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Summary. Designs conditions for marine structures are typically informed by threshold-based extreme

value analyses of oceanographic variables, in which excesses of a high threshold are modelled by a

generalized Pareto (GP) distribution. Too low a threshold leads to bias from model mis-specification;

raising the threshold increases the variance of estimators: a bias-variance trade-off. Many existing

threshold selection methods do not address this trade-off directly, but rather aim to select the lowest

threshold above which the GP model is judged to hold approximately. In this paper Bayesian cross-

validation is used to address the trade-off by comparing thresholds based on predictive ability at extreme

levels. Extremal inferences can be sensitive to the choice of a single threshold. We use Bayesian model-

averaging to combine inferences from many thresholds, thereby reducing sensitivity to the choice of a

single threshold. The methodology is applied to significant wave height datasets from the northern North

Sea and the Gulf of Mexico.

Keywords: Cross-validation; Extreme value theory; Generalized Pareto distribution; Predictive

inference; Threshold

1. Introduction

Ocean and coastal structures, including breakwaters, ships and oil and gas producing facilities are

designed to withstand extreme environmental conditions. Marine engineering design codes stipulate

that estimated failure probabilities of offshore structures, associated with one or more return periods,

should not exceed specified values. To characterize the environmental loading on an offshore structure,

return values for winds, waves and ocean currents corresponding to a return period of typically 100

years, but sometimes to 1000 and 10000 years are required. The severity of waves in a storm is

quantified using significant wave height. Extreme value analyses of measured and hindcast samples

of significant wave height are undertaken to derive environmental design criteria, typically by fitting
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a generalized Pareto (GP) distribution to excesses of a high threshold. The selection of appropriate

threshold(s) is important because inferences can be sensitive to threshold.

1.1. Storm peak significant wave height datasets

The focus of this paper is the analysis of two sequences of hindcasts of storm peak significant wave

height, shown in Figure 1. Significant wave height (Hs) is a measure of sea surface roughness. It is
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Fig. 1. Storm peak significant wave height hindcast datasets. Left: North Sea data (628 observations). Right:

Gulf of Mexico data (315 observations). Top: time series plots. In the North Sea plot distinct October-March

periods are separated. Bottom: histograms. The upper axis scales give the sample quantiles.

defined as four times the standard deviation of the surface elevation of a sea state, which is the ocean

surface observed for a certain period of time (3 hours for our datasets). Cardone et al. (2014) gives the

largest Hs value ever generated by a hindcast model as 18.33m and the largest value ever measured

in the ocean as 20.63m. Hindcasts are samples from physical models of the ocean environment,

calibrated to observations of pressure, wind and wave fields.

For each of the datasets raw data have been declustered, using a procedure described in Ewans

and Jonathan (2008), to isolate cluster maxima (storm peaks) that can reasonably be treated as being

mutually independent. We also assume that storm peaks are sampled from a common distribution.

Even in this simplest of situations practitioners have difficulty in selecting appropriate thresholds.

The first dataset, from an unnamed location in the northern North Sea, contains 628 storm peaks

from October 1964 to March 1995, but restricted to the period October to March within each year.
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The other dataset contains 315 storm peaks from September 1900 to September 2005. It is one

of the datasets from a spatial grid of time series in the Gulf of Mexico analysed in Northrop and

Jonathan (2011): the location is at the centre of this spatial grid. Most (213) of the peaks occur

during August-October, but there is no obvious seasonality in their magnitudes. For the North Sea

data there is evidence of some seasonality within the October-March window: storm peaks tend to be

slightly larger near the middle of this window than near the ends. Ignoring such seasonality amounts

to an analysis of the extremes from a distribution mixing random deviations across seasonal effects.

This omniseasonal analysis is of practical relevance, but may result in some loss of efficiency. In

ongoing work are extending the methodology to incorporate seasonal, or other, covariate effects.

In the northern North Sea the main fetches are the Norwegian Sea to the North, the Atlantic Ocean

to the west, and the North Sea to the south. Extreme sea states from the directions of Scandinavia

to the east and the British Isles to the southwest are not possible, owing to the shielding effects of

these land masses. At the location under consideration, the most extreme sea states are associated

with storms from the Atlantic Ocean (Ewans and Jonathan, 2008). With up to several tens of storms

impacting the North Sea each winter, the number of events for analysis is typically larger than for

locations in regions such as the Gulf of Mexico, where hurricanes produce the most severe sea states.

Most hurricanes originate in the Atlantic Ocean between June and November and propagate west to

northwest into the Gulf producing the largest sea states with dominant directions from the southeast

to east directions. It is expected that there is greater potential for very stormy sea conditions in the

Gulf of Mexico than in the northern North Sea and therefore that the extremal behaviour is different

in these two locations.

1.2. Extreme value threshold selection

Extreme value theory provides asymptotic justification for a particular family of models for excesses

of a high threshold. Let X1, X2, . . . Xn be a sequence of independent and identically distributed

random variables, with common distribution function H, and un be a threshold, increasing with

n. Pickands (1975) showed that if there is a non-degenerate limiting distribution for appropriately

linearly rescaled excesses of un then this limit is a GP distribution. In practice, a suitably high

threshold u is chosen empirically. Given that there is an exceedance of u, the excess Y = X − u is

modelled by a GP(σu, ξ) distribution, with positive threshold-dependent scale parameter σu, shape

parameter ξ and distribution function

G(y;σu, ξ) =

1− (1 + ξy/σu)
−1/ξ
+ , ξ ̸= 0,

1− exp(−y/σu), ξ = 0,
(1)

where y > 0, x+ = max(x, 0). The ξ = 0 case is defined in the limit as ξ → 0. When ξ < 0

the distribution of X has a finite upper endpoint of u − σu/ξ; otherwise, X is unbounded above.

The frequency with which the threshold is exceeded also matters. Under the current assumptions the
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number of exceedances over the threshold u has a binomial(n, pu) distribution, where pu = P (X > u),

giving a BGP(pu, σu, ξ) model (Coles, 2001, chapter 4)

Many threshold diagnostic procedures have been proposed: Scarrott and MacDonald (2012) pro-

vides a review. Broad categories of methods include: assessing stability of model parameter estimates

with threshold (Drees et al., 2000; Wadsworth, 2015); goodness-of-fit tests (Davison and Smith, 1990;

Dupuis, 1999); approaches that minimize the asymptotic mean-squared error (MSE) of estimators

of ξ or of extreme quantiles, under particular assumptions about the form of the upper tail of H

(Hall and Welsh, 1985; Hall, 1990; Ferreira et al., 2003; Beirlant et al., 2004; Caeiro and Gomes,

2016); specifying a model for (some or all) data below the threshold (Wong and Li, 2010; MacDonald

et al., 2011; Wadsworth and Tawn, 2012). In the latter category, the threshold above which the GP

model is assumed to hold is treated as a model parameter and threshold uncertainty is incorporated

by averaging inferences over a posterior distribution of model parameters. In contrast, in a single

threshold approach threshold level is viewed as a tuning parameter, whose value is selected prior to

the main analysis and is treated as fixed and known when subsequent inferences are made.

Single threshold selection involves a bias-variance trade-off (Scarrott and MacDonald, 2012): the

lower the threshold the greater the estimation bias due to model misspecification; the higher the

threshold the greater the estimation uncertainty. Many existing approaches do not address the

trade-off directly, but rather examine sensitivity of inferences to threshold and/or aim to select

the lowest threshold above which the GP model appears to hold approximately. We seek to deal

with the bias-variance trade-off based on the main purpose of the modelling, i.e. prediction of

future extremal behaviour. We make use of a data-driven method commonly used for such purposes:

cross-validation (Stone, 1974). We consider only the simplest of modelling situations, i.e. where

observations are treated as independent and identically distributed. However, selecting the threshold

level is a fundamental issue for all threshold-based extreme value analyses and we anticipate that our

general approach can have much wider applicability.

