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Abstract. In a recent article, Royston (2015, Stata Journal 15: 275–291) intro-
duced the approximate cumulative distribution (ACD) transformation of a contin-
uous covariate x as a route toward modeling a sigmoid relationship between x and
an outcome variable. In this article, we extend the approach to multivariable mod-
eling by modifying the standard Stata program mfp. The result is a new program,
mfpa, that has all the features of mfp plus the ability to fit a new model for user-
selected covariates that we call FP1(p1, p2). The FP1(p1, p2) model comprises the
best-fitting combination of a dimension-one fractional polynomial (FP1) function
of x and an FP1 function of ACD (x). We describe a new model-selection algorithm
called function-selection procedure with ACD transformation, which uses signifi-
cance testing to attempt to simplify an FP1(p1, p2) model to a submodel, an FP1

or linear model in x or in ACD (x). The function-selection procedure with ACD

transformation is related in concept to the FSP (FP function-selection procedure),
which is an integral part of mfp and which is used to simplify a dimension-two (FP2)
function. We describe the mfpa command and give univariable and multivariable
examples with real data to demonstrate its use.

Keywords: st0425, mfpa, mfp, continuous covariates, sigmoid function, ACD trans-
formation, multivariable fractional polynomials, regression models

1 Introduction

Over the years, fractional polynomials (FPs) have steadily gained popularity as a tool
for flexible parametric modeling of regression relationships. A recent search in Google
Scholar (22 February 2016) yielded 1,181 citations of the original article by Royston
and Altman (1994). The multivariable fractional polynomials (MFP) method of multi-
ple regression modeling (Sauerbrei and Royston 1999) simultaneously removes weakly
influential predictors and determines a suitable functional form (FP or linear) for con-
tinuous predictors. MFP is implemented as the mfp command in Stata. Its appeal may
lie in a combination of relative simplicity and familiarity (an extension of conventional
polynomials) with added flexibility for representing nonlinear functional forms and usu-
ally a low probability of introducing uninterpretable artifacts into the fitted functions.
Furthermore, unlike splines—which have only a local interpretation of the fitted function
(piecewise between knots)—FPs provide a curve with a global interpretation.

c© 2016 StataCorp LP st0425
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MFP extends backward elimination by systematically searching for improvement in
fit by modeling possible nonlinearity in the effects of continuous variables. The heart
of MFP lies in modeling each continuous predictor using FP functions combined with
a principled function-selection procedure (FSP) to yield a simplified functional form, if
appropriate. Each predictor is modeled univariately by this method, adjusted for the
other predictors, within an overarching back-fitting algorithm that visits each predictor
in turn.

Royston (2015) described an extension of univariate FP modeling via the so-called
approximate cumulative distribution (ACD) covariate transformation. The ACD trans-
formation is a smooth function that maps a continuous covariate, x, to an approxima-
tion, ACD (x), of its distribution function. By construction, the distribution of ACD (x)
in the sample is roughly uniform on (0, 1). FP modeling is then performed with the
transformed values ACD (x) instead of x as a predictor. Royston (2015) showed that
such an approach could successfully represent a sigmoid function of x, something a stan-
dard FP function cannot do (Royston and Sauerbrei 2008, sec. 5.8.1). He went on to
demonstrate that useful flexibility in functional form could be achieved by considering
both x and a = ACD (x) simultaneously as independent predictors and applying the MFP

algorithm to x and a. To limit instability and overfitting, he suggested restricting the
models considered for x and a to FP1 functions. Royston (2015) also noted that models
based on ACD (x) may have other advantages in terms of interpretability of regression
coefficients and resistance to the potential influence of extreme covariate observations.

In the present article, we take the modeling process further. We show how to select
optimal FP1 functions for x and ACD (x) in a univariable context. We describe a modified
version of the FP FSP adapted to the x and ACD (x) approach. We then modify the MFP

algorithm to produce a new but closely related algorithm called MFPA, in which the
FP FSP is replaced by the modified version (FSP with ACD transformation [FSPA]) just
mentioned. MFPA may help with situations in which a sigmoid function is needed, which
MFP cannot provide. Also, as mentioned, MFPA may reduce the influence of extreme
covariate values on a selected function.

