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Hydroelastic waves propagating at a constant velocity at the surface of a fluid are
considered. The flow is assumed to be two-dimensional and potential. Gravity is
included in the dynamic boundary condition. The fluid is bounded above by an elastic
sheet which is described by the Plotnikov-Toland model. Fully nonlinear solutions
are computed by a series truncation method. The findings generalised previous results
where the sheet was described by a simplified model known as the Kirchhoff-Love
model. Periodic and generalised solitary waves are computed. The results strongly
suggest that there are no true solitary waves (i.e., solitary waves characterised by a
flat free surface in the far field). Detailed comparisons with results obtained with the
Kirchhoff-Love model and for the related problem of gravity capillary waves are also
presented. C⃝ 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4893677]

I. INTRODUCTION

The problems of hydroelasticity have many applications in biology, medicine, and industry. The
most developed area of hydroelasticity is that of hydroelastic waves in the presence of an ice cover.
These hydroelastic waves are relevant to polar engineering where ice sheets are modelled by elastic
sheets. One attractive aspect of mathematical modelling of waves beneath an ice sheet is that many
experimental results are available. The reader is referred to Ref. 1 for a review and references.

The basic features of the ice response can be explained by modelling the ice sheet as an elastic
sheet on top of a fluid. Even so, the theory of these waves is not as well developed as for the classical
problem of water waves. Most of the theoretical work on the subject uses linear models and there
are fewer studies with nonlinear models. In the present paper a nonlinear formulation is used. In
particular results are presented for solitary waves which can only be constructed with nonlinear
models.

Early work on the subject was based on the Kirchhoff-Love elastic model (referred to as the
KL model). It was, for example, used in Refs. 2 and 3 to calculate large amplitude periodic waves.
Two-dimensional solitary waves were later studied in Ref. 4 and three-dimensional configurations
were investigated in Ref. 5. The dynamics and the stability of hydroelastic solitary waves were
considered in Ref. 6 and dark solitons were calculated in Ref. 7. In most of these works, the
boundary integral equation method, first introduced for the gravity-capillary problem in Ref. 8, was
adapted for solving the fully nonlinear hydroelastic problem. In Ref. 9 a different numerical method
(based on a truncated Laurent series) was used to compute periodic and generalised solitary waves.

More recently a new nonlinear model for elastic sheet was introduced by Plotnikov and Toland.10

It uses the special Cosserat theory of hyperelastic shells with Kirchhoff’s hypotheses to express the
pressure P exerted by the elastic sheet on the water as

P = D(κss + 1
2
κ3). (1)
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Here D is the flexural rigidity, κ is the curvature of the free surface, and s is the arclength. Solitary
waves were studied by using this model in Refs. 11 and 12. Time-dependent solutions and periodic
waves were also computed in these papers. The Plotnikov and Toland model has the advantage over
the KL model that it conserves the elastic potential energy.

In this paper, we use the Plotnikov and Toland’s model and the series truncation method to study
periodic and generalised solitary waves. The problem is formulated in Sec. II and the numerical
scheme is described in Sec. III. Numerical results are presented in Sec. IV. They strongly suggest
that there are no true solitary waves (i.e., the amplitude of the ripples of the generalised solitary
waves does not vanish for any choice of the parameters). A comparison with the results given by the
KL model is presented in Sec. V. The corresponding properties of gravity-capillary waves are also
discussed in Sec. V. Concluding remarks are given in Sec. VI.

II. FORMULATION

We consider a two-dimensional irrotational flow of an inviscid and incompressible fluid of
constant depth h, covered by an elastic sheet. The free-surface (i.e., the upper surface of the fluid) is
deformed by a train of waves travelling at a constant velocity c. The configuration is illustrated in
Figure 1.

We introduce a two-dimensional cartesian system with the y-axis pointing upwards. We denote
by y = η(x) the equation of the (unknown) free-surface. The level of the bottom is chosen to be y
= −h. The acceleration of gravity g acts in the negative y-direction. A frame of reference moving
with the waves is chosen so that the flow is steady. We introduce the potential function φ and the
streamfunction ψ . We choose ψ = 0 on the free-surface and φ = 0 at the crest where x = 0. We
denote by −Q the value of the streamfunction ψ on the bottom.