We illustrate some of the issues involved in threshold selection by applying to the significant

wave height datasets two approaches that assess parameter stability. In the top row of Figure 2

maximum likelihood (ML) estimates ξ̂ of ξ are plotted against threshold. The aim is to choose the

lowest threshold above which ξ̂ is approximately a constant function of threshold, taking into account

sampling variability summarized by the confidence intervals. It is not possible to make a definitive

choice and different viewers may choose rather different thresholds. In both of these plots our eyes are

drawn to the approximate stability of the estimates at around the 70% sample quantile. One could

argue for lower thresholds, to incur some bias in return for reduced variance, but it is not possible to

assess this objectively from these plots. In practice, it is common not to consider thresholds below

the apparent mode of the data because the GP distribution has its mode at the origin. For example,

based on the histogram of the Gulf of Mexico data in Figure 1 one might judge a threshold below
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Fig. 2. Threshold diagnostic plots for the storm peak significant wave height hindcast datasets. Left: North

Sea data. Right: Gulf of Mexico data. Top: parameter stability plots for MLEs of ξ, with 95% pointwise profile

likelihood-based confidence intervals. Bottom: p-values associated with a test of constant shape parameter

against the lowest threshold considered. The upper axis scales give the level of the threshold in metres.

the 25% sample quantile to be unrealistic. However, we will consider such thresholds because it is

interesting to see to what extent the bias expected is offset by a gain in precision.

The inherent subjectivity of this approach, and other issues such as the strong dependence between

estimates of ξ based on different thresholds, motivated more formal assessments of parameter stability

(Wadsworth and Tawn, 2012; Northrop and Coleman, 2014; Wadsworth, 2015). The plots in the

bottom row of Figure 2 are based on Northrop and Coleman (2014). A subasymptotic piecewise

constant model (Wadsworth and Tawn, 2012) is used in which the value of ξ may change at each

of a set of thresholds, here set at the 0%, 5%, . . . , 95% sample quantiles. For a given threshold

the null hypothesis that the shape parameter is constant from this threshold upwards is tested. In

the plots p-values from this test are plotted against threshold. Although these plots address many

of the inadequacies of the parameter estimate stability plots subjectivity remains because one must

decide how to make use of the p-values. One could prespecify a size, e.g. 0.05, for the tests or

take a more informal approach by looking for a sharp increase in p-value. For the North Sea data

the former would suggest a very low threshold and the latter a threshold in the region of the 70%

sample quantile. For the Gulf of Mexico data respective thresholds close to the 10% and 55% sample

quantiles are indicated.



6 P. J. Northrop, N. Attalides and P. Jonathan

An argument against selecting a single threshold is that this ignores uncertainty concerning the

choice of this threshold. As mentioned above, one way to account for this uncertainty is to embed

a threshold parameter within a model. We use an approach based on Bayesian model averaging

(BMA), on which Hoeting et al. (1999) provide a review. Sabourin et al. (2013) have recently used

a similar approach to combine inferences from different multivariate extreme value models. We treat

different thresholds as providing competing models for the data. Predictions of extremal behaviour

are averaged over these models, with individual models weighted in proportion to the extent to

which they are supported by the data. There is empirical and theoretical evidence (Hoeting et al.,

1999, Section 7) that averaging inferences in this way results in better average predictive ability than

provided by any single model.

For the most part we work in a Bayesian framework because prediction is handled naturally

and regularity conditions required for making inferences using ML (Smith, 1985) and probability-

weighted moments (PWM) (Hosking and Wallis, 1987), namely ξ > −1/2 and ξ < 1/2 respectively,

can be relaxed. This requires a prior distribution to be specified for the parameters of the BGP

model. Initially, we consider three different ‘reference’ prior distributions, in the general sense of

priors constructed using formal rules (Kass and Wasserman, 1996). Such priors can be useful when

information provided by the data is much stronger than prior information from other sources. This is

more likely to be the case for a low threshold than for a high threshold. We use simulation to assess

the utility of these priors for our purpose, that is, making predictive statements about future extreme

observations and use the results to formulate an improved prior. For high thresholds, when the data

are likely to provide only weak information, it may be important to incorporate at least some basic

prior information in order to avoid making physically unrealistic inferences.

In Section 2 we use cross-validation to estimate a measure of threshold performance to select a

single threshold. Sections 2.1 and 2.2 describe the cross-validation procedure and its role in selecting

a single threshold. In Section 2.3 we discuss two related formulations of the objective of an extreme

value analysis and, in Section 2.4, we use one of these formulations in a simulation study to inform

the choice of prior distribution for GP parameters. In Sections 2.5 we use our methodology to make

inferences about extreme significant wave heights in the North Sea and in the Gulf of Mexico. In

Section 3 we use the measure of threshold performance to combine inferences over many thresholds.

Another simulation study, in Section 3.1, compares choosing a single ‘best’ threshold and averaging

inferences over many thresholds and in Section 3.2 we apply the latter to the significant wave height

datasets. In Section 3.3 we incorporate prior information to avoid physically unrealistic inferences.

2. Single threshold selection

We use a Bayesian implementation of leave-one-out cross-validation to compare the predictive ability

of BGP inferences based on different thresholds. We take a predictive approach, averaging infer-
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ences over the posterior distribution of parameters, to reflect differing parameter uncertainties across

thresholds: uncertainty in GP parameters will tend to increase as the threshold is raised. In contrast,

under an estimative, or plug-in, approach, predictions use point estimates of parameters, acting as if

these are the true values, with no account made for parameter uncertainty. A point estimate of GP

model parameters can give a zero likelihood for a validation observation: this occurs if ξ̂ < 0 and

this observation is greater than the estimated upper endpoint u− σ̂u/ξ̂. In this event an estimative

approach would effectively rule out the threshold u. Accounting for parameter uncertainty alleviates

this problem by giving weight to parameter values other than a particular point estimate.

A naive implementation of leave-one-out cross-validation is computationally intensive. To avoid

excessive computation we use importance sampling to estimate cross-validation predictive densities

based on Bayesian inferences from the entire dataset. One could use a similar strategy in a frequentist

approximation to predictive inference based on large sample theory or bootstrapping (Young and

Smith, 2005, chapter 10). However, large sample results may provide poor approximations for high

thresholds (small number of excesses) and the GP observed information is known to have poor finite-

sample properties (Süveges and Davison, 2010). Bootstrapping, of ML or PWM estimates, increases

computation time further and is subject to the regularity conditions mentioned in the introduction.

2.1. Assessing threshold performance using cross-validation

Suppose that x = (x1, . . . , xn) is a random sample of raw (unthresholded) data from H. Without

loss of generality we assume that x1 < · · · < xn. Consider a training threshold u. A BGP(pu, σu, ξ)

model is used at threshold u, where pu = P (X > u) and (σu, ξ) are the parameters of the GP model

for excesses of u. Let θ = (pu, σu, ξ) and π(θ) be a prior density for θ. Let xs denote a subset of x,

possibly equal to x. The posterior density πu(θ | xs) ∝ L(θ;xs, u)π(θ), where

L(θ;xs, u) =
∏

i:xi∈xs

fu(xi | θ),

fu(xi | θ) = (1− pu)
I(xi6u) {pug(xi − u;σu, ξ)}I(xi>u) ,

I(x) = 1 if x is true and I(x) = 0 otherwise, and g(x;σu, ξ) = σ−1
u (1 + ξx/σu)

−(1+1/ξ)
+ is a GP(σu, ξ)

density. Note that fu(xi | θ) is not a probability density but the contribution to L(θ;xs, u) from a

mixed indicator-continuous variable that depends on whether xi is above or below u.

