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ABBREVIATIONS 

 

AMT: active motor threshold; BA: Brodmann area; BCM: Bienenstock-Cooper-Munroe; 

BDNF: Brain Derived Neurotrophic Factor; CAR: cortisol awakening response; CB: 

calbindin; Cer: cerebellum; CD: cervical dystonia; COMT: catechol-O-methyltransferase; 

CBS: Corticobasal syndrome. DA; dark agouti; DLPFC: dorsolateral prefrontal cortex; ECT: 

electroconvulsive therapy; EEG: electroencephalography; GABA: γ-aminobutyric acid; GAD: 

glutamate decarboxylase; GTS: Gilles de la Tourette syndrome; HD: Huntington's disease; 

HFO: high frequency oscillation; InsP3Rs: Inositol 1,4,5-trisphoshate receptors; LE: long 

evans; LIDs: L-Dopa-induced dyskinesias; LTP: long-term potentiation; LTD: long-term 

depression; M1: primary motor cortex; MEP: motor evoked potential; MO: maximal machine 

output; MSA: Multiple System Atrophy; NMDA: N-Methyl-D-aspartate; NMDAR: N-

Methyl-D-aspartate receptor; PAS: paired associative stimulation; PD: Parkinson Disease; 

PMd: dorsal premotor cortex; PSP: Progressive Supranuclear Palsy; PV: parvalbumin; RMT: 

resting motor threshold;  rTMS: repetitive TMS; SD: sprague dawley; SEP: somatosensory 

evoked potential; SMA; supplementary motor area; SNP: single nucleotide polymorphism; 

STP: short-term potentiation; TBS: theta burst stimulation; cTBS: continuous theta burst 

stimulation; iTBS intermittent theta burst stimulation; TDCS: transcranial direct current 

stimulation; TMS: transcranial magnetic stimulation; TRP: transient receptor potential.  
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ABSTRACT 

 

Background/Objectives: Over the last ten years, an increasing number of authors have used 

the theta burst stimulation (TBS) protocol to investigate long-term potentiation (LTP) and 

long-term depression (LTD)-like plasticity non-invasively in the primary motor cortex (M1) 

in healthy humans and in patients with various types of movement disorders. We here 

provide a comprehensive review of the LTP/LTD-like plasticity induced by TBS in the 

human M1. 

Methods: A workgroup of researchers expert in this research field review and discuss 

critically ten years of experimental evidence from TBS studies in humans and in animal 

models. The review also includes the discussion of studies assessing responses to TBS in 

patients with movement disorders.  

Main findings/Discussion: We discuss experimental studies applying TBS over the M1 or in 

other cortical regions functionally connected to M1 in healthy subjects and in patients with 

various types of movement disorders. We also review experimental evidence coming from 

TBS studies in animals. Finally, we clarify the status of TBS as a possible new non-invasive 

therapy aimed at improving symptoms in various neurological disorders. 
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INTRODUCTION 

 

Until the late 1980’s transcranial magnetic stimulation (TMS) machines could only deliver 1 

stimulus every 4s or so. However a repetitive stimulator was eventually produced that allowed 

repeated stimulation of the brain at high frequencies. Initially, repetitive TMS (rTMS) was 

used in “lesion” mode, to interrupt the function of language areas and thereby determine 

language dominance, or in “activation” mode to locate epileptic foci [Pascual-Leone et al., 

1991; Dhuna et al., 1991; 1,2]. However, it was not long before groups began to investigate 

its potential for inducing after-effects that outlasted the period of stimulation, and which 

appeared to involve plastic changes in the excitability of cortical synapses. Theta burst 

stimulation (TBS) is one of many forms of rTMS that were developed after this pioneering 

work when more advanced stimulators were available [Huang et al., 2005; 3]. Although it was 

first thought that TBS produced more powerful and reproducible effects than other rTMS 

methods, a claim that unfortunately has not stood the test of time, its main attraction is the 

speed of application. It takes 2-3 min or less to apply TBS protocols, making them more 

acceptable to participants than longer lasting protocols such as 1 Hz rTMS which can take 20-

30 min; the same advantage means that it can even be used in unanaesthetised animals. This 

has led to a large body of literature, which we have tried to survey below. The review mainly 

focuses on experimental studies performed on the primary motor cortex (M1) or in other 

cortical regions known to be functionally connected to M1 in healthy subjects and in patients 

with various type of movement disorders. We also discuss the experimental evidence coming 

from TBS studies in animals. Finally, we evaluate the status of TBS as a possible new non-

invasive therapy aimed at improving symptoms in various types of neurological disorders.  

