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ABSTRACT

Context. Heavy metals in the atmospheres of white dwarfs are thought in many cases to be accreted from a circumstellar debris disk,
which was formed by the tidal disruption of a rocky planetary body within the Roche radius of the star. The abundance analysis of
photospheric elements and conclusions about the chemical composition of the accreted matter are a new and promising method of
studying the composition of extrasolar planetary systems. However, ground-based searches for metal-polluted white dwarfs that rely
primarily on the detection of the Call K line become insensitive at 7. > 15000 K because this ionization state depopulates.

Aims. We present the results of the first unbiased survey for metal pollution among hydrogen-atmosphere (DA type) white dwarfs
with cooling ages in the range 20-200 Myr and 17 000 K < T.¢ < 27 000 K.

Methods. The sample was observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope in the far ultraviolet
range between 1130 and 1435 A. The atmospheric parameters were obtained using these spectra and optical observations from the
literature. Element abundances were determined using theoretical models, which include the effects of element stratification due to
gravitational settling and radiative levitation.

Results. We find 48 of the 85 DA white dwarfs studied, or 56% show traces of heavy elements. In 25 stars (showing only Si and
occasionally C), the elements can be explained by radiative levitation alone, although we argue that accretion has very likely occurred
recently. The remaining 23 white dwarfs (27%), however, must be currently accreting. Together with previous studies from the ground
and adopting bulk Earth abundances for the debris, accretion rates range from a few 10° gs~! to a few 10® gs~!, with no evident trend
in cooling age from ~40 Myr to ~2 Gyr. Only a single, modest case of metal pollution (M < 10° gs~') is found among ten white dwarfs
with T > 23 000 K, in excellent agreement with the absence of infrared excess from dust around these warmer stars. The median,
main sequence progenitor of our sample corresponds to an A-type star of ~2 M, and we find 13 of 23 white dwarfs descending from
main sequence 2-3 M, late B- and A-type stars to be currently accreting. Only one of 14 targets with M,q > 0.8 M, is found to be
currently accreting, which suggests a large fraction of these stars result from double-degenerate mergers, and the merger disks do not
commonly reform large planetesimals or otherwise pollute the remnant. We reconfirm our previous finding that two 625 Myr Hyades
white dwarfs are currently accreting rocky planetary debris.

Conclusions. At least 27% of all white dwarfs with cooling ages 20-200 Myr are accreting planetary debris, but that fraction could
be as high as *50%. At T.r > 23 000 K, the luminosity of white dwarfs is probably sufficient to vaporize circumstellar dust grains,
so no stars with strong metal-pollution are found. Planetesimal disruption events should occur in this cooling age and temperature
range as well, and they are likely to result in short phases of high mass-transfer rates. It appears that the formation of rocky planetary

material is common around 2-3 M, late B- and A-type stars.
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1. Introduction

It is becoming increasingly clear that the presence of planets is
more the norm than the exception. Analysis of transiting planet
candidates from Kepler puts the frequency of earth-sized plan-
ets with orbital periods <85 days at 16.5 + 3.6% (Fressin et al.
2013), whereas microlensing, which is sensitive to planets on
longer period orbits, suggests that the fraction of stars with cool
Neptunes or super Earths is *50—-60% (Cassan et al. 2012).

A fundamental question that has, until recently, received sur-
prisingly little attention is the ultimate fate of planetary systems
once their host stars evolve off the main sequence. Initially fo-
cusing on the future of the solar system (Sackmann et al. 1993;
Duncan & Lissauer 1998), a number of theoretical studies have
shown that a fraction of planets can survive the red-giant stage

* Table 1 is available in electronic form at http://www.aanda.org
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of their host stars (Villaver & Livio 2007, 2009; Nordhaus et al.
2010; Mustill & Villaver 2012). The ensuing long-term orbital
evolution is complex and may lead to planet ejections or col-
lisions (Debes & Sigurdsson 2002; Veras et al. 2011; Voyatzis
et al. 2013). Smaller bodies are likely to be scattered, from lo-
cations comparable to the solar system’s main asteroid belt or
Kuiper belt (Bonsor et al. 2011; Debes et al. 2012), which will
lead to their tidal disruption if their trajectory takes them within
the Roche radius of the white dwarf, ~1 R, (Davidsson 1999).

Accretion of debris from the disruption of planetary bodies is
now the canonical explanation (Graham et al. 1990; Jura 2003)
for the presence of dusty and gaseous disks discovered around
30 white dwarfs (e.g., Zuckerman & Becklin 1987; Becklin et al.
2005; Génsicke et al. 2006; Farihi et al. 2008; Dufour et al. 2010;
Kilic et al. 2012) and the presence of photospheric metals in a
large number of white dwarfs.

A34, page 1 of 20


http://dx.doi.org/10.1051/0004-6361/201423691
http://www.aanda.org
http://www.aanda.org/10.1051/0004-6361/201423691/olm
http://www.edpsciences.org

A&A 566, A34 (2014)

The strong surface gravity of white dwarfs leads to gravi-
tational settling: all heavy elements sink out of the atmosphere
with only the lightest one floating on top (Schatzman 1947). This
explains the composition of the vast majority of objects with al-
most pure hydrogen or helium surfaces. Metals are expected at
the hottest temperatures because of radiative levitation (Michaud
et al. 1979; Vennes et al. 1988; Chayer et al. 1995a,b), or at the
cool end of the cooling sequence through convective mixing with
deeper layers (Koester et al. 1982; Fontaine et al. 1984; Pelletier
et al. 1986). Nevertheless, small traces of heavy metals are also
found in the intermediate temperature range (see, e.g., Koester &
Wilken 2006, for a DA sample), where they can only be supplied
by an external source through accretion. Historically, accretion
from interstellar matter was considered as the most likely expla-
nation (Fontaine & Michaud 1979; Vauclair et al. 1979; Alcock
& Illarionov 1980; Dupuis et al. 1992). However, this scenario
had several problems (e.g. Aannestad et al. 1993; Wolft et al.
2002; Friedrich et al. 2004; Farihi et al. 2010a), and it is now
clear that accretion of planetary debris is the most likely expla-
nation for the majority of, if not all, metal-polluted white dwarfs.

The direct detection of planetary material in the photosphere
of a white dwarf offers the opportunity to study the chemical
composition of exoplanetary systems with a scope and accuracy
that will not be reached by other methods in the foreseeable fu-
ture (Zuckerman et al. 2007). Because high resolution and high
signal-to-noise spectra are needed, detailed studies have so far
been carried out only for a handful of objects (e.g. Klein et al.
2010, 2011; Vennes et al. 2011a; Zuckerman et al. 2011; Dufour
et al. 2012; Ginsicke et al. 2012; Jura et al. 2012; Xu et al.
2013a), with the common conclusion that the parent bodies of
the accreted debris are rocky.

The stars in these studies form a heterogenous sample that
covers a wide range in effective temperatures, major element
composition (H or He)', and metal settling timescales from days
to millions of years. In particular for those objects with extended
convection zones and long diffusion timescales (cool DA and the
majority of DB white dwarfs), it is usually not possible to deter-
mine whether accretion has just started, if it is now ongoing in
a quasistationary state, or if it has already ended long ago. This
uncertainty impedes accurate measurements of both the accre-
tion rates and chemical abundances of the circumstellar debris
(Koester 2009). Addressing the overall picture and answering
questions, such as “How many and what kinds of white dwarf
progenitors harbored a planetary system, and what were their
compositions? Where does the reservoir of small bodies that are
scattered reside, and how does it evolve with time?”, requires
deep, high-resolution observations of a much larger and unbi-
ased sample.

Ground-based observations of white dwarfs are primarily
sensitive to the detection of photospheric Ca via the H&K dou-
blet. Zuckerman et al. (2003) carried out the first systematic
study, observing with the Keck HIRES echelle spectrograph pri-
marily cool (Teg < 10000 K) and old (cooling age =1 Gyr)
DA white dwarfs, and found traces of Ca in ~25% of their tar-
get sample. A number of additional white dwarfs with weak
CaH&K lines were identified in the SPY survey (Napiwotzki
et al. 2001; Koester et al. 2005; Berger et al. 2005), and Koester
& Wilken (2006) used this combined sample of 38 DAZ to test
the hypothesis of interstellar accretion as origin of the metals.
A similar, but smaller study focusing on 30 DB white dwarfs

! DA and DB denote white dwarfs with hydrogen and helium-
dominated atmospheres, respectively. The letter “Z” is added to identify
the presence of photospheric metals.
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reached comparable conclusions, ~25% of these stars have rem-
nants of planetary systems (Zuckerman et al. 2010), with the
statistics subject to the caveat regarding stars with deep con-
vection zones mentioned above. Fundamental limitation of all
these ground-based studies are that (1) for a given photospheric
Ca abundance, the strength of the H&K doublet varies by many
orders of magnitude for white dwarf temperatures ranging from
10000 K to 25000 K, with corresponding cooling ages of a few
10 Myr to nearly 1 Gyr, and (2) Ca is only a modest component
of rocky planets, <2% of the bulk Earth (McDonough 2000).

Space-based observations of white dwarfs are sensitive to
many additional polluting elements, but have so far focused pre-
dominantly on hot (>30000 K) white dwarfs. While a substan-
tial number of hot white dwarfs showing photospheric metals
have been detected (Shipman et al. 1995; Bannister et al. 2003;
Barstow et al. 2003; Dickinson et al. 2012a,b), the interpreta-
tion of their origin has been complicated by the strong effects of
radiative levitation in their atmospheres, though Barstow et al.
(2014) argue for external pollution.

Here, we present the results of a well defined large far-
ultraviolet spectroscopic survey of warm (17 000-27 000 K) DA
white dwarfs that is sensitive to many of the major compo-
nents of rocky material (O, Fe, and in particular Si) and ex-
tends our knowledge regarding the frequency of planetary de-
bris around white dwarfs and their main sequence progenitors
to younger cooling ages (~20-200 Myr). In this temperature
range, DA white dwarfs have very simple atmospheres, no con-
vection zones, and short diffusion timescales. It is therefore safe
to assume that the diffusion occurs in a steady state and the cal-
culation of the chemical composition of the accreted matter is
straightforward. One complication in this range — radiative lev-
itation of silicon and carbon — was not anticipated at the begin-
ning of the project, but we developed the necessary calculations
to account for this effect.

