the spinal cord, its extent decreases with development (Sibilla & Ballerini, 2009; Allain et al., 2006) 

and can be affected by the pattern of activity at the synapse (Nerlich et al., 2014). After depletion of 

GABA presynaptic content by TBOA applications (Lu et al., 2008), we indeed observed that 

SOD1G93A gly-PSCs were no longer significantly different from WT ones in terms of decay time. 
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Our hypothesis was further strengthened by the detection of greater proportion of GABA-glycine 

mixed synapses (Dumoulin et al., 2001; Mackie et al., 2003; Dugué et al., 2005) in transgenic tissue 

vs. WT, both in cultured and in ex vivo spinal preparations. These results suggest that the faster 

decay of gly-PSC in ALS model mice is largely due the longer persistence of GABA co-release.  

In developing spinal circuits, during the emergence of organized motor behaviors the fine-tuning 

and refinement of inhibitory neurotransmission, including the regulation of GABA/glycine co-

release, are a complex, region-specific phenomenon (Jonas et al 1998; Keller et al 2001; Gonzalez-

Forero & Alvarez, 2005; Sibilla & Ballerini, 2009). Here we reported for the first time that, at ages 

corresponding to the higher detection of GABA at glycinergic synapses in SOD1G93A ventral horn, 

the emerging motor outputs show more prolonged spontaneous bursting in SOD1G93A VR-

recordings. This finding is consistent with the proposal of a delayed maturation of 

GABAergic/glycinergic inhibitory interneuronal connections (Whelan, 2003). In addition, the 

reduction of gly-PSC duration by the persistence of GABA/glycine co-release in SOD1G93A spinal 

cord is confirmed by the increased VR bursting, a clear symptom of increased MN pool excitability 

(Ballerini et al., 1999; Bracci et al., 1997), when motor outputs are recorded in the presence of a 

GABAA receptor antagonist.  

In conclusion, the main finding of our work is that SOD1G93A networks display abnormal premotor 

network maturation long before the appearance of any symptom, and in the absence of early sign of 

degeneration (Avossa et al., 2006). The alteration in glycinergic inhibition might involve spinal 

ventral interneurons, not only MNs as previously suggested (Chang & Martin, 2009, 2011). The 

changes in operation of gly-PSCs may impair the optimal development of MN outputs: 

understanding how this occurs may provide a clearer insight into the underlying threat to MNs 

viability in ALS patients.  
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Figures and Legends  

Figure 1. WT and SOD1G93A ventral interneurons display similar developmental regulation in gly-

PSCs frequency and amplitude. A, Representative traces of spontaneous gly-PSCs recorded at 

2WIV (top) and 3WIV (bottom) in WT and B, in aged matched SOD1G93A. C, Plots of gly-PSCs 

frequency and D, amplitudes values for WT (black) and SOD1G93A (grey) interneurons, note the 

changes brought about by in vitro maturation (total number of neurons were n= 93 WT and n=76 

SOD1G93A, with ≥400 PSCs analysed per cell; divided by DIV: 9-12 DIV n=4 WT and n=5 

SOD1G93A, 13-14 DIV n=6 WT and n=10 SOD1G93A, 15-16 DIV n=12 WT and n=10 SOD1G93A, 

17-19 DIV n=33 WT and n=31 SOD1G93A, 20-22 DIV n=38 WT and n=20 SOD1G93A). 

 

Figure 2. SOD1G93A gly-PSCs decay faster than WT gly-PSC after in vitro development. A, 

Superimposed traces show pharmacologically isolated gly-PSCs recorded from WT (left) and 

SOD1G93A (middle) ventral interneurones at 2WIV (top row) and 3WIV (bottom row; average PSCs 

to the side). The traces to the right of the panel are WT (black) and SOD1G93A (grey) average traces 
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superimposed and scaled to the peak, in order to highlight the different decay time. B, Plot of the 

changes in the decay time constant (τ) during in vitro growth (overall n=74 WT and n=52 

SOD1G93A; divided by DIV: 13-14 DIV n=6 WT and n=10 SOD1G93A, 15-16 DIV n=12 WT and 

n=10 SOD1G93A, 17-19 DIV n=26 WT and n=16 SOD1G93A, 20-22 DIV n=30 WT and n=16 

SOD1G93A). C, scatter plot of rise time versus decay time; in both WT and SOD1G93A at 3WIV 

(n=56 WT and n=32 SOD1G93A) regression analysis reveals no linear relationship between these 

two parameters (r=0.2344, probability=0.095 and r=0.3435, probability=0.093 for WT and 

