Neurolmage 130 (2016) 157-166

journal homepage: www.elsevier.com/locate/ynimg e

Contents lists available at ScienceDirect <
Neurolmage

Neurolmage

New tissue priors for improved automated classification of subcortical
brain structures on MRI¥*

@ CrossMark

S. Lorio %, S. Fresard ?, S. Adaszewski ?, F. Kherif ¢, R. Chowdhury €, R.S. Frackowiak ?, J. Ashburner ¢, G. Helms ®,
N. Weiskopf “, A. Lutti *!, B. Draganski 4!

2 LREN, Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland
Y Medical Radiation Physics, Lund University Hospital, Lund, Sweden

¢ Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK

4 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 28 October 2015
Accepted 29 January 2016
Available online 5 February 2016

Keywords:

Relaxometry

Magnetization transfer saturation
Effective transverse relaxation
Basal ganglia

Tissue probability maps
Voxel-based morphometry
Voxel-based quantification

Despite the constant improvement of algorithms for automated brain tissue classification, the accurate
delineation of subcortical structures using magnetic resonance images (MRI) data remains challenging. The
main difficulties arise from the low gray-white matter contrast of iron rich areas in T1-weighted (T1w) MRI
data and from the lack of adequate priors for basal ganglia and thalamus. The most recent attempts to obtain
such priors were based on cohorts with limited size that included subjects in a narrow age range, failing to
account for age-related gray-white matter contrast changes. Aiming to improve the anatomical plausibility of
automated brain tissue classification from T1w data, we have created new tissue probability maps for subcortical
gray matter regions. Supported by atlas-derived spatial information, raters manually labeled subcortical
structures in a cohort of healthy subjects using magnetization transfer saturation and R2* MRI maps, which
feature optimal gray-white matter contrast in these areas. After assessment of inter-rater variability, the new
tissue priors were tested on T1w data within the framework of voxel-based morphometry. The automated
detection of gray matter in subcortical areas with our new probability maps was more anatomically plausible
compared to the one derived with currently available priors. We provide evidence that the improved delineation
compensates age-related bias in the segmentation of iron rich subcortical regions. The new tissue priors, allowing
robust detection of basal ganglia and thalamus, have the potential to enhance the sensitivity of voxel-based

morphometry in both healthy and diseased brains.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

Computer-based assessment of brain anatomy with magnetic reso-
nance imaging (MRI) has become a powerful method to investigate
in vivo the healthy and diseased brain. Aiming to provide reliable
estimates of local gray matter (GM) volume across the whole brain, a
substantial amount of work has been devoted to the improvement of
the accuracy of algorithms for automated tissue classification and
spatial registration (Ashburner and Friston, 2000, 2005; Klein et al.,
2010). Despite major methodological advances, the robust and accurate
delineation of the deep brain nuclei - thalamus, caudate, putamen,
pallidum, subthalamic nucleus, substantia nigra, and red nucleus -
remains challenging (Lim et al, 2013; Streitbiirger et al., 2014;

% Disclosure: The Wellcome Trust Centre for Neuroimaging receives support from
Siemens Healthcare.
* Corresponding author at: LREN, Department of Clinical Neurosciences, CHUV,
University of Lausanne, Lausanne, Switzerland. Fax: +41 21 314 12 56.
E-mail address: bogdan.draganski@chuv.ch (B. Draganski).
! Equal contribution.

http://dx.doi.org/10.1016/j.neuroimage.2016.01.062

Callaert et al., 2014). The basal ganglia play a crucial role in goal-
directed behavior and movement control, which explains their involve-
ment in many neurological and neuropsychiatric disorders such as
Parkinson's and Huntington's disease, dystonia, tremor, Tourette's
syndrome, and schizophrenia (Utter and Basso, 2008). The reliable ana-
tomical assessment of these regions is important not only to accurately
monitor disease-related changes but also to facilitate accurate target
identification for functional neurosurgery in basal ganglia disorders.
There is therefore a clear need to improve the automated detection of
basal ganglia structures (Ahsan et al., 2007).

Automated tissue classification relies on the distributions of image
intensities and gray-white matter contrast in MRI images (Ashburner
et al,, 2003), which are determined by the local values of the MRI
parameters and the microstructural composition of brain tissue
(Fukunaga et al., 2010; Streitbiirger et al., 2014; Lutti et al., 2014). In
particular, the inaccurate classification of subcortical structures from
T1-weighted (T1w) images—the most widely used data in computa-
tional anatomy, arises from the high concentration of iron in these
regions (Hallgren and Sourander, 1958; Haacke et al., 2005; Lorio
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et al,, 2014). Importantly, this effect is further modulated by age-related
tissue property changes (Lorio et al., 2014).

