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In response to strong growth in air transportation CO2 emissions, governments and industry 

began to explore and implement mitigation measures and targets in the early 2000s. However, in 

the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies 

could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission 

reductions from narrow body aircraft, the workhorse of passenger air transportation. We find that 

in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of CO2 

emissions per passenger-km by around 2% per year through mid-century. These intensity 

reductions would occur at zero marginal costs for oil prices between $50-100 per barrel. Even 

larger reductions are possible, but could impose extra costs and require the adoption of biomass-

based synthetic fuels. The extent to which these intensity reductions will translate into absolute 

emissions reductions will depend on fleet growth. 
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Air transportation currently releases around 2.5% of global fuel combustion-related CO2 

emissions.1,2 In addition, since 1980, this sector’s emissions have increased at a rate of 3.6% per 

year, i.e., twice the world total.2 Non-CO2 effects from aviation, which partly scale with CO2 

emissions, can also contribute to climate change.3 In response to this growth trend, the European 

Commission, two US Government agencies, the International Civil Aviation Organization, and 

the International Air Transport Association began to explore or implement CO2 mitigation 

measures and targets. (Supplementary information: government and industry action). For these 

interventions to have an economic rationale, they need to rely on a solid understanding of the 

potential for and costs of mitigating CO2 emissions. Yet, this need contrasts sharply with the 

current body of studies in this area. 

Existing studies consist of consultancy reports with a global focus4,5,6 and a UK 

perspective7, two studies of the UK air transportation system8,9, and one detailed techno-

economic study of three retrofit technologies.10 These analyses are valuable first steps towards a 

better understanding of the economic benefits and costs of CO2 mitigation but possess 

limitations. For example, refs 5, 6 do not report the underlying assumptions, methods, and data 

employed, which yields non-reproducible results; refs 8, 9 do not consider the age composition 

of the aircraft fleet, which is a critical omission as fuel efficiency differs by age cohort thus 

affecting mitigation potentials and costs; ref 7 omits important cost elements of key mitigation 

options; refs 7, 10 consider only a narrow range of mitigation strategies, thus limiting our 

understanding of the overall mitigation potential. The shortage of carefully conducted studies 

may help explain the lack of comprehensive economic assessments of aviation emission 

reduction opportunities in the transport chapter of all IPCC Assessment Reports, and the 
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perception that reducing aircraft CO2 emissions may be more difficult and more expensive 

compared to other sectors.11  

Here we present a techno-economic analysis of 21 CO2 emission mitigation options for 

the domestic US aviation sector, the world’s single largest air transportation system. We focus on 

narrow body aircraft with 100-189 seats, which generate 80% of revenue passenger-km (RPK), 

i.e., those passenger-km that generate airline revenue, burn nearly 75% of commercial passenger 

aircraft consumed jet fuels, and hence also release nearly 75% of CO2 emissions (Supplementary 

information: Table S1). Our analysis is based on an aircraft fleet composition and CO2 emissions 

model that allows (i) a realistic simulation of the introduction of improvements to existing 

aircraft (retrofits) and of new aircraft generations, (ii) a robust assessment of the CO2 emissions 

mitigation potential and cost of all mitigation options related to the aircraft age cohort (those 

aircraft of a given vintage) that would be affected, and (iii) simulating the scheduling of aircraft 

retrofits in line with major maintenance checks to minimize the opportunity costs of non-

available aircraft. (See Methods Section). In addition, we account for all relevant cost elements 

affecting airline operating costs, using the most recent data available.   

 

Fleet CO2 Intensity 

Figure 1 depicts the historical decline in lifecycle CO2 intensity (lifecycle CO2 emissions per 

RPK) of the US commercial passenger aircraft fleet and of the narrow body passenger fleet.12,13 

Also shown is the estimated historical development of the CO2 intensity of new narrow body 

aircraft, which, after around 15 years, translates into that of the aircraft fleet.  
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The decline in fleet CO2 intensity was particularly strong (at a rate of nearly 5% per year) 

between 1970 and 1980, mainly due to increases in the efficiency of aircraft engines. Thereafter, 

CO2 intensity continued to decline at a lower rate of 2% per year due to mainly continuous 

improvements in engine efficiency, aerodynamics, and utilization of aircraft capacity.12 Because 

commercial air transportation nearly exclusively burns petroleum-derived jet fuel, the historical 

decline was entirely a result of fuel efficiency improvements. Despite the past achievements, 

there continue to exist opportunities for further strong reductions, as shown by the projected 

future developments in Figure 1 and discussed below. 