2. Sample selection and HST observations

We selected an input target list of 150 DA white dwarfs from
Liebert et al. (2005) and Koester et al. (2009), where the sole cri-
teria were that the stars (a) had 17000 K < T < 25000 K (two
targets turned out to be slightly hotter in our analysis, extend-
ing the temperature range to ~27 000 K), and (b) had predicted
fluxes F,(1300A) > 5x 107" erg cm™2 s™' A~!. Given the need
to obtain far-ultraviolet spectroscopy for a large sample of DA
white dwarfs, but with no specific need to observe any particular
star, this project was implemented as an HST Snapshot Program.
Such snapshots are short observations occupying at most one
HST orbit, which are executed in gaps of the scheduled observ-
ing sequence, where no other target from the pool of accepted
regular GO or Large programs is available. We included sev-
eral types of ancillary targets to facilitate the comparison with
the main DA sample, and to test our computational tools: sev-
eral white dwarfs with close M-dwarf companions (drawn from
Schreiber & Génsicke 2003 and Farihi et al. 2010b), two recently
discovered metal-polluted DA white dwarfs from Vennes et al.
(2010, 2011b), and a small number of bright DB white dwarfs
from Bergeron et al. (2011). This HST program was executed
from September 2010 to February 2013, and a total of 85 DA
white dwarfs from our target list, plus 15 ancillary targets were
successfully observed. The distribution of the fundamental pa-
rameters of the 85 DA white dwarfs (T.g, log g, V-band magni-
tude, M4, cooling age, and progenitor mass M) are illustrated
in Fig. 1.
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Fig. 1. Fundamental properties of the DA stars observed in this HST/COS far-ultraviolet spectroscopic survey. From top left to bottom right:
effective temperature and surface gravity (Sect. 3), V-band magnitude, white dwarf mass and cooling age computed from 7.4 and log g using
the cooling models of Fontaine et al. (2001), and the main-sequence progenitor mass computed from M,y and the initial-to-final mass relation of
Kalirai et al. (2008). The full sample is indicated by the outlined histogram. 48 white dwarfs where at least photospheric Si has been detected are
shown with the filled histograms, of which 23 must be currently accreting (black). The remaining 25 (grey) have Si abundances consistent with
support from radiative levitation alone, and have very likely accreted in the recent past (Sect. 9.1).

All observations were obtained with the Cosmic Origins
Spectrograph (COS, Green et al. 2012) using the G130M grat-
ing. We adopted a central wavelength of 1291 A, which cov-
ers the wavelength range from 1130 to 1435 A, with a gap at
1278-1288 A due to the space between the two detector seg-
ments. The COS detector suffers of a number of fixed-pattern
problems, which can be eliminated by obtaining multiple spec-
tra dithered by small steps in the dispersion direction, so-called
FP-POS settings. The best results are obtained using all available
four FP-POS settings, but given the limited time available in a
snapshot exposure, we chose to split the exposure time equally
between only two FP-POS positions (1 and 4).

Several of our COS observations were already used for the
study of individual objects, including a detailed abundance study
of four strongly metal-polluted DAZ stars that also exhibit in-
frared excess from circumstellar dust (Génsicke et al. 2012); the
detection of planetary debris at two white dwarfs in the Hyades
(Farihi et al. 2013b, see also Sect. 9.6) and of water in an ex-
trasolar minor planet (Farihi et al. 2013a); and the identification
of molecular hydrogen in one DA white dwarf that turned out to
be significantly cooler than the published effective temperatures
(Xu et al. 2013b; Zuckerman et al. 2013).

In this paper, we focus on the statistical analysis of the DA
sample, a more detailed discussion of the white dwarfs that ex-
hibit photospheric absorption in addition to Si and C will be dis-
cussed elsewhere.

3. Atmospheric parameters

The parameters were determined by comparison of the observed
spectra with a grid of theoretical models, calculated with the
methods and input physics as described in Koester (2010). The
only important change compared to the grid used for the analysis
of the SPY survey (Koester et al. 2009) are the inclusion of the
non-ideal Balmer line Stark profiles as calculated by Tremblay
& Bergeron (2009) and new Lyman « profiles.

The new calculations for the broadening of the Lyman «
line, and in particular the quasi-molecular satellites at 1400 and
1600 A, use the unified theory as described in Allard & Kielkopf
(1982) and Allard et al. (1999). The program code for the pro-
files, however, has been completely rewritten with improved nu-
merical algorithms to overcome problems with numerical noise
and artifacts, caused by the very large dynamical range of ten or
more orders of magnitude between the line core absorption and
the far wing in very broad lines. We have also used new calcu-
lations for the adiabatic potentials and dipole moments for the
H-H+ interaction by Santos & Kepler (2012).

The HST/COS spectra are dominated by the Lyman «a pro-
file, including the satellite near 1400 A, and contain practi-
cally no undisturbed continuum. Although a fit can be obtained
with effective temperature T and surface gravity log ¢ as free
parameters, the result is quite uncertain. A small increase in
log g can almost perfectly be compensated by an increase in
T, such that the ionization fraction, the major determinant for
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atmospheric structure and line strengths, remains constant. Very
minor changes in the fitting routine cause the solution to wan-
der along this correlation line. It is therefore necessary to use
additional information to fix either the temperature or logg in
the fitting of the COS spectra. Fortunately all objects have re-
cent parameter determinations from high quality optical spectra,
which do not suffer from this degeneracy, and up-to-date model
atmospheres.

Seventy one of the 90 objects (including five of the ancillary
targets) have been analyzed from optical spectra by Gianninas
et al. (2011, hereafter G11), and 60 objects have at least two
spectra in the SPY database. The latter have been reanalyzed
by us using the latest model grid. The overlap of both samples
(excluding WD 09334025 and WD 10494103 with strong con-
tribution from a red companion in the optical [G11]) contains
39 objects, which can be used to estimate systematic and statis-
tical errors of the parameter determination.

The G11 temperatures are on average higher by 3.16%, the
surface gravities are larger by 0.056 dex. One possible explana-
tion for these differences could be the theoretical models, but
we believe that we use essentially the same input physics as
the Montreal group. The models are rather simple with no con-
vection, fairly low matter densities, and weak non-ideal effects.
When we implemented the Tremblay & Bergeron (2009) Stark
broadening data, P. Tremblay (2009, priv. comm.) provided a
theoretical spectrum for the optical range of a DA at 18000 K,
log g = 8. The corresponding model in our current grid is within
<1% of the flux identical to that benchmark spectrum. We thus
do not believe that the different results come from differences in
the theoretical models. The different nature of the observations
(e.g. echelle vs. long slit spectra), or different fitting methods
remain as possible explanations.

Apart from the systematic differences there is also a statis-
tical scatter, which we interpret as an indication of the statis-
tical error in our parameter determination (o(7Ter) = 2.36%,
o(log g) ~ 0.084). Figure 2 shows the comparison for the com-
mon sample.

The systematic difference in the optical parameter determi-
nation between G11 and the current work leads to different pre-
dictions for the theoretical UV spectra. The Tq difference has a
much larger effect than that of log g; we have therefore decided
to adopt the surface gravities from optical results and use Teg as
free fit parameter for the COS spectra. Keeping our own optical
surface gravities fixed we obtain temperatures from the ultravi-
olet fitting, which are similar to our optical temperatures, with
an average difference of only 80 K. On the other hand, using
the G11 surface gravities, our fits to the COS spectra results in
temperatures, which are on average 600 K lower than found by
G11 from their optical spectra. In simple words: using our own
models and the described method, the parameters are consistent
between optical and ultraviolet fitting, whereas for the G11 pa-
rameters they are not. We do not know if a fit of the ultraviolet
spectra with the Montreal models would give more consistent re-
sults, but the implication would be that their theoretical Lyman
a spectra are different from our current implementation.

The derived (COS) temperatures using either the G11 or our
log g values from the SPY spectra differ by only 169 K on av-
erage, much less than they differ from the G11 temperatures, as
shown above, with a distribution completely determined by the
statistical errors of the optical surface gravities. The statistical
(formal) errors for T from the fit routines are small (about 20 K
typically), and can be neglected entirely. This results in a tight
correlation between log g and the resulting COS temperature,
which we use in the error estimates below.
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Fig. 2. Comparison of T and log g between the Gianninas et al. (2011)
results and our own determinations from the reanalysis of the SPY spec-
tra. The continuous lines are the 1:1 relations.

These experiments suggested the following procedure. For
the overlapping sample between G11 and SPY we take the aver-
age logg. For those with only G11 determination we decrease
log g by one half the systematic difference (0.028), whereas
for those with SPY determination alone, we increase log g by
the same amount. This decreases the systematic difference to
either sample to +0.028 in log g; adding the statistical error
quadratically results in o(log g) = 0.089. With this log g kept
fixed, we fit the ultraviolet spectra to determine a (COS) tem-
perature. The error of logg translates into an error of Tes of
1.36%. We therefore use as our final error estimates o(Teg) =
1.36% and o(log g) = 0.089, with a very tight correlation
(larger log g leads to larger T.x). The results are presented
in Table 1, which also contains photometric V data from the
SIMBAD database, the Villanova White Dwarf Catalog?, and the
APASS Photometric All-Sky Survey?, and some derived quanti-
ties. Masses and radii are obtained from the Montreal evolution-
ary calculations* (Fontaine et al. 2001), two independent dis-
tance estimates from the comparison of the absolute HST flux
and the V magnitude with theoretical predictions from the model
atmosphere parameters and the radius. A comparison of both
values is shown in Fig. 3.

2 http://www.astronomy.villanova.edu/WDcatalog/
3 http://www.aavso.org/apass

4 http://www.astro.umontreal.ca/~bergeron/
CoolingModels/
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Fig. 3. Comparison of distances derived using the V magnitude vs. using
the absolute calibration of COS. The systematic deviation from the 1:1
relation (solid line) is caused by our neglect of interstellar reddening
with a much stronger effect in the ultraviolet than on V.

The systematic difference between the two values indicates
that some amount of reddening is present for the more distant
objects. Assuming a 1/4 dependence leads to an #20% change
of the absorption over the broad Le line. In our spectral fitting
we use the fixed surface gravity from the optical determination.
The temperature is then obtained from a fit to the La line, which
is dominated by the overall strength (i.e. the equivalent width)
of this line, unaffected by the reddening.