The structure of the article is as follows. Section 2 describes how to select a univari-
able model based on applying the FSPA to combinations of x and ACD (x). Section 3
introduces MFPA as a modification of MFP. Section 4 gives examples of applying MFP

and MFPA to two real datasets. Section 5 describes mfpa, a new command that extends
the standard mfp command by allowing the FSPA instead of the FSP to be applied to
one or more of the candidate continuous predictors. Additionally, mfpa supports Stata’s
factor variables. Section 6 contains some final remarks.

2 Choosing a suitable function
In this section, we propose a method to select a univariable model. We consider estima-
tion with a single continuous predictor, x, combined with the preliminary transformation
a = ACD (x). In section 3, we describe how the selected function can be used in an iter-
ative multivariable modeling procedure, MFPA, that is closely related to MFP. We first
define the ACD transformation.
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2.1 The ACD transformation

Let X be a continuous random variable to be considered as a covariate in some kind
of regression model. We wish to approximate the empirical cumulative distribution
function of a random sample x1, . . . , xn of n observations from the distribution of X.
We define the ACD (·) transformation in several steps as follows. Let rank(xi) be the rank
of xi, with ranks 1 and n denoting the lowest and highest sample values, respectively.
Define

zi = Φ−1 {(rank (xi)− 0.5) /n}
E (zi) = β0 + β1 (xi + s)

p

ẑi = Ê (zi) = β̂0 + β̂1 (xi + s)
p̂

ACD (xi) = ai = Φ(ẑi)

where Φ (·) is the standard normal cumulative distribution function (normal() in Stata),
Φ−1 (·) is its inverse (invnormal() in Stata), and p̂ is the best-fitting estimate of p in
an FP1 regression model E (zi) = β0 + β1 (xi + s)

p
. Powers p are selected from the

set S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. Ordinary least-squares regression of the zi on the
values (xi + s)

p
is used to estimate the parameters β0, β1, and p, with p = 0 meaning

log transformation. If any xi ≤ 0, then all the xi are shifted by a constant, s, chosen
to ensure that (xi + s) > 0 for all i; if all xi > 0, then s = 0. See, for example,
Royston and Sauerbrei (2008, 84–85) for details of how s may be determined. In the
following, we assume that xi > 0 and s = 0 so that s can be ignored in the formulation.

An explanation of the rationale for the above approach is given in the section “The
ACD transformation” in Royston (2015). Depictions of ACD (xi) when X has a normal
or lognormal distribution are given in figure 1 in the section “Example 1: Simulated
distributions” of Royston (2015).

2.2 The model FP1(p1, p2) and some submodels

In an example analysis of the prognostic importance of tumor thickness in malignant
melanoma (Baade et al. 2015), Royston (2015) demonstrated that applying MFP to
select FP1 functions of x = tumor thickness and of a = ACD (x) simultaneously could
give rise to a well-fitting function that a standard FP1 or FP2 function in x or in a could
not match. The chosen function had a linear component in x and an FP1 component in a,
with the latter being a sigmoid function of x. The result hinted that models comprising
FP functions of x and a might be of value in particular cases as an alternative to the
standard FP class.

In this section, we take the idea further and consider a four-parameter model class,
β1x

p1 +β2a
p2 , called FP1(p1, p2) and based on FP1 transformations of x and a. The aim

is to adapt to FP1(p1, p2) the FSP that, starting with the FP2 class, is used to determine
a parsimonious FP function of x. Function selection needs to be done in a systematic
and principled way. We address function selection in section 2.4.
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First, we consider six models, M1–M6, each of which represents the best-fitting
model within its respective class. They are potentially useful in deriving a more parsi-
monious “final” model, aiming to reduce the risk of overfitting the most complex allowed
function, M1 = FP1(p1, p2). M2–M6 are submodels of M1. The models are listed in
table 1.

