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a b s t r a c t

Allopurinol and its active metabolite, oxypurinol are widely used in the treatment of gout and hyper-
uricemia. They inhibit xanthine oxidase (XO) an enzyme in the purine degradation pathway that converts
xanthine to uric acid. This investigation examined the effect of allopurinol and oxypurinol on bone
formation, cell number and viability, gene expression and enzyme activity in differentiating and mature,
bone-forming osteoblasts. Although mRNA expression remained relatively constant, XO activity de-
creased over time with mature osteoblasts displaying reduced levels of uric acid (20% decrease). Treat-
ment with allopurinol and oxypurinol (0.1–1 mM) reduced XO activity by up to 30%. At these con-
centrations, allopurinol and oxypurinol increased bone formation by osteoblasts �4-fold and �3-fold,
respectively. Cell number and viability were unaffected. Both drugs increased tissue non-specific alkaline
phosphatase (TNAP) activity up to 65%. Osteocalcin and TNAP mRNA expression was increased, 5-fold
and 2-fold, respectively. Expression of NPP1, the enzyme responsible for generating the mineralisation
inhibitor, pyrophosphate, was decreased 5-fold. Col1α1 mRNA expression and soluble collagen levels
were unchanged. Osteoclast formation and resorptive activity were not affected by treatment with al-
lopurinol or oxypurinol. Our data suggest that inhibition of XO activity promotes osteoblast differ-
entiation, leading to increased bone formation in vitro.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Most of the current treatments for postmenopausal osteo-
porosis (e.g. bisphosphonates, Denosumab) act by inhibiting os-
teoclast activity and reducing bone resorption, thereby increasing
bone mineral density (BMD). In contrast, the only bone anabolic
agent currently marketed for treating osteoporosis is the human
parathyroid hormone (PTH) analogue teriparatide [1,2]. Since use
of PTH is not suitable for all patients [3], additional therapeutic
agents which promote bone formation are required.

Allopurinol (1,5-dihydro-4H-pyrazole[3,4-d]pyrimidin-4-one)
and its active metabolite oxypurinol are widely used clinically in
the treatment of gout, the most common form of inflammatory
arthritis, and hyperuricemia [4,5]. Both agents are purine analo-
gues and act as non-competitive inhibitors of xanthine oxidase
(XO), an enzyme in the purine degradation pathway. Febuxostat,
which is structurally unrelated to allopurinol, is a non-purine
r Inc. This is an open access article
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selective XO inhibitor also used to treat gout [6].
Physiologically, XO is involved in many biochemical reactions

but its key action is to catalyse the breakdown of hypoxanthine to
xanthine and xanthine to uric acid [7]. Inhibition of XO activity
reduces the uric acid concentration in the plasma and therefore
prevents the development and progression of gout and related
conditions [4]. XO expression is widely distributed throughout the
body with expression in the liver, gut, lung, kidney, heart and brain
[7]. Expression of XO has also been reported in osteoblasts and
osteoclasts [8]. Inherited deficiency of XO activity leads to xan-
thinuria and multiple organ failure characterised by low levels of
uric acid and an accumulation of xanthine in tissues [9].

The breakdown of hypoxanthine and xanthine by XO is an
oxygen-dependent reaction that also results in the production of
the reactive oxygen species (ROS) superoxide (O2

�) and hydrogen
peroxide. XO-derived superoxide can cause oxidative injury to
proteins, lipids and DNA, so in preventing its production allopur-
inol and oxypurinol can act as powerful antioxidants [7]. Previous
work seems to suggest that XO activity mainly exerts negative
effects on bone. In osteoblast-like cells and bone marrow stromal
cells, XO increases oxidative stress leading to reduced cell viability,
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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an inhibition of differentiation and decreased expression of os-
teogenic markers [10–12]. Furthermore, osteoblast XO activity is
enhanced by inflammatory cytokines including TNFα and IL-1β
[8]. XO-derived superoxide has also been shown to stimulate the
expression of receptor activator of nuclear factor ΚB ligand
(RANKL) in osteoblast-like cells [13]. In osteoclasts, ROS that can be
generated by XO have been shown to increase formation and bone
resorption [14,15].

