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Abstract. Photoacoustic imaging has shown great promise for medical 

imaging, where optical energy absorption by blood haemoglobin is used as the 

contrast mechanism. A numerical method was developed for the in-silico 

assessment of the photoacoustic image reconstruction of the brain. Image 

segmentation techniques were used to prepare a digital phantom from MR 

images. Light transport through brain tissue was modelled using a Finite 

Element approach. The resulting acoustic pressure was then estimated by 

pulsed photoacoustics considerations. The forward acoustic wave propagation 

was modelled by the linearized coupled first order wave equations and solved 

by an acoustic k-space method. Since skull bone is an elastic solid and strongly 

attenuates ultrasound (due to both scattering and absorption), a k-space method 

was developed for elastic media. To model scattering effects, a new approach 

was applied based on propagation in random media. In addition, absorption 

effects were incorporated using a power law. Finally, the acoustic pressure was 

reconstructed using the k-space time reversal technique. The simulations were 

ran in 3D to produce the photoacoustic tomogram of a brain tumour. The 

results demonstrate the convergence of the models, and their suitability for 

investigating the photoacoustic imaging process.  

 

 

1. Introduction 

One of the new techniques for biomedical imaging is a modality called photoacoustic (PA) imaging, 

which combines high optical contrast and high ultrasound resolution. PA can overcome the 

disadvantage of optical imaging in spatial resolution and the disadvantage of ultrasound imaging in 

contrast and speckle artefact. It is based on the photoacoustic effect, a phenomenon in which the 

absorbed energy from light is transformed into the kinetic energy of the sample by energy exchange 

processes, leading to local heating and thus a pressure wave. In other words, the PA effect is the 

generation of acoustic waves by the absorption of electromagnetic energy such as optical or radio-

frequency waves. Often, when visible light or near infrared (NIR) wavelengths are applied, it is 

referred as the photoacoustic effect, and when radio-frequency waves are used, it is called the 

thermoacoustic effect. 

In biomedical photoacoustic imaging, pulsed laser light is used at wavelengths which are 

predominantly absorbed by haemoglobin in blood. This causes a small local rise in temperature, 

restricted dilatation of the red blood cells and subsequent elevation of the local pressure. 

Consequently, ultrasonic waves are generated, which, when measured in a sufficient number of 
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locations at the tissue surface, can be used to reconstruct the position of blood vessels (Siphanto et al 

2005).  The optical absorption of whole blood is much stronger than that of other tissues. Therefore, 

blood generates strong photoacoustic signals and manifests high image contrast, causing the 

vasculature in organs to stand out prominently in photoacoustic images (Ku et al 2005). 

The application of photoacoustics for detection of tumours has also been of recent interest. It 

has shown great promise for visualising different anatomical organs and especially the vasculature in 

human body. It has also been used for imaging certain types of tumours, such as that of the breast 

(Pramanik et al 2008, Jose et al 2009). However, it has not as yet been applied for imaging tumours of 

brain. although there have been some limited investigations on animal models such as the rat 

(Siphanto et al 2005, Ku et al 2005, Li et al 2008) and ape (Yang and Wang 2006, 2008). These 

results point to the success of the method in animal models but, in the case of human brain tumours, 

its feasibility has remained largely unproven. 

The aim of this study was to evaluate the feasibility of using photoacoustic imaging for the 

detection of brain tumours. One of the drivers behind this work has been the need to find an 

alternative to MR (Magnetic Resonance) imaging. In MR imaging of brain tumours, Gadolinium is 

generally used as a contrast agent. There is growing evidence however of the toxicity of Gadolinium 

particularly in the case of some groups of susceptible patients with poor renal function (Perazella 

2008). 

The hypothesis behind the work in this paper is that brain tumours are either hyper-vascular 

or have a hypo-vascular necrotic core. Since light absorption by blood haemoglobin is the main 

contrast mechanism, we will have a relative change in image intensity at the location of the tumour 

and hence the tumour will present itself with a reasonable contrast against the surrounding healthy 

tissue.  

To conduct a detailed study of the efficacy of photoacoustic imaging using either human or 

animal subjects in-vivo is not a practical proposition. Ex-vivo animal models do not provide a good 

representation of human brain tumours, because of the differences in the structure of the skull bone. 

On the other hand, fabrication of detailed, vascular phantoms is difficult and expensive. Therefore, the 

emphasis of the work has been on developing a new method for a detailed in-silico (simulation-based) 

assessment of the above hypothesis by simulating the entire photoacoustic image reconstruction 

process of the brain. This requires the development of appropriate techniques for modelling of the 

optical and acoustic fields in soft tissues (i.e. the brain tissues). Whereas the brain itself can be 

considered to be a fluid medium and does not support shear stresses, the skull bone is an elastic solid 

and as such is an effective shear wave propagator and strongly attenuates any ultrasound (due to both 

scattering and absorption). This necessitates the development of a new modelling method which can 

correctly account for shear stresses and accurately estimate the attenuation effects. Moreover, a 

suitable reconstruction algorithm is of interest for the completion of the imaging process. 

 

2. Methodology 

2.1. Preparation of the in-silico phantom  

2.1.1. Requirements. For the simulation of both optical and acoustic fields, it is essential to accurately 

define the photoacoustic sources (i.e. within the vasculature) and the photoacoustic medium (i.e. brain 

tissue) characteristics. The Brain is a highly heterogonous and thus a highly scattering medium for 

both light diffusion and ultrasound propagation; therefore, it cannot be considered as a uniform 

medium. Besides, as stated earlier, at the typical IR wavelengths used in photoacoustic imaging, the 

main absorber of light is blood haemoglobin and thus a knowledge of the vascular tree is also 

essential. 