In addition to its dependence on image intensity and gray-white
matter contrast, the automated tissue classification relies on prior
spatial information based either on stereotaxic atlases (Fischl et al.,
2002; Pohl et al.,, 2006; Khan et al., 2008) or on probabilistic maps of
tissue class distributions derived from MRI data (Ashburner and
Friston, 2005). The currently used tissue probability maps are based
on T1w data (Mazziotta et al., 2001) with the major drawback of a
regional contrast differences driven by microstructural tissue properties
(Lorio et al., 2014). More recent attempts to improve the priors for
robust classification of subcortical structures have benefited from new
MRI protocols that highlight the impact of tissue properties on gray-
white matter contrast. These recent achievements are limited by the
relatively low number of used data samples, which hampers the
accurate detection of inter-individual variations in brain anatomy and
their modulation by age (Ahsan et al., 2007; Prodoehl et al., 2008; Lim
et al., 2013; Keuken et al., 2014). Common to the previous studies on
the topic is that there was no attempt to statistically assess the impact
of new anatomically plausible tissue probability maps on the automated
tissue classification within computational anatomy frameworks.

The purpose of this study is to build new tissue probability maps
(TPMs) for the automated tissue classification of thalamus, caudate, puta-
men, globus pallidus, substantia nigra, subthalamic nucleus, red nucleus,
and cerebellar dentate. The new TPMs were derived from the manual la-
beling of subcortical structures on magnetization transfer saturation (MT)
and R2* (=1/T2*) maps, which provide optimal contrast in these areas
(Helms et al.,, 2009). The obtained TPMs were then included as a new
tissue prior in the Bayesian framework for tissue classification of the
well-established SPM software (Ashburner and Friston, 2005). To test
the anatomical accuracy of the tissue classification performed with the
new TPMs, we carried out a cross-validation between the manual labeling
results and the gray matter volume maps obtained from the automated
tissue classification based on MT images. Finally, the new TPMs were
applied on an independent data set of T1w images. Our hypothesis was
that the new tissue probability maps would enable the accurate delinea-
tion of subcortical structures and would prove particularly robust against
the effects of age-related microstructural tissue changes on T1w data.

Methods
Data acquisition

We used quantitative MRI (qMRI) data for the manual labeling of
subcortical structures. The qMRI images were originally acquired for

Table 1

previous studies (Chowdhury et al., 2013; Lorio et al., 2014). The data
set comprised 96 healthy adults (40 male, age range 27-74 years,
mean 55 + 15; 56 female, age range 21-88 years, mean 57 + 19)
scanned on a 3 T whole-body MRI system (Magnetom TIM Trio, Siemens
Medical Systems, Germany), using a standard 32-channel radio-
frequency receive head coil and body coil for transmission. On visual
inspection, study participants showed neither macroscopic brain
abnormalities, i.e., major atrophy, nor signs of overt vascular pathology,
i.e., micro-bleeds and white matter lesions. Elderly subjects with white
matter lesions of Grade 2 or more by the Scheltens' rating scale
(Scheltens et al., 1993; Wardlaw et al., 2013) were excluded from the
study. We obtained quantitative measures of brain atrophy by calculating
the brain volume fraction (Rudick et al., 1999) from MT images.

The quantitative MRI acquisitions consisted of three multi-echo 3D
fast low angle shot (FLASH) acquired with predominant proton density,
PD-, T1-, and MT-weighting (PD-weighted: TR/ac = 23.7 ms/6°; T1-
weighted: TR/a = 18.7 ms/20°; MT-weighted: TR/ac = 23.7 ms/6°)
with 1 mm? isotropic resolution (Helms et al., 2008a; Weiskopf et al.,
2013). The MT-weighting was achieved by applying an off-resonance
Gaussian-shaped pulse (4 ms duration, 220 nominal flip angle, 2 kHz
frequency offset from water resonance) prior to the excitation. Multiple
gradient echoes were acquired for each FLASH acquisition with alternat-
ing readout polarity: 6 equidistant echo time (TE) were used for the T1-
and MT-weighted sets (TE between 2.34 ms and 14.7 ms) and 8
equidistant TE were used for PD-weighted sets (TE between 2.34 ms
and 19.7 ms). The image resolution was 1 mm isotropic. To shorten
the acquisition time, parallel imaging (acceleration factor 2, GRAPPA),
and partial Fourier acquisition were used. To correct the quantitative
maps for the effect of RF transmit inhomogeneities, we measured the
transmit field B1 + using 3D echo-planar imaging (EPI) spin-echo (SE)
and stimulated echo (STE) images. The EPI images were acquired with
the 4 mm isotropic resolution, parallel imaging using GRAPPA factor
2 x 2 in PE and partition direction, TESE/TESTE/TM (mixing time)/
TR = 37.06/37.06/31.2/500 ms. A BO map was acquired to correct the
RF transmit field maps for geometric distortion and off-resonance
effects. The acquisition protocol used a 2D double-echo FLASH sequence
with the following parameters (Lutti et al, 2012, 2010): slice
thickness = 2 mm, TR = 1020 ms, TE1/TE2 = 10/12.46 ms, @ = 90°,
BW = 260 Hz/pixel and flow compensation. The total acquisition time
was 24 min (for details on MRI acquisition parameters see Table 1,
Supplementary material).