 

 

TBS IN HUMAN STUDIES 
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Neurophysiology of TBS 

The original concept of TBS comes from the burst discharge at 4-7 Hz (the theta range in 

electroencephalography - EEG terminology) recorded from the hippocampus of rats during 

exploratory behavior [Diamond et al., 1988; 4]. Theta burst patterns of stimulation are 

commonly used to induce plasticity in animal brain slices [Capocchi et al., 1992; Larson and 

Lynch, 1986, 1989; 5-7], and it seemed reasonable to adapt these to the human brain using 

TMS. The parameters were adjusted to match the capabilities of rTMS machines available at 

the time. Each burst had three pulses at 50 Hz, instead of the four pulses at 100 Hz typically 

used for stimulating brain slices. Bursts were given at 5 Hz, which is identical to that used in 

the animal preparation.  

The first TBS protocol applied to human subjects was continuous TBS (cTBS) in 

which TBS was given continuously for 20 seconds [Huang et al., 2005; 3]. It was initially 

surprising that cTBS reduced the amplitude of the motor evoked potentials (MEPs) for some 

20 min since TBS in animal preparations typically enhanced synaptic efficacy resulting in 

long-term potentiation (LTP) rather than long-term depression (LTD). However, it has been 

noted that a longer train of stimulation may eventually lead to LTD if the stimulation period is 

long enough [Heusler et al., 2000; Larson et al., 1986; Takita et al., 1999; 8-10]. The TBS 

protocol was then adjusted to deliver repeated short trains mimicking what those commonly 

used for LTP induction in the animal studies. Such intermittent TBS (iTBS) successfully 

facilitated MEPs [Huang et al., 2005; 3]. The most commonly used varieties of cTBS and 

iTBS are illustrated in Figure 1A. iTBS enhances cortical excitability for 20 minutes or so 

whereas cTBS with either 300 or 600 total pulses (20s or 40s duration) leads to inhibition for 

20 or 60 min respectively (Figure 1B).  

 A single TMS pulse to the motor cortex evokes activity in corticospinal fibres that can 

be recorded directly in conscious humans through electrodes implanted into the epidural space 

at the high cervical level for the relief of pain [Di Lazzaro and Rothwell, 2014; 11]. Such 
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recordings have shown that TMS evokes a series of descending waves of corticospinal 

activity [Di Lazzaro and Rothwell, 2014; 11]. The earliest wave is termed the D-wave 

because it is caused by direct activation of the axon of corticospinal neurons in the subcortical 

white matter. The later waves are called I-waves because they are due to synaptic activation 

of the same corticospinal neurons and they are numbered in order of appearance (I1, I2 etc). 

These depend on the stimulus intensity, waveform and orientation of the induced current in 

M1. A conventional monophasic pulse with a posterior-anterior current in the brain, evokes 

three main components: 1) at low (close to motor threshold) intensities a single descending 

wave is recorded. This wave is believed to result from monosynaptic activation of 

corticospinal cells and, in analogy with experimental studies in animals, it has been termed 

the I1 wave [Amassian et al., 1987; 12] (Figure 2); 2) at higher stimulus intensities later 

volleys appear, these are termed late I-waves and it has been proposed that they originate 

from the recruitment of highly synchronized clusters of excitatory and inhibitory neurons 

producing a high frequency (~600 Hz) repetitive discharge of corticospinal cells (Figure 2); 3) 

a further increase of TMS intensity leads to direct excitation of the corticospinal axons in the 

subcortical white matter resulting in a short latency wave termed D-wave (Figure 2). Epidural 

recordings in a single patient have shown that benzodiazepine administration suppresses late 

I-waves with no change in the I1 wave [Di Lazzaro et al., 2000; 13], suggesting that I1 and 

late I-waves are due to activation of different sources of inputs to corticospinal neurons and 

that only the latter are under the control of γ-aminobutyric acid (GABA)-ergic inhibitory 

inputs.  