SOD1G93A neurons, respectively). D, The I-V curves were obtained by plotting gly-PSCs mean 

amplitude against Vh at 2WIV (top) and 3WIV (bottom) for WT and SOD1G93A ventral 

interneurons (n=31 cells WT and n=23 cells SOD1G93A). Note that the calculated reversal potential 

was ~ -55 mV at 2WIV and ~ -60 mV at 3WIV. E, Superimposed individual WT and SOD1G93A 

gly-mPSCs, and average mPSCs (top row). The estimated average gly-PSC and mPSC charges 

(area under the curve) were: in WT 459.7±83.4 pA×ms and 170.2±19.5 pA×ms, PSCs and mPSCs 

respectively; in SOD1G93A 294.9±33.2 pA×ms and 139.5±15.2 pA×ms, PSCs and mPSCs, 

respectively. Bottom row: box plots of the decay time constants of WT and SOD1G93A glycinergic 

PSCs and mPSCs (n=14 WT and n=10 SOD1G93A); superimposed average and scaled tracings are 

gly-PSCs (left) and gly-mPSCs (right) for WT (black) and SOD1G93A (grey). * P<0.05; ** P< 0.01; 

*** P< 0.001. 

 

Figure 3. GlyR-mediated single-channel activity in outside-out WT and SOD1G93A patches and 

contribution of GABA co-release in shaping spontaneous gly-PSCs in WT and SOD1G93A synapses. 

A, Representative current traces from outside-out patches with low or high conductances (top and 

bottom, respectively), and for a patch with a mixed population of conductances (middle). Dashed 

lines represent diverse amplitude of channel opening for different receptor types. Channel openings 

were elicited by bath application of glycine (15 μM) at a Vh of −84 mV. B, Proportion of patches in 

the three conductance categories (~50 pS, mixed, ~90 pS) at 2 (n=82) and 3WIV (n=23) in WT and 
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SOD1G93A. C, Representative traces of spontaneous WT (left) and SOD1G93A (right) gly-PSCs 

before (top row) and after (bottom row) TBOA (30 µM) application. The superimposed glycinergic 

events and their average trace (to the right) are depicted below each recording. D, Box plot 

summary of the WT and SOD1G93A mean decay time constant values for gly-PSCs before and after 

TBOA application (n=7 WT and n=13 SOD1G93A); WT (black) and SOD1G93A (grey) gly-PSCs 

averaged traces are scaled and superimposed in the absence (left) and in the presence (right) of 

TBOA. * P<0.05; ** P< 0.01. 

 

Figure 4. Co-localization of GlyT2 and GAD65 immunostainings in the WT and SOD1G93A 

immature spinal cord. A, Confocal images of the ventral horn of WT and SOD1G93A acute spinal 

slices isolated from neonatal (P0) mice and stained for GlyT2 (in green) and GAD65 (in red). B, 

Confocal high magnification of a region (from A) showing the appearance of GlyT2 (in green) and 

GAD65 (in red) clusters. Co-localization of GlyT2 (in green) and GAD65 (in red) clusters identify 

mixed synapses. C, Organotypic cultures: confocal high magnification of the ventral area of WT 

(left) and SOD1G93A (right) cultured slices at 3WIV, similarly to the acute ones, co-localization of 

GlyT2 (in green) and GAD65 (in red) clusters identify mixed synapses. In D and E, Box plots show 

co-localized GlyT2 and GAD65 clusters are more common in SOD1G93A (grey) spinal slices than in 

WT slices (black). This was seen both in acute slices (P0, D, n=number of ROIs, n=12 WT and 

n=12 SOD1G93A) and in cultured slices (3WIV E, n=number of ROIs, n=12 WT and n=12 

SOD1G93A). Scale bars: 50 µm in A, 10 µm in B and C. * P<0.05  

 

Figure 5. Motor outputs in WT and SOD1G93A spinal cords isolated from P3 old mice. A, 

Representative traces of spontaneous activity simultaneously recorded from left (l) and right (r)  

lumbar ventral roots 5 (LVR5) and 2 (LVR2) in WT (top) and SOD1G93A (bottom) spinal cords. B, 

Box plots of event duration for WT (black, n=7) and SOD1G93A (grey, n=5) spinal cord preparations. 

C, Representative traces of VRs activity recorded in the presence of SR-95531 in WT (top) and 



 30

SOD1G93A (bottom) spinal cords. D, Box plots of burst duration and inter burst period in WT (black, 

n=7) and SOD1G93A (grey, n=5) mice.  

E, confocal images of ventral horn of WT (left) and SOD1G93A (right) spinal cords (same 

preparations as recorded in B), the co-localization of GlyT2 (in green) and GAD65 (in red) clusters 

identify mixed synapses. F, Box plots show the greater co-localization of GlyT2 and GAD65 

clusters in SOD1G93A spinal tissue (same preparations as recorded in B; n=number of ROIs, n=5 

WT and n=5 SOD1G93A). Scale bar: 50 µm. * P<0.05. 