Table 1. Six submodels of FP1(p1, p2). A dot (.) indicates that the corresponding term
is omitted.

Model Notation Function Comment

M1 FP1(p1, p2) β1x
p1 + β2a

p2 The most complex allowed function
M2 FP1(p1, .) β1x

p1 Standard FP1 function of x
M3 FP1(., p2) β2a

p2 Usually a singly or doubly asymptotic
curve in x

M4 FP1(1, .) β1x Linear reduction of model M2
M5 FP1(., 1) β2a Linear reduction of model M3
M6 FP1(., .) – Null model; x is omitted altogether

The models have been chosen to provide two nesting hierarchies that can be applied
for model reduction: M1 ⊃ M2 ⊃ M4 ⊃ M6 and M1 ⊃ M3 ⊃ M5 ⊃ M6. For example,
M1 ⊃ M2 means that M2 is nested in M1. These hierarchies are used to provide sets of
nested models for use in function selection (see section 2.4).

Plots of some of the functional forms available with models M1, M3, and M5 may
be seen in several of the figures in Royston (2015). Next, we consider estimation of the
parameters of M1–M6.

2.3 Estimation

Models M2–M5 are conventional FP1 or linear models in x or in a. In univariable
settings, M6 is simply a constant. Powers p1 or p2 in M2 and M3 are estimated in the
usual way by finding the corresponding values that maximize the likelihood in the set
of power transformations S.

To estimate p1 and p2 in M1, one might consider applying MFP (with maximum
allowed complexity FP1 functions) to x and a, treating them as though they were inde-
pendent variables. However, because of the high collinearity of x and a, the approach
may produce a suboptimal fit; it does not always find the best values of p1 and p2.
Instead, we systematically search all 8× 8 = 64 possible pairs (p1, p2) for the maximum
likelihood solution by fitting each of the FP1 models and finding the pair giving the
highest likelihood.

When p1 and p2 have been determined for M1–M5, models M1, M2, and M3 are
conditionally linear and β1 and β2 are estimated by maximum likelihood in standard
fashion.
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2.4 Function-selection procedure FSPA

To select a suitable model among M1–M6 above, we need a systematic model-selection
procedure akin to the FSP. Full details of the FSP are given by Royston and Sauerbrei
(2008, 82–84). In summary, the FSP has three steps with the following characteristics:

1. The FSP is a closed test procedure that maintains the preselected nominal signifi-
cance level (α1) for testing whether x is influential. The first test (FP2 versus null)
achieves this. If FP2 is not a significantly better fit than null, then x is dropped
and the procedure ends. Note that α1 is set by mfp’s option select(#), whose
default value is 1, meaning that x is automatically selected and the procedure con-
tinues to the function-selection stage. The α1 significance level is of course much
more relevant to multivariable modeling than in the present context of function
selection for a single x.

2. Assuming x is deemed influential after the first test, the FSP is also a closed test
procedure that maintains a second preselected nominal significance level (α2) for
testing whether the functional form of the relation between x and the outcome
is nonlinear. The second test (FP2 versus linear) achieves this. If FP2 is not a
significantly better fit than linear, then a linear function of x is selected and the
procedure ends. Often, the significance levels α1 and α2 are taken as equal. Note
that α2 is set by mfp’s option alpha(#); the default is alpha(0.05).

3. If nonlinearity is found at the second step, a final test (FP2 versus FP1), also at
the α2 level, is applied to refine the selected function further. The procedure ends,
selecting either an FP1 or an FP2 function.

Allowing ACD transformation, we can reproduce the main features of the FSP start-
ing with FP1(p1, p2) as the most complex permitted function. We call the modified
procedure the FSPA. To enable testing, deviances (−2× log likelihood) for each of M1–
M6 are first obtained, requiring 64(M1) + 8(M2) + 8(M3) + 1(M6) = 81 distinct model
fits. (Models M4 and M5 are already fit as special cases of FP1 models M2 and M3,
respectively.) The FSPA then runs as follows.