We quantify the ability of BGP inferences based on threshold u to predict (out-of-sample) at

extreme levels. For this purpose we introduce a validation threshold v > u. If 1 + ξ(v − u)/σu > 0

then a BGP(pu, σu, ξ) model at threshold u implies a BGP(pv, σv, ξ) model at threshold v, where

σv = σu+ ξ(v−u) and pv = P (X > v) = (1 + ξ(v − u)/σu)
−1/ξ pu. Otherwise, pv = 0 and excesses of

v are impossible. For a particular value of v we wish to compare the predictive ability of the implied

BGP(pv, σv, ξ) model across a range of values of u. We use a fixed validation threshold v for different
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values of u so that the performances of the training thresholds are compared using exactly the same

validation data.

We employ a leave-one-out cross-validation scheme in which x(r) = {xi, i ̸= r} forms the training

data and xr the validation data. The cross-validation predictive densities at validation threshold v,

based on a training threshold u, are given by

fv(xr | x(r), u) =

∫
fv(xr | θ,x(r))πu(θ | x(r)) dθ, r = 1, . . . , n, (2)

although ‘density’ is an abuse of terminology owing to presence of the indicator variables. The

conditioning in πu(θ | x(r)), and hence fv(xr | x(r), u), is on those values in x(r) above u and below-

threshold indicators of the remaining components, not all the n− 1 numerical values in x(r).

Suppose that the {xi} are conditionally independent given θ. If pv > 0 then

fv(xr | θ,x(r)) = fv(xr | θ) = (1− pv)
I(xr6v) {pvg(xr − v;σv, ξ)}I(xr>v) . (3)

If pv = 0 then fv(xr | θ,x(r)) = I(xr 6 v). Suppose that we have a sample θ
(r)
j , j = 1, . . . ,m from

the posterior πu(θ | x(r)). Then a Monte Carlo estimator of fv(xr | x(r), u) based on (2) is given by

f̂v(xr | x(r), u) =
1

m

m∑
j=1

fv(xr | θ(r)
j ,x(r)). (4)

Evaluation of estimator (4), for r = 1, . . . , n, is computationally intensive because it involves gen-

erating samples from n different posterior distributions. To reduce computation time we use an

importance sampling estimator (Gelfand, 1996; Gelfand and Dey, 1994) that enables estimation of

f̂v(xr | x(r), u), for r = 1, . . . , n− 1, using a single sample only. We rewrite (2) as

fv(xr | x(r), u) =

∫
fv(xr | θ,x(r)) qr(θ)h(θ) dθ, r = 1, . . . , n, (5)

where qr(θ) = πu(θ | x(r))/h(θ) and h(θ) is a density whose support must include that of πu(θ | x(r)).

In the current context a common choice is πu(θ | x) (Gelfand and Dey, 1994, page 511). However, the

support of πu(θ | x): ξ > −σu/(xn − u), does not contain that of πu(θ | x(n)): ξ > −σu/(xn−1 − u),

since xn > xn−1. Therefore we use h(θ) = πu(θ | x) only for r ̸= n.

Suppose that we have a sample θj , j = 1, . . . ,m from the posterior πu(θ | x). For r = 1, . . . , n− 1

we use the importance sampling ratio estimator

f̂v(xr | x(r), u) =

∑m
j=1 fv(xr | θj) qr(θj)∑m

j=1 qr(θj)
=

∑m
j=1 fv(xr | θj)/fu(xr | θj)∑m

j=1 1/fu(xr | θj)
, (6)

where qr(θ) = πu(θ | x(r))/πu(θ | x) ∝ 1/fu(xr | θ). If we also have a sample θ
(n)
j , j = 1, . . . ,m from

the posterior πu(θ | x(n)) then f̂v(xn | x(n), u) = (1/m)
∑m

j=1 fv(xn | θ(n)
j ). We use

T̂v(u) =

n∑
r=1

log f̂v(xr | x(r), u) (7)

as a measure of predictive performance at validation threshold v when using training threshold u.
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2.2. Comparing training thresholds

Consider k training thresholds u1 < · · · < uk, resulting in estimates T̂v(u1), . . . , T̂v(uk). Up to an

additive constant, T̂v(u) provides an estimate of the negated Kullback-Leibler divergence between the

BGP model at validation threshold v and the true density (see Silverman (1986, page 53)). Thus,

u∗ = argmaxu T̂v(u) has the property that, of the thresholds considered, it has the smallest estimated

Kullback-Leibler divergence. Some inputs are required: u = (u1, . . . , uk), v and π(θ).

Training thresholds u. Choosing a set u of thresholds for analysis, or an interval (umin, umax), is

the starting point for all the threshold selection methods listed in Section 1.2, apart from those based

on the minimisation of the MSE of estimators. The thresholds should span the range over which

the bias-variance trade-off is occurring. An initial graphical diagnostic, such as a parameter stability

plot, can assist this choice.

The highest threshold uk (or umax) should not be so high that little information is provided about

GP parameters. There is no definitive rule for limiting uk but Jonathan and Ewans (2013) suggest

that there should be no fewer than 50 threshold excesses. Applying this rule would restrict uk to be

no higher than the 84% and 92% sample quantiles for the Gulf of Mexico and North Sea datasets

respectively, but later we will use uk that break the rule and examine the consequences.

We will also set u1 lower than is typical, to illustrate the effect of the bias-variance trade-off on

predictive performance at extreme levels. When selecting a single threshold there is no problem in

considering low thresholds that we expect to perform badly: only the best-performing threshold is

used and inferences from other thresholds do not affect inferences about extremes.

Validation threshold v. The main additional requirement of our method is the choice of v. We

need v > uk, but the larger v is the fewer excesses of v there are and the smaller the information

from data thresholded at v. Consider two validation thresholds: v1 = uk and v2 > uk. If we use v2

we lose validation information: if v1 < xr 6 v2 then in (3) xr is censored rather than entering into

the GP part of the predictive density; and gain nothing: the prediction of xr > v2 is unaffected by

the choice of v1 or v2 because pv1
g(x − v1;σv1

; ξ) = pv2
g(x − v2;σv2

; ξ). Therefore, we should use

v = uk, so that v is determined by the highest threshold in u. In some applications results may be

sensitive to the choice of uk. All threshold selection methods involve tuning parameters/assumptions

that can have non-negligible effects on results. See the references in Section 1.2 for details.

GP prior distribution π(θ). In Section 2.4 we compare predictive properties of three ‘reference’

priors for GP parameters. Such priors are intended for use when substantial prior information is

not available and it is anticipated that information provided by the data will dominate the posterior

distribution (O’Hagan, 2006). The general issue of quantifying the relative contributions to a posterior

distribution of information from the prior and from the data is an area of current research, see, for

example, Reimherr et al. (2014). Here we judge the extent to which the data dominate the posterior

distribution using graphical summaries. In Figure 8 we assess sensitivity of the posterior for (σu, ξ)
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to the choice of reference prior distribution and compare the marginal prior and posterior densities

of ξ. If the data dominate then a posterior should not be sensitive to the choice of reference prior

and the prior density for ξ should be almost flat over the range of ξ for which the posterior density

is non-negligible.

For high thresholds it may be that the data do not dominate. Then the use of a reference prior will

tend to result in high uncertainty about model parameters and about extrapolations to long future

time horizons. If such time horizons are important and the lack of precision is unacceptable then one

may wish to incorporate more information, particularly if physically unrealistic extrapolations have

resulted. A more considered prior distribution or a model that better represents the physics of the

data-generating process could be used. We consider the former strategy in Section 3.3.