Despite gout being a condition that primarily affects the mus-
culoskeletal system, the effects of allopurinol and oxypurinol on
bone remain poorly investigated. Whilst there are no studies de-
scribing the direct effects of these drugs on bone cell function,
allopurinol has been shown to inhibit the increase in bone re-
sorption caused by TNFα and IL-1β [8]. More recently, a combi-
nation of allopurinol and another antioxidant, N-acetylcysteine,
was found to inhibit bone growth in an immobilisation-manip-
ulation model of heterotopic ossification [16].

The aim of this study was to examine the direct effects of al-
lopurinol and oxypurinol on osteoblast and osteoclast survival,
differentiation and function, using established in vitro methods.
2. Materials and methods

2.1. Reagents

All tissue culture and molecular biology reagents were pur-
chased from Life Technologies (Paisley, UK) unless stated other-
wise. Chemical reagents were purchased from Sigma Aldrich
(Poole, UK).

2.2. Osteoblast cell culture

Primary rat osteoblast cells were obtained from 2-day-old
neonatal Sprague-Dawley rats euthanised by cervical dislocation,
as described previously [17,18]. All animal experiments were ap-
proved by the University College London Animal Users Committee
and the Royal Veterinary College ethics and welfare committee; all
animals were maintained in accordance with the UK Home Office
guidelines for the care and use of laboratory animals.

Following isolation, cells were resuspended in Dulbecco's
Modified Essential Medium, supplemented with 10% foetal calf
serum (FCS), 2 mM L-glutamine, 100 U/ml penicillin, 100 mg/ml
streptomycin and 0.25 mg/ml amphotericin (complete mixture
abbreviated to DMEM). Cells were cultured for 2–4 days in a hu-
midified atmosphere of 5% CO2–95% air at 37 °C in 75 cm2

flasks
until confluent. Upon confluence, cells were sub-cultured into 24-
well trays in DMEM supplemented with 2 mM β-glyceropho-
sphate, 50 μg/ml ascorbic acid and 10 nM dexamethasone (sup-
plemented DMEM), with half medium changes every 3 days. Os-
teoblasts were cultured in the presence of allopurinol and oxy-
purinol (1 nM–10 mM) to determine the effect on cell proliferation,
differentiation, function and gene expression. For the bone for-
mation experiments, cells were also treated with febuxostat and,
as a positive control of an anabolic agent, BMP2 (0.1 mM). Unless
stated, experiments were carried out at 2 time points during the
osteoblast culture; day 7, which represents differentiating osteo-
blasts, and day 14 (mature, bone forming osteoblasts). All experi-
ments were carefully pH-controlled because bone mineralisation
is extremely sensitive to inhibition by acidosis [19]. Bone nodule
formation by osteoblasts cultured in 24-well plates was measured
by image analysis as described previously [17,18,20].

2.3. Osteoclast cell culture

The long bones were dissected from 6 week-old mice, cut
across the epiphyses and the marrow was flushed out with PBS.
The resulting suspension was centrifuged at 1500 rpm and re-
suspended in αMEM supplemented with 100 nM prostaglandin E2
(PGE2) and 50 ng/ml macrophage colony stimulating factor (M-
CSF). The cell suspension was cultured for 24 h in a 75 cm2

flask in
5% CO2/95% atmospheric air to allow attachment of stromal cells
and other rapidly adherent cells. The non-adherent cell suspension
was removed, centrifuged and resuspended in αMEM supple-
mented with 100 nM PGE2, 200 ng/ml M-CSF and 3 ng/ml RANKL
(R&D Systems Europe Ltd, Abingdon, UK). Cells were plated onto
5 mm diameter ivory discs (106 cells/disc) in 96-multiwells. After
24 h, discs containing adherent osteoclast precursors were trans-
ferred to 6 well trays (4 discs/well in 4 ml medium) for a further
6 days at 37 °C in 5% CO2/95% atmospheric air. Culture medium
was acidified to pH �7.0 by the addition 10 meq/l Hþ(as HCL) on
day 7 to activate osteoclasts to resorb dentine [21]. Culture med-
ium pH, pCO2 and PO2 were monitored throughout using a blood
gas analyser (ABL 705, Radiometer, Copenhagen, Denmark). Allo-
purinol or oxypurinol (1 nM–10 mM) were added for the duration
of the culture.