 The in-silico phantoms used in this study, which provided the precise anatomical detail of the 

brain were in the form of Gadolinium-enhanced, T1, T2 weighted MR images. For vasculature 

segmentation, as blood vessels are not diagnosable in T1 and T2 weighted MR, magnetic resonance 

angiography (MRA) images were used. In angiograms, blood appears in the brightest colours. Precise 

definition of brain and tumour structure and morphology is feasible by applying suitable image 

processing techniques, including segmentation and registration methods. Therefore, we segmented the 
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brain images prior to simulating the photoacoustic field. The different segmented tissue types are 

skull, brain white matter, gray matter, CSF (cerebrospinal fluid), coupling medium (to be considered 

as water), edema, tumour, and the vasculature. 

2.1.2. Brain and tumour tissues segmentation. Segmentation of the brain images (excluding the 

vasculature) was implemented using an EM (Expectation and Maximization) algorithm. For this 

purpose, 3DSlicer (Gering et al 1999, Pieper et al 2004, 2006) software package, which has suitable 

functionality for EM segmentation, was used. EM is almost an automatic segmentation method; 

however, some manual adjustments are necessary to achieve a good level of segmentation, as will be 

explained later. EM is a statistical ATLAS-based method. An ATLAS for this method of 

segmentation would be in the form of a probability image (i.e.  a so called ground truth or spatial 

prior), which is tissue-specific, and the voxel intensities demonstrate the likelihood of finding a 

specific tissue in that particular voxel.  

This method is suitable for segmenting tissues of a healthy brain; however, there is a 

challenge in segmentation of a cancerous brain using this approach. Automated tumour segmentation 

is difficult because one cannot always create a prior model of expected size, shape, location, or image 

intensity. When a healthy brain ATLAS is used as a spatial prior for tissue classification, all brain 

tissue must be classified as one of the available tissue types, i.e. gray matter, white matter, and CSF. 

Tumours consist of two tissue types (tumour and edema), not present in the ATLAS of normal 

patients. Moreover, it may additionally change the image intensities of normal anatomical structures 

via infiltration or edema (Prastawa et al 2009). This implies the amount and the regional extent of 

edema that accompanies a tumour could be variable. Thus, a normal brain ATLAS cannot be used 

when applying the EM method. 

To overcome this problem, we used the method developed by Moon et al (2002) and 

Prastawa et al (2003, 2005, 2009), which is an extended EM algorithm to be applied for the case of 

cancerous brain segmentation. This method provides appropriate synthetic probabilistic images of a 

cancerous brain from a healthy brain ground truth. The process is started by manually defining a seed 

point; probabilistic images are then produced with respect to the mass effect and infiltration of the 

predicted brain tumour. Also, two new pathological probabilities (tumour and edema) are added to the 

previous probabilities (gray matter, white matter, and CSF). In the following, figure 1 shows the 

original MR and figure 2 illustrates the segmented image, where each tissue class of a cancerous brain 

is labelled with a specific colour to be easily distinguished from its surrounding tissues. 

 

 

  

(a) (b) (c) 

Figure 1. Original T1 weighted MR of a cancerous brain obtained from 

 (http://www.ucnia.org/softwaredata/5-tumordata/10-simtumordb.html). (a) Axial. (b) Sagittal. (c) Coronal. 
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(a) (b) (c) 

Figure 2. Segmented brain and tumour tissues. (a) Axial. (b) Sagittal. (c) Coronal.  

The process of the tissue segmentation of the cancerous brain using 3D Slicer is shown in figure 3. 

  

(a) (b) 

Figure 3. Process of segmentation of the skull and the tumour. (a) Tumour segmentation. (b) Skull 

segmentation. 

2.1.3. Brain Vasculature segmentation. The brain vasculature were segmented using a seed-point-

based level-set algorithm (Antiga et al 2008). In this work, there is a need for such segmentation 

algorithm since the cerebral blood volume (CBV) is the main optical absorber and and therefore 

contains the acoustic sources of the in-silico model. Here, the Vascular Modelling Toolkit (VMTK) 

(Antiga et al 2008, Hähn 2009), which provides a collection of libraries for image based modelling of 

blood vessels, incorporated within 3DSlicer, was applied to segment the brain and tumour 

vasculature. The segmentation was implemented in three stages; first, the blood contrast in MRA was 

enhanced using a filtering algorithm, then the level-set segmentation was applied, and finally the 

vessels centrelines were extracted and vessel trees were formed. The results are presented in figure 4.  

   

(a) (b) (c) 

Figure 4. Segmented vasculature (slice views). (a) Axial. (b) Sagittal. (c) Coronal. 

2.1.4. Registration. The heterogeneity in tissues optical properties affects the diffused and absorbed 

light in tissues (i.e. mainly scattering effects).Therefore in modelling light transport through tissue, it 

is essential to use a mask file containing both the segmented brain tissues and the segmented 
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vasculature. So, the results of the previous sections were registered and mapped onto each other using 

affine registration to provide an assembled image of both the segmented vasculature and tissues. 

However, for simulating the acoustic field, only the segmented brain and tumour tissues affect wave 

propagation and the vasculature have a negligible effect. Hence, for the purpose of defining the 

heterogeneity in the acoustic field, we only employed the results of section 2.1.2.  

2.2. Numerical modelling of the photoacoustic field 

2.2.1. Light transport through tissue. To derive the first half of the forward photoacoustic problem, a 

model for photon transport in tissue is required. There are two basic approaches (Schweiger et al 

1993b), an essentially discrete model of individual photon interactions, such as a Monte Carlo method 

(van der Zee 1992), or a continuous model based on a differential equation approximation (Schweiger 

1994), such as the diffusion equation. Both of these approaches are derived from an integro-

differential equation description. This is written as (Schweiger et al 1992, 1993b), 

 

{ŝ ∙ ∇ + 𝜇𝑎 + 𝜇𝑠 +
1

𝜈

𝜕

𝜕𝑡
} 𝜙(r, ŝ′, 𝑡) =

1

𝜈
𝑞(ŝ, r̂, 𝑡) + 𝜇𝑠 ∫ 𝑓(ŝ′, ŝ)𝜙(r, ŝ′, 𝑡) 𝑑2𝑠̂  (1) 

 

where 𝜇𝑎, 𝜇𝑠 are spatially varying absorption and scattering coefficients, respectively, r,̂ ŝ, ŝ′are 

direction vectors, 𝜈 is the speed of light in the medium, 𝜙(r, ŝ′, 𝑡) is the photon density in direction ŝ′, 

𝑞 is the source term, and 𝑓(ŝ′, ŝ) is the probability of scattering from direction ŝ′, into direction ŝ. 