 

Opportunities for Mitigation 

The opportunities for reducing aircraft CO2 intensity can be illustrated by the Breguet range 

equation, modified such that CO2 intensity represents the left-hand-side variable (equation 1). 

Although this equation only applies to cruise flight, the vast majority of fuel is burnt in the cruise 

phase and hence it offers intuition to understand the determinants of CO2 emissions.  

 

 
ܭଶܴܱܲܥ = 	ܨܧଶܱܥ	 ܳ ∙ ܺܣܲܥܨܵ ∙ ܸ ∙ ܮ ⁄ܦ ிܹ݈݊ሺ ܹ ሺ ܹ − ிܹሻ⁄ ሻ (1)

 

In equation 1, CO2EF is the CO2 emissions factor (87.6 gCO2/MJ for Jet A-1 fuel on a 

lifecycle basis, that is, after accounting for upstream emissions with respect to crude oil 

extraction, transportation, refining, jet fuel distribution and storage, which represent around 21% 

of the fuel carbon-related CO2 emissions14), Q the fuel’s lower heating value (42.8 MJ/kg for jet 
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fuel), SFC the engine specific fuel consumption (fuel burn per unit thrust), PAX the number of 

passengers, V the aircraft speed, L/D the lift-to-drag ratio, WF the fuel weight before takeoff, and 

W0 the aircraft weight at takeoff. Hence, aircraft CO2 intensity can be reduced through fuels 

containing lower carbon on a lifecycle basis, higher engine efficiency, a larger number of 

passengers, higher aerodynamic efficiency, and a lower structural weight (a smaller W0-WF). 

Note that the variables in equation 1 are interrelated. Thus, changing one variable will lead to 

changes in others, typically offsetting part of the impact on CO2/RPK. 

Each of the 21 mitigation options examined in this study influences at least one 

determinant of the CO2 intensity in equation 1. We derive these options’ CO2 emissions 

reduction potential and costs from academic studies, industry sources, and our own calculations. 

(Supplementary information: Measures for Reducing Narrow Body Aircraft CO2 Emissions). 

The measures, which are listed with the main techno-economic characteristics in Tables 1-3, can 

be grouped into four families:  

• Technology options (Table 1): five retrofit options, one Intermediate Generation Aircraft 

type and two Next Generation Aircraft types aiming to reduce SFC, structural weight, or 

increase L/D 

• Synthetic fuels (Table 1): cellulosic biomass-based fuels (biomass-to-liquids [BTL]) 

aiming to reduce CO2EF 

• Air traffic management measures (Table 2): five strategies that consist of bundles of 

measures, aiming to reduce SFC and the excess distance an aircraft flies 

• Airline operational strategies (Table 3): nine measures aiming to increase the number of 

PAX and L/D, or to reduce SFC along with the fuel weight.  
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Other studies (e.g., ref 8) evaluated the CO2 mitigation characteristics of engine upgrade 

kits, auxiliary power units, etc. We deliberately exclude these options from our analysis, as they 

seem too speculative in the absence of reliable data. We also exclude secondary mitigation 

opportunities that arise from some of the above options, such as increased seat density due to 

lighter and thinner aircraft seats and subsequent cabin re-optimization, as their degree of 

exploitation is uncertain.  

 

Mitigation Potentials and Costs 

To estimate the CO2 abatement potentials and costs for the US narrow body aircraft fleet, we 

introduce the mitigation options summarized above and described in Tables 1-3 into our Fleet 

Composition and CO2 Emissions Model. (Our model and choice of parameters are designed to 

minimize possible interactions of mitigation measures). As a reference vehicle we use the 

average fuel burn and operational characteristics of the US narrow body aircraft fleet. (Table S1 

in supplementary information). We assume that aircraft utilization remains unchanged relative to 

the 2012 level, i.e., an average of 268 million RPK per narrow body aircraft per year.  