Osteoclasts were fixed in 2% glutaraldehyde and stained to
demonstrate tartrate-resistant acid phosphatase (TRAP). Osteo-
clasts were defined as TRAP-positive cells with 2 or more nuclei
and/or clear evidence of resorption pit formation. Osteoclast
number and the area resorbed on each disc were assessed ‘blind’
by transmitted light microscopy and reflective light microscopy
and dot-counting morphometry, respectively [21].

2.4. Measurement of xanthine oxidase (XO) activity

Osteoblasts were cultured with 0.1–1 mM allopurinol and oxy-
purinol for 7 or 14 days. The XO activity of cell lysates was de-
termined colorimetrically using a commercially available kit (XO
assay kit, Abcam, Cambridge UK). Total protein in cell lysates was
determined using the Bradford assay (Sigma Aldrich, Poole, UK).

2.5. Cell number and viability assay

Osteoblast cell number was measured after 7 and 14 days of
treatment with allopurinol and oxypurinol (1 nM–10 mM) using
the CytoTox 96s non-radioactive cytotoxicity assay (Promega UK,
Southampton UK). This assay quantifies cellular lactate dehy-
drogenase (LDH), a stable cytosolic enzyme that is released on cell
lysis. LDH oxidises lactate into pyruvate, generating NADH, which
is then used to convert a tetrazolium salt into a red formazan
product in proportion to the number of lysed cells.

Cell supernatants were collected to determine medium LDH
levels (cell viability). To establish total cellular LDH levels, cells
were lysed with 1% Triton X-100 in water (lysis buffer, 15 ml/ml of
medium) for 1 h. The LDH content of the supernatants and cell
lysates were measured colorimetrically (490 nm) as per manu-
facturer's instructions. A standard curve for determination of cell
numbers was constructed using cells seeded at 102–106/well. By
expressing medium LDH as a percentage of the total cellular LDH
cell viability could be also calculated.

2.6. Measurement of extracellular ATP

Prior to measurement of ATP levels, culture medium was re-
moved, cell layers washed and cells incubated with serum-free
DMEM (1 ml/well) for 1 h. Extracellular ATP release was measured
luminometrically using the luciferin-luciferase assay as previously
reported [22]. Cell number and viability were determined as de-
scribed above.
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2.7. Determination of alkaline phosphatase (TNAP) activity

The TNAP activity of cell lysates was determined color-
imetrically using a commercially available kit (SensoLytes pNPP
TNAP assay kit, Anaspec, Fremont, CA); this assay uses p-ni-
trophenyl phosphate as a substrate, which in the presence of TNAP,
is converted to the yellow chromogen p-nitrophenyl. Osteoblast
TNAP activity was measured after 7 and 14 days of culture. Cell
layers were washed and cells harvested using a scraper (n¼6)
followed by sonication at 4 °C and centrifugation at 500� g. The
supernatant was collected and stored at 4 °C until assaying at pH
9.8. Total protein in cell lysates was determined using the Bradford
assay.

2.8. Measurement of collagen production

Soluble collagen production was determined in osteoblasts
after 7 and 14 days of culture with 10 nM–1 mM allopurinol or
oxypurinol; total protein concentration in lysates was determined
using the Bradford assay. Osteoblasts were transferred to medium
containing 5% FCS, 2 mM β-glycerophosphate, 50 μg/ml ascorbic
acid, 10 nM dexamethasone and the lysyl oxidase inhibitor β-
aminopropionitrile (50 μg/ml) for the final 24 h of culture. Med-
ium without cells was used as a blank. The concentration of col-
lagen accumulated in the tissue culture mediumwas assayed using
a Sirius red dye-based kit (Sircol soluble collagen assay, Biocolor
Ltd., Newtownabbey, UK) according to the manufacturer's
instructions.