Epidural recordings before and after TBS show that cTBS and iTBS have differential 

effects on the I-wave components of the corticospinal volley. The cTBS protocol suppresses 

the I1 wave, whilst later I waves and the D-wave are much less affected (Figure 2) [Di 

Lazzaro et al., 2005; Di Lazzaro and Rothwell, 2014; 11,14]. Interestingly, the after effects of 

cTBS differ from those observed with other stimulation paradigms that suppress MEPs such 
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as low-frequency (1Hz) repetitive magnetic stimulation and paired associative stimulation 

with an interstimulus interval of 10 ms (PAS10). These selectively suppress late I waves with 

no change in the amplitude of the I1 wave [Di Lazzaro and Rothwell, 2014; 11]. 

In contrast to cTBS, the iTBS protocol enhances late I-waves with no change in the amplitude 

of the I1 wave [Di Lazzaro et al., 2008; 15]. This suggests that iTBS affects a different 

population of neurons whose inputs to the corticospinal cells produce the late I-waves (Figure 

2). The effect of iTBS might be due enhancement of synaptic transmission in the late I-wave 

circuit and/or to increased synchronization in the bursting inputs to corticospinal cells. This 

second effect is supported by the findings obtained in a single patient with chronic stroke who 

had epidural electrodes implanted in the epidural space of the upper spinal cord for treatment 

of pain. The I-waves recorded after iTBS of lower limb M1 were not only enhanced in 

amplitude but also much more synchronised [Di Lazzaro et al., 2006; 16] (Figure 2). The 

reasons for the differential effects of cTBS vs. iTBS predominantly on the I1-wave vs. late I-

waves are currently unknown. 

 The effects of iTBS and cTBS are blocked by N-Methyl-D-aspartate receptor 

(NMDAR) antagonists (memantine and dextromethorphan) [Huang et al., 2007; Wankerl et 

al., 2010; 17,18], while the LTP-like effect of iTBS reverse to an LTD-like effect after D-

cycloserine, a partial NMDAR agonist [Teo et al., 2007; 19]. Similar NMDAR dependency 

has also been noticed in conventional rTMS protocols at a regular frequency, in studies with 

the original PAS or with modified PAS protocols (i.e. Stefan et al., 2002; Suppa et al., 2013; 

20,21) and transcranial direct current stimulation (TDCS) (Nitsche et al. , 2003, Vlachos et 

al. , 2012, Ciampi de Andrade et al. , 2014; 22,23,24), but not in studies with transcranial 

random noise stimulation (Chaieb et al. , 2015; 25). In addition, nimodipine, an L-type 

voltage-gated Ca2+ channel blocker, produces a dose-dependent decrease in the effect of 

cTBS [Wankerl et al., 2010; 18]. There are also few lines of indirect evidence suggesting that 

the effect of conventional rTMS requires the activation of Ca2+ channels (Tan et al. , 2013, 
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Lenz et al. , 2015; 26,27). On the other hand, dextromethorphane, a Ca2+ channel blocker, 

prevents the after-effect of anodal, but not cathodal TDCS (Nitsche et al. , 2003; 22). Both the 

NMDAR and the Ca2+ channel are the well-known key receptor/channels at the post-synaptic 

membrane for induction of synaptic plasticity. These results are consistent with the idea that 

the after-effects of TBS involve LTP- and LTD-like phenomena. 