The governing equations are as the following:

∇2φ = 0, −h < y < η(x), (2)

φy = φxηx , on y = η(x), (3)

1
2

(φ2
x + φ2

y) + gy + P
ρ

= B, on y = η(x), (4)

φy = 0, on y = −h, (5)

y

xO

ψ = −Q

φ = 0 ψ = 0

FIG. 1. The mathematical configuration of the problem.
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where P is the pressure exerted by the sheet on the fluid. We shall use the model proposed by
Plotnikov and Toland10 where P is defined in (1). In Sec. V, we will also use the KL model in which
(1) is replaced by

P = Dκxx . (6)

Equations (3) and (5) are the kinematic boundary conditions on the free-surface and on the bottom,
respectively. Equation (4) is the Bernoulli equation on the free-surface or, in other words, the dynamic
boundary condition and B is the Bernoulli constant.

We use the potential function φ and the streamfunction ψ as the independent variables. We then
introduce the complex velocity w = u − iv and write

u − iv = ceτ−iθ . (7)

The function τ (φ, ψ) − iθ (φ, ψ) is an analytic function of the complex potential φ + iψ . The
definition (7) implies

xφ + iyφ = 1
u − iv

= 1
c

e−τ+iθ (8)

whose real part and imaginary parts can be used to find x and y by integrating with respect to φ.
Then (4) becomes

c2

2
e2τ (φ,0) + g

c

∫ φ

0
e−τ (ϕ,0) sin[θ (ϕ, 0)]dϕ + D

ρ
(∂ssκ + 1

2
κ3) = B. (9)

By using the chain rule, we have

∂sκ = ∂sφ∂φκ + ∂sψ∂ψκ = ceτ κφ, (10)

where we have used the property that ψ is constant on the free-surface. Since κ = ceτ θφ and we
obtain after some algebra

κss + 1
2
κ3 = c3e3τ (θφφφ + 3τφθφφ + τφφθφ + 2τ 2

φθφ +
θ3
φ

2
). (11)

We note that a formulation similar to that described in this section was used before in Ref. 9 for
the KL model.

III. NUMERICAL SCHEME

The flow domain in the complex potential plane is the strip −Q < ψ < 0. The kinematic
boundary condition on the bottom can be satisfied by using the method of images. Then we have
ψ = −2Q on the image of the free-surface into the bottom. Hence the extended flow domain is the
strip −2Q < ψ < 0. We perform the conformal mapping

t = e− 2iπ f
cλ , (12)

where f = φ + iψ is the complex potential and λ is the wavelength. It maps the strip onto the annulus
r2

0 < |t | < 1, where

r0 = e
−2π Q

cλ . (13)

Since w is an analytic function of f, so is τ − iθ . Hence τ − iθ is an analytic function of t which can
be represented by the Laurent series

τ − iθ = a0 +
∞∑

n=1

antn +
∞∑

n=1

bnt−n. (14)

Since ψ = −2Q is the image of the surface ψ = 0, we obtain

τ (φ, 0) − iθ (φ, 0) = τ (φ,−2Q) + iθ (φ,−2Q). (15)
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Combining (14) and (15) gives

bn = anr2n
0 . (16)

We choose c as the unit velocity and Q/c as the unit length. In the dimensionless form, (9)
becomes

1
2

e2τ + 1
F2

∫ φ

0
e−τ (ϕ) sin[θ (ϕ)]dϕ + β(κss + 1

2
κ3) = B, (17)

where B is the dimensionless Bernoulli constant,

F = c√
gh

(18)

is the Froude number, and

β = Dc
ρQ3

. (19)

One can easily rewrite (13) as

r0 = e
−2π

l , (20)

where l is the dimensionless wavelength. By substituting (12) into (14) and truncating the series
after N − 2 terms, we get

τ = a0 +
N−2∑

n=1

cos(knφ)(1 + r2n
0 )an, (21)

θ =
N−2∑

n=1

sin(knφ)(1 − r2n
0 )an. (22)

Now we introduce N − 1 collocation points uniformly distributed along φ in [0, l
2 ],

φI = l
2

I − 1
N − 2

, I = 1, 2, . . . N − 1. (23)

The dynamic boundary condition (17) is satisfied at these points, which yields N − 1 algebraic
equations. The periodicity of the wave implies

x = l
2

when φ = l
2
. (24)

Fixing the height gives an additional equation

|y(
l
2

) − y(0)| = A = Sl, (25)

where S is the steepness (i.e., the difference of heights between a crest and a trough divided by the
wavelength) and A is the height. By fixing the values of β, A, and l, the resulting system with N +
1 equations and N + 1 unknowns (a0, a1, . . . , aN − 2, B, F) can be solved by Newton’s method. The
error of the numerical solution obtained by Newton’s method is set to be less than 10−10. Once the
solution is obtained, one can get the values of x and y by integrating xφ and yφ , respectively. This
gives the profile of the wave.