1. Step 1 is identical to step 1 of the FSP except that M1 is tested against M6 (on
4 degrees of freedom [d.f.]). This provides a closed test at the α1 level for x being
influential. If the test is nonsignificant, then drop x and end. Otherwise, continue
to step 2.

2. Step 2 is identical to step 2 of the FSP except that M1 is tested against M4 (on
3 d.f.). This provides a closed test at the α2 level for the functional form for x
being nonlinear. If the test is nonsignificant, then accept a linear function for x
and end. Otherwise, continue to step 3.

3. Step 3 is similar to step 3 of the FSP except that M1 is tested against M2 (on
2 d.f.) and the procedure may continue. If the test is nonsignificant at the α2

level, then accept M2 and end. Otherwise, continue to step 4.
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4. We now know that M1 is a significantly better fit than M2. However, it may be
possible to simplify M1 in the direction of the ACD model M3; therefore, M1 is
tested against M3 (on 2 d.f.). If the test is significant at the α2 level, then accept
M1 and end. Otherwise, continue to step 5.

5. Finally, M3 is tested against M5 (on 1 d.f.). If the test is significant at the α2

level, then accept M3 and end. Otherwise, accept M5 and end.

With the FSPA, depending on the choices of α1 and α2, we may obtain any of models
M1–M6 as “final”. The ordered sequence of steps comprising the FSPA is designed to
select a linear or FP1 model if the fit of one of them is sufficient. Only if M1 is better
than both M4 and M2 do M3 and M5 (ACD-based models) come into play. Thus the
FSPA favors FP1 or linear functions in the sense that it will consider an ACD-based model
only if a standard FP1 or linear model fails to fit as well as M1 does. The approach
follows the philosophy of MFP that an explanatory model should be as simple as possible
and that increased complexity should be adequately supported by an improved fit to
the data.

3 The MFP and MFPA algorithms

At each step of the MFP algorithm, the FSP is applied to each continuous covariate
in turn to decide whether it is sufficiently influential (that is, significant at the α1

level) to remain in the model, and if so, to estimate its functional form (usually an
FP2, FP1, or linear function). Categorical variables are also tested for inclusion in
standard fashion. The models fit at each step are adjusted for all other currently
selected candidate variables, whether continuous or categorical, retaining any FP or
linear functions if those have been selected so far. A cycle is defined as a complete tour,
in a specified order, of all the candidate variables. The algorithm terminates when the
selected functions or categorical variables do not change from one cycle to the next.
Typically, MFP converges in about 2–4 cycles. Theoretically, MFP can oscillate between
two different solutions, but in practice such behavior is extremely rare. In section 6.3.2
of Royston and Sauerbrei (2008), we illustrate further details of the algorithm in an
example.

The MFPA algorithm is identical to MFP except that the FSP is replaced with the FSPA

for any continuous variable(s) that the user wishes to assess using the ACD approach. It
is possible to specify ACD and hence the FSPA for any subset of the continuous predictors.
In the mfpa program (described below in section 5), specifying which variables are to
be modeled with FP1(p1, p2) as the most complex permitted function of an x and the
corresponding a is done through the acd() option.
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4 Examples

4.1 Example 1: A function with an asymptote

We use the well-known German breast cancer dataset (Schumacher et al. 1994), which
can be loaded into Stata via the command webuse brcancer. The data are prepared
for survival analysis using the command stset rectime, failure(censrec).

We compare five functions selected for the effect of the strongest predictor (x5 =
number of positive lymph nodes) in univariate Cox regression models, all adjusted for
hormonal therapy (hormon). The models we consider for x5 are as follows:

1. FP2(p1, p2) for which the FSP selects (p1, p2) = (−2,−1) (that is, a quadratic
function in x5−1).

2. A negative exponential model, that is, a linear function of exp (−0.12× x5) , as
suggested by Sauerbrei and Royston (1999).

3. FP1(p1, p2), that is, model M1 without simplification, for which the maximum
likelihood estimate is (p1, p2) = (−0.5,−2).