Quantitative MRI maps were calculated from the acquired data using
an in-house code running under SPM12 (Wellcome Trust Centre
for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm) and
Matlab 7.11 (Mathworks, Sherborn, MA, USA). The R2* maps were

Manual labeling results. Subcortical structures' mean volume, global percentage of voxels not included by all raters (disagreement voxels), and inter-rater agreement indices (Dice index,
Cohen's kappa, and intraclass coefficient (ICC)). RN = red nucleus; STN = subthalamic nucleus; SN = substantia nigra; GP = globus pallidus.

Structure Volume (mm?) % of disagreement Dice index Cohen's kappa ICC
voxels
Mean SD Mean SD Mean SD Mean SD Mean SD
Caudate Left 3421 900 17 3 0.83 0.06 0.85 0.06 0.83 0.06
Right 3306 700 16 3 0.85 0.06 0.86 0.06 0.85 0.06
Putamen Lgft 3906 650 19 3 0.80 0.05 0.8 0.05 0.83 0.05
Right 3966 690 18 4 0.85 0.03 0.86 0.03 0.84 0.04
cp Left 1319 235 20 4 0.79 0.08 0.8 0.08 0.78 0.08
Right 1263 201 21 5 0.76 0.09 0.77 0.09 0.77 0.09
Thalamus Lgft 5110 1100 16 4 0.86 0.04 0.86 0.04 0.86 0.04
Right 5495 1301 15 3 0.87 0.05 0.87 0.05 0.87 0.04
SN Left 330 94 25 6 0.7 0.11 0.74 0.12 0.67 0.11
Right 330 90 23 5 0.76 0.14 0.77 0.14 0.68 0.12
RN Left 220 49 29 7 0.68 0.13 0.71 0.13 0.64 0.1
Right 220 50 28 8 0.69 0.11 0.77 0.11 0.67 0.11
SIN Left 86 28 33 7 0.65 0.14 0.70 0.12 0.67 0.1
Right 85 20 31 7 0.7 0.1 0.73 0.19 0.69 0.1
Dentate Lgft 1032 215 20 5 0.76 0.11 0.73 0.11 0.7 0.11
Right 1013 195 23 6 0.77 0.14 0.76 0.13 0.69 0.12
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calculated from the regression of the log signal from the eight PD-
weighted echoes. The signals of six equidistant bipolar gradient echoes
were averaged to increase the signal-to-noise ratio (SNR), (Helms and
Dechent, 2009) before calculation of the R1 and MT maps as described
in (Helms et al., 2009, Weiskopf et al., 2013). The quantitative R1
maps, used to calculate the MT images, were corrected for inhomogene-
ities in the local RF transmit field (Helms et al., 2008a, 2008b).

To test the effects of the new TPMs on tissue classification based on
T1w images, we analyzed a second data set (n = 33) consisting of
Modified Driven Equilibrium Fourier Transform (MDEFT) T1w images.
The data set (20 women, age range = 22-85 years, mean age = 37 +
13 years; 13 men, age range = 18-73, mean age = 47 + 19 years)
was used in a previous study (Helms et al., 2009). The study participants
were neither affected by brain disorders nor showed macroscopic brain
abnormalities, i.e., major atrophy, or signs of overt vascular pathology,
i.e., micro-bleeds and white matter lesions. The 3D MDEFT images
were acquired as follows: TR = 7.92 ms, TE = 2.48 ms, TI = 910 ms
(symmetrically distributed around the inversion pulse; quot = 50%),
flip angle o = 16, fat saturation, bandwidth 19 Hz/pixel, 1 mm? isotro-
pic resolution, acquisition time ~13 min (Deichmann et al., 2004) (for
details on acquisition parameters see Table 1, Supplementary material).
The interaction between the effect of the new TPMs on the MDEFT
classification and age was analyzed with R2* maps acquired on the
same cohort using the quantitative protocol described above.