A. Case of infinite depth

In the case of infinite depth, the numerical scheme remains valid except that we now use the
reference length (D/ρc2)

1
3 since Q/c tends to infinity as the depth tends to infinity. Following (13),

r0 = 0 since h tends to infinity and so bn = 0 by (16). The dynamic boundary condition (9) becomes

1
2

e2τ + γ

∫ φ

0
e−τ (ϕ) sin[θ (ϕ)]dϕ + [∂2

s κ + 1
2
κ3] = B, (26)
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TABLE I. The values of e for periodic waves of small and finite amplitude.

Error
Wavelength N S = 0.001 S = 0.002 S = 0.1 S = 0.2

10 20 1.08 × 10−3 1.08 × 10−3 1.50 × 10−3 1.74 × 10−2

10 100 3.96 × 10−5 3.95 × 10−5 4.06 × 10−4 1.64 × 10−2

10 500 1.52 × 10−6 1.41 × 10−6 3.66 × 10−4 1.63 × 10−2

10 1000 3.51 × 10−7 2.37 × 10−7 3.65 × 10−4 1.63 × 10−2

10 2000 5.90 × 10−8 5.56 × 10−8 3.65 × 10−4 1.63 × 10−2

where

γ = (Dg3/ρc8)
1
3 . (27)

We note that γ is related to the phase velocity c. In Sec. IV A we use this parameter to test the
numerical accuracy.

IV. DISCUSSION OF RESULTS

A. Numerical accuracy

We check the convergence and accuracy of our numerical procedure in the particular case of
infinite depth. When the amplitude of the waves is small, the equations of Sec. II can be linearised
and solved analytically. The (linear) dispersion relation of the waves is then

c2 = g
k

+ D
ρ

k3, (28)

where k = 2π /λ is the wavenumber. Using the dimensionless variables of Sec. III A, we can rewrite
(28) as

γ = k − k4, (29)

where γ is defined by (27). Now we consider the quantity e defined by

e = |γn − γt |, (30)

where γ t is the theoretical value predicted by (29) and γ n is the corresponding numerical value
given by the numerical procedure of Sec. III. From Table I, it can be seen in the column of S =
0.001 and S = 0.002 that e converges quickly to a value that is essentially equal to zero as the
number of collocation points increases. It can also be seen from the last two columns of Table I
that the numerical values of γ for periodic waves of finite amplitude are different from the values
of γ t obtained from the linear dispersion relation (29) because of the nonlinearity. We compute γ n

for different values of N. Table II shows that γ n converges quickly as N increases. In most of the
computations presented in this paper we used N = 500.

TABLE II. The values of γ for periodic waves of finite amplitude.

γ

Wavelength N S = 0.1 S = 0.15 S = 0.2 S = 0.25

10 20 0.47396 0.47717 0.48989 0.54572
10 100 0.47287 0.47605 0.48883 0.54475
10 500 0.47283 0.47601 0.48879 0.54471
10 1000 0.47283 0.47601 0.48879 0.54471
10 2000 0.47283 0.47601 0.48879 0.54471
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B. Periodic waves in infinite depth

A weakly nonlinear theory can be developed by expanding the solution in powers of a parameter
ϵ which measures the amplitude of the wave. Vanden-Broeck and Parau9 developed the theory up
to order ϵ2 for the KL model. Their results apply also to the Plotnikov-Toland model because the
KL model and the Plotnikov-Toland model agree up to order ϵ2. In particular, the function η(x) of
Sec. II is written as

η(x) = ϵη1(x) + ϵ2η2(x) + O(ϵ3). (31)

It is found that

η1(x) = A1 cos kx, (32)

provided

g + D
ρ

n4k4 − c2
0nk ̸= 0 (33)

for all integer value of n ≥ 2. Here c0 is the value of c predicted by (28). The value of A1 depends
on the particular definition of ϵ. Vanden-Broeck and Parau9 chose

ϵ = a
λ

, (34)

where a is the first Fourier coefficient of η(x). It then follows that A1 = λ.
When there exists an integer m ≥ 2 such that

g + D
ρ

m4k4 − c2
0mk = 0, (35)

then

η(x) = A1 cos kx + Am cos mkx . (36)

In particular when m = 2, it is shown in Ref. 9 that

A2 = ±1
2

A1. (37)

The two profiles corresponding to (36) with m = 2 have a crest or a trough dimple (see the portion of
Figure 2 corresponding to m = 2). These solutions (known as Wilton ripples) were first calculated for
gravity-capillary waves (see, for example, Refs. 9 and 13 for details). The corresponding solutions
for m > 2 become more and more tedious to calculate analytically as m increases. However, they can
easily be computed by using the numerical procedure of Sec. III. To achieve this we need to make an
appropriate initial guess for (a0, a1, . . . , aN − 2, B, γ ) in the Newton’s iterations. The value of k can
be predicted by (28) and (35) for different values of m. Then the value of γ can be predicted by using
(29). We choose a1 = −0.1 and set all the remaining coefficients equal to zero. This completes the
initial guess which leads to a nonlinear solution by Newton’s iterations. In deep water, as explained
in Ref. 9, there exist many different families of periodic waves with dimples on their free-surface.
This is confirmed by the present numerical results. Some typical free-surface profiles are presented
in Figure 2. These results show that more and more dimples appear on the free surface profiles as m
increases.