Photon diffusion approximation is a second order partial differential equation describing the time 

behaviour of photon fluence rate distribution in a low-absorption high-scattering medium (Schweiger 

et al 1993b). Its main difference with diffusion equation in physics is that the photon diffusion 

equation has an absorption term in it. Its mathematical form is as follows. 

  

{∇ ∙ 𝜅∇ − 𝜇𝑎𝑐 −
𝜕

𝜕𝑡
} 𝛷(r, 𝑡) = −𝑞0(r, 𝑡)     (2) 

 

where 𝛷 is photon fluence rate and 𝜅(r) is the diffusion coefficient given as, 

 

𝜅 =
𝜈

3(𝜇𝑎+(1−𝑔)𝜇𝑠)
       (3) 

 

Here, 𝑔 is the average cosine of the scattering angle distribution, 𝑞0 is the source term, and 

 

𝛷(r, 𝑡) = ∫ 𝜙(r, ŝ′, 𝑡) 𝑑2𝑠̂      (4) 

 

The term (1 − 𝑔)𝜇𝑠 is referred as the reduced scattering coefficient (𝜇𝑠
′ ). Experimental and theoretical 

work has demonstrated the validity of equation (2) under conditions in which 𝜇𝑎 ≪ 𝜇𝑠, which is the 

case for the near infrared (NIR) transillumination of tissue, where typical parameter ranges are 

0.01 <  𝜇𝑎  <  0.1𝑚𝑚−1 and 1.0 <  𝜇𝑠
′ <  10.0 𝑚𝑚−1. For certain applications such as 

transilluminating very thin tissue layers and time-gated techniques, it may not be scattering dominated 

and therefore cannot correctly be described by the diffusion approximation (Arridge et al 1992, 

Schweiger et al 1993a, b). 

2.3.2. Acoustic wave modelling. If a region of a fluid is heated through the absorption of a laser pulse, 

a sound wave is generated. In a stationary fluid with isotropic acoustic properties, under conditions 

whereby the sound generation mechanism is thermoelastic and the effects of viscosity and thermal 

conductivity could be ignored, the wave equation for the acoustic pressure is (Cox and Beard 2005, 

Cox et al 2005), 

{∇2 −
1

𝑐2

𝜕  

𝜕𝑡2} 𝑝 = −
𝛽

𝐶𝑝

𝜕ℋ 

𝜕𝑡
      (5) 

 

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Diffusion_equation
http://en.wikipedia.org/w/index.php?title=Fluence_rate&action=edit&redlink=1
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where 𝑐 is the sound speed, 𝛽 is the volume thermal expansivity, 𝐶𝑝 is the constant pressure specific 

heat capacity, 𝑝 is the acoustic pressure and ℋ is the heat energy per unit volume and per unit time 

deposited in the fluid. 𝑝 and ℋ will depend, in general, on the position r =  (𝑥, 𝑦, 𝑧) and time 𝑡. 

2.2.3. Photoacoustic interaction in tissue. In biomedical photoacoustic imaging, the spatially-varying 

pressure increases following the absorption of a laser pulse. This is due to the photoacoustic 

interaction inside the tissues, in which the absorbed light energy causes a local increase in 

temperature. Tissues will thus expand and contract rapidly. Consequently, acoustic pressure is 

generated. From a thermodynamic point of view, the whole process could be formulated using the 

thermodynamic energy relation and the equation of state as below (Cox and Beard 2005), 

𝜌𝐶𝑝
𝜕𝜏

𝜕𝑡
= ℋ        (6) 

 

𝑝 =
1

𝜅𝑇
(

𝛿

𝜌
+ 𝛽𝜏)       (7) 

 

where, 𝜅𝑇 is the isothermal compressibility, 𝜌 is density, and 𝜏 is change in temperature. In pulsed 

biomedical photoacoustics, the light pulse is so short that the heating of the absorber occurs 

instantaneously without expansion (i.e. adiabatic heating), resulting in a pressure rise. When the laser 

pulse is effectively instantaneous the heating function can be modelled as (Cox and Beard 2005), 

 

ℋ(r, 𝑡) = 𝐻(r)𝛿𝐷(𝑡)          (8) 

 

where 𝐻(r) is the heat deposited in the fluid per unit volume (also called the absorbed energy map), 

and 𝛿𝐷(𝑡) is the Dirac delta. This condition is referred as stress confinement and is when  the pulse is 

much shorter than the time it would take for sound to travel across the heated region (Paltauf and 

Dyer 2003); then, it may be considered as instantaneous and 𝑝0(r) is the initial pressure distribution at 

t = 0. This condition requires that the laser pulse duration 𝑡𝑝 (Cox et al 2004), 

 

𝑡𝑝 ≪
1

𝜇𝑎𝑐
        (9) 

 

which implies the optical energy will be absorbed before the fluid density has time to change. Here 𝜇𝑎 

is the optical absorption coefficient of the medium. 1/𝜇𝑎, which is the optical penetration depth, is 

referred to as the characteristic length of the heated region. When this condition is met, the spatial part 

of the heating function can be written as (Cox et al 2005) 

 

𝐻(r) = 𝜇𝑎(r)𝛷(r, 𝜇𝑎)       (10) 

 

The fluence 𝛷 will in general depend on the absorption coefficient distribution 𝜇𝑎(r) and the 

scattering coefficient distribution 𝜇𝑠(r), and hence, the absorbed energy H is nonlinearly related to 

𝜇𝑎. In this case, the acoustic pressure immediately following the pulse, or initial pressure 

distribution, 𝑝0(𝑟), is proportional to the absorbed energy map. 