2.3. Prediction of extreme observations

In an extreme value analysis the main focus is often the estimation of extreme quantiles called return

levels. Let MN denote the largest value observed over a time horizon of N years. The N -year return

level z(N) is defined as the value exceeded by an annual maximum M1 with probability 1/N . In

off-shore engineering design criteria are usually expressed in terms of return levels, for values of N

such as 100, 1000, 10000. A related approach defines the quantity of interest as the random variable

MN , rather than particular quantiles of M1. Under a BGP(pu, σu, ξ) model, for z > u,

F (z;θ) = P (X 6 z) = 1− pu

{
1 + ξ

(
z − u

σu

)}−1/ξ

.

Then z(N) = z(N ;θ) satisfies F (z(N);θ)ny = 1−1/N , where ny is the mean number of observations

per year. Similarly, for z > u, P (MN 6 z) = F (z;θ)nyN . For large N (N = 100 is sufficient),

z(N) is approximately equal to the 37% quantile of the distribution of MN (Cox et al., 2002). In an

estimative approach, based on a point estimate of θ, the value of z(N) is below the median of MN .

A common interpretation of z(N) is the level exceeded on average once every N years. However, for

large N (again N = 100 is sufficient) and under an assumption of independence at extreme levels,

z(N) is exceeded 0, 1, 2, 3, 4 times with respective approximate probabilities of 37%, 37%, 18%, 6%

and 1.5%. It may be more instructive to examine directly the distribution of MN , rather than very

extreme quantiles of the annual maximum M1.

The relationship between these two approaches is less clear under a predictive approach, in which

posterior uncertainty about θ in incorporated into the calculations. The N -year (posterior) predictive

return level zP (N) is the solution of

P (M1 6 zP (N) | x) =
∫

F (zP (N);θ)ny π(θ | x) dθ = 1− 1/N,

and the predictive distribution function of MN is given by

P (MN 6 z | x) =
∫

F (z;θ)nyN π(θ | x) dθ. (8)
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As noted by Smith (2003, Section 1.3), accounting for parameter uncertainty tends to lead to larger

estimated probabilities of extreme events, that is, zP (N) tends to be greater than an estimate ẑ(N)

based on, for example, the MLE θ̂. The strong non-linearity of F (z;θ)ny for large z, and the fact that

it is bound above by 1, mean that averages of F (z;θ)ny over areas of the parameter space relating to

the extreme upper tail of M1 tend to be smaller than point values near the centre of such areas. This

phenomenon is less critical when working with the distribution of MN because now central quantiles

of MN also have relevance, not just particular extreme tail probabilities. Numerical results in Section

2.5 (Figure 7) show that zP (N) can be rather greater than the median of the predictive distribution

of MN , particularly when posterior uncertainty about θ is large.

For a given value of N , we estimate P (MN 6 z | x) using the sample θj , j = 1, . . . ,m from the

posterior density π(θ | x) to give

P̂ (MN 6 z | x) = 1

m

m∑
j=1

F (z;θj)
nyN . (9)

The solution ẑP (N) of P̂ (M1 6 ẑP (N) | x) = 1− 1/N provides an estimate of zP (N).

2.4. Simulation study 1: priors for GP parameters

We compare approaches for predicting future extreme observations: a predictive approach using

different prior distributions and an estimative approach using the MLE. We use Jeffreys’ prior pu ∼

beta(1/2, 1/2) for pu, so that pu | x ∼ beta(nu + 1/2, n − nu + 1/2), where nu is the number of

threshold excesses. Initially we consider three prior distributions for GP parameters: a Jeffreys’ prior

πJ(σu, ξ) ∝ σ−1
u (1 + ξ)−1(1 + 2ξ)−1/2, σu > 0, ξ > −1/2; (10)

a maximal data information (MDI) prior (Zellner, 1998; Beirlant et al., 2004)

πM (σu, ξ) ∝ σ−1
u e−(ξ+1) σu > 0, ξ > −1, (11)

truncated from ξ ∈ R to ξ > −1; and a flat prior (Pickands, 1994)

πF (σu, ξ) ∝ σ−1
u , σu > 0, ξ ∈ R, (12)

which is equivalent to placing independent uniform priors on log σu and ξ. Motivated by findings

presented later in this Section we generalize (11) to an MDI(a) prior:

πA(σ, ξu; a) ∝ σ−1
u a e−a(ξ+1) σu > 0, ξ > −1, a > 0. (13)

These priors are improper. Let nu be the number of threshold excesses. Castellanos and Cabras

(2007) show that the Jeffreys’ prior yields a proper posterior for nu > 1 and Northrop and Attalides

(2016) show that under the flat prior a sufficient condition for posterior propriety is nu > 3. Northrop

and Attalides (2016) also show that for any sample size, if, and only if, ξ is bounded below a priori,
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the MDI prior, and the generalized MDI prior, yield a proper posterior. The way in which MDI

priors are constructed (Zellner, 1998, Section 2.2) means that the functional form of (11) is invariant

to the particular lower bound chosen. At the particular bound of −1 used in (11) the GP distribution

reduces to a uniform distribution on (0, σ) and corresponds to a change in the behaviour of the GP

density: for ξ < −1, this density increases without limit as it approaches its mode at the upper

end point −σu/ξ, behaviour not expected in extreme value analyses. The constraint ξ > −1 is also

imposed in maximum likelihood estimation for the GP distribution because for ξ < −1 the likelihood

increases without limit as −σu/ξ approaches xn − u (Hosking and Wallis, 1987).

Figure 3 compares the Jeffreys’, MDI and generalized MDI prior (for a = 0.6) as functions of ξ.

The Jeffreys’ prior (10) is unbounded as ξ ↓ −1/2. If there are small numbers of threshold excesses

ξ

pr
io

r 
de
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ity

−1.0 −0.5 0.0 0.5 1.0
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0

0.
5

1.
0

1.
5
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MDI (1)
MDI (0.6)

Fig. 3. Jeffreys’, truncated MDI and generalized MDI priors as functions of ξ.

this can result in a bimodal posterior distribution, with one mode at ξ = −1/2. In this simulation

study we also find that the Jeffreys’ prior results in poorer predictive performance than the truncated

MDI and flat priors.

Let Znew be a future N -year maximum, sampled from a distribution with distribution function

F (z;θ)nyN . If the predictive distribution function (8) is the same as that of Znew then P (MN 6
Znew | x) has a U(0,1) distribution. In practice this can only hold approximately: the closeness of the

approximation under repeated sampling provides a basis for comparing different prior distributions.

Performance of an estimative approach based on the MLE θ̂ can be assessed using F (Znew; θ̂)
nyN .

For a given prior distribution and given values of N,ny and n, the simulation scheme is:

1. simulate a dataset xsim of n independent observations from a BGP(pu, σu, ξ) model and then a

sample θj , j = 1, . . . ,m from the posterior π(θ | xsim);

2. simulate an observation znew from the distribution of MN , that is, max(X1, . . . , XNu
), where

Nu ∼ bin(nyN, pu) and Xi
i.i.d.∼ GP(σu, ξ), i = 1, . . . , Nu;

3. use (9) to evaluate P̂ (MN 6 znew | x).
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Steps 1. to 3. are repeated 10000 times, providing a putative sample of size 10000 from a U(0, 1)

distribution. In the estimative approach step 3 is replaced by evaluation of F (znew; θ̂)
nyN . Here,

and throughout this paper, we produce samples of size m from the posterior distribution π(θ | x)

using the generalized ratio-of-uniforms method of Wakefield et al. (1991), following their suggested

strategy of relocating the mode of π(θ | x) to the origin and setting a tuning parameter r to 1/2. In

the simulation studies we use m = 1000 and when analyzing real data we use m = 10000.