2.9. Total RNA extraction and Dnase treatment

Osteoblasts were cultured in 6-well trays for 7 or 14 days with
0.1 mM allopurinol or oxypurinol; total RNA was extracted from
3 wells using TRIZOL

s

reagent (Invitrogen, Paisley, UK) according
to the manufacturer's instructions. Extracted RNAwas treated with
RNase-free DNase I (35 U/ml) for 30 min at 37 °C. The reaction was
terminated by heat inactivation at 65 °C for 10 min. Total RNA was
quantified spectrophotometrically by measuring absorbance at
260 nM. RNA was stored at �80 °C until amplification by qPCR.

2.10. Quantitative real time polymerase chain reaction (qPCR)

Osteoblast RNA (50 ng) was transcribed and amplified using
the iScript one-step qRT-PCR kit with SYBR green (Biorad
Fig. 1. Allopurinol and oxypurinol inhibit osteoblast XO activity. (A) The level of XO mRN
forming osteoblasts (day 14). (B) XO activity was 20% lower in mature osteoblasts comp
20% at day 7 and day 14, respectively. (C) Oxypurinol (Z0.1 mM) reduced XO activity
*¼po0.05.
Laboratories Ltd., Hemel Hempstead, UK), which allows cDNA
synthesis and PCR amplification to be carried out sequentially.
qRT-PCR (chromo4, Biorad Laboratories Ltd., Hemel Hempstead,
UK) was performed according to manufacturer's instructions with
initial cDNA synthesis (50 °C for 10 min) and reverse transcriptase
inactivation (95 °C for 5 min) followed by 40 cycles of denatura-
tion (95 °C for 10 s) and detection (60 °C for 30 s). Gene expression
was investigated in cells cultured for 7 and 14 days. Data was
analysed using the Pfaffl method [23] and is shown as changes in
the level of gene expression relative to untreated cells. All reac-
tions were carried out in triplicate using RNAs derived from
4 different osteoblast cultures. Primer sequences: β-actin, S: gcc ttc
ctt cct ggg tat gg/ AS: tcc gat tca act cat act gc; COL1α1, S: ggg aca
cag agg ttt cag tgg/ AS: agc tcc att ttc acc agg act g; TNAP, S: aaa cct
aga cac aag cac tc/ AS: tcc gat tca act cat act gc; XO, S: aca cca tga
aaa ccc aga gc/ AS: tcc acc cat cct ctt cac tc; Ocn, S: gca gac acc atg
agg acc ct/ AS: gca gct tgt gcc gtc cat ac; Npp1, S: aga cca cac ttt tac
act ctg/ AS: gat gac ctc act gct tac tg

2.11. Statistics

Statistical comparisons were made using one-way analysis of
variance (ANOVA) with a post-hoc Bonferroni correction for mul-
tiple comparisons. Calculations were performed using In Stat 3
(GraphPad, San Diego, CA). All data are presented as means7SEM
for between 6 and 12 replicates. Results are representative of ex-
periments performed at least three times using cells isolated from
different animals.
3. Results

3.1. Allopurinol and oxypurinol inhibit XO activity in osteoblasts

Previous work has reported XO expression by osteoblasts [8]. In
this investigation, XO mRNA expression and activity was measured
in differentiating (day 7) and mature, bone forming osteoblasts
(day 14). qPCR analysis of XO expression showed that mRNA levels
were unaffected by osteoblast differentiation (Fig. 1A). However,
enzyme activity was 20% lower in mature osteoblasts compared to
differentiating cells (Fig. 1B and C). Allopurinol (Z0.1 μM) inhibits
XO activity by 30% and 20% at day 7 and 14, respectively (Fig. 1B).
Oxypurinol reduced XO activity by up to 32% (Fig. 1C).
A expression is the same in differentiating cells (day 7 of culture) and mature, bone-
ared to differentiating cells. Allopurinol (Z0.1 mM) inhibits XO activity by 30% and
by up to 32%. Values are means7SEM (n¼6), ***/###¼po0.001, **¼po0.01,