 

𝑝0(r) = (
𝛽𝑐2

𝐶𝑝
) 𝐻(r) = 𝛤𝐻(r) = 𝛤𝜇𝑎(r)𝛷(r, 𝜇𝑎)     (11) 

 

𝛤 is called the Grüneisen coefficient, a dimensionless constant that represents the efficiency of the 

conversion of heat to pressure. This initial pressure distribution then propagates away as acoustic 

waves according to equation (5). This means that the problem can be recast as an initial value 

problem, i.e. with no explicit acoustic sources but an initial value for the acoustic pressure. In other 

words the photoacoustic wave equation could be rewritten as (Cox et al 2007a), 

 

{∇2 −
1

𝑐2

𝜕  

𝜕𝑡2} 𝑝 = 0, 𝑝|𝑡=0 = 𝑝0(r),
𝜕𝑝 

𝜕𝑡
|

𝑡=0
= 0   (12) 
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When modelling linear sound propagation in soft biological tissue, it is usually assumed that 

the propagation medium is isotropic, that there is no net flow, and that shear waves can be neglected. 

Under these conditions the acoustic pressure, 𝑝, acoustic particle velocity, 𝑢, and acoustic density, 𝛿, 

are related by three first order equations corresponding to momentum conservation, mass 

conservation, and an equation of state (Cox et al 2007b). 

 
𝜕𝑢 

𝜕𝑡
= −

1

𝜌
∇𝑝,   

𝜕𝛿 

𝜕𝑡
= −𝜌∇ ∙ 𝑢,   𝑝 = 𝑐2𝛿     (13) 

 

where the sound speed c and ambient density 𝜌 can vary with position, and the pressure, 𝑝, will 

depend, in general, on both position and time. 

2.2.4. Numerical implementation. For the simulation of photon transport in tissue, equation (2) was 

numerically solved using the finite element (FE) method developed by Schweiger et al (1992, 1993a, 

b) and Schweiger (1994). This model calculates the integrated intensity and the mean time of flight 

from the boundary flux for given tissue parameters and source distribution. The advantage of this 

numerical approach is its flexibility. It can be applied to complex geometries and inhomogeneous 

parameter distributions. For implementation, we used an in-house MATLAB toolbox called TOAST 

(Schweiger and Arridge 2008), which uses the FE approach for solving equation (2) for determining 

the light transport.  

In order to model the acoustic field, a pseudo-spectral and k-space approach was used (Tabei 

et al 2002). This approach has significant advantages over the more common finite difference (FD) 

method. Although FD is excellent for many applications, for time domain modelling of broadband or 

high-frequency waves, it can become cumbersome and slow. This is due to the need to have many 

grid points per wavelength and small time-steps in order to minimize unwanted numerical dispersion. 

The pseudo-spectral (PS) method can help to reduce the former, and the k-space method can help to 

overcome the latter (Cox et al 2007b). Pseudo-spectral methods in which the spatial fields are 

calculated via fast Fourier transforms (FFT) have been proven to be more advantageous than FE or 

FD since they fit a Fourier series to all the data on each line of the mesh; so spatial derivatives are 

calculated faster and easier, and also only two nodes per wavelength are required in order to describe 

a wave, rather than >10 in FE and FD methods (Goursolle et al 2007, Cox et al 2007b). However, 

they have been extensively coupled with FD schemes for solving the temporal domain of the problem. 

This may cause instabilities and dispersion and small time steps are required to minimize them (Cox 

et al 2007b). 

A k-space approach could be considered as a modified pseudo-spectral technique for solving 

wave equations. k-space modifies the standard differencing method for time integration by 

introducing a periodic function, so that much larger time steps can be chosen without introducing 

inaccuracy and instability. Therefore, it results in significant computation time and memory savings 

compared to other numerical methods (Cox et al 2007b). 

In classical pseudo-spectral methods, where the time derivatives are calculated using a finite 

difference scheme, the spatial derivatives are calculated in the spatial frequency domain and 

transformed back to the real domain using inverse fast Fourier transform (IFFT), 

𝜕[∙] 𝜕𝑥𝑗⁄ = FFT−1 {𝑖𝑘𝑥𝑗
FFT{[∙]}}     (14) 

where, FFT, FFT−1 represent fast Fourier and inverse fast Fourier transforms. 𝑘𝑥𝑗
 is the wave number 

in the direction of 𝑥𝑗. It would be computationally more effective to use an FFT algorithm for the 

calculation of the Fourier transform, where only 𝑁log(𝑁) operations are needed instead of 𝑁2. In the 

k-space scheme, a spatial derivative operator is modified by a temporal propagator as shown by 

equation (15),  

 

𝜕[∙] 𝜕𝑥𝑗⁄ = FFT−1 {𝑖𝑘𝑥𝑗
𝑠𝑖𝑛𝑐 (

𝑐∞𝑘∆𝑡

2
) FFT[∙]}    (15) 
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where 𝑐∞ is the maximum sound speed of a heterogeneous medium, 𝑘 is the total wave number, and 

∆𝑡 is a small time-interval. Using equation (15), the time derivatives can then be calculated via a finite 

difference scheme but this time without instability problems. Full details of the mathematical 

derivation of equation (15) are given by Tabei et al (2002). For the purpose of implementation, we 

used k-Wave (an in-house MATLAB toolbox) (Treeby and Cox 2010a), which solves equation (13) 

using the discussed k-space method.  

2.3. Numerical modelling of the skull bone 

2.3.1. k-space model for the skull bone as an elastic frame. In the previous section, a suitable method 

was explained for modelling the forward acoustic field, where a pseudo-spectral and k-space method 

was applied for discretizing the longitudinal wave propagation in an acoustic medium. This is a 

suitable model for soft tissues such as brain. However skull bone may act as an elastic medium which 

can support shear waves as well as longitudinal waves. Here, in order to model the shear wave 

propagation, the skull was considered as an isotropic homogenous elastic medium. 