4. Element abundances

Atmospheric structures were calculated for the best fit parame-
ters with the same input physics used in constructing the grid.
With this model structure synthetic spectra were calculated in-
cluding approximately 14000 spectral lines of 14 elements.
The elements were assumed to be homogeneously distributed
throughout the atmosphere. Individual abundances were then
varied until a satisfactory fit to the spectral lines in the ob-
served spectrum was achieved. We then calculated models with
the metal abundances changed by +0.2 dex and estimated the
abundance errors from these models. Table 2 shows the results
for the Si and C abundances. Figure 4 shows an example for
the total range of the observed spectra, as well as details of the
spectral ranges with the Si and C lines important for the present
study, compared with model fits. The panels from top to bottom
show:

a) Complete COS spectral range for WD 1943+163 with typi-
cal signal-to-noise and relatively large Si and C abundances.

b) Sim1260.422, 1264.738, 1265.002A. Note the strong
blue-shifted interstellar component of the resonance line
1260.422 A. The sulfur ST 1259.519 A line is also visible at
the photospheric position.

¢) Silll 1294.545, 1296.726, 1298.892, 1298.946, 1301.149 A
lines.

d) Carbon, C11 1334.530, 1335.660, 1335.708 A lines, with in-
terstellar component of the resonance line 1334.530 A.

e) Cm 1174.930, 1175.260, 1175.590, 1175.710, 1175.987,
1176.370 A lines. These Cii lines are weak in
WD 1943+163; the spectrum shown is for HE 0416-1034.
The continuous (red) lines are the theoretical model.

Somewhat surprisingly, of the 85 sample objects in Table 2, 48
show photospheric Si. In fact, Si is always present, if any heavy
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Fig. 4. Example spectra with the important lines for this work. The ver-
tical axis is the observed flux in ergcm™2s™1 A~1,

metals are seen. 18 of these show in addition C, and 7 further
metals out of this list: Mg, Al, P, S, Ca, Cr, Fe, Ni. For reasons,
which will become clear in the following, we will concentrate
in this paper on the discussion of the Si and C abundances. The
very interesting cases with more heavy metals than these two
will be treated in separate papers.

4.1. Effect of parameter errors on the abundances

As a test case we have used WD 1943+163, near the mid-
dle of the temperature range and with Si, C, and O detected.
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Table 2. Si and C abundances.

Object log[Si/H] log[C/H] Notes | Object log[Si/H] log[C/H] Notes
WD 0000+171 -8.10 (0.15) -8.30 WD 1102+748 -8.50

WD 0013-241 -8.40 WD 1104+602 -8.40

WD 0018-339 -8.00 WD 1129+155 -8.30 (0.25) -8.10

WD 0028-474 -8.40 WD 1133+293 -7.70 (0.15) -7.70

WD 0047-524 -8.40 SDSS1228+1040 -5.20(0.10)  -7.60 (0.20)  *,1,4,5
WD 0059+257 -6.50 (0.10) -8.00 1 WD 1229-013 -8.30

WD 0102+095 -7.35 (0.15) -8.00 (0.20) WD 1230-308 -8.10

WD 0114-605 -7.40 (0.20) -8.10 (0.20) HS1243+0132 -7.80 (0.15) -8.30

WD 0124-257 -8.20 WD 1257+048 -7.50 (0.15) -7.70 (0.20)

WD 0140-392 -7.50 (0.15) -8.40 WD 1310-305 -7.70 (0.15) -8.10

WD 0155+069 -8.30 WD 1325+279 -8.00 (0.15) -8.20
HS0200+2449 -8.30 WD 1325-089 -8.60 (0.25) -8.00

WD 0242-174 -8.20 (0.20) -8.30 WD 1330+473 -8.30

WD 0307+149 -7.85 (0.15) -8.30 WD 1353+409 -7.80

WD 0308+188 -8.20 WD 1408+323 -7.70 (0.15) -8.30 (0.20)
HE0308-2305 -7.80 WD 1451+006 -7.70 (0.20) -8.20

WD 0341+021 -7.95 (0.20) -7.55 (0.15) WD 1459+347 -8.20

WD 0352+018 -8.10 (0.15) -8.30 WD 1524-749 -7.90

HE0358-5127 —7.80 WD 1531-022 -8.40

HE0403-4129 -7.10 (0.15) -7.90 WD 1547+057 -8.20

HE0414-4039 -8.20 WD 1548+149 -7.65 (0.15) -7.40 (0.15)
HE0416-1034 -7.35 (0.15) -7.05 (0.20) WD 1633+676 -7.90

HE0418-1021 -8.20 WD 1647+375 -6.20 (0.10) -5.50 (0.20) 1
WD 0421+162 -7.50 (0.15) -8.30 WD 1713+332 -8.30 (0.25) -7.60 (0.20)

WD 0431+126 -8.10 (0.15) -8.30 WD 1755+194 -7.30 (0.20) -8.10 (0.20)
HE0452-3444 -7.60 (0.15) -8.20 WD 1914-598 -8.30 (0.15) -8.30
HS0507+0434A -8.40 (0.15) -8.50 WD 1929+012 -4.75 (0.15) -6.80 (0.30) *, 1,4
WD 0710+741 -6.70 (0.15) -5.90 (0.30) *,1,2 | WD 1943+163 -6.80 (0.10) -6.60 (0.20) 1
WD 0843+516 -5.20 (0.10) -7.20 (0.20) 1,4 WD 1953-715 -6.70 (0.10) -6.60 (0.20) 1
WD 0854+404 -7.90 (0.20) -8.10 WD 2021-128 -8.30

WD 0920+363 -7.30 (0.20) -7.70 WD 2032+188 -8.20

WD 0933+025 -8.30 3 WD 2046-220 -7.60 (0.15) -7.60
HS0944+1913 -8.40 WD 2058+181 -7.50 (0.10) -6.50 (0.20) 1
WD 0947+325 -8.30 WD 2134+218 -8.10 (0.15) -8.10

WD 0954+697 -8.00 (0.20) -8.20 HS2210+2323 -8.20

WD 1005+642 -8.20 WD 2220+133 -8.20

WD 1013+256 -6.90 (0.10) -6.40 (0.20) HS2229+2335 -6.50 (0.15) -6.70 (0.20)

WD 1015+161 -6.40 (0.10) -8.00 1,4 HE2231-2647 -8.10 (0.15) -8.40

WD 1017+125 -7.50 (0.15) -7.60 HE2238-0433 -7.50

WD 1034+492 -7.55 (0.10) -8.00 HS2244+2103 -7.70 (0.15) -8.10

WD 1038+633 -7.90 (0.30) -8.00 WD 2256+249 -6.85 (0.10) -6.10 (0.20) *,1,2
WD 1049+103 -8.40 3 WD 2257+162 -7.40 (0.15) -6.40 (0.20) * 2
WD 1049-158 -8.40 WD 2306+124 -7.60 (0.10) -8.00 (0.20)

WD 1052+273 -8.50 WD 2322-181 -7.70 (0.10) =7.70 (0.15)

WD 1058-129 -8.30 WD 2359-324 -7.80

Notes. Abundances are logarithm of the metal to hydrogen ratio by numbers. Numbers in parenthesis are estimated errors. If absent, the abundances
are upper limits (Sect. 9). *: Ancillary target, not used in sample statistics; 1: additional elements detected among the following: O, Mg, Al, P, S,
Ca, Fe in the ultraviolet or optical spectra; 2: post-common envelope (close) binary; 3: spatially resolved (wide) binary; 4: exhibits excess infrared
emission; 5: SDSS1228 is a gas-disk DAZ with emission lines seen in the infrared Ca triplet near 8500 A (Ginsicke et al. 2006) and the Mg It
doublet at ~2800 A (Hartmann et al. 2011). The disk emission lines are broad — in contrast, the photospheric absorption lines are narrow, and
we would expect to detect any emission in Si in the high-quality COS spectra of SDSS 1228+1040. In addition, the computations of Hartmann
et al. (2011) predict little emission in SiIl, and none in SiIll. We use many Sill and Silll in the abundance analysis and do not see a significant

difference.

Calculating two new models with the parameters increased, re-
spectively decreased by the above uncertainties, the changes in
the derived abundances are smaller than 0.04 dex for all lines,
which we take as an estimate for the uncertainty caused by pa-
rameter errors, which should be added quadratically to the errors
in Table 2.
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5. Interstellar absorption lines

With the exception of SDSS 1228+1040 and HS 2229+2335,
where the photospheric Si lines are exceptionally strong and
probably mask the IS lines, all objects show interstellar lines
of Sim 1260 A (and others) and C 11 1334/35 A. In most objects
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lines from the ground state of O, N, S, Fe are also visible. The
most obvious indication for their IS nature is the absence of
Si1 1265 A, which is always stronger than the 1260 A line in
the photosphere, because of the gf ratio of ~1.8 and level en-
ergy only 0.036 eV above the ground state. If Simr 1265 A is
visible, it is always photospheric only and in almost all cases the
interstellar component of SiIt 1260 A is shifted by 0.1 to 0.3 A.
In addition several stars show additional Si lines from excited
states, which must have a photospheric origin.

The situation is more complicated for the C1r 1334/35A
doublet, where the second level is only 0.008 eV above zero,
and both components can be observed in the ISM. Determination
of photospheric abundances is only possible when photospheric
and ISM lines are clearly separated, or if lines from excited states
are observed, such as the C 1t 1175 A multiplet.

The spectral resolution of ~17 kms~! does not allow indi-
vidual components in the IS lines to be identified. However, the
equivalent widths of the IS Silt 1260 A lines in those objects
without photospheric metals range from 21 to 203 mA, corre-
sponding to column densities of 10'? to 10'3 cm~2, if interpreted
as single line on the linear part of the curve of growth (e.g.
Savage & Sembach 1996). These column densities are typical
values for the local interstellar cloud (LIC) surrounding our so-
lar system (Redfield & Linsky 2004); given the proximity of our
targets, it is likely the LIC or at most one or two similar small
clouds are the only absorbing ISM material between us and most
of our sample. The IS lines in these 90 objects close to the sun
constitute an important resource for the study of the ISM in our
immediate neighbourhood and will be analyzed in another paper.