Atlas-based labeling of midbrain structures

The creation of the new TPMs was based on the manual labeling of
midbrain structures. Aiming to facilitate the manual labeling, we used
spatial information derived from established brain atlases. We used
the Harvard-Oxford atlas for caudate and pallidum (Goldstein et al.,
2007), the basal ganglia human area template (BGHAT) for putamen
(Prodoehl et al., 2008), and Morel's stereotactic atlas for thalamus and
subthalamic nucleus (STN) (Morel et al., 1997). The red nucleus (RN)
and the substantia nigra (SN) were labeled on the basis of Talairach's
atlas (Lancaster et al., 2000), and the cerebellar dentate was labeled
according to a spatially unbiased atlas template (SUIT) (Diedrichsen,
2006).

The anatomical labels were non-linearly registered to subject-
specific native space using spatial transformation parameters estimated
with a diffeomorphic registration algorithm, DARTEL (Ashburner,
2007). To this end, MT saturation maps were processed with the default
settings and classified into different tissue classes: gray matter (GM),
white matter (WM), cerebro-spinal fluid (CSF), and non-brain tissue,
using the “unified segmentation” approach in SPM12 followed by
estimation of diffeomorphic registration parameters (Ashburner and
Friston, 2005; Ashburner, 2007). This allowed the atlas information to
be projected onto each subject's MRI data, prior to the manual labeling
procedure that we describe in the following section.

Manual labeling based on atlas-derived masks

The manual labeling was performed using an in-house web-based tool
with graphic user interface. The graphic interface allowed visualization of
subject-specific MT and R2* images in three principal planes—axial,
sagittal, and coronal. The subcortical structure- and hemisphere-
specific binary mask of atlas-based labeled voxels was then overlaid
on the MT and R2* maps. Four different raters were asked to manually
adjust the masks for each subcortical structure according to the
subject-specific anatomy. They were instructed to use the MT map to
segment the caudate, pallidum, putamen, and thalamus. The extent of
STN, RN, cerebellar dentate, and SN was defined from the R2* maps.
Manual labeling always started from the axial plane, except for the
STN where the initial plane was the coronal (see Fig. 1a for summary
of manual labeling procedure).

To assess the inter-rater reliability, we calculated subject- and
structure- specific Cohen's kappa, Dice coefficients, and intraclass coef-
ficient (Dice, 1945; Cohen, 1960; Shrout and Fleiss, 1979). Additionally,
we estimated the percentage of disagreement between raters,
expressed as the ratio between the number of voxel not included by
all raters and the number of those labeled at least by one rater.

Creation of tissue probability maps

To create the TPMs of subcortical regions, the binarized manually
labeled masks were spatially registered to standard MNI space using
the diffeomorphic spatial transformation parameters estimated for the
atlas-labeling step. Aiming to minimize the non-linear effects related
to the spatial transformation, we applied a threshold of 0.5 to the
masks after the warping step. Then we averaged the masks across all
raters. Subsequently, the mean image was smoothed by convolution
with an isotropic Gaussian kernel of 4 mm to obtain the midbrain
probability (MBP) map. The choice of 4 mm kernel size aimed at
preserving borders between neighboring structures while reducing
residual registration problems and partial volume effects.

The final step involved the incorporation of the MBP map into the
existing set of SPM12 tissue probability maps after voxel-based adjust-
ments, while ensuring a sum of probabilities equal to one across all
six tissue priors. Eqs. (1) and (2) summarize the aforementioned
operations calculated at the single voxel level:

newTPM;. = TPM x (1—MBP) (1)
newTPMgn, = MBP + newTPMgp, 2)

where MBP stands for midbrain nuclei probability and corresponds to
the probability estimated from the manual labeling procedure, tc
indicates the tissue class (i.e., GM, WM, CSF, and external brain tissues),
TPM stands for the conventional tissue probability map, and new TPM
represents the new tissue probability map (see Fig. 1b for description
of steps to create new TPMs).