The baseline development, which incorporates only the introduction of 2012 technology 

through natural fleet turnover, would lead to a 22% decline in the lifecycle CO2 intensity of the 

narrow body fleet from 125 gCO2/RPK in 2012 to 98 gCO2/RPK in 2050, as depicted by curve 

(1) in Figure 1. If also taking into account the planned adoption of more fuel-efficient 

Intermediate Generation Aircraft starting in 2016, the 2050 fleet CO2 intensity would be 15% 

below the baseline development or 34% below the 2012 intensity as shown by curve (2) in 

Figure 1. The related annual average decline corresponds to 1% per year. 
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We now explore the implications of introducing the maximum feasible combination of 

retrofit options, air traffic management measures and airline operational strategies which already 

exist or are currently under development. In addition, we simulate the introduction of a Next 

Generation Aircraft starting in 2035, which could offer a roughly 30% fuel burn and CO2 

emissions reduction over the Intermediate Generation Aircraft. This drastic decline is enabled by 

mainly open rotor engines, an all-carbon fiber airframe, and the structural advantage resulting 

from non-swept wings, which are made possible by a slight reduction of cruise speed.15,16 As a 

result of introducing this portfolio of mitigation strategies, the 2050 fleet CO2 intensity could 

decline by an additional 25% relative to the baseline development plus Intermediate Generation 

Aircraft technology, as shown by curve (3) in Figure 1. Further reductions could be realized 

through cellulosic biomass-based synthetic fuels. A 15% (or 30%) BTL share of jet fuels 

consumed in 2050 could lead to a further 13% (or 26%) decline in the 2050 CO2 intensity of the 

narrow body fleet, as depicted by curves (4) and (5) in Figure 1. Thereby, the 30% BTL share 

would lead to an average decline in CO2 intensity by 2.6% per year. If taking into account only 

the CO2 emission reduction options with negative or zero marginal costs identified in Figure 2 

below, the projected 2050 fleet CO2 emissions intensity would decline by 50% compared to the 

2012 level; see dotted curve (CE) in Figure 1. The associated annual decline by nearly 2% of the 

cost-effective intensity trajectory essentially continues the more recent (1980-2012) 

development. 

A detailed account of the cost-effectiveness of the various mitigation options is shown in 

Figure 2 for a jet fuel price of $3.1 per gallon, which corresponds to an oil price of about $100 

per barrel. In addition, the shape of the curve for an oil price of $50 per barrel is shown as a thin 

dashed line. Underlying this figure is a 1.5% annual growth rate of the narrow body fleet. This 
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rate is slightly lower than industry projections over the shorter 2014-2033 period17,18, to account 

for the continuous maturation of the domestic US market. Combining the growth in the narrow 

body fleet with the baseline CO2 intensity described above leads to cumulative (2012-2050) 

lifecycle CO2 emissions of 4.0 billion tonnes. As can be seen from the horizontal axis of Figure 

2, these projected cumulative emissions could be reduced by about 1 billion tonnes for a 15% 

adoption of synthetic fuels from biomass in 2050 (or by 1.1 billion tonnes for a BTL share of 

30% in 2050, which is not shown here).  

Clearly, a combination of strategies would be required for a meaningful mitigation 

impact. Yet, the mitigation potential is distributed unevenly across the measures. Overall, one-

third of the 21 measures could exploit around 80% of the cumulative mitigation potential. 

Aircraft technology options provide around half of the entire cumulative CO2 emissions 

mitigation potential. The second largest potential is offered by air traffic management measures 

and airline operational strategies with around 20% each. Synthetic fuels from cellulosic biomass 

would then account for the remaining roughly 10% under the assumed penetration rates.  

As a mitigation cost metric, we employ the cumulative (2012-2050) marginal abatement 

costs, discounted to 2012 at a rate of 5%. This metric captures all mitigation opportunities over 

time, as otherwise especially the retrofit options would emerge and vanish due to the evolving 

age structure of the fleet. The cumulative nature of the mitigation costs also accounts for fuel 

burn reductions beyond the period of economic accounting (20 years for new aircraft and 5 years 

for retrofits according to industry practice), provided they are introduced sufficiently long before 

2050. (Partly as a consequence, the mitigation costs in Figure 2 are lower than those in Tables 1-

3). In addition, our specification of mitigation costs accounts for the stock properties of CO2 that 

result from its long atmospheric lifetime. Because the exact mitigation potential and costs depend 



9 
 

on the year of introduction of each measure (as different age cohorts with different fuel burn 

characteristics would be affected) and the extent to which each measure is introduced, the figure 

legend specifies the introduction characteristics in more detail. As can be seen, at least 75% of 

the CO2 emissions mitigation potential comes at negative or zero marginal costs. In particular, 

some airline operational strategies, nearly all technology options, and the entire range of air 

traffic management measures turn out to be cost-effective. If the lower end of the projected range 

of BTL supply costs of $3.0-3.6 per gallon can be realized, synthetic fuels could just become 

cost-effective at a jet fuel price of $3.1 per gallon.  