Fig. 2. Allopurinol and oxypurinol increase bone formation by osteoblasts. (A) Allopurinol (Z1 nM) stimulates bone formation by up to 4-fold. No effect was seen with
10 mM allopurinol. The (B) number and (C) size of the mineralised nodules were also increased by allopurinol treatment (Z10 nM). (D) Oxypurinol (Z1 nM) increased bone
formation by up to 3-fold; the (E) number and (F) size of the mineralised nodules were also increased. (G) Allopurinol, oxypurinol and BMP2 promoted bone formation to a
similar extent (�2-fold). Febuxostat induced the largest increase in bone formation (3-fold). Values are means7SEM (n¼6), ***¼po0.001, **¼po0.01, *¼po0.05.
(H) Representative whole well scans (unstained) and phase contrast microscopy images (alizarin red stained) show the increased bone formation seen with allopurinol and
oxypurinol. Scale bars: whole well¼0.5 cm, phase contrast images¼500 mm.
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3.2. Allopurinol and oxypurinol increase bone formation by
osteoblasts

Rat calvarial osteoblasts were cultured for 14 days in the pre-
sence of 1 nM–10μM allopurinol or oxypurinol. Allopurinol
(Z1 nM) dose-dependently increased bone formation up to
4-fold; this was due to an increase in the total number and size of
the mineralised nodules. The peak stimulatory effects were seen at
0.1 mM and 1 mM; concentrations Z10 μM had no effect (Fig. 2A–
C, H). Treatment with oxypurinol also increased bone formation
and mineralised nodule number and size: effects were evident
from 1 nM with the maximal stimulation seen at 1–10 mM (3-fold
increase) (Fig. 2D–F, H). For a comparative study of potency, allo-
purinol and oxypurinol were also cultured alongside BMP2 and
febuxostat (0.1 mM). The stimulatory effects of allopurinol and
oxypurinol were similar in magnitude to BMP2 (�2-fold), whilst
febuxostat appeared most potent increasing bone formation 3-fold
(Fig. 2G).



Fig. 3. No effect of allopurinol or oxypurinol on cell number, viability or ATP release. Cell number was measured after 7 or 14 days of treatment with 1 nM–10 mM allopurinol
or oxypurinol; ATP release and viability were assessed in mature osteoblasts. At all concentrations tested, (A-B) allopurinol and (C-D) oxypurinol had no effect on cell
number, controlled ATP release (solid bars, primary y axis) or viability (lines, secondary y axis). Values are means7SEM (n¼6–12).
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3.3. Allopurinol and oxypurinol do not affect osteoblast number,
viability or ATP release

To ensure prolonged exposure to allopurinol or oxypurinol
(1 nM–10 μM) was not toxic to osteoblasts, cell number was
measured after 7 and 14 days of treatment. At all concentrations
tested allopurinol and oxypurinol did not influence cell number in
differentiating (day 7) or mature bone-forming (day 14) osteo-
blasts (Fig. 3A and C).

Xanthine is formed by the breakdown of extracellular ATP or
adenosine. Culture with allopurinol and oxypurinol had no effect
on controlled ATP release from mature bone-forming osteoblasts;
cell viability was also unaffected (Fig. 3B and D).

3.4. Allopurinol and oxypurinol stimulate osteoblast TNAP activity

TNAP activity was measured in differentiating and mature
bone-forming osteoblasts treated with 10 nM–1 mM allopurinol or
oxypurinol. Basal TNAP activity was 6-fold higher in mature os-
teoblasts compared to differentiating cells. Allopurinol (Z10 nM)
stimulated TNAP activity by up to 50% and 65% in differentiating
and mature cells, respectively (Fig. 4A). Oxypurinol (Z10 nM)
increased osteoblast TNAP activity by up to 65% (Fig. 4B).