We assess the closeness of the U(0,1) approximation graphically (Geweke and Amisano, 2010),

comparing the proportion of simulated values in each U(0,1) decile to the null value of 0.1. To aid

the assessment of departures from this value we superimpose approximate pointwise 95% tolerance

intervals based on number of points within each decile having a bin(10000, 0.1) distribution, i.e.

0.1±1.96 (0.1× 0.9/10000)1/2 = 0.1±0.006. We use pu ∈ {0.1, 0.5}, σu = 1 and values of ξ suggested

approximately in Section 2.5 by the analyses of the Gulf of Mexico data (ξ ≈ 0.1) and the North Sea

data (ξ ≈ −0.2).

The plots in Figures 4 (ξ = 0.1, pu = 0.5) and 5 (ξ = −0.2, pu = 0.1) are based on simulated

datasets of length n = 500 and ny = 10, i.e. 50 years of data with a mean of 10 observations per

year, for N = 100, 1000, 10000 and 100000 years. Note that the plots on the bottom right have much

wider vertical axis scales than the other plots. It is evident that the estimative approach based on
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Fig. 4. Proportions of simulated values of P̂ (MN 6 znew | x) falling in U(0,1) deciles for the case ξ = 0.1 and

pu = 0.5. The prior is labelled on the plots. Separate lines are drawn for N = 100, 1000, 10000 and 100000.

95% tolerance limits are superimposed.

the MLE produces too few values in deciles 2 to 9 and too many in deciles 1 and 10. When the
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true BGP distribution of MN (from which znew is simulated in step 2) is wider than that inferred

from data (in step 1 and using (9)) we expect a surplus of values in the first and last deciles. The

estimative approach fails to take account of parameter uncertainty, producing distributions that tend

to be too concentrated and resulting in underprediction of large values of znew and overprediction of

small values of znew.

The predictive approaches perform much better. Although departures from desired performance

are relatively small, and vary with N in some cases, some general patterns appear. In Figure 4

the flat prior tends to overpredict large values and small values. The MDI prior tends to result in

underprediction of large values. The Jeffreys prior underpredicts large values, to a greater extent

than the MDI prior, and also tends to underpredict small values. All these tendencies are slightly

more pronounced for ξ = 0.1, pu = 0.1 (not shown).
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Fig. 5. Proportions of simulated values of P̂ (MN 6 znew | x) falling in U(0,1) deciles for the case ξ = −0.2

and pu = 0.1. The Jeffreys’ prior is replaced by a control plot based on random U(0,1) samples. Separate

lines are drawn for N = 100, 1000, 10000 and 100000. 95% tolerance limits are superimposed.

Figure 5 gives similar findings, although the N = 100 case behaves a little differently to the

larger values of N . The Jeffreys’ prior is replaced by a control plot based on values sampled from a

U(0,1) distribution. For ξ = −0.2 and with small numbers of threshold excesses the Jeffreys’ prior

occasionally produces a posterior that is also unbounded as ξ ↓ −1/2, making sampling from the

posterior difficult.

These results suggest that, in terms of predicting MN for large N , the MDI prior performs better

than the flat prior and the Jeffreys’ prior. However, a prior for ξ that is in some sense intermediate
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between the flat prior and the MDI prior could possess better properties. To explore this we consider

the prior (13) for 0 < a 6 1. Letting a → 0 produces flat prior for ξ on the interval [−1,∞). In order

to explore quickly a range of values for a we reuse the posterior samples based on the priors πF (σ, ξ)

and πM (σ, ξ). We use the importance sampling ratio estimator (6) to estimate P (MN 6 Znew | x)

twice, once using πF (θ | x) as the importance sampling density h(θ) and once using πM (θ | x). We

calculate an overall estimate of P (MN 6 Znew | x) using a weighted mean of the two estimates, with

weights equal to the reciprocal of the estimated variances of the estimators (Davison, 2003, page 603).

Figure 6 shows plots based on the MDI(0.6) prior. This value of a has been selected based on

plots for a ∈ {0.1, 0.2, . . . , 0.9}. We make no claim that this is optimal, just that it is a reasonable

compromise between the flat and MDI priors, providing relatively good predictive properties for the

cases we have considered.
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Fig. 6. Proportions of simulated values of P̂ (MN 6 znew | x) falling in U(0,1) deciles for different combinations

of ξ and pu under the MDI(0.6) prior. Separate lines are drawn for N = 100, 1000, 10000 and 100000. 95%

tolerance limits are superimposed.

2.5. Significant wave height data: single thresholds

We analyse the North Sea and Gulf of Mexico storm peak significant wave heights using the MDI(0.6)

prior suggested by the simulation study in Section 2.4. We use the methodology proposed in Section

2.1 to quantify the performance of different training thresholds. We use training thresholds set at

the 0%, 5%, . . . , uk% sample quantiles, for different uk. We define the estimated threshold weight
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associated with training threshold ui, assessed at validation threshold v(= uk), by

wi(v) = exp{T̂v(ui)}/
k∑

j=1

exp{T̂v(uj)}, (14)

where T̂v(u) is defined in (7). The ratio w2(v)/w1(v), an estimate of a pseudo-Bayes factor (Geisser

and Eddy, 1979), is a measure of the relative performance of threshold u2 compared to threshold u1.

In Section 3 these weights will be used to combine inferences from different training thresholds.

The top row of Figure 7 shows plots of the estimated training weights against training threshold

based for different uk. For the North Sea data training thresholds in the region of the sample 25-35%

quantiles (for which the MLE of ξ ≈ −0.2) have relatively large threshold weight and there is little

sensitivity to uk. For the Gulf of Mexico data training thresholds in the region of the 60-70% sample

quantiles (for which the MLE of ξ ≈ 0.1) are suggested, and the threshold at which the largest weight

is attained is more sensitive to uk. As expected from the histogram of the Gulf of Mexico data in

Figure 1 training thresholds below the 25% sample quantile have low threshold weight. Note that for

the Gulf of Mexico data the 90% and 95% thresholds have far fewer excesses (32 and 16) than the

suggested 50.
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Fig. 7. Analyses of significant wave height data by training threshold u. Top row: estimated threshold weights

by the highest training threshold considered. Bottom row: N -year predictive return levels and medians of the

predictive distribution of MN for N = 100, 1000 and 10000. Left: North Sea. Right: Gulf of Mexico.

The bottom row of Figure 7 shows that the N -year predictive return levels and the medians of the

predictive distribution of N -year maximaMN are close for N = 100, where little or no extrapolation is
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required, but for N = 1000 and N = 10000 the former is much greater than the latter. For the North

Sea data the results appear sensible and broadly consistent with estimates from elsewhere. From the

55% training threshold upwards, which includes thresholds that have high estimated training weights,

estimates of the median of M1000 and M10000 from the Gulf of Mexico data are, in the opinion of

experts, implausibly large, e.g. 31.6m and 56.7m for the 75% threshold. The corresponding estimates

of the predictive return levels are even less credible. High posterior probability of large positive

values of ξ, caused by high posterior parameter uncertainty, translates into large predictive estimates

of extreme quantiles. That the estimated medians M1000 and M10000 from the Gulf of Mexico data

are considered implausible suggests that there is expert prior information that could be included.