4. FP1(p1, p2) with model simplification with the FSPA using α1 = α2 = 0.05, for
which the selected powers are (p1, p2) = (., 3) (an instance of model M3; see
table 1).

5. A restricted cubic regression spline with 4 d.f. (Royston and Sauerbrei 2007b).

The fitted curves, depicting log relative-hazards fit by the Cox model, are shown in
figure 1.
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Figure 1. Five fitted functions for x5 in the German breast cancer dataset. Graph (f)
compares the functions shown individually in graphs (a) through (e).

The FP2(−2,−1), FP1(−0.5,−2), and spline curves are all nonmonotonic, with the
spline curve exhibiting a maximum log relative-hazard at about 25 positive lymph
nodes. Such nonmonotonicity is implausible for biologic reasons, because more posi-
tive nodes should mean a higher risk of cancer recurrence. The negative exponential
and FP1(., 3) curves are closely similar and are by construction both monotonic. Thus,
the FSPA provides a “good” model for x5 within the ACD-extended FP class without
resorting to special nonlinear functions such as the negative exponential transforma-
tion in figure 1(b). The FP2 function fits the data best, but the local minimum at two
nodes conflicts with medical knowledge and is probably a result of overfitting the data.
Sauerbrei and Royston (1999) therefore introduced the negative exponential transfor-
mation as a possible pretransformation to provide a monotonic function.

As an illustration of the workings of the FSPA, table 2 shows the results of the various
tests on the deviances (minus twice the log partial likelihoods) for the six models M1–M6
for x5, adjusted for hormon.
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Table 2. Models (table 2a) and accompanying tests (table 2b) comprising the FSPA

when applied to x5 (number of positive lymph nodes) in the German breast cancer
data. All models are Cox regression, adjusted for hormon.

Table 2a.

Model
Code Description Deviance

M1 FP1(−0.5,−2) 3483.88
M2 FP1(0.5, .) 3493.35
M3 FP1(., 3) 3486.13
M4 FP1(1, .) 3517.88
M5 FP1(, .1) 3494.06
M6 FP1(., .) 3567.53

Table 2b.

FSPA model comparisons
Step Comparison Dev. diff. p-value

1 M1 versus M6 83.65 <0.001
2 M1 versus M4 34.00 <0.001
3 M1 versus M2 9.47 0.009
4 M1 versus M3 2.25 0.3
5 M3 versus M5 7.93 0.005

We see that M1 fits significantly better than all of M6 (P < 0.001), M4 (P < 0.001),
and M2 (P = 0.009). At step 4 of the FSPA, the fit of M3 is not significantly worse
than that of M1 (P = 0.3), leading to provisional acceptance of M3 and to the final
comparison at step 5 (M3 versus M5). Because M3 fits significantly better than M5
(P = 0.005), M3 is finally selected.

Below, we show the output from mfpa, summarized in table 2, when fitting x5 and
hormon:

. webuse brcancer, clear
(German breast cancer data)

. stset rectime censrec

(output omitted )

. mfpa, select(0.05) acd(x5): stcox x5 hormon

Deviance for model with all terms untransformed = 3517.881, 686 observations

Variable Model (vs.) Deviance Dev diff. P Powers (vs.)

(A)x5 M6 M1 3567.530 83.650 0.000* . -.5,-2
M4 3517.881 34.002 0.000* 1
M2 3493.355 9.475 0.009* 0
M3 3486.128 2.248 0.325 3
M5 M3 3494.056 7.928 0.005* 1 3
Final (M3) 3486.128 . 3

hormon null lin. 3496.724 10.596 0.001* . 1
Final 3486.128 1
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Fractional polynomial fitting algorithm converged after 1 cycle.

Transformations of covariates:

-> gen double IAx5__1 = Ax5^3-.125 if e(sample)

Final multivariable fractional polynomial model for _t

Variable Initial Final
df Select Alpha Status df Powers

(A)x5 4 0.0500 0.0500 in 2 . 3
hormon 1 0.0500 0.0500 in 1 1

(output omitted )

The Deviance column shows the deviance of each model in the Model column. The
deviance difference between it and its comparator in the (vs.) column is shown in the
Dev diff. column, with the p-value in the P column. An asterisk indicates significance
at the alpha() level; here, the default setting alpha(0.05) was applied. The selected
FP powers in the FP1(p1, p2) models are shown in the Powers and corresponding (vs.)

columns.