Moreover, bone has a cancellous structure in the middle. This implies high scattering effects 

for the incident acoustic waves, and accordingly, large attenuation. Thus, the skull cannot be assumed 

to behave as an acoustic medium. Inclusion of shear wave propagation in ultrasound models has been 

widely ignored due to either being of insignificant amplitude or being hard to predict (Clement et al 

2006). However, according to recent studies, the assumption that the transcranial propagation is 

composed of purely longitudinal modes is only valid for small incident wave angles (Clement et al 

2004); this assumption rapidly breaks down when incident waves go beyond Snell’s critical angle, 

whereby there would be a mode conversion from an incident longitudinal wave into a shear wave in 

the bone layers. 

Most previous studies involving modelling the skull have focused on the assessing its effects 

on ultrasound images, where the acoustic beams are often considered normal with respect to skull 

(Hayner and Hynynen 2001, Clement et al 2006). In photoacoustics however, the incident acoustic 

waves to the skull surface may be in any arbitrary angle. Therefore, it is essential to model shear wave 

propagation through the skull as well as longitudinal waves. 

For this study, a new k-space method for elastic isotropic heterogeneous media was developed 

in our laboratory, which could then be easily coupled with the method of section 2.2.4 (Firouzi et al 

2004). The governing equations of the problem for isotropic heterogeneous elastic media are in the 

form of the following second order equation (Aki and Richards 2002), 

𝜌 𝜕2𝑢𝑖 𝜕𝑡2⁄ = 𝜕 [(𝜆 + 2𝜇) 𝜕𝑢𝑗 𝜕𝑥𝑗⁄ ] 𝜕𝑥𝑖⁄ + 𝜕 [𝜇 𝜕𝑢𝑖 𝜕𝑥𝑗⁄ ] 𝜕𝑥𝑗⁄ + 𝑓𝑖    (16) 

 

where 𝑢𝑖 is the displacement component and  𝑓𝑖 is the body force. Also, 𝜌, 𝜆 and 𝜇 are the density and 

Lame’s constants, respectively. For our numerical model of elastic waves, we used the equivalent 

coupled first order stress-velocity formulation. This is given as (Goursolle et al 2007), 

 

𝜕𝜎𝑖𝑗 𝜕𝑡⁄ = 𝜆𝛿𝑖𝑗 𝜕𝑣𝑘 𝜕𝑥𝑘⁄ + 𝜇(𝜕𝑣𝑖 𝜕𝑥𝑗⁄ + 𝜕𝑣𝑗 𝜕𝑥𝑖⁄ )    (17a) 

 

𝜌 𝜕𝑣𝑖 𝜕𝑡⁄ = 𝜕𝜎𝑖𝑗 𝜕𝑥𝑗⁄ + 𝑓𝑖       (17b) 

where  𝑣𝑖 and 𝜎𝑖𝑗 show the velocity and stress components. Note that the summation convention is 

used for equations (16) and (17), and 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧,  where 𝑥, 𝑦, 𝑧 are the spatial coordinates. The new 

k-space model for elastic waves states that each field (velocity and stress components) could be 

considered as the sum of a compressional and a shear part. Spatial derivatives of each are calculated 

using equations (18a, b), where the 𝑠𝑖𝑛𝑐 functions are the temporal modifiers resulting in much better 

numerical accuracy and stability than classical pseudo-spectral or finite difference models of elastic 

waves. Similar to the acoustic k-space, the time integrations are then implemented using the standard 

finite difference scheme. 
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𝜕[∙]𝑝 𝜕𝑥𝑗⁄ = 𝑭𝑭𝑻−𝟏 {𝑖𝑘𝑥𝑗
𝑠𝑖𝑛𝑐 (

𝑐𝑝∞𝑘∆𝑡

2
) 𝑭𝑭𝑻{[∙]𝑝}}    (18a) 

 

𝜕[∙]𝑠 𝜕𝑥𝑗⁄ = 𝑭𝑭𝑻−𝟏 {𝑖𝑘𝑥𝑗
𝑠𝑖𝑛𝑐 (

𝑐𝑠∞𝑘∆𝑡

2
)  𝑭𝑭𝑻{[∙]𝑠}}    (18b) 

 

where 𝑐𝑝∞
 and 𝑐𝑠∞, respectively, denotes the maximum compressional and shear speeds in the elastic 

medium.  

2.3.2. Scattering effects. Attenuation effects of the skull need to be accounted for in a realistic and 

reliable assessment of the photoacoustic imaging of the brain. The attenuation of the skull is due to 

two important mechanisms, scattering and absorption. The former comes from heterogeneities of the 

skull bone because of its cancellous structure. Skull, in general, could be considered as a porous 

medium with a mixture of marrow and bone matrix (Strelitzki et al 1998, Nicholson et al 2000).  

A suitable approach for modelling the scattering effects is to consider the skull as a medium 

with random variables as the ultrasound characteristics. This method is based on the theory of wave 

propagation in random media and previously was widely used for deriving and estimating the 

scattering and the attenuation coefficients of bone (Sehgal and Greenleaf 1984, Strelitzki et al 1998, 

Nicholson et al 2000, Guo et al 2007). The excellent match produced by this method with the 

experimental results is rather promising (Strelitzki et al 1998). One of the best known models in this 

area is the binary mixture model of the medium. This was originally proposed by (Strelitzki et al 

1998) for bone structure. In order to incorporate the scattering effect of the skull in our study, a 

random binary mixture model was utilised. Our method is based on the generation of high frequency 

heterogeneities in the homogenous background elastic medium. For this purpose, the total elastic field 

is subdivided into the background and scattered fields. The heterogeneities are then recast as induced 

source terms onto the background homogenous frame. The induced sources stem from the non-

uniformity of the medium characteristics. Non-uniformities are therefore generated using random 

variable techniques, thus introducing heterogeneities into the numerical model. 