3.5. No effect of allopurinol and oxypurinol on soluble collagen

Soluble collagen levels were measured in cultures of osteo-
blasts treated with allopurinol or oxypurinol for 7 or 14 days. In
both differentiating and mature osteoblasts there was no effect of
either drug on collagen production (Fig. 4C and D).
3.6. The expression of key osteoblast genes is influenced by allo-
purinol and oxypurinol

The effect of allopurinol and oxypurinol (0.1 μM) on the ex-
pression of collagen type I (Col1α1), osteocalcin (Ocn), TNAP, XO
and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1)
was in investigated in differentiating (day 7) and mature, bone-
forming osteoblasts (day 14). Allopurinol decreased NPP1 expres-
sion �5-fold in differentiating osteoblasts; expression of Col1α1,
TNAP, Ocn and XO was unaffected (Fig. 5A). In mature osteoblasts,
allopurinol increased TNAP and Ocn expression 2-fold and 5-fold,
respectively (Fig. 5B). Oxypurinol reduced Npp1 expression 5-fold
in differentiating and mature osteoblasts. Levels of TNAP and Ocn
expression were increased 2-fold and 5-fold, respectively in ma-
ture osteoblasts. Col1α1 and XO mRNA expression was unaffected
by treatment with oxypurinol (Fig. 5C and D).

3.7. Osteoclast formation and activity is unaffected by treatment
with allopurinol and oxypurinol

Mouse osteoclasts were treated with allopurinol or oxypurinol
(1 nM–10 mM) for the duration of the culture. Both allopurinol and
oxypurinol had no effect on osteoclast formation (Fig. 6A, C, E) or
bone resorption (Fig. 6B, D, E).
4. Discussion

Allopurinol was first approved for use clinically in 1966 and is
now a potential treatment for a range of conditions including



Fig. 4. Increased TNAP activity in osteoblasts treated with allopurinol or oxypur-
inol. TNAP activity was measured in differentiating (day 7) and mature (day 14)
osteoblasts treated with 10 nM–0.1 mM allopurinol or oxypurinol. Basal TNAP ac-
tivity was �6-fold higher in mature, bone-forming osteoblasts. (A) Allopurinol
(Z10 nM) increased TNAP activity by up to 50% and 65% at day 7 and day 14,
respectively. (B) Oxypurinol (Z10 nM) stimulated TNAP activity by r60% in dif-
ferentiating cells and mature osteoblasts. (C) Allopurinol and (D) oxypurinol have
no effect on soluble collagen levels. Values are means7SEM (n¼6),
***/###¼po0.001, **¼po0.01.

Fig. 5. Allopurinol and oxypurinol influence the expression of key osteoblast genes.
The effect of allopurinol and oxypurinol (0.1 μM) on the expression of collagen type
I (Col1α1), osteocalcin (Ocn), TNAP, XO and ecto-nucleotide pyrophosphatase/
phosphodiesterase 1 (NPP1) was in investigated in differentiating and mature os-
teoblasts. (A) Allopurinol decreased Npp1 expression �5-fold in differentiating
osteoblasts. (B) In mature osteoblasts, allopurinol increased TNAP and Ocn ex-
pression 2-fold and 5-fold, respectively. (C and D) Oxypurinol reduced Npp1 ex-
pression 5-fold in differentiating and mature osteoblasts. Levels of TNAP and Ocn
expression were increased 2-fold and 5-fold, respectively in mature osteoblasts.
Values are means7SEM (n¼4), *¼po0.05.
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chronic heart failure ischemia-reperfusion injury, vascular disease,
chronic kidney disease and diabetes (see review by Pacher et al.
[7]). Despite these additional uses, allopurinol remains one of the
leading treatments for gout and hyperuricemia [4,5]. Although
gout is a condition that affects the musculoskeletal system, there is
little published information about the direct actions of allopurinol
and oxypurinol on bone cells. Our results show that allopurinol
and oxypurinol increase osteoblast differentiation and bone for-
mation in vitro but do not affect osteoclast function. In keeping
with other studies showing that allopurinol and oxypurinol are
well tolerated by cells and relatively non-toxic [24,25], we ob-
served no differences in osteoblast or osteoclast number with
continuous treatment (r10 mM).