The tests are applied from the top down, as described in section 2.4. As noted, the
tests of M6, M4, and M2 versus M1 are all significant. M3 is provisionally selected and
then confirmed as the final model by the result of the fifth test. Model M3 has powers
(., 3), that is, no term in x5 and one term comprising the cube of acd(x5).

4.2 Example 2: A multivariable model

We consider the so-called Boston housing dataset, in which the log median house price
in the Boston area is to be predicted from 13 housing- or environment-related variables,
12 of which are continuous, in a dataset of size 506. Some of the continuous variables are
strongly correlated and some have a rather strange distribution. Difficulties in finding
a suitable model have made it a dataset often used for comparing various modeling
approaches.

The data were analyzed in some detail by Royston and Sauerbrei (2008, 207–213).
The selected MFP model is described in table 9.1 of that work. Ten of the 13 variables
were selected as significant at the 5% level; three of these (crim, rm, and dis) required
FP2 functions and one (lstat) required an FP1 function. The remaining five continuous
functions were selected as linear. The only categorical variable (chas) was selected.
The explained variation (R2

a), adjusted for model dimension, was 0.827.

On applying mfpa to this dataset, we obtain eight predictors significant at the 5%
level, all of them continuous. Of these, five have two FP1 powers and three are linear.
The adjusted explained variation (R2

a) is 0.853.

Table 3 describes the selected models. It is interesting that the MFPA model has two
fewer predictors, one additional parameter, and a higher explained variation than the
MFP model.
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Table 3. Boston housing data. Comparison of predictors and functions selected at the
5% nominal significance level by the MFP and MFPA algorithms.

Covariate MFP MFPA Covariate MFP MFPA

crim 1, 2 0, 0.5 dis −2, 1 1,−2
zn out out rad linear linear
indus out out tax linear 0.5, 2
chas∗ in out ptratio linear linear
nox linear linear bk linear out
rm 0.5, 0.5 −1, 3 lstat 0.5 0.5, 1
age out out R2

a 0.827 0.853

∗Binary predictor

Figure 2 compares the partial predictors for the nine continuous predictors selected
by MFP and MFPA.
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Figure 2. Boston housing data. Fitted partial predictors for the MFP (solid lines)
and MFPA (long dashes) models as well as ACD (short dashes) approximations to the
cumulative distribution functions of the predictors.
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Note that the ACD transformations of two predictors (crim and bk) are notably
skewed in distribution and that the remainder are more symmetrical.

At first glance, the differences between the fitted functions appear rather minor.
However, the FP2(1, 2) function for crim (level of criminality in the local area) seems
inappropriate because it is nonmonotonic, whereas the FP1(0, 0.5) function is nearly
monotonic. The two functions for rm are both nonmonotonic but are subtly different.
MFP selects bk, which evidently has a (very) weak effect, whereas MFPA omits it.

In terms of fit, figure 3 shows smoothed residuals for the MFP model.
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Figure 3. Boston housing data. Smoothed residuals for partial predictors in the MFP

model.

Subjectively, some lack of fit is evident for crim, dis, and perhaps lstat.



84 Extension to MFP

Figure 4 shows smoothed residuals for the same predictors in the MFPA model.
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Figure 4. Boston housing data. Smoothed residuals from the MFPA model for the partial
predictors in the MFP model.

Altogether the fit seems a little better, and the only predictor still exhibiting lack of fit
is dis.

This example suggests that MFPA may uncover subtle nonlinearity missed by MFP

in difficult situations with unusual distributions and a potential influence of extreme
values. The overall predictive ability of the model may not be too different, but the
interpretation of the effects of individual predictors may change.