Bone has been reported to have a Gaussian autocorrelation function and zero cross correlation 

for the medium properties (Chernov 1960, Chivers 1977, Strelitzki et al 1998). These conditions hold 

when there is the normal probability distribution of random variables over the medium (Hines et al 

2003), where field variables are considered as elastic medium properties. For implementation, high 

frequency distributions of parameters were generated using the estimated mean value and variances of 

each parameter. The mean value was considered as the estimation provided by the binary mixture 

model and variances are adjusted by trial and error, to fit the fluctuations between the min and max 

values of the biphasic mixture. The binary mixture model estimates the average and mean fluctuations 

of each property based on the porosity of the bone. These are written as, 

 

𝜌̅ = ∑ ∅𝑖𝜌𝑖 = (1 − ∅)𝜌𝑐 +  ∅𝜌𝑚      (19a) 

〈𝜌2〉 = ∅(1 − ∅) (1 − ∅ + ∅ (
𝜌𝑏

𝜌𝑚
 )

2
) (

𝜌𝑐−𝜌𝑚

𝜌𝑚
)

2
     (19b) 

𝑐𝑝̅
−1 = ∑ ∅𝑖𝑐𝑝𝑖

−1 = (1 − ∅)𝑐𝑝𝑐
−1 +   ∅𝑐𝑝𝑚

−1      (19c) 

〈𝑐𝑝̅
2〉 = ∅(1 − ∅) (1 − ∅ + ∅ (

𝐶𝑝𝑐

𝐶𝑝𝑚
 )

2

) (
𝑐𝑝𝑐−𝑐𝑝𝑚

𝑐𝑃𝑚
)

2
    (19d) 

𝑐𝑠̅
−1 = ∑ ∅𝑖𝑐𝑠𝑖

−1 = (1 − ∅)𝑐𝑠𝑐
−1 +   ∅𝑐𝑠𝑚

−1     (19e) 

〈𝑐𝑠̅
2〉 = ∅(1 − ∅) (1 − ∅ + ∅ (

𝑐𝑠𝑐

𝑐𝑠𝑚
 )

2
) (

𝑐𝑠𝑐−𝑐𝑠𝑚

𝑐𝑠𝑚
)

2
     (19f) 

 

where, ∅ is the porosity, or volume fraction of marrow in bone cortical matrix,  𝜌̅, 𝑐𝑝̅, 𝑐𝑠̅ are the known 

average values, and 〈𝜌2〉, 〈𝑐𝑝̅
2〉, 〈𝑐𝑠̅

2〉 are the required mean fluctuations of density, longitudinal, and 

shear wave speeds. Subscripts 𝑚 and 𝑐 show the marrow and bone matrix properties, respectively. 

Note that this model is a weak scattering model based on small perturbations in a binary mixture in 

order to model the skull as a random isotropic continuum containing identical scatterers. 
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2.3.3. Absorption effects. The skull bone is a highly absorptive medium. However, in multiphase 

materials, such as bone, the major effect in ultrasound attenuation is due to scattering which is more 

than an order of amplitude bigger than absorption (Strelitzki et al 1998). To model the absorption 

effect, a power law absorption was considered here. It is well known that over diagnostic ultrasound 

frequencies, absorption in tissue exhibits a power law frequency dependence of the form of 𝛼 =
𝛼0𝑓𝑦, where 𝛼0 is the absorption coefficient, 𝑓 is the frequency, and 𝑦 is the power law exponent, 

typically given in range of  1 ≤ 𝑦 ≤ 1.5 (Treeby and Cox 2010b).  

In order to incorporate the power law absorption into the wave equation, a number of 

approaches have been so far proposed. The most promising methods are the Chen and Holm (2003) 

model for lossy media and the Kramers-Kronig dispersion relation (Waters 2000, 2005). Treeby and 

Cox (2010b) have shown that the Chen and Holm model exhibits the desired power law absorption 

but is non-dispersive; thus, they have modified the absorption term of the Chen and Holm model by 

combining it with the Kramers-Kronig model. They applied this approach to attenuate acoustic 

pressure in soft tissues. This method has been used in this study for modelling the absorption effects 

of the skull bone. When ultrasound propagates through the skull, as an elastic medium, there will be 

two potentials (compressional and shear) rather one in an acoustic medium; therefore, here, each 

velocity potential was attenuated using the method described below. In our k-space method, in each 

time step, the potentials were attenuated according to equations (21a, b), analogous to the approach in 

Treeby and Cox for the acoustic k-space scheme, 

 

𝜙 = {1 +
1

𝐶𝑝
2 (𝜏𝑝𝑘𝑦−2 𝜕 

𝜕𝑡
+ 𝜂𝑝𝑘𝑦−1)} 𝜙     (20a) 

 

𝜓 = {1 +
1

𝐶𝑠
2 (𝜏𝑠𝑘𝑦−2 𝜕 

𝜕𝑡
+ 𝜂𝑠𝑘𝑦−1)} 𝜓      (20b) 

 

where 𝜙 and 𝜓 represent the compressional and shear velocity potentials, and 𝑐𝑝 and 𝑐𝑠 are 

compressional and shear speeds of the medium, respectively. The proportionality coefficients 𝜏 and 𝜂 

are given as below for each potential, 

 

𝜏𝑝 = −2𝛼𝑝𝑜𝑐𝑝∞

𝑦−1
, 𝜏𝑠 = −2𝛼𝑠𝑜𝑐𝑠∞

𝑦−1
    (21a) 

 

𝜂𝑝 = 2𝛼𝑝𝑜𝑐𝑝∞

𝑦
tan (

𝜋𝑦

2
) , 𝜂𝑠 = 2𝛼𝑠𝑜𝑐𝑠∞

𝑦
tan (

𝜋𝑦

2
)    (21b)  

 

The absorption coefficients, 𝛼𝑝𝑜 and 𝛼𝑠𝑜, are associated with compressional and shear potentials 

respectively, and are given by Clement et al (2004, 2006). 