6. Interpretation of abundances in the presence
of diffusion

It is well known that the abundances in the photosphere cannot
directly be taken to infer the abundances in the accreted matter.
They are modified by the diffusion processes (Koester 2009). In
the temperature range of our sample (17 000-27 000 K) there is
no convection zone in a DA, and thus no homogeneous reservoir,
which can be used to define a diffusion timescale at the bottom of
this zone. The diffusion timescale is ill-defined in this case and
depends on the layer in the atmosphere taken as the reference —
most reasonably at the Rosseland optical depth 2/3. However
defined in detail, they are extremely short, of the order of days
or a few years at most. It is therefore reasonable to assume a
steady state between accretion and diffusion, which eliminates
some of the uncertainties plaguing such studies for cooler DA or
DB stars with deep convection zones. Steady state means a con-
stant diffusion flow of each element throughout the atmosphere,
which is equal to the accretion flow

X pvgig = const. = Xyee Hitaee- (D

Here, X is the mass fraction of the element in question, p the
mass density in the atmosphere, and vgis the diffusion velocity.
Since the structure of the atmosphere model is known, the depth
dependence of p and vgir can be calculated and leads to a pre-
dicted stratified element abundance X(r). X,.. is the abundance
in the accreted matter and 7, the accretion flow in units of
g cm™2 s~ This shows that the abundance ratios in the accreted
matter can be calculated once the diffusion fluxes for the ele-
ments are known. The diffusion fluxes are thus the final parame-
ters in the abundance analysis, replacing the usual photospheric
values. As a consequence, in the next step we have calculated

synthetic spectra with stratified abundances, and adjusted these
fluxes until the spectra are fit satisfactorily. When using the well
known terms of gravitation, electric field, and concentration gra-
dient in the diffusion equation, the abundances near optical depth
2/3 do not change very much (typically <0.1 dex) and the influ-
ence on the derived accretion abundances is noticeable, but mi-
nor. This changes drastically, however, if radiative levitation of
some elements becomes important.

7. Diffusion and radiative levitation

Radiative levitation, the selective acceleration of individual ions
by transfer of momentum from photons, has been studied ex-
tensively in the past (e.g. Chayer et al. 1995a,b, and references
therein), but was usually considered important only at tempera-
tures above 30000 K. However, Chayer & Dupuis (2010) have
demonstrated that radiative levitation could support Si at a low
level in a DA atmosphere model with 7.z = 20000 K and
logg = 8. Marginal support could also be possible for C. An
application of this result to four DAZ white dwarfs in the temper-
ature range 18 000-25 000 K (Dupuis et al. 2010) showed that in
three cases the Si abundance could be explained without current
accretion. Very recently, Chayer (2014) studied two DA stars in
the Hyades (WD 04214162 and WD 0431+126), which are also
in our sample, and demonstrated that, according to their calcu-
lations, the Si in WD 0431+126 could be completely supported
by radiative levitation (see however Sect. 9.6, where our findings
differ).

This raises the possibility that the numerous objects with Si
detections in our sample may not currently undergo an accre-
tion episode, or that at least the derived accretion rate could be
significantly altered by radiative levitation.

We have therefore decided to include this effect in our anal-
ysis, which aims to determine accretion rates from observed
photospheric abundances. We start with the description of dif-
fusion following the basic equations in Gonzalez et al. (1995)
and Vennes et al. (1988), with some changes in notation and
simplified for a trace element 2 in background element 1 (i.e.
abundance ratioy = 0)

dlnc; Z; mg
=D; |- +|=—A| -Ay)| —= 2
0 [ or (21 ! 2) KT &
Zi 611’1 D1 Az M Grad,i
-1 N
" (z, ) ar AT

Here A, A, are the atomic mass numbers of the two elements, Z;
is the average charge of the background, Z; the charge of ion i of
the trace element, ¢, its number fraction, m the atomic mass unit,
k the Boltzmann constant, 7' temperature, g the gravitational ac-
celeration, and p; the partial pressure of the ions of element 1.
D; and v; are the diffusion constants and diffusion velocity for
ion i of the trace element.
The radiative force on ion i of the trace element is

1 oo}
Ao = - f iFAdA = frags 3)
0

where F, is the radiative energy flux in the atmosphere, o; the
line absorption cross section of ion 7, and ¢ the velocity of light.

There has been some discussion in the literature, starting
with Gonzalez et al. (1995), about the distribution of the momen-
tum gained through photon absorption on the different ioniza-
tion stages (e.g. Chayer et al. 1995a,b). The question is, whether
the absorbing ion ionizes to the next higher state before losing
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the gained momentum or not. Since the detailed calculations for
each transition are much too complicated to be incorporated into
our present analysis, we follow the simple prescription of Chayer
et al. (1995b): if the principal quantum number of the final state
of the transition is not higher than that of the ground state plus
one, the momentum is lost in the absorbing ion, otherwise in the
next higher state. This is implemented in the following way: di-
viding the radiative force in the two contributions according to
the above criterion (index 1 for the momentum lost by the same
ion that has absorbed it, index 2 for the momentum lost in the
next higher ionization state)

“)

we can with the number density n write the total force on a unit
volume as

Z n; (fl,rad,i + f2,rad,i—1)

1

Jradi = firadi + foradio1

&)

Nfraa =

-1
1 flrad 1 + g n; (fl,rad,i + =~ Sandint]-
i=2 !

This outlines how the effective radiative acceleration for each ion
should be calculated to preserve the total absorbed momentum.
The final step is the averaging of the velocities, weighting with
the ionization fractions of the trace element,

nj

v= Y Ly (6)
= n

and of the diffusion flux in g cm™2 s7!

Jar = Xpv (7

with mass density p and mass fraction X of the trace element.

We note that all necessary quantities are readily available
in the atmosphere model code during the iteration of the atmo-
spheric structure; there is no need for any further approximations
of the radiative flux or line profiles. The atmospheric structure
and element distribution are iterated until a completely consis-
tent solution is obtained for the parameters T.g, log ¢, and con-
stant diffusion flux at all layers.

Each spectral line is calculated for at least 21 wavelength
points starting with steps of 1/8 the Doppler width at the line cen-
ter, increasing gradually to also cover the broad damping wings.
We have made some test calculations to test the dependence of
the result on the number of spectral lines used. A typical example
is the DA model at T.¢ = 20000 K, log g = 8.00 and [Si/H] =
—7.0. With the 66 strongest lines of Sil to SiIv the change in
the Si abundance at the same diffusion flux between calculations
with vs. without radiative levitation is 0.23 dex at Tr = 2/3, and
0.25 maximum considering all layers in the model between op-
tical depth 1076 and 1000. Using 447 Si lines, the numbers are
0.25 and 0.29; finally, with a large set of 824 lines the numbers
are 0.23 and 0.32. The major effect is already achieved with the
small line set. If we want to answer the question whether radia-
tive support without any current accretion is possible at the low-
est abundance levels, we would need very high accuracy of the
line absorption, and thus use as many lines as possible, because
the answer is either yes or no. However, our main emphasis is
to determine the diffusion fluxes, where a change of 0.05 dex
is well within the typical errors. We thus decided to take the
medium size set as a compromise between computing resources
and accuracy. The corresponding calculations for C used 394 C1
to C1V lines.
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Fig. 5. Si abundances supported by radiative levitation without accre-
tion. Continuous lines are the predictions for surface gravities log g =
7.50, 7.75, 8.00, 8.25 from top (green, blue, red, magenta in the color
version). Small circles are the observed abundances from Table 1. The
median log g of the stars with observed silicon is 7.94. See text for
explanations.
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Fig. 6. Similar to Fig. 5, but for C. Continuous lines are the predictions
for surface gravities log g = 7.50, 7.75, 8.00 from top (green, blue, red
in the color version). The median log g of the stars with observed car-
bon is 7.90.

To get an overview about the importance of radiative levi-
tation we have calculated atmospheric models with the element
stratification obtained with zero accretion flow. For these models
synthetic spectra were calculated. In order to compare the results
with the abundances in Table 1 we have then calculated homoge-
nous models, which produced the same equivalent width as the
stratified models. The abundances of these models are shown in
Fig. 5 and compared to the Si abundances of Table 1. Figure 6
shows the same comparison for C.

Figures 5 and 6 suggest that for a significant fraction of ob-
jects with photospheric Si radiative levitation may be impor-
tant. On the other hand, for most of the C observations accre-
tion seems to be necessary. The final answer is only possible by
calculating in the next step the levitation for each object individ-
ually, using the appropriate stellar parameters from Table 1.

7.1. Comparison with previous work

Radiative levitation in white dwarfs has been calculated in sev-
eral papers of the Montreal group (see e.g. Chayer et al. 1995a,b,
and references therein) and by Dreizler & Wolff (1999). These
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Fig.7. Radiative support in a log g = 8 DA white dwarf model as
a function of depth in the atmosphere, expressed as fractional mass
AM/M from the surface.

studies were aimed at hot stars. We can, however, compare our
results with the recent studies of Chayer (2014) and Chayer &
Dupuis (2010, hereafter C10). We use the same diffusion co-
efficients from Paquette et al. (1986), but the complete imple-
mentation and programming is independent. Chayer & Dupuis
(2010), give in their Fig. 3 the abundance distribution of Si in a
20000 K, log g = 8 DA model for a range of accretion rates.
Our own calculations for the same model are shown in Fig. 7.
The four panels show:

a) Radiative support from the first four ions of silicon at Teg =
20000 K, expressed as acceleration, weighted with the rela-
tive abundances of the ion.

b) Si abundance supported by this force. Without accretion two
separate “clouds” of Si are formed; outside these clouds the
abundance drops to zero (continuous black line). The dashed
(blue) line shows the Si distribution when a small accre-
tion/diffusion flux of 3.9 x 10* gs~! is present, the dotted
(red) line shows the same accretion flux with radiative levi-
tation switched off.

¢) Si abundance stratification for 24 000, 22 000, and 20 000 K
(from top on the right side). From 24 000 to the upper limit of
our sample near 27 000 K, the curves differ very little from
the 24 000 K curve. The main “visible” part of the atmo-
sphere between Trosseland 0-01—10 is between the two vertical
green lines.

The maximum abundance supported at the lowest accretion rates
in C10 is log [Si/H] ~ —7.5, which is very similar in our own
calculations. However, there are significant differences between
the two approaches

— C10 solve the time-dependent diffusion equation, whereas
we determine the stationary state. We are interested in the

interpretation of spectroscopic observations, which depend
on the details of the atmosphere; according to Fig. 3 in
C10 equilibrium is reached in less than one year. Any time-
dependent variations in the observed DAZ occur very likely
on much longer time scales, justifying our use of the station-
ary state.