Validation of the new TPMs on MT data

To assess the anatomical accuracy of the tissue classification
achieved with the new TPMs, we performed a leave-one-out cross-
validation between the results of the manual labeling and of the
automated classification obtained from an MT map, which had been
excluded from the creation of the TPMs. The tissue classification was
carried out using both new and conventional TPMs within SPM12's
“unified segmentation” framework (for details on the parameters of
“unified segmentation,” see Table 2, Supplementary material). The
same procedure was repeated for all MT maps in the data set.

We measured and statistically compared the volumes of midbrain
structures present on the GM volume maps derived from the conven-
tional and new TPMs. For every subject the midbrain structures volumes
were calculated only from voxels labeled by all raters showing GM
probability equal or bigger than 0.2. We compared the volumes per
structure using paired t-test.

Next, we estimated the Dice coefficient as a measure of overlap
between the manually segmented subcortical structures and the
corresponding voxels in the GM maps obtained with both TPMs. Identi-
cal to above, we considered only voxels labeled identically by all raters.
The Dice coefficient was calculated after applying a threshold of 0.2 and
0.5 on the GM maps. The thresholds were used to minimize potential
partial volume effects that might affect the overlap between the
automatic tissue classification and the manual labeling. Using a paired
t-test we compared the Dice coefficients obtained for the GM maps
estimated with new and conventional TPMs for each structure. We
estimated the effect of age and gender on the differences between the
Dice coefficients calculated for the two different TPMs using a general
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Fig. 1. Flowchart summarizing the steps to create the new tissue probability maps (TPM). (a) Atlas information and manual labeling of binary masks relative to subcortical structures. (b)

Creation of the new TPM from the binary masks.

linear model. Significance levels were set at p < 0.05 after family-wise
error (FWE) correction for multiple comparisons.

Gray matter volume estimation with new TPMs from MDEFT images

To estimate the effects of our new TPMs on conventional voxel-
based morphometry (VBM) analysis, we used an independent T1w
data set (n = 33). We estimated GM volume maps from MDEFT T1w
images using conventional and new TPMs. Beyond the main effects

we analyzed the interaction between the estimates of GM volume and
age.

The MDEFT images were processed in SPM12 with the identical
default settings using both new and conventional TPMs. To maximize
the anatomical precision, we calculated spatial transformation parame-
ters using DARTEL on GM and WM tissue maps estimated with the new
TPMs (Ashburner, 2007). The warped GM probability maps were then
scaled by the Jacobian determinants of deformation fields to account
for local compression and expansion due to linear and non-linear
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transformations to create GM volume maps (Ashburner and Friston,
Do 2000). The GM volume maps were then smoothed by convolution with
an isotropic Gaussian kernel of 6 mm full-width-at-half-maximum
(FWHM).

For statistical comparison of GM volume differences related to TPM
e local effects, we included all MDEFT-based GM volume maps in the
same flexible-factorial design with regressors for age, gender, and
total intracranial volume (TIV). To test for interaction between age
and TPMs, GM volumes first detrended the data for the effects of gender
and TIV. Subsequently, we performed a voxel-wise paired t-test
between the age regressors estimated for GM volume maps derived
with the new and the conventional TPMs. The whole-brain search
[ volume for statistical analysis included the entire cortex and all subcor-
tical brain structures. Regional differences were examined by creating
voxel-wise statistical parametric maps for the entire extent of the
search volume using the general linear model (GLM) and random field
theory (Friston et al., 1994). Significance levels were set at p < 0.05

©
sSg~ after family-wise error (FWE) correction for multiple comparisons.
Regression mode
We tested the hypothesis that the tissue classification results
provided by the new TPMs were less sensitive to age-related contrast
decrease in MRI images driven by changes in local tissue properties
~ o in (Lorio et al.,, 2014). To this end, we carried out a linear regression
sogg analysis between GM volume, R2*, and age. We performed a voxel-
based regression within regions where the paired t-test showed differ-
S35 g ential age-related GM volume loss between conventional and new TPMs.
HHHH First, the R2* maps were spatially registered to standard MNI space
5 S E § using subject-specific diffeomorphic estimates, derived in the previous

step for the MDEFT images, without scaling by the Jacobian determi-

ScSs nants. A combined probability weighting and Gaussian smoothing
f_'l 'j’_l i 3 procedure (Draganski et al.,, 2011) was used with a 6 mm FWHM
Nme® isotropic smoothing kernel.
Sooo Then we calculated the GM volume differences between the new
e and conventional TPMs according to the following equation:
2333
BB AGM = GMyewrov —GMojaten (3)
NN© o
=N =lieie)
e - where GMpewrpm and GMggrpym are the GM volume maps estimated
[=N =Nl .
SS3o from the new and conventional TPMs.
R Finally, we implemented a linear regression to evaluate the correla-
sg8388 tion between volume differences and R2* values:
AGM =R} + € (4)

g8
™~ = — where 3 is the coefficient weighting the contribution of iron content
ij ij ; ;\: expressed by R2* values and ¢ represents the residuals of the model.
™M ™M . .