C. Periodic waves in finite depth

The infinite depth numerical results for Figure 2 can be extended to finite depth by assuming
r0 ̸= 0. As expected by analogy with the infinite depth results, there are again dimples on the free
surface. However, as the wavelength l increases (i.e., as r0 in (20) approaches 1) these dimples tend
to concentrate in the troughs of the waves (see Figure 3). These results suggest that as l → ∞, the
waves approach solitary waves characterised by a train of ripples of constant amplitude in the far
field. Such waves are called generalised solitary waves to contrast then to true solitary waves which
are characterised by a flat free surface in the far field.
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FIG. 2. Fully nonlinear solutions of free-surface profiles for order m = 2, 3, 4, 5 in deep water. Only half of a wavelength of
the waves is shown.

D. Generalised solitary waves

In order to confirm the existence of generalised solitary waves, we repeated the computations
of Figure 3 for larger values of l and various values of β and A. We present in Figure 4 values of
1/F2 versus l for β = 0.07 and A = 0.14. These results illustrate that there are an infinite number of
branches of solutions which approach parallel curves as l → ∞. Two such branches are shown in
Figure 4. To explain this property we present in Figure 5 two profiles corresponding to the points
P1 and P2 in Figure 4. We see that these two profiles are very close to each other except that the
one corresponding to P2 has one more “wavelength of ripples” in the far field. This implies that the
distance between the two parallel curves of Figure 4 is approximately equal to twice the wavelength
of the ripples in the tail of the waves (this becomes exact as l → ∞). Generalised solitary waves are
then obtained by jumping from one curve (such as those in Figure 4) to the next as we take the limit
l → ∞. After each jump, two more wavelengths of the ripples appear (one on the right and one on
the left). In the limit l → ∞, we obtain a generalised solitary wave characterised by infinite train of
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0
(a)
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0
(b)
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−0.02

0
(c)
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FIG. 3. Free-surface profiles in the case of finite depth for β = 0.07 and A = 0.14: the half wavelength l/2 equals (a) 6,
(b) 9, (c) 12, (d) 15, (e) 18, and (f) 21. Only half of a wavelength of the waves is shown.
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FIG. 4. The graphs of 1/F2 versus the wavelength l for β = 0.07 and A = 0.14.

ripples in the far field. For each value of β, these generalised solitary waves form a two-parameter
family of solutions.

We consider a particular family for 89 < l < 95 which is shown in Figure 6 (since l is large,
it provides an approximation of generalised solitary waves). Two sub-branches of solutions are
discovered. The intersection illustrates the fact that it is possible to have two different generalised
solitary waves with the same wavelength and the same Froude number. Some typical free-surface
profiles for the left sub-branch and the right sub-branch are shown in Figures 7 and 8, respectively.

0 5 10 15 20 25 30 35 40 45 50
−0.16
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−0.08

−0.06

−0.04

−0.02

0
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FIG. 5. The two profiles corresponding to P1 and P2 in Figure 4. The vertical scale has been exaggerated to show the
difference of these two profiles.
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FIG. 6. The graph of 1/F2 versus the wavelength for a particular family when β = 0.07 and A = 0.14.

From Figure 7, it can be seen that the waves start with large ripples and then evolve to generalised
solitary waves with small ripples which enlarge again in the later stage. From Figure 8, one can again
observe first very large ripples which become smaller and then larger again. The main difference is
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FIG. 7. Typical free-surface profiles from the left branch. Only half of a wavelength is shown.
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FIG. 8. Typical free-surface profiles from the right branch. Only half of a wavelength is shown.

that the right-end point of the solutions from the left branch is a trough whereas the one from the
right branch is a crest.