2.4. Image reconstruction 

The image reconstruction problem in photoacoustic imaging is an acoustic inverse source problem, 

which is where the initial pressure distribution (i.e. the region of photoacoustic sources) is estimated 

from a given a set of acoustic pressure time histories recorded on a measurement surface (Treeby and 

Cox 2010c). For the purpose of time-reversal image reconstruction, the k-space forward model (which 

is symmetrical with respect to time) was used with zero initial conditions, but with the recorded 

acoustic pressure time histories used as a boundary condition at the position of the detectors. When 

the detectors completely enclose the initial pressure distribution, the acoustic pressure field inside the 

measurement surface will be re-built in time-reversed order, and the final pressure field will be the 

initial pressure distribution, which is the required photoacoustic image. This was implemented using 

the k-Wave toolbox facility for time reversal image reconstructions (Treeby and Cox 2010a).  

3. Results 

3.1. Simulation layout  

To assess the photoacoustic imaging of a brain tumour, a number of simulations was set up using 3D 

medical images and defining a 360 degree spherical mask of ultrasound detectors. The images were 
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obtained in the form of T1, T2 MR, Gad. MR and MRA and prepared as two segmented images, one 

contained only the brain tissues and the other contained both the vasculature and the tissues. They 

were then imported to MATLAB with the DICOM format. The images, were resized to 

(128×128×128) as the simulation size. A (128×128×128) space of finite element meshes with 8-noded 

voxel elements was generated for modelling the optical field. For the acoustic and elastic field 

forward solver, a (128×128×128) cubic grid domain was applied. 

One hundred point detectors were randomly distributed over the head to ensure that acoustic 

field is spatially well sampled (see figure 5(a)). In practice, this could be realized by the provision of a 

helmet with embedded sensors. The algorithm for the spatial distribution of sensors was based on the 

Golden Section Spiral method. In the time reversal mode, these discrete data were interpolated, and 

accordingly, a continuous mask of data (recorded pressure) was used for the image reconstruction. 

The optical fibre was considered to be at position (64,25,25), in voxel coordinates. This was estimated 

based on the fact that in practice a possible   route for accessing the cranial cavity with the optical 

fibre is via the nasal canal. The optical fibre was taken to be an isotropic source with a Gaussian 

profile. The mask of the ultrasound detectors (positioned around the head) and the position of the light 

source are shown in figure 5.  

 

  
(a) (b) 

Figure 5. PAI simulation layout. (a) Mask of the sensors and their positions with respect to the digital phantom. 

(b) Position of the optical fibre with respect to the digital phantom (indicated by a red dot). 

 

The values of the simulation parameters are presented in the appendix section. The Grüneisen 

parameters for brain tissues, which depicts the efficiency of tissue to convert the generated heat to 

acoustic pressure, are unknown. Although much smaller than that of blood cells, the optical 

absorption of brain tissues cannot be taken as zero, in range of the wavelengths of interest (i.e. visible 

light and NIR). Furthermore, since the extraction of microvasculature less than about 100 μm is not 

feasible when segmenting MR angiograms, each class of tissue may have a certain unresolved blood 

volume density after the image processing stage. Hence, the segmented vasculature may not be 

considered as the only photoacoustic sources. 

To compensate for the former assumption and overcome the latter difficulty, the blood 

volume density of each class of tissue, other than the segmented vasculature, was estimated using a 

uniform probability distribution function for blood in each tissue type. For each class of tissue, the 

overall optical absorption is estimated in terms of the inherent absorption of that tissue and the blood 

content as, 

 

𝜇𝑎(𝑒𝑓𝑓) = 𝜇𝑎(𝑖)(1 − 𝜑𝑏𝑖) + 𝜇𝑎(𝑏)𝜑𝑏𝑖     (22) 

 

where 𝜇𝑎(𝑖) is the optical absorption coefficient of each class of tissue (i.e. white matter, gray matter, 

CSF, edema, and tumour) and 𝜇𝑎(𝑏) is the absorption coefficient of blood.  𝜑𝑏𝑖 could be considered as  
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the volume fraction of blood for tissue 𝑖, and may be found in the works of Herscovitch and Raichle 

(1985) and van der Zee (1992). 

 

3.2. Effect of the skull bone on the reconstructed image 

The effect of the skull on the image was investigated by running simulations using four different 

models. These models are for the case of no skull, where the skull is considered as an acoustic 

medium, where it is an elastic homogenous medium (i.e. supporting shear wave propagation), or a 

highly scattering elastic medium . The scattering effect was modelled using the method described in 

section 2.3.2. The mask of the longitudinal velocities is shown in figure 6, where the skull is 

considered as purely homogenous in 6(a) and as a highly heterogeneous medium in 6(b).  

 

  

(a) (b) 

Figure 6. Purely elastic skull vs. scattering skull: mask of the longitudinal wave velocities. (a) Elastic skull. (b) 

Scattering skull. 

 

The reconstructed images show the significance of accounting for the elastic and scattering 

properties of the skull. When there is no skull, the tumour is easily discernible in the images. This is 

also true for the case of an acoustic skull. The tumour is indistinguishable however when elastic and 

scattering effects of the skull are introduced.  
 

  

 
(a) (b) 
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(c) (d) 

Figure 7. Comparison of the reconstructed images with different models of the skull (the outline of the tumour 

is indicated). (a) No skull. (b) Acoustic skull. (c) Elastic skull. (d) Scattering skull. 

 

4. Discussion  

The need for accurate modelling of the skull can be seen in the evidence presented above. To assess 

the quality of the reconstructed images, the border of the tumour (from the original MR scan) has 

been superimposed on the reconstructed images. Figure 7 shows the reconstructed images of the same 

simulation setup but with different skull models. Figure 7(a) is when there is no skull around the 

cancerous brain and as it is evident that the tumour is detectable with good contrast. Figure 7(b) 

illustrates the image of a brain with an acoustic skull (i.e. it supports only longitudinal waves but the 

skull has high contrast in speed of sound and density compared with the brain tissues). The quality of 

image is slightly inferior to that in 7(a). Figures 7(c) and 7(d) show the images when skull has, 

respectively, a purely elastic and a poroelastic nature. As it can be seen, the image quality drops 

dramatically in figure 7(c) compared with the previous ones and is even worse in the case of 

cancellous bone in 8(d). Consideration of shear wave propagation and attenuation effects of the skull 

leads to severe distortion of the reconstructed images. Therefore, in order to have a realistic 

assessment of the efficacy of photoacoustic (or ultrasound) imaging of the brain, it is paramount to 

use the correct model for the skull bone. Note that in the simulated images, the reconstructed pressure 

is based on the recorded longitudinal waves at the detectors. 