Allopurinol and oxypurinol increased the expression of two
markers of the mature osteoblast phenotype, TNAP and Ocn. TNAP
activity was also increased. This suggests that a reduction in XO
activity promotes osteoblast differentiation. The observation that
XO knockout mice have reduced levels of adipose tissue and adi-
pogenesis [26] is potentially consistent with this notion, since
osteogenesis and adipogenesis are often inversely related [27,28].

Available evidence suggests potential mechanisms by which
allopurinol and oxypurinol may exert their osteogenic actions.
Firstly, inhibition of XO leads to xanthine accumulation and a re-
duction in systemic uric acid levels [7]. Although the effects of uric
acid on bone cell function have not been investigated, it has been
reported that monosodium urate crystals, which form when uric
acid exceeds its limit of solubility, are associated with decreased
osteoblast viability and function [29,30]. Secondly, XO inhibition
by allopurinol and oxypurinol would also be expected to result in
decreased production of hydrogen peroxide and O2

� free radicals.
Previous work has shown that osteoblast differentiation and os-
teogenic gene expression are inhibited by these reactive oxygen
species (ROS) [10–12]. Consistent with a role for ROS, the anti-
oxidant vitamin E has also been shown to promote osteoblast
function [31].

We also found that nanomolar concentrations of allopurinol,
oxypurinol or febuxostat also markedly enhanced bone formation.
This was due to an increase in both the number and size of the
mineralised bone nodules formed. Since Col1α1 mRNA expression
and production of soluble collagen were not significantly affected
by allopurinol and oxypurinol treatment, our data suggest that the
enhanced bone formation observed was not primarily due to in-
creased organic matrix deposition. However, the increase in TNAP
expression and activity combined with the decreased NPP1 ex-
pression suggest that allopurinol and oxypurinol could influence
the level of bone mineralisation. NPP1 hydrolyses nucleotide tri-
phosphates (such as ATP or UTP) to produce the key mineralisation
inhibitor, pyrophosphate (PPi) [32,33]; TNAP is the key enzyme
involved in PPi breakdown [34]. Thus, the opposing actions of



Fig. 6. Osteoclast formation and activity is unaffected by allopurinol or oxypurinol. Mouse osteoclasts were cultured on dentine discs for 9 days with 1 nM–10 mM allopurinol
or oxypurinol. At all concentrations tested allopurinol had no effect on (A) osteoclast formation and (B) resorptive activity. Treatment with oxypurinol also had no effect on
(C) osteoclast number or (D) bone resorption. Values are means7SEM (n¼8). (E) Representative light microscopy images showing no difference in osteoclast formation and
resorptive activity. Scale bar¼500 mm.
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NPP1 and TNAP are critical in determining the extracellular
phosphate (Pi)/PPi ratio and, therefore, the level of skeletal mi-
neralisation [34]. Taken together, our data suggest the stimulatory
effects of allopurinol and oxypurinol on bone formation may be
due to both increased osteoblast differentiation and a shift in Pi/PPi
ratio in favour of bone mineralisation.

It has previously been reported that, despite being an effective
drug, allopurinol is a relatively weak XO inhibitor in vitro (IC50 0.2–
50 mM) [7]. In agreement, we found that treatment with allopur-
inol or oxypurinol in the low micromolar range (0.1–1 mM) only
reduced XO activity by up to 30%. However, at these concentra-
tions both drugs increased bone formation by up to 4-fold. The
apparent disparity between the level of enzyme inhibition and the
actions of allopurinol and oxypurinol on osteoblasts suggests that
some of the effects may be independent of XO inhibition. Fe-
buxostat is a newer, more potent XO inhibitor which is structurally
unrelated to allopurinol [6]. In comparative studies, we observed
that febuxostat promoted bone formation to a greater extent than
allopurinol, oxypurinol and a positive control for bone formation,
BMP2. This observation provides additional support for the notion
that the stimulatory effects are a consequence of XO inhibition;
however, “off target” effects cannot be discounted.