— C10 calculate envelope models. The atmospheric conditions
at optical depth 2/3 (corresponding to logAM/M ~ —16.4
in this model) are used as boundary conditions; the Si abun-
dance is assumed to be constant above this layer. As the
bottom panel of Fig. 7 demonstrates, the distribution of Si
throughout the photosphere is very far from uniform (black
continuous line). If we aim at a realistic comparison with
observed spectra, we have to calculate synthetic spectra for
this distribution, and it is quite clear in this case that the Si
lines will be much weaker than in a model with constant
log [Si/H] = —7.5. We will come back to a specific exam-
ple below.

— There is a qualitative difference between a model with zero
accretion and one with even a very small accretion flux.
If radiative support fails by a tiny amount to support Si
at some layer in the atmosphere, the abundance will drop
to zero without accretion. On the other hand, with accre-
tion, the downward diffusion velocity can be very small, be-
cause of the near cancellation of the force terms in the diffu-
sion equation. This will lead to a strong enhancement of the
abundances as compared to regions without radiative sup-
port. This is demonstrated by the (blue) dashed line, which
shows the Si distribution in the case of a small accretion flux
(3.9 x 10* g s7!) and can be compared with the dotted (red)
line, which shows the same accretion flux, but with radiative
levitation switched off.

8. Determination of diffusion fluxes for the sample
with photospheric spectral lines

Since radiative levitation depends strongly on the stellar pa-
rameters — especially the surface gravity — and the abundances,
we need to study each object individually. For this purpose we
calculated two sets of models for each set of atmospheric pa-
rameters; the first one without accretion, assuming equilibrium
between radiative levitation and gravitational settling. For the
resulting atmospheric structure a synthetic spectrum was cal-
culated and from this the equivalent widths of the strong lines
Sim 1265A and C1r 1335A — and in a few cases additional
lines — were calculated and compared with observed values. This
includes obviously objects where no radiative support is possi-
ble, resulting in zero equivalent widths. The second set included
accretion. The parameter we use in this calculation is the accre-
tion flux (which in stationary state is also the diffusion flux).
The flux for Si and C was varied, until a satisfactory fit was
achieved; in the case of significant radiative support we deter-
mined an upper limit to the flux. Technically we used the original
abundances from the fit with homogeneous models as a starting
point. Assuming that they are approximately representative for
the layer 7 = 2/3, they lead, with the diffusion velocities calcu-
lated for this layer to a starting value for the flux.

Results of these calculations and the comparison with the
observations are presented in Table 3. The column labeled R/A
is our assessment, whether accretion is necessary to explain the
observed line strengths or not. Unfortunately there is no simple
and completely objective method for this decision. The strong
dependence of radiative levitation on stellar parameters, and the

A34, page 9 of 20


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423691&pdf_id=7

A&A 566, A34 (2014)

Table 3. Equivalent widths (in mA) of Simt 1265 A and C11 1335 A measured from the observed spectra (obs) compared to the predictions of
radiative levitation (RL).

Object EW(S)H[mA] EW(C)[mA] Notes R/A logflux [gs']

obs RL  obs RL Si C
WD 0000+171 54 30 0 0 R <420 <4.02
WD 0059+257 291 747 0 1 A 6.13  <4.47
WD 0102+095 78 63 15 11 R <475 <375
WD 0114-605 88 80 25 31 R <448 <348
WD 0140-392 95 41 0 0 R <478  <3.88
WD 0242-174 56 16 0 0 R? <403 <423
WD 0307+149 36 29 0 0 R <439 <417
WD 0341+021 25 171 82 78 R <339 <3.94
WD 0352+018 40 39 0 5 R <3.82  <4.08
HE0403-4129 9 36 0 5 R? <534 <435
HE0416-1034 33 35 220 71 6 A <470 528
WD 0421+162 144 0 0 0 A 527  <4.49
WD 0431+126 55 2 0 0 A 433 <436
HE0452-3444 59 32 0 0 R <461  <4.20
HS0507+0434A 20 5 0 0 R? <391 <412
WD 0710+741 245 118 277 10 %126 A 539 6.1
WD 0843+516 126 0 90 0 14 A 756  5.38
WD 0854+404 41 58 0 57 R <415 <4.19
WD 09204363 54 112 54 5 R <435 <3.68
WD 0954+697 49 40 0 0 R <4.08 <423
WD 1013+256 159 28 141 0 A 552 6.28
WD 1015+161 409 0 0 0 14 A 6.54 <4.84
WD 1017+125 98 34 0 R? <486 <4.94
WD 1034+492 123 0 0 0 A 517  <4.77
WD 1038+633 39 3 0 57 A 469 <459
WD 1129+155 30 0 0 5 A 455 <476
WD 11334293 50 75 4 5 R <423 <438
SDSS1228+1040 1090 0 48 0 *145 A 772 523
HS1243+0132 51 48 0 5 R <3.19  <4.00
WD 1257+048 91 39 38 0 A 480 471
WD 1310-305 9% 15 0 5 A 470 <451
WD 1325+279 3419 0 5 R <425 <436
WD 1325-089 29 0 0 5 A 420 <475
WD 1408+323 121 0 18 0 A 495 442
WD 1451+006 27 54 32 5 R <4.01  <3.02
WD 1548+149 69 40 6l 0 A 466  5.09
WD 1647+375 339 59 218 0 1 A 6.44  17.06
WD 1713+332 37 145 58 60 R <345 <4.26
WD 1755+194 71 7219 20 R <477 <3.61
WD 1914-598 19 12 0 5 R <397 <431
WD 1929+012 1559 41 130 0 %14 A 803  5.85
WD 1943+163 271 7 139 0 1 A 584  6.10
WD 1953-715 314 0 141 0 1 A 6.06  6.16
WD 2046-220 76 56 0 5 R <446 <4.52
WD 2058+181 156 0 135 0 1 A 537 628
WD 21344218 67 0 0 5 A 489 <470
HS2229+2335 350 0 125 0 A 635  6.09
HE2231-2647 36 48 0 5 R <3.88 <3.98
HS2244+2103 32 45 0 5 R <435 <395
WD 2256+249 145 74 168 0 *12 A 549  6.03
WD 2257+162 66 141 110 74 %2 R <348 <558
WD 2306+124 120 0 20 0 A 498 470
WD 2322-181 84 23 47 0 A 467 486

Notes. Logarithms of the C and Si diffusion fluxes (in gs™!). See Sect. 7, 8 for details. *: ancillary target, not used in sample statistics; 1: ad-
ditional elements detected; 2: post-common envelope (close) binary; 3: spatially resolved (wide) binary; 4: exhibits excess infrared emission;
5: C1r 1335 line contaminated by interstellar line; if field is empty, the spectrum is consistent with a photospheric EW = 0; 6: CIII lines near
1175 A used instead of 1335 A; 7: Sin 1298 A line used instead of 1265 A

unavoidable uncertainties of these parameters, as well as uncer- assignment of R than A, that is, we want to be confident that
tainties of the equivalent widths for very weak lines and noisy the latter objects are really accreting. If the predicted EWs are
spectra, lead to an intermediate range without unambiguous de-  within a factor of two of the observed ones, we consider pure
cisions. We have aimed to be conservative and rather err on the radiative support (without accretion) as possible, whereas with
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a factor of four or larger we conclude ongoing accretion. In be-
tween, the decision was made using the quality of the spectra,
and if no decision seemed possible, the assignment was R?

With this classification, we conclude that of the 48 ob-
jects showing photospheric Si, 23 must be currently accreting.
Likewise, of the 19 objects with C, 14 must be accreting. There
is one single object in Table 3 (HE 0416-1034), where the Si
abundance could be explained by radiative levitation alone, but
the C abundance apparently demands accretion. Other results of
Table 3 are further discussed in Sect. 9.

There has been a recent claim by Deal et al. (2013) that the
diffusion fluxes would change by orders of magnitude, if the
thermohaline instability would be taken into account. In Xu et al.
(2014) we discuss some arguments, why we do not think that
these calculation apply to the diffusion in white dwarfs. In that
paper, we were presenting results for white dwarfs with an outer
convection zone. It is conceivable that at the bottom of the con-
vection zone a boundary layer develops with a discontinuity in
molecular weight, if the accretion of a large amount of exter-
nal matter (of asteroid size) is very fast, compared to diffusion
timescales. In the current sample the stars do not have any con-
vection zone and we believe that the Deal et al. (2013) calcula-
tions are irrelevant in this case. A more detailed discussion will
be given in a future paper (Koester, in prep.).

8.1. Effect of parameter errors on diffusion calculations

We use the same object as above (WD 1943+163) to estimate
the change in the diffusion fluxes within the error estimates for
Ter and log g. With unchanged abundances, the diffusion flux
changes for all elements by approximately 0.05 dex, in the same
direction that the abundances have to change in the spectral anal-
ysis. So the combined uncertainty of the atmospheric parameters
on the final diffusion fluxes can be estimated as 0.09 dex. This
should be added quadratically to the (statistical) abundance un-
certainties to get errors for the individual fluxes. However, since
the changes go into the same direction for all elements, these
errors need not be added when calculating element ratios.

9. Results and discussion

Taken at face value the number of metal-polluted white dwarfs
in the COS sample (48 out of 85, or 56%, see Table 2) is sur-
prisingly high. Previous estimates (e.g. Zuckerman et al. 2003,
2010) put this number much lower at 20-30%. Out of the 48 stars
with at least a detection of photospheric Si, 23 (27%) must be
currently accreting, and in an additional 25 (29%), the Si abun-
dance is compatible with radiative levitation, however, still im-
plying accretion in the recent past (see Sect. 9.1 below). This
increased fraction of metal-pollution among our COS sample
compared to previous optical studies is probably due to the rel-
atively high resolution and signal-to-noise ratio of our observa-
tions, and to the choice of the wavelength region with strong
lines of Si, a major component of planetary debris. Different
from previous work on larger samples (Zuckerman et al. 2003;
Koester et al. 2005, 2009) our sample was specifically chosen
for a search for metal traces in fairly bright stars in a limited and
well defined temperature range. The detection threshold for Si
does not significantly vary over this temperature range (see the
solid line in the bottom panel of Fig. 8), and we are confident
that the high fraction of metal-polluted white dwarfs is repre-
sentative for the local neighborhood within ~100 pc around the
Sun.