Moreover, detection of the tumour highly depends on the degree of contrast of the 

photoacoustic properties of the surrounding tissues. Various types of brain tumours have so far been 

recognised. They can often be categorised in terms of the degree of abnormal growth of blood vessels 

throughout the tumours. They are usually hyper-vascular and some have hypo-vascular necrotic cores. 

A tumour should therefore produce changes in image intensity and present itself with a reasonable 

contrast against the surrounding healthy tissue. Here a relatively large and necrotic tumour, which has 

no blood content and accordingly very low optical absorption but with a vascularised surface, has 

been modelled. This actually has resulted in significant contrast of tumour compared with the 

surroundings which are vascular. This is apparent in figures 7(a) and 7(b). However, still this high 

contrast between blood contents has been ineffective for observing the tumour in figures 7(c) and 

7(d), which is because of the significant effect of the skull on the photoacoustic field. 

It needs to be emphasized that in this set of simulations both the optical and acoustic fields 

have been normalised. In practice however the applied optical power must not exceed a maximum 

permissible safe level. The safe level is characterised by MPE (maximum permissible exposure) for 

light fluence density, (Xu and Wang 2006). 

Note that the presented results are for one particular patient only and serve to demonstrate the 

consistency, convergence and stability of the models used. For this case study due to the assumptions 

used for blood volume at the surface of the tumour (and zero at the core) the tumour cannot be clearly 

identified against the background.  
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As the next stage of this work, for a full numerical analysis of the efficacy of photoacoustic 

imaging for brain tumour diagnosis, the computational tool developed here can be used with a library 

of brain tumour MR images, containing tumours of different type, shape, size and location. It would 

then be possible to conduct a sensitivity analysis to help design a suitable photoacoustic imaging 

system for brain tumours and optimise relevant system parameters such as the position of the optical 

fibre source or the receiver sensor array characteristics.  

5. Summary 

A suitable numerical method was presented for the in-silico (simulation-based) assessment of the 

photoacoustic image reconstruction of the brain.  

First, medical image processing (segmentation) techniques were applied to prepare a digital 

phantom from actual MR images. Light transport through various brain tissue types was modelled 

using the finite element approach. The resulting acoustic pressure was then estimated by pulsed 

photoacoustics considerations. The forward acoustic wave propagation (in soft tissues) was modelled 

by linearized coupled first order wave equations and solved by the acoustic k-space method.  

Whereas the brain itself can be considered to be a fluid medium and does not support shear 

stresses, the skull bone is an elastic solid and as such is an effective shear wave propagator and 

strongly attenuates any ultrasound (due to both scattering and absorption). To allow the skull to 

support shear waves, an elastic k-space method was developed. To support the scattering effects of the 

skull, a new approach based on the theory of wave propagation in random media was applied. In 

addition, absorption effects were modelled using a power law. For completion of the imaging process, 

the acoustic pressure was reconstructed using the k-Space time reversal technique.  

By having a complete model of the photoacoustic field, the photoacoustic tomogram of a 

brain tumour was generated by running a set of 3D simulations. The results depict the significance of 

introducing the correct skull model when assessing the photoacoustic image reconstruction. Besides, 

they show that the contrast of the tumour in the reconstructed images depends upon how the blood 

content of the tumour is defined relative to the surrounding tissues. 

The results were generated for only one case in order to test the model attributes such as 

convergence and consistency. This now provides a suitable computation tool for further studies on 

photoacoustic imaging of brain tumour.  
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Appendix: Table of tissue properties for the Photoacoustic Imaging (PAI) simulations 

The properties of soft tissues and the skull used for PAI simulations are given in tables (1-3).  

Tables 1. Optical properties of soft tissues in the PAI simulations 

(the data are for a wavelength range of 400 − 800nm). 

Tissue Class Blood Gray Matter White Matter CSF Edema Tumour 

Scattering Coeff. (mm−1) 141.3 10.6 40.1 20 15 20 

Absorption Coeff. (mm−1) 10.2 0.04 0.08 0.05 0.1 0.03 

Refractive Index 1.48 1.48 1.48 1.48 1.48 1.48 

Blood Volume Density (%) - 20 23 15 30 0 

References: (Herscovitch and Raichle 1985, Cheong et al 1990, van der Zee 1992, Roggan et al 1999, 

Yaroslavsky et al 2002, Beard 2002). 

 

Tables 2. Acoustic properties of soft tissues in the PAI simulations  

(the data are for  a frequency range of 2 − 8MHz). 

Tissue Class Blood Gray Matter White Matter CSF Edema Tumour 

Sound Speed (m s⁄ ) - 1550 1600 1500 1580 1670 

Density (kg m3⁄ ) - 1050 1030 1000 1020 1050 

Power Law Absorption Power - 1.1 1.1 1.5 1 1 

Power Law Absorption Coeff. (dB cm⁄ ) - 2.5 2.5 1 4 7.2 

References: (Venrooij et al 1979, Bush et al 1993, Bamber 1997). 

 

Tables 3. Properties of skull in the PAI simulations. 

Bone Matrix Marrow 

Power Law 

Absorption Coeff. 

(Np m⁄ ) Power 

Law 

Absorption 

Power 

Porosity 

(%) 
Longitudinal 

sound speed 
(m s⁄ ) 

Shear 

sound 

speed 
(m s⁄ ) 

Density 

(kg m3⁄ ) 

Longitudinal 

sound speed 
(m s⁄ ) 

Shear 

sound 

speed 
(m s⁄ ) 

Density 

(kg m3⁄ ) 

Longitudinal 

wave 

Shear 

wave 

2850 1450 1900 2500 1200 1700 85 90 0.6 65 

References: (Strelitzki et al 1998, Hayner and Hynynen, 2001, Clement et al 2004, 2006). 

  

 