Figure 8 gives examples of the posterior samples of σu and ξ underlying the plots in Figure 7. As
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Fig. 8. Samples from π(σu, ξ | x), with 25%, 50%, 75%, 95% and 99% highest posterior density (solid)

contours. The posterior mode is indicated by ×. The dashed contours are the corresponding contours under

the flat prior πF (σu, ξ). The solid grey line shows the support of the posterior distribution. On the right axes

are plotted the prior (dashed) and posterior (solid) marginal densities for ξ. Top: ‘best’ training threshold (for

uk set at the 85% sample quantile). Bottom: 95% training threshold. Left: North Sea. Right: Gulf of Mexico.

one would expect from the fact that quantiles of a GP distribution increase in both σu and ξ, these

parameters are negatively associated a posteriori. The conditional posterior distributions of ξ given

σu are positively skewed, particularly so for the 95% training thresholds, mainly because for fixed σu,

ξ is bounded below by σu/(xn−u). The higher the threshold the larger the posterior uncertainty and

the greater the skewness towards values of ξ that correspond to a heavy-tailed distribution. For the



18 P. J. Northrop, N. Attalides and P. Jonathan

Gulf of Mexico data at the 95% threshold P̂ (ξ > 1/2 | x) ≈ 0.20 and P̂ (ξ > 1 | x) ≈ 0.05. This issue

is not peculiar to a Bayesian analysis: frequentist confidence intervals for ξ and for extreme quantiles

are also unrealistically wide.

Figure 8 also contains posterior contours under the flat prior πF (σu, ξ). One could also think of

these as contours of the likelihood for (log σu, ξ). This change of prior has virtually no effect for

the ‘best’ training thresholds, and little effect when a 95% threshold is used for the North Sea data.

When a 95% threshold is used for the Gulf of Mexico data the posterior under the flat prior places

much greater probability on large positive values of ξ than that under the MDI prior, indicating that

at this threshold the data do not dominate the prior. This is also suggested by the marginal posterior

density of ξ being far from flat over the effective posterior support of ξ.

Physical considerations suggest that there is a finite upper limit to storm peak Hs (Jonathan and

Ewans, 2013), but if there is positive posterior probability on ξ > 0 then the implied distribution ofHs

is unbounded above and on extrapolation to a sufficiently long time horizon, Nl say, unrealistically

large values will be implied. That is, in the absence of information external to the data, high

uncertainty about long extrapolations is to be expected. This may not be a problem if Nl is greater

than the time horizon of practical interest, that is, the information in the data is sufficient to allow

extrapolation over this time horizon. Otherwise, one could incorporate supplementary data (perhaps

by pooling data over space as in Northrop and Jonathan (2011)), prior information or a model that

better accounts for the physics of the process. A physical characterisation of the limiting behaviour

of Hs for a given wave environment and bathymetry is not available, but a model based on a mixture

of distributions with different tail behaviours (Süveges and Davison, 2012) may provide a useful

generalisation of a single BGP model. Some practitioners assume that ξ < 0 a priori, in order

to ensure a finite upper limit, but such a strategy may sacrifice performance at time horizons of

importance and produce unrealistically small estimates for the magnitudes of rare events. In Section

3.3 we consider how one might incorporate expert prior information to avoid unrealistic inferences.

3. Accounting for uncertainty in threshold

We use Bayesian model-averaging (Hoeting et al., 1999; Gelfand and Dey, 1994) to combine inferences

based on different thresholds. Consider a set of k training thresholds u1, . . . , uk and a particular

validation threshold v. We view the k BGP models associated with these thresholds as competing

models. There is evidence that one tends to obtain better predictive performance by interpolating

smoothly between all models entertained as plausible a priori, than by choosing a single model

(Hoeting et al., 1999, Section 7). Suppose that we specify prior probabilities P (ui), i = 1, . . . , k for

these models. In the absence of more specific prior information, and in common with Wadsworth

and Tawn (2012), we use a discrete uniform prior P (ui) = 1/k, i = 1, . . . , k. We suppose that the

thresholds occur at quantiles that are equally spaced on the probability scale. We prefer this to equal



Extreme value threshold selection 19

spacing on the data scale because it seems more natural than an equal spacing on the data scale and

retains its property of equal spacing under data transformation.

Let θi = (pi, σi, ξi) be the BGP parameter vector under model ui, under which the prior is

π(θi | ui). By Bayes’ theorem, the posterior threshold weights are given by

Pv(ui | x) =
fv(x | ui)P (ui)∑k
j=1 fv(x | uj)P (uj)

,

where fv(x | ui) =
∫
fv(x | θi, ui)π(θi | ui) dθi is the prior predictive density of x based on validation

threshold v under model ui. However, fv(x | ui) is difficult to estimate and is improper if π(θi | ui)

is improper. Following Geisser and Eddy (1979) we use
∏n

r=1 fv(xr | x(r), ui) = exp{T̂v(ui)} as a

surrogate for fv(x | ui) to give

P̂v(ui | x) =
exp{T̂v(ui)}P (ui)∑k
j=1 exp{T̂v(uj)}P (uj)

. (15)

Let θij , j = 1, . . . ,m be a sample from π(θi | x), the posterior distribution of the GP parameters

based on threshold ui. We calculate a threshold-averaged estimate of the predictive distribution

function of MN using

P̂v(MN 6 z | x) =
k∑

i=1

P̂ (MN 6 z | x, ui)P̂v(ui | x), (16)

where, by analogy with (9), P̂ (MN 6 z | x, ui) = (1/m)
∑m

j=1 F (z;θij)
nyN . The solution ẑPM (N) of

P̂v(M1 6 ẑPM (N) | x) = 1− 1/N (17)

provides a threshold-averaged estimate of the N -year predictive return level, based on validation

threshold v. All training thresholds with non-zero prior probability contribute to inferences, with

thresholds producing relatively good predictive performance at extreme levels having greater influence

than those with weaker performance.

3.1. Simulation study 2: single and multiple thresholds

We compare inferences from a single threshold to those from averaging over many thresholds, based

on random samples simulated from three distributions, chosen to represent qualitatively different

behaviours. With knowledge of the simulation model we should be able to choose a suitable single

threshold, at least approximately. In practice this would not be the case and so it is interesting to

see how well the strategies of choosing the ‘best’ threshold u∗ (Section 2), and of averaging inferences

over different thresholds (Section 3), compare to this choice and how the estimated weights P̂v(ui | x)

in (15) vary over ui.

The three distributions are now described. A (unit) exponential distribution has the property

that a GP(1,0) model holds above any threshold. Therefore, choosing the lowest available threshold

is optimal. For a (standard) normal distribution the GP model does not hold for any finite threshold,
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the quality of a GP approximation improving slowly as the threshold increases. In the limit ξ = 0,

but at finite levels the effective shape parameter is negative (Wadsworth and Tawn, 2012) and one

expects a relatively high threshold to be indicated. A uniform-GP hybrid has a constant density up

to its 75% quantile and a GP density (here with ξ = 0.1) for excesses of the 75% quantile. Thus, a

GP distribution holds only above the 75% threshold.

In each case we simulate 1000 samples each of size 500, representing 50 years of data with an

average of 10 observations per year. We set training thresholds at the 50%, 55%, . . . , 90% sample

quantiles, so that there are 50 excesses of the (90%) validation threshold. For each sample, and for

values of N between 100 and 10000, we solve P̂v(MN 6 z | x) = 1/2 for z (see (9)) to give estimates

of the median of MN . We show results (in Figures 9, 10 and 11) for three single thresholds: the

threshold one might choose based on knowledge of the simulation model (the plot in the top left of

the figures); the ‘best’ threshold u∗ (bottom right, see Section 2); and another (clearly sub-optimal)

threshold chosen to facilitate further comparisons (bottom left). We compare these estimates, and

a threshold-averaged estimate based on (16) to the true median of MN , H−1((1/2)10N ), where H is

the distribution function of the underlying simulation model.