The substrate for XO is xanthine, which is formed from the
breakdown of extracellular ATP or adenosine. The key source of
extracellular ATP in bone is controlled release from cells [35]. We
found that ATP release was unaffected by allopurinol and oxy-
purinol treatment suggesting that inhibition of XO does not induce
feedback mechanisms to prevent ATP efflux (and potentially
xanthine accumulation). However, given that purinergic signalling
is an important regulator of osteoblast differentiation and function
[35], it is possible that blocking XO and the purine degradation
pathway could indirectly influence ATP-mediated signalling and
osteoblast activity.

In contrast to their potent actions on osteoblasts, we found that
allopurinol and oxypurinol had no effect on osteoclast formation
or resorptive activity. The mouse marrow cultures used here to
study osteoclast function are relatively free of stromal cells and
osteoblasts [21]. This suggests that under normal conditions, XO
activity might not play a significant role in directly regulating
osteoclast function. However, previous work has shown that XO-
derived superoxide can stimulate RANKL expression in osteoblast-
like cells [13]. Thus it is possible that XO could regulate osteoclast
formation and activity indirectly via actions on other cell types.
Furthermore, an earlier study found that allopurinol inhibits the
increased bone resorption caused by TNFα and IL-1β [8]. Given
that XO expression is significantly upregulated by stimuli such as
inflammation and ischemia [36,37] it is possible that the actions of
XO on osteoclasts are only evident in inflammatory conditions.

Allopurinol is metabolised in the liver and has a half-life of 1–
3 h in plasma, whilst oxypurinol is excreted in the urine and has a
half-life of 12–17 h [38]. Typical plasma concentrations of oxy-
purinol are 30–100 mmol/L depending on the original dose of al-
lopurinol or oxypurinol (100–400 mg) and the renal function of
the patient [39]. The concentration of allopurinol or oxypurinol
which bone cells are exposed to in vivo is unknown. However,
since the skeleton is highly vascular and receives 7–8% of cardiac
output it is possible that bone cells are exposed to the nanomolar/
low micromolar concentrations tested in this study.



I.R. Orriss et al. / Experimental Cell Research 342 (2016) 166–174 173
Allopurinol and oxypurinol exert their therapeutic actions by
reducing plasma uric acid levels [7]. Clinical studies examining the
relationship between serum uric acid levels (within the normal
range) and BMD have yielded conflicting results. Several in-
vestigations report that higher serum uric acid levels are protec-
tive against osteoporosis [40–44], whilst others have found no
effect [45]. In agreement with the suggestion that uric acid is
protective against osteoporosis, Dennison et al. recently reported
that high-dose allopurinol use in gout patients was associated
with an increased fracture risk [46]. Furthermore, osteopenia has
been associated with hereditary xanthinuria type II, which is
characterised by defective XO activity and low serum uric acid
levels [47]. In contrast, Basu et al. found that allopurinol use had
no effect on hip fracture [48]. The results from these clinical stu-
dies are at variance to the striking osteogenic action of allopurinol
and oxypurinol observed in this investigation. Our results also
contrast with the in vivo study of Van den Bossche et al. [16], who
found that the combination of allopurinol and another antioxidant,
N-acetylcysteine, inhibited bone growth in an immobilisation-
manipulation model of heterotopic ossification [16]. However, di-
rect comparison between the two studies is difficult because of the
large differences in methodology, dosing and the presence of a
second antioxidant. Taken together, these data suggest that the
role of XO in osteoblast differentiation and function is complex
and the effects of XO inhibition on other cell types in vivo may
exert additional actions that are not evident in vitro.

XO is widely expressed and its importance physiologically is
highlighted by the XO knockout mouse model; these animals have
very low serum uric acid levels and fail to thrive, typically dying
before o9 weeks of age because of renal damage [49,50]. XO
knockout mice are also significantly smaller than wildtype animals
[49,50]. To date, there are no reports describing the effects of XO
deletion on bone mass. Given the conflicting reports of the effects
of uric acid on bone, skeletal analysis of these animals may provide
further insight into the complex role of XO in bone under normal
and pathological conditions.
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