9.1. Accretion from the interstellar medium?

Twenty five (29%) of the stars in our sample have Si abundances
that are consistent with being supported by radiative levitation —
what is the nature, and the origin of the polluting material?
Figure 8 in Chayer et al. (1995b) suggests that the equilibrium
abundance of Si supported by radiative levitation reaches a broad
minimum around T.x =~ 70000 K along the cooling sequence
for a 0.6 My white dwarf (corresponding to a cooling age of
<1 Myr). Upon further cooling to 30 000 K (x10 Myr), the abun-
dance necessary for equilibrium rises by a factor of ~100. At
abundances lower than the equilibrium values — as those pos-
sibly remaining from the earlier evolution — radiative levitation
will always dominate gravitational settling. Our interpretation is
that any remaining primordial Si would be blown out of the star
by the radiation pressure. As a conclusion, any Si visible be-
low 30 000 K must have been accreted. Before claiming that this
must always be accretion from a remnant planetary system or
circumstellar material in general, we derive some estimates con-
cerning the possibility of accretion from the interstellar medium.

The total Si mass in radiative levitation equilibrium in the at-
mosphere of a 20000 K, log g = 8 DA is 7.89 x 10'° g (Fig. 7).
The cross section for Eddington accretion from interstellar mat-
ter, which is the minimum we would expect, is

a= —Z”Gl)y“ Rua = 529 x 102 cm? )
with white dwarf mass and radius M4 and R,q, gravitational
constant G and space velocity v. Assuming the white dwarf
crosses just one tiny cloud like our Local Interstellar Cloud
(LIC) with a Si column density of 10'3 cm™ and a velocity
of 30 kms™' (Redfield & Linsky 2004), it would sweep up
2.46x10'3 g of Si. That is three hundred times more than needed
to explain the observations, and most of this matter would diffuse
downward, except for the tiny fraction supported by radiative
levitation. However, in this scenario, adopting a typical cloud
size of ~2 pc within the solar neighborhood (Redfield & Linsky
2004), the accretion rate of Si would be M(Si) < 10 gs~!, orders
of magnitude smaller than the rates determined for the 23 objects
with inferred current accretion. A more realistic estimate for the
accretion of Si bound in interstellar dust grains is obtained as-
suming that hydrodynamic (Bondi-Hoyle) accretion works only
within a radius, where the grains sublimate (Alcock & Illarionov
1980; Farihi et al. 2010a). A similar calculation as above leads
to accretion rates M(Si) < 103 gs™!, still much smaller than any
of our observed rates.

An additional argument against an ISM origin for the Si de-
tections in our sample comes from the C/Si ratio that we deter-
mined for the debris material. Accretion from the ISM would
suggest a C/Si ratio close to its solar value, i.e. 3.6 by mass.
Inspection of Table 3 shows that the majority of the white dwarfs
that are currently accreting have C/Si values, or upper lim-
its thereof, significantly below solar. Exceptions are the white
dwarfs in post-common envelope binaries, which presumably
accrete =solar-abundance wind from their companions, plus a
handful of apparently single white dwarfs, the nature of which
which will be discussed elsewhere.

9.2. Total accretion rates

Given that typically only one, or at best a few, elements are
detected in the white dwarf photosphere, computing the total
accretion must rely on an assumption regarding the chemical
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Fig. 8. Metal pollution in DA white dwarfs as a function of T (bottom axis) and cooling age (top axis, for log g = 8). Star-shaped symbols
represent white dwarfs where their dust disks were detected in the infrared. Botfom panel: log(Ca/H) abundances (open circles and stars) and
upper limits (gray dots) from Koester & Wilken (2006). Middle panel: the fraction of white dwarfs with photospheric Ca and Si detections. Top
panel: inferred total accretion rates, where the Si and Ca abundances have been scaled by bulk Earth abundances (Mgg) and by solar abundances

(Ms). See text for further explanations.

composition of the accreting material. Historically, solar abun-
dances were adopted within the context of accretion from the
interstellar medium, see e.g. Koester & Wilken (2006) for a dis-
cussion of deriving total accretion rates from the photospheric
Ca abundances. Over the past decade, it has become increas-
ingly clear that planetary debris is the most likely origin of the
metal-pollution detected in a large number of white dwarfs, and,
given that overall the chemical abundance patterns bear a strong
resemblance to rocky solar system material, using bulk Earth
abundances to infer total accretion rates has become a standard
assumption — again, most of the times extrapolated from the
photospheric Ca abundances (e.g. Farihi et al. 2009; Zuckerman
et al. 2010; Girven et al. 2012).
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Figure 8 summarizes many of our results. The bottom panel
shows log(Ca/H) abundances (open circles and stars) and up-
per limits (gray dots) from Koester & Wilken (2006) (compiled
from Zuckerman et al. 2003; Berger et al. 2005). Red symbols
illustrate the log(Si/H) abundances from our HST/COS survey,
where filled red symbols represent the 23 stars that must cur-
rently be accreting (labeled “A” in Table 3), open triangles are
the 25 stars where Si is detected close to the equilibrium abun-
dance for radiative levitation (labeled “R” and “R?” in Table 3),
and upper limits to log(Si/H) for the remaining 37 stars are
shown by small gray triangles. For comparison, the parameters
of five additional DA white dwarfs that we observed with COS
(Génsicke et al. 2012) are shown in blue (the debris-accreting
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SDSS 122841040 and WD 1929+019) and green (the three
PCEBs WD 0710+741, WD 22564249, WD 2257+162). These
five stars are not included in the discussion of the COS DA
sample statistics (Sect. 9.4 and middle panel of this figure).
Infrared excesses from circumstellar dust have been observed
at four stars observed with COS (blue: SDSS 1228+1040 and
WD 1929+019, red: WD 0843+516 and WD 1015+161). The
log(Ca/H) and log(Si/H) axes are offset by the bulk Earth
log(Si/Ca) = —1.128 (McDonough 2000). The solid lines corre-
spond to the typical detection limits of Ca achieved by high-
resolution ground-based spectroscopy (EW =~ 15 mA in the
CaK line), and of Si in our HST/COS observations (EW =
30 mA in Sill 1265 A). The four dashed lines give the Si equi-
librium abundance for log g = 7.50, 7.75, 8.00, and 8.25 (from
top to bottom).

In the middle panel the fraction of white dwarfs with pho-
tospheric Ca and Si detections is shown. Each black dot repre-
sents 25 stars with Ca measurements, with the error bar given by
the standard deviation in T.g. Each red dot represents 20 stars
with Si measurements from our COS survey, which are further
sub-divided into white dwarfs that are currently accreting (filled
triangles), and in which photospheric Si could be maintained by
radiative levitation (open triangles). The gray dashed line illus-
trates the diffusion time scale for Ca at T = 2/3 in radiative atmo-
spheres, and at the bottom of the convection zone in convective
atmospheres, the transition between the two regimes occurs be-
tween 12 000 K and 13 000 K.

The top panel of Fig. 8 shows the total accretion rates for
the 38 DAZ from Koester & Wilken (2006), for the 25 accret-
ing DAZ from our COS survey, and for five additional objects
that we observed for comparison (two white dwarfs with in-
frared excess from their circumstellar debris disks, and three
post-common envelope binaries — these objects are not used for
the statistics discussed below). For the stars observed with COS,
we scaled the Si mass fluxes (Table 3) with the Si mass frac-
tion for bulk-Earth and solar abundances, 0.161 (McDonough
2000) and 6.65 x 10~* (Asplund et al. 2009), respectively. Open
circles are from Table 3 in Koester & Wilken (2006), based
on the extrapolation from the photospheric Ca abundances, the
filled/colored symbols are extrapolated from the photospheric Si
accretion fluxes determined from our COS spectra. Open red tri-
angles show upper limits from our COS survey. Two stars are
common to our COS survey and the Koester & Wilken (2006)
study (WD1015+161, HS2229+2335), their accretion rates ex-
trapolated from Ca and Si are joined by dotted lines, and illus-
trate the uncertainty in M extrapolated from just one element,
given that the accreting material can show large deviations from
the solar or bulk Earth Si/Ca ratio (see Fig. 7 in Génsicke et al.
2012).

While the abundances of planetary debris are broadly speak-
ing “rock-like” (i.e. volatile depleted and rich in O, Si, Mg,
Fe), we have shown that there are substantial variations in the
metal-to-metal abundance ratios (Ginsicke et al. 2012), which
implies that total accretion rates based on either Ca or Si can
easily diverge by an order of magnitude. WD 1015+161 and
HS 222942335 are both in our COS sample, and among the DAZ
of Koester & Wilken (2006), in both cases the total accretion rate
determined from the photospheric Ca abundance significantly
exceeds that based on our Si measurement. However, judging
from Table 4 and Fig. 7 in Génsicke et al. (2012), it is clear that
WD 1015+161 has overall a much lower Si abundance compared
to the other stars. The case is similar for HS 2229+2335, where
we computed a Ca flux of 1075 gs~! (using log[Ca/H] = —5.9
from Koester & Wilken 2006). For white dwarfs with such high

temperatures, ground-based spectroscopy is only sensitive to the
highest Ca abundances, and as such it is maybe not surpris-
ing that both WD 10154161 and HS 2229+2335 have unusually
high Ca/Si ratios. More accurate total accretion rates can only be
derived if all the main elements are detected, i.e. at least O, Mg,
Si, and Fe for rocky material, plus C in the case of volatile-rich
material (see Farihi et al. 2012b for a quantitative comparison).

Taking the accretion rates shown in Fig. 8 at face value, it is
evident that the ranges of rates probed by searches for Ca and
Si at low and high T.g are entirely complementary, and lead to a
broadly similar distribution. Adopting bulk Earth abundances for
the accreted material, the measured accretion rates range from
few 10° g s~ set by the detection threshold of the observations,
to a few 108 g s~!. This upper limit agrees, within an order of
magnitude, with the accretion rate that would be driven purely
by Poynting-Robertson drag on dust particles near the inner edge
of the debris disk (Rafikov 2011a).