 

Theoretical mechanisms of TBS  

Based on a simplified post-synaptic mechanism of plasticity, a three-stage theoretical model 

was devised to explain why changing the pattern of stimulation from cTBS to iTBS reverses 

its effect [Huang et al., 2011; 28]. Assuming that LTP and LTD are triggered by Ca2+ influx 

to the postsynaptic neuron, the basic assumption of the model is that TBS produces a mixture 

of excitatory and inhibitory effects that can summate to yield the observed effects on 

corticospinal excitability. A short burst at 50 Hz leads to a short-latency facilitation together 

with a longer-latency and weaker inhibition [Huang et al., 2005; Huang and Rothwell, 2004; 

3,29]. Hence, iTBS which gives short TBS trains intermittently, keeps the excitatory effect 

dominant and produces an LTP-like effect. In contrast, cTBS is applied continuously for long 

enough to allow the inhibitory effect to overcome the facilitatory effect and produces an LTD-

like effect. In the first stage of the model, TBS activates the trigger factor, i.e. Ca2+ influx to 

the postsynaptic neuron. The property, including the amount and the rate of the increase, of 

the trigger factor determines the amount of the build up of inhibiton and facilitation processes 

that modify the synaptic strength in the second stage. Then, the sum of the amount of 

inhibiton and facilitation at the end of second stage determine the direction and the amount of 

after-effects. The assumption of the model is equivalent to say that the trigger factor will 

concurrently promote LTP and LTD and that the final outcome will be determined by which 

is dominant. This is supported by a study showing that dysfunction of Inositol 1,4,5-

trisphoshate receptors (InsP3Rs) that is required for LTP results in a conversion of LTD to 
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LTP, while partial blockade of NMDARs to reduce the rate of Ca2+ influx results in a 

conversion of LTP to LTD (Nishiyama et al., 2000; 30). Moreover, in brain slices, the 

potentiation effect produced by TBS was smaller when 20 bursts were used compared to 10 

bursts (Larson and Lynch, 1986; 31), and increasing the number of TBS trains may reduce the 

LTP effect (Abraham et al., 1997; 32). Beierlein et al. (2003; 33) also showed an initial 

facilitation followed by depression during a train of stimulation. These results support that a 

long train of stimualtion favours the inhibitory effect, while a short train of stimulation is 

likely to produce the facilitatory effect. 

 

Variability in TBS studies 

Like all current methods of non-invasive brain stimulation (NIBS), the response to TBS 

protocols is highly variable from one person to another. This has been highlighted by a 

number of recent papers that have compared the response of large numbers of individuals 

[Hamada et al., 2013; Lopez-Alonso et al., 2014; Hinder et al., 2014; 34, 35, 36]. Estimates of 

the variance differ between studies, but as a rough guide, to detect reliably a difference in 

response magnitude of about 20% between two groups of individuals requires about 30 

people in each group. This is much larger than in most of the studies reviewed below. Several 

studies have tried to identify factors that might be able to predict an individual’s response to a 

TBS protocol including genes.  

 Cheeran et al. [Cheeran et al., 2008; 37] suggested that some of the difference between 

people could be due to genetic factors (Figure 3). However, the studies reported thus far have 

been largely underpowered candidate single nucleotide polymorphisms (SNP) studies, and 

should perhaps be regarded as preliminary. A common SNP - BDNF Val66Met (rs6265) in 

the Brain Derived Neurotrophic Factor (BDNF) gene was the first (and subsequently most 

extensively) evaluated for a role in influencing the response to TBS and other rTMS 

paradigms, perhaps for these very reasons. Located in the 5-prime ‘pro’ region of BDNF, 
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BDNF Val66Met is critical for activity dependent secretion, and known to influence human 

episodic memory [Egan et al., 2003; 38]. Chronic rTMS (like chronic electroconvulsive 

therapy -ECT) was reported to increase serum BDNF levels in patients with depression, and 

animal studies of chronic rTMS showed an up-regulation of BDNF mRNA [Müller, 2000; 

Zanardini et al., 2006; Bocchio-Chiavetto et al., 2006; 39,40,41]. Cheeran et al. studied the 

effects of the BDNF Val66Met SNP on the response of healthy subjects to three different 

plasticity-inducing protocols over M1 [Cheeran et al., 2008; 37]. The BDNF Val66Met SNP 

significantly influenced TBS in particular, in 18 people. There was with a significant decrease 

in MEPs after cTBS (n=18) and a significant increase in MEPs after iTBS (n=18) in the 