The identified negative and zero marginal cost measures represent the economically 

attractive mitigation opportunities from an industry viewpoint (at the chosen discount rate and 

economic lifetime). Even larger reductions could be justified from a societal perspective, as long 

as the mitigation costs do not exceed the marginal damages of CO2. Estimates of the social cost 

of carbon (SCC) are highly uncertain, but likely above the upper end of the projected cost range 

of up to $34 per tonne of CO2 (oil price of $50 per barrel) for BTL.19  

Figure 3 shows the associated wedge diagram of annual CO2 emissions, where some of 

the families of measures are further broken down and ranked broadly according to their cost-

effectiveness. The introduction of new, highly fuel-efficient aircraft technologies in 2035 is of 

paramount importance to outpace the anticipated growth in air transportation demand. Additional 

significant emission reductions could be achieved from synthetic cellulosic biomass-based fuels. 

The same figure also shows the emission mitigation benefit of retrofits and early aircraft 

replacements is only short-term; by 2050, their effect over time has virtually evaporated, as by 

then nearly all of the retrofitted and the early-replaced aircraft would have been substituted. Yet, 

due to the long atmospheric lifetime of CO2, the cumulative emission reductions remain 
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beneficial. If only introducing cost-effective options at a fuel price of $2.0-3.1 per gallon from 

Figure 2, the 2050 narrow body aircraft CO2 emissions could decline to a level of 77 million 

tonnes, a roughly 10% decline relative to the 2012 level (dotted line).  

 

Future Developments 

Natural fleet turnover, the scheduled introduction of Intermediate Generation Aircraft, the 

eventual adoption of Next Generation Aircraft, improvements in air traffic management and 

slightly more efficient airline operations could reduce the average CO2 intensity of the US 

narrow body fleet by about 2%/yr at zero marginal costs for oil prices between $50-100 per 

barrel. Further reductions could be achieved through cellulosic biomass-based synthetic fuels. 

In addition to CO2 intensity, the amount of CO2 emissions will depend on fleet growth. 

While a fleet growth rate below 2% per year could result in lower 2050 emissions relative to the 

2012 level, growth rates higher than 2.6% per year would outpace the CO2 emission reduction 

potential of the entire portfolio of measures and adoption rates examined here. 

 Consistent with our findings, the air transportation industry has already started to pursue 

all options we identified as being cost-effective. Some of these measures, such as blended 

winglets, are already being adopted. Many others will likely also be introduced into existing and 

future models once they become available, thus assuring a continuous decline in operating costs 

(all other factors equal) and increase in industrial competitiveness.  

The limited number of data points underlying many mitigation options does not allow for 

an uncertainty analysis to be performed without expert elicitation. Clearly, better understanding 
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the uncertainties underlying this study is an important next step. Nonetheless, because we 

omitted several mitigation options due to a lack of data and did not explore the optimized timing 

of their introduction, our key finding that a 2% CO2 fleet intensity reduction could be achieved at 

zero marginal costs is likely conservative. 

 

FIGURES 

 

Figure 1 Lifecycle CO2 emissions intensity of the US commercial passenger aircraft fleet 

operating in domestic service (black) and of the narrow body fleet (gray), historical 

development (1970-2012) and projections (2013-2050). Due to increases in aircraft 

fuel efficiency improvements, the CO2 intensity of the US aircraft fleet declined by 

nearly 5% per year between 1970 and 1980, and by 2% per year thereafter. Despite 

the past achievements, there continue to exist opportunities for further strong 

reductions at least through 2050. Data sources for historical trends: refs. 12, 13 

Figure 2 Discounted marginal abatement costs for cumulative (2012-2050) lifecycle CO2 

emissions from narrow body aircraft in US domestic passenger service. Mitigation 

options are ranked in sequence of declining cost-effectiveness. Around one-quarter 

of the cumulative CO2 emissions of 4.0 billion tonnes that are based on fleet turnover 

and growth (1.5% per year) could be mitigated if employing all options. At least 75% 

of that potential could be reduced at zero marginal costs.  