However, sublimation of the dust will unavoidably lead to
the additional presence of gas within the disk, and the gas con-
tent may be enhanced e.g. by the impact of additional aster-
oids on an existing debris disk (Jura 2008). This gaseous phase
has been detected both from emission lines arising in the outer
parts of the disk (Génsicke et al. 2006, 2007, 2008; Farihi et al.
2012a; Melis et al. 2012) and absorption lines along the line of
sight onto the white dwarf (Debes et al. 2012; Génsicke et al.
2012). The additional viscosity of this gas is expected to in-
crease the accretion rate over the value for Poynting-Robertson
alone, potentially leading to a runaway process with peak rates of
10'9-10'"! g s~! (Rafikov 2011b; Metzger et al. 2012). Such high
accretion rates are observationally inferred for a number of DBZ
white dwarfs (Farihi et al. 2012b; Girven et al. 2012). However,
because of the long diffusion time scales in these stars, they are
most likely not in accretion-diffusion equilibrium, and the accre-
tion rates derived for them should be interpreted as a long-term
average value — which implies that the peak accretion rates are
probably even higher. The absence of any DAZ stars with accre-
tion rates (M > 10' gs~!) strongly suggests that such phases
have short life times, and correspondingly small probabilities of
being detected.

A final note concerns the overall distribution of accretion
rates. Ignoring the uncertainties on M for any individual system,
it appears that there is very little dependence of the derived ac-
cretion rates on the cooling age of the stars, which ranges from
a few 10 Myr at the hot end to =2 Gyr at the cool end. There
is some lack of white dwarfs with low accretion rates in the
range 12000 K S T < 17000 K, but this is possibly caused
by the decreasing sensitivity of ground-based spectroscopy for
photospheric Ca H&K lines. However, at T 2 23000 K, there
is a sudden drop in stars with high accretion rates — the COS
spectroscopy remains extremely sensitive to Si at these temper-
atures, so this deficiency is real, and its cause is discussed below
in Sect. 9.4.

9.3. Objects without photospheric Si

Radiative levitation predicts detectable amounts of Si over most
of the temperature range of our sample. Why do 37 stars show
no trace of Si or C? In Table 4 we show the predicted equiva-
lent widths of the Si1 1265 A and C11 1335 A lines. The fourth
column (Detectable? N/Y) is our estimate if these predicted
lines should be visible or not, given the individual quality of
the COS spectra. We would expect to detect metals only in 8
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Table 4. Predicted equivalent widths (EW in mA) of Si1r 1265 A and
C1r 1335 A for objects where no metal pollution is detected in their
COS spectra.

Object EW(Si) EW(C) Detectable?
[mA]  [mA]
WD 0013-241 0 0 N
WD 0018-339 29 0 N
WD 0028-474 0 0 N
WD 0047-524 0 0 N
WD 0124-257 75 12 Y
WD 0155+069 54 0 Y
HS0200+2449 13 0 N
HE0308-2305 0 0 N
WD 0308+188 0 0 N
HE0358-5127 9 0 N
HE0414-4039 7 0 N
HE0418-1021 0 0 N
WD 0933+025 45 0 N
HS0944+1913 0 0 N
WD 0947+325 0 0 N
WD 1005+642 5 0 N
WD 1049-158 0 0 N
WD 1049+103 24 0 N
WD 1052+273 0 0 N
WD 1058-129 0 0 N
WD 1102+748 0 0 N
WD 1104+602 0 0 N
WD 1229-013 112 29 Y
WD 1230-308 28 0 N
WD 1330+473 48 0 Y
WD 1353+409 128 60 Y
WD 1459+347 0 0 N
WD 1524-749 91 30 Y
WD 1531-022 0 0 N
WD 1547+057 0 0 N
WD 1633+676 34 0 N
WD 2021-128 21 0 N
WD 2032+188 59 4 Y
HS2210+2323 0 0 N
WD 2220+133 0 0 N
HE2238-0433 0 0 N
WD 2359-324 70 22 Y

Notes. In the third column Y means the line should be visible, N the
opposite.

of the objects. Two might indeed show some Si, but the spec-
trum is strongly perturbed near the 1265 A line (WD 1229-013,
WD 1230-308). For the six remaining stars, there is no obvious
reason why no metals are detected, and our models indicate these
systems lack a source of external pollution. Even in the case
where 100% of stars form planetary systems, this alone is in-
sufficient to deliver Si to the surfaces of all their white dwarf
remnants within the appropriate timescale. Successful models
that deliver debris to the surfaces of white dwarfs indicate that
a combined planet-planetesimal belt is necessary (Bonsor et al.
2011; Debes et al. 2012) and it seems plausible that this archi-
tecture may be common but not universal.

Closer inspection of the atmospheric parameters reveals a
significant difference between the stars where no metals are de-
tected, and those where metals are observed at abundances com-
patible with radiative levitation (Table 3), which is illustrated
in Fig. 9: the latter objects are concentrated in the lower right
corner, at high temperatures and low surface gravities. Given
the mechanism of radiative levitation this is exactly what is
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Fig.9. Objects where Si is detected at levels consistent with radia-
tive levitation (red circles), and objects where Si is neither detected,
nor expected to be radiatively supported for their Tr and log g (green
crosses). The blue squares indicate the parameters of eight stars where
radiative levitation is strong enough to produce visible lines, yet, no
metals are detected in their COS spectra. The black continuous line in-
dicates the location for an EW of 30 mA of the Sill 1265 line, which is
our detection threshold.

expected, in objects with lower temperatures and/or higher grav-
ity, Si sinks out of the photosphere. The continuous line indi-
cating the combination of Tt and log g where radiative levi-
tation results in 30 mA equivalent widths, which is our typical
detection threshold, neatly fits to the division of the two sets of
stars. This is a strong indication that our calculations are overall
correct.

9.4. The fraction of white dwarfs with remnants of planetary
systems

While the total fraction of Si-polluted white dwarfs in our sam-
ple is relatively independent of T.g, hovering at ~50% (red
points in the middle panel of Fig. 8), the distribution of white
dwarfs that must be currently accreting and those where the
metal pollution can be explained by the equilibrium abundance
obtained from the radiative levitation calculations show a very
distinct pattern. At temperatures below ~20 000 K, radiative lev-
itation becomes very ineffective, and correspondingly the vast
majority of stars with Si detections must be currently accreting —
in other words, the fraction of accreting white dwarfs is equal to
the fraction of stars with Si detections, ~50%. Towards higher
temperatures, this pattern reverses, and the majority of Si detec-
tions are consistent with radiative levitation alone. In addition,
as already noted in the previous section, there is a striking lack
of stars with high accretion rates at T 2 23 000 K.

As argued in Sect. 9.1, planetary debris is the only plausi-
ble source of metals for the 25 stars that are currently accreting.
Looking at Fig. 8, these stars have cooling ages of ~40-100 Myr,
in contrast, at younger cooling ages we find only stars with rel-
atively low photospheric Si abundances which can be explained
by radiative levitation. Yet, as shown in Sect. 9.1, these stars also
must have accreted at some point in the past. A priori, and dy-
namically, there is no reason why ongoing accretion of planetary
debris should become suddenly more frequent at white dwarfs
with cooling ages older than 40 Myr.

One plausible explanation for this dichotomy relies on the
fact that observing a white dwarf in a phase of ongoing accretion
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requires the availability of a reservoir of material. Such a reser-
voir has been found in the form of dusty and gaseous disks
around 30 white dwarfs (e.g. Zuckerman & Becklin 1987;
Ginsicke et al. 2006; Farihi et al. 2009; Brinkworth et al. 2012).
While strongly constrained only for about 1/3 of known dusty
white dwarfs that were observed with Spifzer out to 24 u, the
outer radii of these disks are compatible with the tidal disruption
radius (Roche limit) of a typical white dwarf, ~1 Rg. Their in-
ner radii are consistent with the distance from the white dwarf
at which the radiation field is sufficiently strong to sublimate the
dust. Hence, the location of the inner disk radii depends on the
composition of the dust and its typical grain sizes (which deter-
mines the sublimation temperature), and to a greater extent on
the white dwarf luminosity. While the dust parameters are some-
what uncertain, it is straightforward to see that the inner edge of
the disk moves out with increasing T.g. Von Hippel et al. (2007)
and Farihi (2011) showed that, adopting a range of assumptions
on grain size and sublimation temperature, the inner (sublima-
tion) radius of a dusty debris disk will become equal to the Roche
limit somewhere in the range 15000-22 000 K. More recently,
Rafikov & Garmilla (2012) showed that the sublimation temper-
atures of Si-rich minerals in a H-deficient environment are a few
100 K higher than the typically adopted values (valid in H-rich
conditions, such as protoplanetary disks), suggesting that the up-
per end of that temperature range is more realistic.

The implication of all the above is that while planetesi-
mal disruption events can and probably do occur as frequent
at white dwarfs hotter than ~23 000 K, and dynamically this is
actually favored at earlier cooling ages (Debes & Sigurdsson
2002; Bonsor & Wyatt 2011; Veras et al. 2013; Frewen &
Hansen 2014), the debris will rapidly sublimate, forming a
purely gaseous disk. Given that the viscosity of gas is much
higher than that of dust, angular momentum transfer in a gaseous
disk is substantially more efficient, dramatically reducing the
life time of a gaseous disk compared to the dust disks that form
around cooler white dwarf. Once the debris of the tidal disrup-
tion event is delivered onto the white dwarf, the small amount
of Si in the photosphere, sustained by radiative levitation, re-
mains as unmistakable evidence that the star has undergone an
episode of accretion. Our hypothesis is corroborated by the fact
that no white dwarfs with close-in dusty disks have been found
at T = 23000 K (Farihi et al. 2009; Steele et al. 2011; Girven
etal. 2011, 2012; Xu et al. 2013b; Barber et al. 2012)°.

In summary, at least 27% of the white dwarfs in our sample
are currently accreting, and another 29% have photospheric met-
als sustained by radiative levitation. In the vast majority of the
stars where both Si and C are detected, the C/Si ratio suggests
planetary material as the origin of the material. For the accret-
ing white dwarfs, this is the only plausible origin as interstellar
accretion cannot provide the observed accretion rates. Also tak-
ing the distribution of accreting white dwarfs into account, along
with those where radiative levitation is sufficient to explain the
detected metals, strongly suggests that the majority of all the
metal-polluted stars in our COS sample are accreting, or have
accreted planetary debris.

5> The hottest white dwarf hosting a close-in dusty disk is
WD 0843+516, with Ty = 22412 + 304 K (Table 1, see also Génsicke
etal. 2012 and Xu & Jura 2012). For completeness we note that infrared
excesses of 7 ~ 100 K material have been detected around several hot
and young white dwarfs that are central stars of planetary nebulae (Su
et al. 2007; Chu et al. 2009, 2011; Bilikova et al. 2012). However this
material is inferred to lie at much larger separations from the star, at
many tens of AU and its nature is still uncertain.