Val/Val homozygote individuals (n=9) but not in those with one or more copies of the Met 

allele (n=9). Two studies have subsequently re-examined its influence on the effects of iTBS 

with conflicting results. Antal et al. [Antal et al., 2010; 42] reported that LTP-like plasticity 

could only be induced in 10 Val66Val allele carriers but not in 5 Val66Met allele carriers with 

iTBS, but Li Voti et al. [Li Voti et al., 2011; 43] found no difference between 7 Val66Met and 

14 Val66Val allele carriers in their response to iTBS. Mastroeni et al. [Mastroeni et al., 2012; 

44] re-visited the impact of the Val66Met BDNF genotype on the individual response to 

cTBS ,and iTBS as well as on homeostatic metaplasticity and did not find a significant effect 

of BDNF genotype. A (P = 0.081) trend for the polymorphism*time interaction was seen 

when monophasic MEPs (rather than biphasic MEPs) were assessed, but only a single block 

of 30 monophasic MEPs at minute 10 post TBS was recorded in this study. A key 

methodological difference in this study was the use of inverted direction of the induced tissue 

current with biphasic stimulation in this study (compared to the original Huang et al. study) 

[Huang et al., 2005; 3], which influences AMT assessment (and consequently stimulation 

intensity), as well as the population of interneurons stimulated. Hwang et al. [Hwang et al., 

2015; 45] demonstrated that stimulation intensity has a significant effect on the influence of 

BDNF genotype (Val66Met polymorphism) on 10Hz rTMS-induced changes in cortical 
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excitability in healthy humans, in keeping with the known biological effects of BDNF on the 

‘modification threshold’ [Hwang et al., 2015; Suppa and Cheeran, 2014; 45,46]. Together, 

these studies may serve to demonstrate that the effects of this common genetic variation on 

TBS (and other non invasive brain stimulating protocols) may be more complex and nuanced 

that originally reported by Cheeran et al. [Cheeran et al., 2008; 37]. Subtle variations in 

protocol between experiments, or stimulation techniques between labs may have a 

disproportionate influence on results, over or understating the importance of this SNP. In 

addition, the role of gender on the effects of the BDNF Val66Met SNP has yet to be examined 

systematically. 

 Mori et al. [Mori et al., 2011; 47] studied 77 (31 males; mean age, 38.3 +/- 10.2 years) 

healthy subjects carrying specific allelic variants of NMDAR subunits, specifically NR1 

subunit gene (GRIN1 rs4880213 and rs6293) or of the NR2B subunit gene (GRIN2B 

rs7301328, rs3764028, and rs1805247). Their results showed that individuals carrying the G 

allele in the rs1805247 GRIN2B SNP show greater long-term potentiation-like cortical 

plasticity after iTBS. A second paper investigating non-synonymous SNPs in TRPV1 (a 

member of the transient receptor potential - TRP family receptors), showed no significant 

effects on TBS. This result is unsurprising, given the fact that TRPV1 functions as a 

molecular integrator for multiple types of sensory input (activated by capsaicin, 

endocannabinoids and eicosanoids for example), but is useful as it gives further details of this 

cohort [Mori et al., 2012; 48]. A cohort of 550 individuals was genotyped, with 77 (31 males; 

mean age, 38.3 +/- 10.2 years) consenting to TMS studies including cTBS and iTBS. It is 

unclear why the authors did not report the results for cTBS for GRIN2B or acknowledge the 

lack of correction for multiple SNP testing in the same neurophysiological dataset. These 

results have not been replicated to date. 

 Lee et al. [Lee et al., 2014; 49] studied the effect of the COMT Val158Val (rs4680) 

polymorphism in 18 elderly subjects (73.78±5.04 years). The COMT gene codes for 
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Catechol-O-methyltransferase, which catalyzes the transfer of a methyl group from S-

adenosylmethionine to catecholamines This include neurotransmitters like dopamine, 

epinephrine, and norepinephrine, as well exogenously administered drugs for Parkinson’s 

Disease and hypertension. This functional polymorphism is believed to affect dopamine 

levels; subjects carrying the Val alleles have increased COMT activity and lower prefrontal 

extracellular dopamine compared with those with the Met substitution [Stein et al., 2006; 50]. 