The results for the exponential distribution are summarized in Figure 9. As expected, all strategies
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Fig. 9. Exponential example. Predictive median of MN by N : individual datasets (grey), N -specific

(5,25,50,75,95)% sample quantiles (dashed) and true median (solid). Threshold strategies: median (top

left); 90% quantile (bottom left); threshold-averaged (top right); ‘best’ threshold (bottom right).

have negligible bias. The threshold-averaged estimates match closely the behaviour of the optimal

strategy (the 50% threshold). The best single threshold results in slightly greater variability, offering
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less protection than threshold-averaging against estimates that are far from the truth. In the normal

case (Figure 10) the expected underestimation is evident for large N : this is substantial for a 50%

threshold but small for a 90% threshold. The CV-based strategies have greater bias than those based
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Fig. 10. Normal example. Predictive median of MN by N : individual datasets (grey), N -specific

(5,25,50,75,95)% sample quantiles (dashed) and true median (solid). Threshold strategies: 90% quantile

(top left); median (bottom left); threshold-averaged (top right); ‘best’ threshold (bottom right).

on a 90% threshold, because inferences from lower thresholds contribute, but have much smaller

variability. Similar findings are evident in Figure 11 for the uniform-GP hybrid distribution: contri-

butions from thresholds lower than the 75% quantile produce negative bias but threshold-averaging

achieves lower variability than the optimal 75% threshold.

In all these examples the CV-based strategies seem preferable to a poor choice of a single threshold,

and, in a simple visual comparison of bias and variability, are not dominated clearly by a (practically

unobtainable) optimal threshold. Using threshold-averaging to account for threshold uncertainty is

conceptually attractive but, the exponential example aside, compared to the ‘best’ threshold strategy

its reduction in variability is at the expense of slightly greater bias. A more definitive comparison

would depend on problem-dependent losses associated with over- and under-estimation.

Figure 12 summarizes how the posterior threshold weights vary with training threshold. For a

few datasets the 90% training threshold receives highest weight. This occurs when inferences about

ξ using a 90% threshold differ from those using each lower threshold. This effect is diminishes if the

number of excesses in the validation set is increased. In the exponential and hybrid cases the average

weights behave as expected: decreasing in u in the exponential case, and peaking at approximately
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Fig. 11. Uniform-GP hybrid example. Predictive median of MN by N : individual datasets (grey), N -specific

(5,25,50,75,95)% sample quantiles (dashed) and true median (solid). Threshold strategies: 75% quantile (top

left); 90% quantile (bottom left); threshold-averaged (top right); ‘best’ threshold (bottom right).
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Fig. 12. Threshold weights by training threshold. Top: individual datasets (grey) with threshold-specific sample

means (solid black) and (5,25,50,75,95)% sample quantiles (dashed). Bottom: relative frequency with which

each threshold has the largest weight. Left: exponential. Middle: normal. Right: uniform-GP hybrid.
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the 70% quantile (i.e. lower than the 75% quantile) in the uniform-GP case. In the exponential

example the best available threshold (the 50% quantile) receives the highest weight with relatively

high probability. In the hybrid example the 70% quantile receives the highest weight most often.

The 75% quantile is the lowest threshold at which the GP model for threshold excesses is correct.

The 70% quantile performs better than the 75% quantile by trading some model mis-specification

bias for increased precision resulting from larger numbers of threshold excesses. In the normal case

there is no clear-cut optimal threshold. This is reflected in the relative flatness of the graphs, with

the average weights peaking at approximately the 70-80% quantile and the 50% threshold being the

‘best’ slightly more often than higher thresholds. Given the slow convergence in this case it may be

that much higher thresholds should be explored, requiring much larger simulated sample sizes, such

as those used by Wadsworth and Tawn (2012).

3.2. Significant wave height data: threshold uncertainty

We return to the significant wave height datasets, using the methodology of Section 3 to average

extreme value inferences obtained from different thresholds. We use the full set of training thresholds

given in Section 2.5, but the influence on inferences of particular thresholds, for example the very

lowest thresholds, could be eliminated completely by setting to zero their prior probabilities. Figure

13 shows the estimated threshold-specific predictive distribution functions of M100 and M1000. Also
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Fig. 13. Threshold-specific (grey lines) and threshold-averaged (black lines) predictive distribution functions

of M100 (top) and M1000 (bottom). Left: North Sea data. Right: Gulf of Mexico data.
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plotted are estimates from the weighted average (16) over thresholds, for different choices of the

highest threshold uk. For the North Sea data there is so little sensitivity to uk that the black curves

are indistinguishable. For the Gulf of Mexico data there is greater sensitivity to uk, although based on

the discussion in Section 2.2 setting uk at the 95% sample quantile is probably inadvisable with only

315 observations. However, for both choices of uk, averaging inferences over thresholds has provided

some protection against the high probability of unrealistically large values of Hs estimated under

some individual thresholds.

3.3. An informative prior for ξ

We have used prior distributions for model parameters that are constructed without reference to

the particular problem in hand. This strategy is inadvisable when the data contain insufficient

information to dominate such priors, because inferences are then influenced strongly by a generically-

chosen prior. In the analysis of the Gulf of Mexico data in Section 2.5 we saw that for the highest

thresholds unrealistic extreme value extrapolations were produced at long time horizons. Sensitivity

of posterior inferences to choice of reference prior suggests that this is at least partly caused by a lack of

information in the data. If small sample sizes cannot be avoided and long time horizons are important

then unrealistic inferences can be avoided by providing application-specific prior information. This

prior could be elicited from an expert (Coles and Tawn, 1996; Stephenson, 2016), or specified to reflect

general experience of the quantity under study, such as the beta-type prior for ξ on −1/2 6 ξ 6 1/2

used by Martins and Stedinger (2001) for river flows and rainfall totals.

We illustrate the effects on the Gulf of Mexico analysis of providing expert information, with

the aim of preventing unrealistic inferences. Let mN be the median of MN . Oceanographers with

knowledge of the hurricane-induced storms in the Gulf of Mexico suggest approximate values of 15m

form100 and 1.5 for the ratiom10000/m100, i.e. a value of 22.5m form10000. Assuming independence of

distinct annual maxima P (M10000 6 22.5) = 1/2 implies that P (M100 6 22.5) = (1/2)1/100 ≈ 0.993.

The experts also assert that M100 is unlikely to exceed 20m, so we take P (M100 6 20) = 0.9.

Let rq = P (M100 6 q). We use Crowder (1992) to specify a prior distribution for (rq1 , rq2 , rq3),

for quantiles q1 < q2 < q3. Here (q1, q2, q3) = (15, 20, 22.5)m. A Dirichlet(α) distribution (Kotz

et al., 2000), where α = (α1, α2, α3, α4), is placed on (rq1 , rq2 − rq1 , rq3 − rq2 , 1 − rq3), from which

it follows that, marginally, rqi ∼ beta(
∑i

j=1 αj ,
∑4

j=i+1 αj), i = 1, 2, 3. We set α so that the prior

modes of (rq1 , rq3 , rq3) are (0.5, 0.9, 0.993) and rq1 lies in (0.25, 0.75) with probability 0.99. This gives

α = (11.77, 8.62, 2.01, 1.15).