Figure 3 Lifecycle CO2 emissions, historical trend (1991-2012) and future projections (2013-

2050) of the mitigation potential by category of measures. In light of the anticipated 
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fleet growth rate of 1.5% per year, lifecycle CO2 emissions from the US narrow body 

aircraft fleet could be reduced by about 10% between 2012 and 2050, even without 

the introduction of synthetic fuels from cellulosic biomass. 
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Table 1 Techno-economic characteristics of CO2 mitigation technologies and synthetic fuels at a fuel 
price of $3.1 per gallon (crude oil price of $100/bbl)  

 Year of  
Introduction

Application 
Potential1 

Lifecycle CO2  
Emissions 
Reduction 

Payback 
Period2 

Mitigation  
Costs2 

  %Fleet %/Aircraft Years $/tonne(CO2)
Retrofits      
Blended winglets 2015 25 3.0 

(2-4) 
3.3 -80

Carbon brakes 2015 
 

13 0.35 
(> 0) 

1.0 -10

Re-engining 2016 70 12.5 
(1-12) 

15 830

Cabin weight reduction 
  Mild 
  Aggressive 

 
2015 
2015 

 
0 

50

 
1.2 
2.1 

(0.6-1.6) 

 
2.9 
5.3 

 
-110 

70 

Electric taxiing 2018 50 2.8 
(1.5-4) 

2.1 -170

Intermediate Generation Aircraft    
A320NEO/B737MAX/CSeries 2016 100 15 2.9 -250
Next Generation Aircraft     
Evolutionary 2035 0 30 6.2 -160
Open rotor 2035 100 40 9.7 -70
Synthetic Fuels 
Biomass-to-Liquids (BTL) 

 
2020 

 
15-303

 
13-264 

 
0-∞5 

 
-10 to 70

Table Notes: 
All monetary units are in 2010 US dollars. 1Numbers underlying our analysis represent upper limit as 
retrofits are only implemented if investments are fully recuperated by the time the respective age cohort 
reaches the mean aircraft lifetime of 29 years. 2At year of introduction; economic lifetime: 20 years for 
new aircraft, 5 years for retrofits; discount rate 5%. 3In 2050. 4For BTL share of 15-30%. 5The projected 
lower end fuel price of $3.0 per gallon results in immediate benefits, whereas the projected higher end 
fuel price of $3.6 per gallon will never result in cost-effectiveness at identical fuel burn at a jet fuel price 
of $3.1 per gallon. For details see supplementary information.  
References for estimates and/or literature ranges (in parenthesis):  
Winglets: 4,7,8, 20,21,22. Carbon brakes: 23,24. Re-engining: 4,8,10,25. Cabin weight reduction: 
8,26,27. Electric taxiing: 28,29,30,31.  Synthetic Fuels: 32,33,34. 
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Table 2 Techno-economic characteristics of air traffic management measures at a fuel price of $3.1 
per gallon (crude oil price of $100/bbl) 

 Full 
Deploy-

ment 
Year 

Application 
Potential 

 
% 

Lifecycle CO2 
Emissions 
Reduction1 
%/Aircraft 

Payback 
Period2 

 
Years 

Mitigation 
Costs2 

 
$/tonne(CO2) 

Surface congestion management 2020 100 0.8 0.5 -310 
Single engine taxi 2015 50 2.0 0.1 -320 
Optimized departures procedures 2020 75 1.6 3.3 -240 
Lateral/vertical/speed inefficiency  
   reduction during cruise 

2020 75 4.6 0.2 -320 

Optimized approach procedures 2020 75 1.6 3.3 -240 
Table Notes: 
All monetary units are in 2010 US dollars. 1Assuming gate-to-gate (block) fuel burn is divided into taxi, 
departure, cruise, and arrival on a 5%, 8%, 83%, and 4% basis according to BTS Form 41 block hour 
analysis. 2At year of introduction. For details see supplementary information. 
References for estimates:  
Surface congestion management: benefits: 35 . Single engine taxiing: benefits: 36 . Optimized 
departures procedures: benefits: 37, costs: 38,39. Lateral / Vertical / Speed Inefficiency Reduction 
during Cruise: benefits: lateral: 40, vertical: 41, speed: 42. Optimized approach procedures: benefits: 
RNAV/RNP: 37, CDAs: 43, DDAs: 44; costs: 38,39. 
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Table 3 Techno-economic characteristics of airline operational strategies at a fuel price of $3.1 
per gallon (crude oil price of $100/bbl). 