* o The model was set to determine the B-parameter and residuals at
each voxel. To assess the quality of parameter estimation, we calculated
t-values, testing against the null hypotheses that 3 were equal to zero.

b E § ; The statistical significance level was set at ppywg < 0.05.
Additionally, we investigated the age-related effects on R2* maps
using linear regression within the GLM framework of SPM12.

oo Results

<t O N
HHHH Lo
ooqe Inter-rater reliability
eEes The mean Cohen's kappa ranged between 0.70 and 0.87 across
Sg3g structures, while the mean Dice coefficient was between 0.65 and 0.87
° (see Table 1). The mean intraclass coefficient ranged between 0.64
z § and 0.87, indicating that the manually segmented structures have
28 good inter-rater agreement (see Table 1). The structures exhibiting

lower Cohen's kappa, Dice index, and intraclass coefficient were the
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ones with the highest percentage of voxel label disagreement across
raters (see Table 1).

Validation of the new TPMs on MT images

The usage of the new TPMs (Fig. 2) was associated with greater gray
matter volume when compared with estimates based on the conven-
tional TPMs (Table 2). The MT-based GM maps, estimated using the
new TPMs, showed a greater overlap with the manually delineated
structures with respect to the GM maps calculated with the conventional
TPM:s (see Table 2).

We found a positive correlation between the Dice coefficients
differences and age for caudate, red nucleus, and putamen, bilaterally
(see Table 2). The regression analysis showed also a positive correlation
between gender and Dice coefficients differences for the caudate and
putamen, and a negative correlation for the red nucleus (see Table 2).

Gray matter volume estimation with new TPMs from MDEFT images

The voxel-based statistical analysis showed higher GM volumes in
the striatum, thalamus, and cerebellar dentate with the new TPMs
(prwe < 0.05) (see Fig. 3a and Table 3). The use of conventional TPMs
resulted in higher GM volume estimation in superficial cortical layers
(prwe < 0.05) (see Fig. 3b). We note that the effect size differences

=
o
-
=
9
c

between the conventional and new TPMs were comparatively lower
in cortical than areas subcortical areas (see Fig. 3).

Effects of age

We found a significant (ppwe < 0.05) widespread pattern of age-
associated GM volume decrease in putamen, caudate, and frontal corti-
cal regions using the new and conventional TPMs on the MDEFT images.
There was a greater age-related volume loss in the ventral pallidum
when analysing GM maps estimated with the new TPMs and in the
dorso-lateral putamen when using the conventional TPMs (see Figs. 4
and 1a, Supplementary material).

We report a significant (ppwe < 0.05) positive linear correlation
between the age-related GM volume differences and the R2* maps in
the voxels where conventional TPMs resulted in greater GM volume
loss (see Fig. 5). The R2* values of these voxels were positively correlated
with age (ppwe < 0.05) (see Figs. 5 and 1b, Supplementary material).

Discussion

Here we create new tissue probability maps (TPMs) of subcortical
structures leading to improved anatomical plausibility of automated
brain tissue classification when using T1w images. The new TPMs
were obtained after manual labeling of subcortical structures from MT

Fig. 2. Top panel: axial view on the new and the conventional tissue probability maps (TPMs) for gray matter. Bottom panel: example of tissue classification from T1-weighted data using
the new and the conventional TPMs. The gray matter probability maps is represented in red, the white matter—in yellow and the cerebro-spinal fluid (CSF)—in blue.
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new TPM > old TPM

old TPM > newTPM

Fig. 3. Statistical parametric maps of paired t-test between gray matter (GM) volumes estimated from T1-weighted data with new and conventional tissue probability maps (TPM) at
statistical threshold of prwe < 0.05. (a) Increase of GM volume estimation, based on the new TPM, compared to the estimation based on conventional TPM. (b) Increase of GM volume
estimation, based on the old TPM, compared to the estimation based on conventional TPM. The pie charts represent the effect size for the indicated brain location. All results are

presented at prwe < 0.05.

and R2* maps, respectively, biomarkers of myelin and iron content,
exhibiting optimal tissue contrast for the deep brain nuclei. We
emphasize that while the new TPMs were created using two different
MRI contrasts, the primary purpose of the new TPMs is the tissue
classification of unimodal structural MRI data. Our new TPMs accurately
classify the basal ganglia and thalamus in MRI data with different gray-
white matter contrast—MT maps and MDEFT T1w images, illustrating
the versatility of the new TPMs. The novelty of our study goes beyond
the reliable automated tissue classification of previously undetectable
subcortical structures. We demonstrate the robustness of the new priors
against age-related brain tissue property changes—a limitation of
current TPM that has led to the detection of spurious gray matter
volume changes in computational anatomy studies.