5 The mfpa command

5.1 Syntax

The syntax of mfpa is as follows:

mfpa
[
, acd(varlist) linadj(varlist) mfp options

]
: regression cmd

[
yvar1

[
yvar2

] ]
xvarlist

[
if
] [

in
] [

weight
] [

, regression cmd options
]
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mfpa is identical to mfp except that it accepts factor variables in xvarlist and has
two additional options, which are described below.

The standard postestimation commands fracpred and fracplot have been replaced
with xfracpred and xfracplot, respectively.

Note that the acd program must be installed before using mfpa. To install acd, type
net install st0339, from(http://www.stata-journal.com/software/sj14-2).

5.2 Description

mfpa selects the MFP model that best predicts the outcome variable from the right-
hand-side variables in xvarlist.

mfpa provides some extensions to Stata’s mfp command:

1. mfpa supports factor variables, and

2. mfpa has two new options: linadj(varlist) to adjust linearly for variables in
varlist, and acd(varlist) to optimize the fit for each xvar in varlist and its ACD

transformation.

As mentioned above, the mfp postestimation commands fracpred and fracplot

are replaced with xfracpred and xfracplot, respectively. The syntax is unchanged
except that xfracplot has the additional option nopts, which suppresses plotting of
partial residuals. Also provided with the software package for this article is xfracpoly,
which extends the fracpoly command (which is no longer part of official Stata) by
supporting the use of factor variables in its xvarlist. The three xfrac* commands are
briefly documented in the mfpa help file under the heading Related commands.

5.3 Options

acd(varlist) creates the ACD transformation of each member of varlist. It also invokes
the FSPA to determine the best-fitting FP1(p1, p2) model, as described in section 2.4.
For a given continuous predictor xvar, depending on the values of select(#) and
alpha(#), mfpa simplifies the FP1(p1, p2) model to select one of the six submodels
described in section 2.2. The variable representing the ACD transformation of xvar is
named Axvar and is left behind in the workspace, together with FP transformation(s)
of Axvar as appropriate.

linadj(varlist) adjusts linearly for members of varlist; that is, the members are included
in every model fit. This avoids the need for the more complicated and less efficient
df() and select() options to achieve the same result.

mfp options are any options appropriate to mfp.

regression command options are any options appropriate to the regression command
specified in regression command.
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5.4 Examples

webuse brcancer, clear
stset rectime, failure(censrec) scale(365.24)
mfpa, acd(x5): stcox x5
mfpa, select(0.05): stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon
xfracplot x5
mfpa, select(0.05) acd(x5 x6 x7): stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon
xfracplot x5

6 Comments

In this article, we introduced MFPA and the mfpa command, an extension of MFP and mfp

that supports the ACD transformation in the range of possible predictor transformations.
If sigmoid relationships are relevant or expected, MFPA can be used instead of MFP.
Our impression is that replacement of the FP2(p1, p2) family with the FP1(p1, p2) family
does not sacrifice flexibility in functional form. The mathematical details of how this
happens merit further investigation. With the possibility of modeling singly or doubly
asymptotic relationships, the FP1(p1, p2) family offers an attractive alternative to the
FP2(p1, p2) family in some cases. However, its interpretability and transportability are
less straightforward than those of MFP, and its properties remain to be explored in
greater detail and in more datasets.

The ACD transformation may provide a solution to the problem of influential co-
variate observations. In the MFP context, we previously proposed the gδ (.) pretrans-
formation (Royston and Sauerbrei 2007a), which works quite differently from ACD. For
any continuous x, the distribution of ACD (x) is by construction approximately uniform
(0, 1). The extreme values of the uniform distribution are generally much less influen-
tial in regression models than those of the original distribution of x. In the selected
functions of x5 in the German breast cancer dataset, the FSP selects a nonmonotonic
FP2 function, which contradicts medical knowledge, whereas the FSPA chooses FP1(., 3),
which fits the data well and, being guaranteed monotonic, makes more biologic sense.

In summary, publication of mfpa makes the command widely available to other
researchers. We hope this will stimulate further research in this important topic area.
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