 Application 
Potential 

Lifecycle CO2  
Emissions Reduction

Payback 
Period 

Mitigation  
Costs 

 %Fleet %Aircraft %Fleet Years $/tonne(CO2)
Reducing contingency fuel by 300kg 100 0.38 

(0.38) 
0.38 

 
0 -330

Early replacements by  
  Intermediate Generation Aircraft 
  ≥ 25 years of age, in 2016 
  ≥ 30 years of age, in 2016 
  ≥ 25 years of age, in 2020 
  ≥ 30 years of age, in 2020 

 
 

101 
11 

111 

41 

 
 

55 
65 
52 
57 

(5-20)2 

 
 

8.7 
1.0 
8.7 
3.9 

 

 
 

11 
7 

12 
10 

 
 

100 
-50 
160 

80

Increased PAX load factor through 
  2% reduction of flight frequency 

 
100 

 
-0.3 

 
3.13 

 
0.5 

 
-200

  enhanced use of Regional Jets 0.44 33 0.3 23 7,500
  enhanced use of Turboprops  0.34 57 0.3 96 32,000
Reduced fuel tankering 15 0.26 

 
0.04 
(0.2) 

> 1 4,100 

Additional engine wash 50 0.25 
(0.5-1.2) 

0.13 
 

0.4 -190

Surface polish and reduced  
  decorative paint 

 
10 

 
0.1 

(0.1-1.5) 

 
0.01 

 

 
> 1 

 
4,500 

Table Notes: 
All monetary units are in 2010 US dollars. 1Based upon 1.5% fleet growth per year. 2Replacing 5-20 
year old aircraft: ref 4,8. 3A large part is related to the retirement of the oldest 2% of the aircraft in the 
fleet, which are not required anymore. 4%RPK.  For details see supplementary information. 
Key references for estimates and/or literature ranges (in parenthesis):  
Reducing contingency fuel: 8. Early aircraft replacements: 4,8. Reduced fuel tankering: 4,8,9. 
Additional engine wash: 8,45. Surface Polish: 4,8,46 
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Methods: Fleet Composition and CO2 Emissions Model 

 

The narrow body aircraft fleet composition model generates the fleet age distribution, energy 

use, and CO2 emissions in absolute terms and per revenue passenger-km. It takes as inputs the 

projected narrow body aircraft fleet size at any year along with the energy intensity level of new 

narrow body aircraft. The number of new narrow body aircraft introduced in each year then 

results from the difference between the projected total fleet and those aircraft remaining, while 

the number of aircraft retirements is estimated with a generic retirement curve. The effect of 

international sales (to and from the US) is included where data is available; however, the impact 

on the overall totals is small. 

We employ a retirement curve from those globally operating narrow body aircraft that were 

produced between 1965 and 2007.47 During that period, these curves’ characteristics were stable 

across aircraft from different manufacture years and world regions. The mean aircraft age at 

retirement of the cohorts forming the narrow body fleet was 28.6 years; that is, after that period, 

half of the aircraft fleet has been retired. Due to the characteristics of the data, the retirement 

curves were estimated with a logistic function.  This symmetric S-curve is based on the BACK 

Aviation Fleet Database, which describes key attributes of the world aircraft fleet, such as the 

number of aircraft types by country, their entry into the fleet, sales of second-hand aircraft, and 

the year of their retirement between 1960 and 2007.48 More recent (2007-2012) data describing 

the age composition of the US narrow body aircraft fleet are derived from Form 41 Schedule 

B43 data.13 The Form 41 data implies a mean age of 12.1 years for the 2012 US narrow body 

aircraft fleet used for domestic passenger transport.  

Another key determinant of fleet energy use and CO2 emissions is the energy intensity of new 

aircraft. There is a 10-15 years lag between the energy intensity level of an age cohort and that of 

the fleet.12 We estimated a second order polynomial function describing the decline in new 

narrow body energy intensity over time, such that the resulting fleet energy intensity, after 

applying the aircraft stock model to each age cohort, best approximates the observed narrow 

body fleet energy intensity development from 1991 to 2012 (the derived relationship is: 

E/RPK(year) = 0.00147839×year 2 - 5.949046×year + 5985.82037; R2 between observed and 

estimated narrow body aircraft fleet energy intensity for the 22 year period = 0.95). Other 
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functional forms were also tested, including exponential and hyperbolic, but the polynomial 

function was found to be most plausible and to correspond best to the ranges in energy intensity 

from new narrow body aircraft presented by ref 12. For all age cohorts forming the 2012 narrow 

body fleet, we assume an annual fuel burn deterioration of 0.2% due to wear and tear, 

compounded over the respective aircraft age.49 
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