Alternatively we may impose a different condition instead of (25). For example, we can fix
the value u0 of the velocity at x = 0. This condition was already considered in Ref. 14 for the
gravity-capillary problem. Accordingly, we replace Eq. (25) by

τ (0, 0) = ln u0. (38)

We present values of 1/F2 versus l for u0 = 0.97 and β = 0.07 in Figure 9. The value of 1/F2 changes
little as the wavelength varies since the vertical scaling is small. The function is monotonically
decreasing in each family and will eventually converges to a limit as the wavelength tends to infinity.
Unlike what we have seen in Figure 6, we have only found a single branch rather than two. Examining
profiles on two consecutive families in Figure 9, we found that one corresponds to the waves whose
right-end point is a crest while the other one has a trough as its right-end point. Similar results are
found in the case of gravity-capillary waves (see Sec. V).

We note that solitary waves in the absence of the elastic sheet exist up to some critical value of
A of the order 0.83 at which a limiting configuration is reached. Therefore, our results for A = 0.14
are of moderate height and can be described as weakly nonlinear.

The ripples in the tail of generalised solitary waves are of questionable physical validity because
they occur on both sides and therefore do not satisfy the radiation condition. Therefore, an important
question is whether or not the parameters can be chosen so that the amplitude of the ripples vanishes.
To investigate this question we choose the absolute value of the curvature of the free surface at
φN − 1 = l/2 as a measure of the amplitude of the ripples in the tail. We denote this parameter by J.
Values of J versus β for l = 99.58 and F = 1.03 are shown in Figure 10. These results and similar
ones obtained for other values of l and F strongly suggest that J ̸= 0 for β ̸= 0 and that there are
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FIG. 9. Value of 1/F2 versus the wavelength when u0 = 0.97 and β = 0.07.

therefore no true solitary waves (i.e., solitary waves for which the free surface is flat in the far field).
A qualitatively similar result was found in Ref. 15 for gravity-capillary waves.

V. COMPARISON WITH THE KIRCHHOFF-LOVE MODEL AND THE PROBLEM
OF GRAVITY-CAPILLARY WAVES

A. The Kirchhoff-Love model

We may compare the results from Sec. IV to the ones produced by the KL model which is
defined by (6). We follow the numerical procedure of Sec. III to simulate the solutions.

In Figure 11 we plot values of 1/F2 versus the wavelength l for A = 0.14 and β = 0.07. One
can see that there are again two different sub-branches for each family. One slight difference is that
the two curves in each family do not intersect in Figure 11 whereas they do in Figure 4. Apart from
this, the two graphs are qualitatively similar.
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FIG. 10. Value of the parameter J versus β when l = 99.58 and F = 1.03.
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FIG. 11. Value of 1/F2 versus the wavelength when A = 0.14 and β = 0.07.

Furthermore, we can also use the KL model and fix the velocity u0 instead of A. The result is
shown in Figure 12. This is qualitatively similar to what we have seen in Figure 9.

B. Gravity-capillary problem

Generalised solitary waves have been found before in the study of gravity-capillary waves
(see Refs. 14 and 16 for a review). We present in this section a comparison of our results for
flexural-gravity waves with those of gravity-capillary waves.
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FIG. 12. Value of 1/F2 versus the wavelength when u0 = 0.97 and β = 0.07.
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FIG. 13. Value of F versus l when A = 0.14 and τ̄ = 0.24.

For gravity-capillary waves, (1) is replaced by

P = −T κ, (39)

where T is the surface tension. Using again c as the reference velocity and Q/c as the reference
length, (17) becomes

1
2

e2τ + 1
F2

∫ φ

0
e−τ (ϕ) sin[θ (ϕ)]dϕ − τ̄ κ = B, (40)
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FIG. 14. Value of F versus l when u0 = 0.97 and τ̄ = 0.24.
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where

τ̄ = T
ρQc

(41)

is the Bond number.
The remaining equations are unchanged and numerical results can be obtained by the procedure

of Sec. III. Values of 1/F2 versus l are presented in Figures 13 and 14. The results from Figure 14
agree with those found in Ref. 14. Two sub-branches are again found in Figure 13. These results are
qualitatively similar to those obtained in Sec. V A for flexural-gravity waves.

VI. CONCLUSION

We have presented numerical computations of nonlinear periodic waves and of generalised
solitary waves propagating under an elastic sheet. Most of the results were obtained for the Plotnikov-
Toland model. We have provided numerical evidence that there are no true solitary waves (i.e., solitary
waves with a flat free surface in the far field). Our findings were then compared with those obtained
with the simplified KL model and with computations of gravity capillary waves.
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1 A. Korobkin, E. I. Părău, and J.-M. Vanden-Broeck, “The mathematical challenges and modelling of hydroelasticity,”
Philos. Trans. R. Soc. London A 369, 2803–2812 (2011).

2 L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution,” J. Fluid Mech.
169, 409–428 (1986).

3 L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution,” J. Fluid Mech. 188,
491–508 (1988).
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