9.5. Dependence on the mass of the white dwarfs and their
progenitors

The vast majority of exo-planet searches have focused on FGK
type host stars, corresponding to a very narrow range in stellar
masses, ~0.5-1.5 My%. Consequently, our current knowledge of
the frequency, and architecture of planet hosts with M > 1.5 M
is limited.

White dwarfs, on the other hand, are the burnt-out cores of
stars with initial masses in the range ~0.8—-8 My, and the pro-
genitors of the majority of the present-day galactic white dwarf
population had ~2 My. The white dwarf mass relates to the
mass of its progenitor via the initial-mass to final-mass relation
(Weidemann 1984, 2000; Catalan et al. 2008; Kalirai et al. 2008;
Williams et al. 2009; Dobbie et al. 2009). The distribution of the
progenitor masses of the 85 DA white dwarfs in our sample is
shown in Fig. 1, illustrating that the median progenitor of our
sample had indeed ~2 M.

The detection of debris-pollution hence probes the existence
of planetary bodies around main sequence stars spanning a wide
range of masses. More than half of the 23 stars in our sample that
are currently accreting have estimated progenitor masses in ex-
cess of 2 My, including the two Hyades white dwarfs discussed
by Farihi et al. (2013b, see also Sect. 9.6) and WD 1015+161
which also exhibits infrared excess from circumstellar dust (Jura
et al. 2007). This unmistakably demonstrates that the formation
and existence of rocky planetary material around A-stars stars is
common, and can survive the post-main sequence evolution of
these stars. This is further strengthening the results of Bonsor
et al. (2014) who detected cool dust with Herschel around 11%
of sub-giants with estimated masses in the range 1.5-1.8 M, (see
previous footnote).

Intriguing is an apparent lack of debris pollution for the high-
est mass white dwarfs, My,q > 0.8 Mo, corresponding to progen-
itors with M, 2 3.8 My — we detected Si only in one out of
14 stars in this mass range, WD 1038+633 with an estimated
progenitor mass of 4.3 M. Given that our COS sample is still
relatively small, we investigated the possible effect of small-
number statistics causing the observed distribution. A Monte-
Carlo simulation, randomizing the white dwarf masses in our
sample, suggests that the lack of debris-polluted white dwarfs
with Myq > 0.8 My being a chance result is $5%; good enough
to justify exploring possible causes for this deficiency.

The white dwarf mass distribution in Fig. 1 resembles
closely that of larger well-studied samples (Finley et al. 1997;
Liebert et al. 2005; Giammichele et al. 2012), displaying be-
sides the dominant population around a mean mass of 0.6 M
two additional peaks near ~0.4 My and =0.8 M. We come
back to the low-mass peak below. Regarding the tail of high-
mass white dwarfs, general consensus is that their number is in
excess to expectations from the galactic star formation history,
and that a substantial number of them are the product of double
white dwarf mergers. The complex, and in part violent evolution
of such systems makes it unlikely that planetary bodies present
around one, or both of the progenitors would survive, or that

6 Search for radial velocity variations and planetary transits becomes
increasingly difficult with increasing mass: A-type stars have very few
sharp features in their spectra that can be used for cross-correlation, and
the depth of transits scales as Rf) /R%, with R, and R, the planet and host
star radii. The former issue can be circumvented by observing “retired
A-stars”, i.e. subgiants with estimated M > 1.5 M. While there have
been a number of planet detections, there is an intense ongoing debate
regarding the true masses of subgiant planet hosts (Bowler et al. 2010;
Johnson et al. 2010, 2013; Lloyd 2013, 2011).
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long-lived circumstellar disks would be formed frequently, ex-
plaining the lack of debris-pollution among those stars.

Given that the main-sequence life time rapidly increases
with decreasing stellar mass, the Galaxy is not old enough
to have formed low mass white dwarfs (Mg < 0.45 M,)
from single-star evolution. In other words, all low-mass white
dwarfs must have undergone binary interactions that truncated
their core-growth prior to the onset of He-burning, and con-
sequently they have He-cores. A frequent pathway to He-core
white dwarfs is the common envelope interaction with a main-
sequence star, often of low mass (Rebassa-Mansergas et al.
2011). In fact, two of the post-common envelope binaries that we
included in our survey as comparison objects (WD 0710+741,
WD 2257+162) have He-core white dwarfs. Alternatively, two
sufficiently massive main-sequence stars can evolve into close
double-degenerate binaries, containing one, or two He-core
white dwarfs. There is, however, also a small number of ap-
parently single low-mass white dwarfs, and Nelemans & Tauris
(1998) suggested that massive planets may be sufficient to result
in the ejection of the envelope of their host star.

Our COS sample includes five white dwarfs with masses
<0.45 M., which we consider a conservative limit for containing
He-cores. WD 0341+021 and WD 1713+332 show photospheric
Si compatible with radiative levitation, whereas no metals are
detected in WD 1229-013, WD 1353+409, and WD 2032+188.
All five systems have been investigated for radial veloci-
ties, WD 1713+332 and WD 2032+188 are confirmed double-
degenerate binaries with periods of 1.12 d and 5.08 d (Marsh
et al. 1995; Nelemans et al. 2005), WD 0341+021 is a suspected
double-degenerate (Maxted et al. 2000), and WD 1229-013 and
WD 1353+409 show no radial velocity variations (Maxted &
Marsh 1998; Maxted et al. 2000). Given our arguments in
Sect. 9.1, it hence appears that stellar wind accretion can occur
onto white dwarfs in close binaries. One other known example of
a very likely He-core that is metal-polluted and has a dusty de-
bris disk is SDSSJ 155720.77+091624.7, suggesting that com-
plex planetary systems in close binary systems can form (Girven
et al. 2011; Steele et al. 2011; Farihi et al. 2012a).

9.6. The two Hyades white dwarfs

Farihi et al. (2013b) interpreted the detection of photospheric Si
in two Hyades white dwarfs, WD 0421+162 and WD 0431+126,
as evidence for the presence of rocky planetesimals. The calcu-
lations of the diffusion fluxes in that study did not account for
the effect of radiative levitation, which attracted some criticism
from Chayer (2014). He finds that WD 0421+162 needs accre-
tion to explain the observed Si, but that the WD 0431+126 can
be explained by radiative levitation alone. While we agree on
the first object, we disagree on the second. In our calculations
accretion has to also be invoked for this object. In our model for
zero accretion, we find indeed radiative support between optical
depths 5.1 x 107 to 3.2 x 10~* with a maximum Si abundance of
log [Si/H] = —7.47, and between 1.9 to 8.4 with a maximum of
—7.72 (note that the parameters are similar to those of the model
in Fig. 7). These numbers are very similar to Chayer’s values
in his Fig. 2. However, between these two “Si clouds” the abun-
dance falls below —12.00, and the equivalent width for Si1r 1265
calculated with this model is only 2 mA, as compared to the
observed 55 mA. The reasons for the difference are discussed
above; the main point here is that C10 do not calculate the abun-
dance distribution within the visible photosphere. In any case,
WDO0431+126 is close to the limiting line of Fig. 5 and small
differences in the models can shift the result either way.
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In summary, including the effects of radiative levitation
somewhat reduces the diffusion flux in WD 0431+126 with re-
spect to the value in Farihi et al. (2013b), however the discussion
and conclusion of that paper remain unaffected.

10. Conclusion

We have carried out an ultraviolet high-resolution survey of
85 DA with 17000 K < Tex < 27000 K white dwarfs with
relatively short cooling ages (20—200 Myr), and we found pho-
tospheric metal pollution by at least Si in 52% of our target stars.
The correct interpretation of the data required a full treatment of
radiative levitation, which we have now implemented in our at-
mosphere code.

At least 27% of these stars are currently accreting material
that is consistent with planetary origin, and an additional 29%
have undergone at least one episode of accretion as we see Si
and in some cases C that is sustained by radiative levitation.
At temperatures 17000 K < T, < 20000 K, the fraction of
white dwarfs accreting planetary debris is *50%. While we can-
not exclude that accretion from the ISM is responsible for the
metals in a few of the stars that are not currently accreting, their
distribution in T.g strongly suggest that planetary debris is also
the principle, if not sole, cause of their photospheric pollution.
Hence, the fraction of white dwarfs accreting planetary debris is
plausible close to 50%, similar to the fraction of stars hosting
super-Earths (Gaidos 2013).

At stellar temperatures 223 000 K the fraction of currently
accreting white dwarfs rapidly drops, which is consistent with
the fact that these stars are too hot to allow the formation of long-
lived dusty disks that are necessary to provide a continuous flow
of metals. Tidal disruption of planetary bodies in these systems
will lead to short-lived accretion events from purely gaseous
disks, reducing the probability of catching these stars during this
phase — yet, radiative levitation provides the memory to past ac-
cretion. One prediction of this hypothesis is that a small num-
ber of warm DA stars should be found to be accreting at much
higher rates than the cooler stars with dusty disks. We note that
photospheric and circumstellar metals are detected in a number
of white dwarfs that are much hotter, and much younger than our
sample. The origin of the metals has been intensively debated in
the past (Shipman et al. 1995; Bannister et al. 2003; Barstow
et al. 2003; Dickinson et al. 2012a,b), but it is very likely that
it is, at least in part, also related to planetary debris (Barstow
et al. 2014). One particularly promising candidate of a hot white
dwarf accreting planetary debris at a high rate is the extremely
metal-polluted GD394 (40000 K, Barstow et al. 1996; Dupuis
et al. 2000).

We find that about half of the white dwarfs that are currently
accreting planetary debris have progenitor masses of 2-3 Mg
corresponding to late B- and A-type stars, which shows that the
formation of rocky planetary material is common around main-
sequence stars in this mass range. At the highest white dwarf
masses, Myq > 0.8 My, metal pollution is extremely uncommon,
consistent with the hypothesis that most of these massive white
dwarfs are the product of double-degenerate mergers, instead of
single-star evolution.

Finally, combining published ground-based searches for
metal-pollution in white dwarfs with the results from our COS
survey, we find that neither the fraction of accreting white
dwarfs, nor the rates at which they accrete, show a notice-
able correlation over an extremely wide range of cooling ages,
~20 Myr-2 Gyr. This broadly confirms the evolutionary simu-
lations of Veras et al. (2013) who found that instabilities in the
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remnants of two-planet systems are likely to occur over roughly
the same period in time.
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