The consistency of the manual labeling across different raters was in
line with previous studies (Ahsan et al., 2007; Babalola et al., 2009;
Keuken et al., 2014). Small nuclei such as the subthalamic and red
nucleus showed decreased inter-rater consistency due to the lower
detectability of these regions on eye inspection and to their close
proximity to other nuclei (Keuken et al., 2013). The high spatial overlap
between the manual labeling and the automated tissue classification
using our new TPMs supports the feasibility of reliable automated
classification of structures that were not detectable up to date. Never-
theless, the higher percentage of disagreement for small structures
could potentially overestimate the overlap between automated tissue

Table 3

classification and manual labeling due to the fact that less voxel were
used for comparison.

Given the widespread use of T1lw MRI data for computational
anatomy studies (Good et al., 2001; Ashburner et al., 2003), we tested
whether the new TPMs achieved better accuracy than current classifica-
tion on such MRI data. We demonstrate improved anatomical plausibil-
ity, particularly for the red nucleus, subthalamic nucleus, and cerebellar
dentate, which are not included in old TPMs. Similarly, significant parts
of the pallidum, putamen, thalamus, and substantia nigra were accu-
rately detected as GM structures. We note that the classification of
these areas as GM by the new TPMs promotes the inclusion of voxel
with high signal intensities in the GM intensity distributions over the
whole-brain T1w image. This effect may represent the principal cause
for the estimation of bigger insula and hippocampus GM volumes
obtained with the new TPMs. The shift of GM intensity distributions
toward higher values is also expected to skew the classification of low
intensity voxel as CSF that may underlie the observed reduction in GM
volume in the outer cortical ribbon. It is of note that the effect size differ-
ences between old and new TPMs for the cortical contrast was small,
which questions any significant impact of the new TPMs on differential
estimation of cortical GM volume.

In a proof-of-concept VBM analysis of T1w data, we demonstrate the
robustness of the new TPMs against spurious gray matter volume differ-
ences due to age-related microstructural tissue changes. Previous

Statistical comparison of gray matter volume estimates. Voxel-based comparison between gray matter volume maps estimated with new and conventional tissue probability maps (TPM)
using T1-weighted MDEFT images. Coordinates are given in Montreal Neurological Institute (MNI) standard space. SN = substantia nigra; GP = globus pallidum.

Left hemisphere Cluster size Right hemisphere Cluster size
Structure coordinates (mm) t-value (number of voxels) coordinates (mm) t-value (number of voxels)
X y z P y z
GP —15 9 3 47.39 16 —4 —1 30
Caudate —12 13 6 47.39 6195 12 13 6 44 6483
Putamen —27 0 12 45.53 28 0 12 4439
New TPM > Old TPM Thalamus —14 —15 3 74.71 2411 18 —15 6 74.22 2443
SN —45 —12 —10.5 19.54 120 6 —12 -9 18.01 134
Dentate —14 —51 —35 18.01 1357 17 —63 —32 19.68 1294
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GM volume loss associated with age: new TPM > old TPM

Linear age regressors

old TPM new TPM

new TPM

Linear age regressors
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Fig. 4. Interaction between age-related gray matter (GM) volume loss and tissue probability maps (TPM) used for GM volume estimation from T1-weighted data. Top panel: statistical
parametric maps of stronger negative correlation between age and GM volume estimates from new TPM compared to old TPM. Bar plot—mean linear regressors for age effects on
volume in the pallidum. Bottom panel: statistical parametric maps of stronger negative correlation between age and GM volume estimates from old TPM compared to the new TPM.