Following (Stephenson, 2016), and based on theory concerning the limiting behaviour of the max-

imum of i.i.d. random variables (Coles, 2001, chapter 3), we suppose that MN (with N = 100 here)

has a generalized extreme value GEV(µ, σ, ξ) distribution, so that

rq = exp
{
−[1 + ξ(q − µ)/σ]

−1/ξ
+

}
= FGEV (q). (18)
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The prior for (rq1 , rq2 , rq3) implies a prior for ϕ = (µ, σ, ξ). For a given threshold u we require

a prior distribution for the BGP parameters θ = (pu, σu, ξ), where pu = 1 − FGEV (u)
1/nyN and

σu = σ + ξ(u− µ). Further transformation from ϕ to θ gives this prior as

π(θ) ∝ J1(ϕ) J2(θ)

4∏
i=1

(rqi − rqi−1
)αi−1, 0 < pu < 1, σu > 0, ξ > −σu/(q3 − u), (19)

where rq0 = 0, rq4 = 1 and J1(ϕ) and J2(θ) are the respective Jacobians of the transformations from

(rq1 , rq2 , rq3) to ϕ and from ϕ to θ. It can be shown that

J1(ϕ) = σξ−2

{
3∏

i=1

fGEV (qi)

}∣∣∣∣∣∣
∑

i,j∈{1,2,3,},i<j

(−1)i+j+1(titj)
−ξ log(tj/ti)

∣∣∣∣∣∣ , (20)

J2(θ) = σu (nyN)ξ (1− pu)
−1 [− ln(1− pu)]

ξ−1 (21)

where ti = − log rqi and fGEV (qi) = t1+ξ
i e−ti/σ is the density function of a GEV (µ, σ, ξ) distribution.

This construction results in priors for BGP parameters whose marginal distributions and depen-

dence structures reflect the expert probabilistic statements regarding extreme quantiles. The (dashed)

contours of marginal prior densities for (σu, ξ) in Figure 14 show that the marginal prior distributions

of σu and ξ are quite diffuse but the prior information induces negative association between σu and

ξ. Relative to the MDI(0.6) prior used in Section 2.5 the informative prior downweights parameter
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Fig. 14. Gulf of Mexico data. Samples from the marginal posterior density of (σu, ξ), with 50% and 99%

highest posterior density contours (solid) and prior density contours (dashed). The posterior mode is indicated

by × and the prior mode by •. The solid grey line shows the support of the posterior distribution. Left: 65%

threshold. Right: 95% threshold.

combinations corresponding to extrapolations that are substantially larger or smaller than anticipated

by the experts.

Figure 14 also contains graphical summaries of the marginal posterior distribution of σu and ξ

under the informative prior for analyses of the Gulf of Mexico data using 65% and 95% training
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thresholds, for comparison with the plots under the MDI(0.6) prior on the right side of Figure 8. The

posterior distributions under the informative prior are less diffuse, with lower posterior probability on

large positive values of ξ, and exhibit stronger negative association between σu and ξ. As expected,

the change of prior has had a greater effect at the higher of these two thresholds, but for both

thresholds the disparity between the prior and the posterior suggests that the data have a meaningful

impact on the inferences.

The plots on the left of Figure 15 show, by comparison with the plots on the right of Figure

7, the effect of the change of prior on the threshold weights and the threshold-specific predictive

extreme value inferences. The general pattern of the weights is similar under both priors but the

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

training threshold / %

th
re

sh
ol

d 
w

ei
gh

t

highest u

80%
85%
90%
95%

0 20 40 60 80 100

15
20

25
30

training threshold / %

si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 / 

m

return levels
median of MN

10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest u

80%
95%

significant wave height / m

C
D

F
 o

f M
10

0

10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest u

80%
95%

significant wave height / m

C
D

F
 o

f M
10

00

Fig. 15. Extreme value inferences for the Gulf of Mexico data using a Cauchy prior for ξ. Top left: estimated

threshold weights by the highest training threshold. Bottom left: N -year predictive return levels and medians

of the predictive distribution of MN for N = 100, 1000 and 10000. Right: threshold-specific (grey lines) and

threshold-averaged (black lines) predictive distribution functions of M100 (top) and M1000 (bottom).

relative performance of the lowest thresholds has improved. With little prior information the posterior

distributions produced by these thresholds are relatively precise, but have locations for ξ that are

rather smaller than those at the best-performing thresholds. This behaviour can be seen in the top

right plot of Figure 2. The use of the informative prior increases these posterior locations sufficiently

to improve performance of the lowest thresholds. In fact, the use of the informative prior has improved

predictive performance, as measured by T̂v(u) in (7), for all u and v. Another change relative to Figure
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7 is the anomalously high weight at the 90% training threshold if validation is performed at the 95%

sample quantile. As discussed earlier, in practice we would not use such a high validation threshold as

it produces only 16 excesses. The bottom left plot of Figure 15 shows that for the highest thresholds

the informative prior has prevented the very unrealistic estimates obtained under the MDI(0.6) prior.

This can also be seen by comparing the plots on the right of Figures 13 and 15: the grey curves

corresponding to high thresholds have shifted to the left, that is, towards giving higher density to

smaller values of MN , with a similar knock-on effect on the threshold-averaged black curves.

4. Discussion

We have proposed new methodology for extreme value threshold selection based on a GP model for

threshold excesses. It can be used either to inform the choice of a ‘best’ single threshold or to reduce

sensitivity to a particular choice of threshold by averaging extremal inferences from several thresholds,

weighting thresholds with better cross-validatory predictive performance more heavily than those

with poorer performance. The simulation study in Section 3.1 shows that the estimated threshold

weights behave as expected in cases where the GP model holds exactly above some threshold and

illustrates the potential benefit of averaging different estimated tail behaviours to perform extreme

value extrapolation.

The methodology has been applied to significant wave height datasets from the northern North Sea

and the Gulf of Mexico. For the latter dataset the highest thresholds result in physically unrealistic

extrapolation to long future time horizons. Averaging inferences over different thresholds avoids

basing inferences solely on one of these thresholds, but we also explored how the incorporation of

basic prior information can be used to address this problem. Stronger prior information about GP

model parameters, or indeed prior information about the threshold level itself, could also be used.

In common with all existing threshold selection methods some subjective input is required. These

inputs are discussed in detail in Section 2.2. The main requirement of our methodology is the choice

of the highest training threshold to be considered, as this is also the validation threshold at which

extreme value predictions from different training thresholds are compared.

The fact that our methodology is based on inferences from standard unmodified extreme value

models makes it relatively amenable to generalization. In significant wave height examples considered

in this paper it is standard to extract event maxima from raw data, thereby producing observations

that are treated as approximately independent. Otherwise, data may exhibit short-term temporal

dependence at extreme levels, leading to clusters of extremes. In ongoing work we are extending our

general approach to this situation and to deal with other important issues: the presence of covariate

effects; the choice of measurement scale; and inference for multivariate extremes. Another possibility

is to work with the GEV parameterisation of the point process approach Smith (1989) so that the

rate of threshold exceedance is modelled jointly with the tail characteristics.
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Süveges, M. and Davison, A. C. (2010) Model misspecification in peaks over threshold analysis.

Annals of Applied Statistics, 4, 203–221.

— (2012) A case study of a “Dragon-King”: The 1999 Venezuelan catastrophe. The European Physical

Journal Special Topics, 205, 131–146.

Wadsworth, J. L. (2015) Exploiting structure of maximum likelihood estimators for extreme value

threshold selection. Technometrics.

Wadsworth, J. L. and Tawn, J. A. (2012) Likelihood-based procedures for threshold diagnostics and

uncertainty in extreme value modelling. J. Roy. Statist. Soc. B, 74, 543–567.

Wakefield, J. C., Gelfand, A. E. and Smith, A. F. M. (1991) Efficient generation of random variates

via the ratio-of-uniforms method. Statistics and Computing, 1, 129–133.

Wong, T. S. T. and Li, W. K. (2010) A threshold approach for peaks-over-threshold modelling using

maximum product of spacings. Statistica Sinica, 20, 1257–1272.

Young, G. A. and Smith, R. L. (2005) Essentials of Statistical Inference. Cambridge: Cambridge

University Press.

Zellner, A. (1998) Past and recent results on maximal data information priors. J. Statist. Res., 32,

1–22.