Bar plot—mean linear regressors for age effects on volume in the putamen.

studies have demonstrated the profound effect of age on brain anatomy
with a robust pattern of cortical changes next to controversial results for
subcortical areas. GM estimates derived from the new TPMs show age-
related volume loss in cortical regions consistent with previous findings
(Good et al., 2001; Fjell et al., 2009; Draganski et al., 2011; Callaghan
et al,, 2014; Storsve et al.,, 2014). However, we find relatively preserved
GM volume in the dorso-lateral putamen with increasing age compared
to previous reports based on old TPMs that highlighted this subcortical
region as being the most affected by healthy ageing (Cherubini et al.,
2009; Draganski et al., 2011; Callaghan et al., 2014; Oh et al., 2014).
The regression model presented here showed that this discrepancy
can be largely explained by an age-related increase in iron concentra-
tion, as described by the MRI parameter R2*, emphasizing the impact
of microstructural changes on the detection of spurious apparent GM
volume change. Conversely, we interpret the greater age-related
volume loss in the ventral pallidum when using volume estimates
based on the new TPMs as result due to the improved classification of
pallidum as a gray matter structure. The automated detection of the
pallidum—one of the iron-richest structures in the brain (Hallgren and
Sourander, 1958), is affected by age-related loss of gray-white matter
contrast in T1w images. Correspondingly, the T1w- based current tissue
priors for gray matter in the framework of SPM do not include the
pallidum, which results in its classification as white matter structure.
This interpretation is supported by our findings that highlight the
improved classification of pallidum both as a main effect of the TPMs
(Fig. 3) and interaction between TPM and age (Fig. 4—top panel).

Age is associated with a linear increase of iron in the subcortical
structures, which is confirmed by histopathology and imaging studies

directly measuring iron content or estimating it indirectly with the
effective transverse relaxation rate R2* (Hallgren and Sourander,
1958; Aquino et al., 2009; Langkammer et al., 2010; Daugherty and
Raz, 2015). Iron decreases the gray-white matter contrast of T1w
images (Helms et al.,, 2009; Raz et al., 2005; Lorio et al., 2014) and
impacts the automated classification of brain tissue types, which heavily
relies on between-tissue intensity differences. While this increase in
iron concentration with age was observed over the entire putamen,
age-related volume differences across TPMs could only be detected in
its dorso-lateral part. This is consistent with differences in MR contrast,
which are most prominent at the interface between neighboring tissues.
This regional specificity suggests that other tissue characteristics such as
fiber loss and axonal damage might play a role in the volume reduction
of that region (Cherubini et al., 2009).

Given all these considerations, we conclude that the GM volume
maps estimated with the new TPMs from T1w images are less sensitive
to age-related gray-white matter contrast changes and are more
suitable for accurate representation of the dynamics of age-associated
brain anatomy changes. Our new TPMs are derived from a fairly large
cohort of subjects with a broad age range. This assures the inclusion
of many brain changes occurring with increasing age, such as iron
accumulation in subcortical regions (Hallgren and Sourander, 1958)
and increase of ventricular size (Fjell and Walhovd, 2010).

Limitations and outlook

The new TPMs were created and tested solely on data from healthy
subjects, which limits the main and interaction effects to the case of
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Positive correlation between AGM and R2*

Fig. 5. Top panel: t-values of voxel-based regressors correlating R2* with higher age-related gray matter (GM) volume loss estimated with conventional tissue probability maps (TPM).

Bottom panel: t-values for the positive linear correlation between R2* and age in GM voxels.

normal ageing across gender. Any tissue property change, particularly
abnormal iron deposition which is a hallmark of neurodegeneration,
will have a more profound and differential spatially distributed effects
on brain structure.

We also acknowledge that region delineation based on postmortem
myelo- and cyto-architectonic assessment provides greater specificity
and accuracy in tissue border definition (Deistung et al., 2013) than
the approach chosen here. In this study, the finite resolution of the
image voxels leads to partial volume effects and blurring of the borders
between neighboring structures, limiting the accuracy of the manual
labeling and of automated tissue classification. However, in the absence
of a ground truth provided by individual histological maps, the quanti-
fication of such effects is very difficult.

Our new TPMs showed a clear improvement in the automated
classification of subcortical structures from MRI data with optimal
contrast in these regions and from broadly used T1-weighted data.
The newly created TPM is readily usable in the established framework
of the SPM software. We have empirically assessed the robustness of
the new TPMs against the effects of age-related microstructural tissue
changes on tissue classification, preventing the detection of spurious
apparent volume change in neuroanatomy studies. The new TPMs can
be used for studying effects on the healthy brain by disease, particularly
when the emphasis is on subcortical structures. Future work linking
automated tissue classification and underlying histological properties
will help validate and extend the generalizability of this study.
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