Nine participants in this study had the Val/Val allele, while 5 participants were Val/Met 

carriers, and 4 participants were Met/Met allele carriers. Met allele carriers showed greater 

cTBS induced suppression of MEP amplitude in healthy elderly subjects. Val/Val subjects 

appear to show no effect of cTBS in the first 30 min after stimulation, but this was not 

analyzed in the paper. These results have not been replicated to date. 

 Factors other than genes contribute to the variability observed in TBS studies. A 

number of authors have reported several factors leading to between-subject and within-subject 

variability [Hamada et al., 2013; López-Alonso et al., 2014; 34,35]. Hamada et al. [Hamada et 

al., 2013; 34] examined 56 people and found that approximately 50% of the variation in TBS 

response could be attributed to differences in the intracortical network activated by the TMS 

pulse. Using different coil orientations to activate various intracortical circuits evidence was 

provided that subjects in whom late I-wave circuits were likely activated by TMS were more 

likely to respond in the expected direction with both iTBS (LTP-like plasticity) and cTBS 

(LTD-like plasticity). There is also some evidence that the functional connectivity in cortical 

networks targeted by stimulation might influence the response to TBS. Nettekoven and 

colleagues [Nettekoven et al., 2015; 51] demonstrated that “non responders” to an iTBS 

protocol had greater resting state functional connectivity between M1 and premotor cortex 

when compared to “responders”. Additionally, “responders” demonstrated, in addition to 

increased MEP amplitudes, increased levels of resting state functional motor network 

connectivity after iTBS [Nettekoven et al., 2014, 2015; 51,52]. In contrast to the after-effects 
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of PAS and 6 Hz rTMS that have reported an age-related decline in M1 plasticity [Müller-

Dahlhaus et al., 2008, Tecchio et al., 2008; 53,54], Dickins et al. [Dickins et al., 2015; 55] 

found no age dependent effects in the response to iTBS. Early life events can modify the 

response to TBS in later life. Pitcher and colleagues [Pitcher et al., 2012; 56] reported that 

preterm birth was associated with a reduced LTD-like response to cTBS when studied in a 

group of adolescents. Whether the effects of preterm birth are seen in adulthood is not clear at 

this stage. Interestingly, in this study the cTBS response of the term born adolescent 

participants was strong and possibly greater than that seen in adults. This suggests that there 

might be age dependent effects on the cTBS response but this requires further study. Finally, 

there are state-dependent and genetic influences on the response to TBS that are outlined 

elsewhere in this review (Figure 3). 

 Although there is considerable variation in TBS response between individuals, there is 

much less variability within an individual from day to day [Hinder et al., 2014; 36]. Taking 

the results from 30 individuals studied with cTBS on 2 different occasions, a significantly 

lower proportion of the total variance was accounted for by intra-individual (12.6%) 

compared with inter-individual effects (41.4%). Similar effects were described by Vallence et 

al. [Vallence et al., 2015; 57] after cTBS. Many factors may contribute to intra-individual 

variance such as the state of circulating hormones, time of day, previous levels of activity [see 

Ridding and Ziemann, 2012; 58]. Clow and colleagues [Clow et al., 2014; 59] recently 

reported that the magnitude of the initial burst of cortisol seen on awakening (the cortisol 

awakening response - CAR) was associated with the magnitude of the neuroplastic response 

to cTBS. When assessed on 4 occasions on different days larger than average CARs were 

associated with greater cTBS responses. This finding provides evidence that circadian related 

changes in cortisol secretion within individuals are an important influence on neuroplasticity 

(Figure 3). 
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State dependent effects on TBS 

TBS is usually delivered at an intensity of 80% active motor threshold (AMT). Estimation of 

active threshold necessarily involves tonic contraction of the target muscle prior to applying 

TBS. Under these conditions, cTBS with either 300 or 600 total pulses (20s or 40s total) 

suppresses MEPs. However, if participants are completely relaxed for >10min prior to TBS, 

then cTBS with 300 pulses yields a mild facilitatory effect [Gentner et al., 2008; 60]; cTBS 

with 600 pulses still produces inhibition. The same reversal of effects was seen after phasic 

muscle contraction [Iezzi et al., 2008; 61] and after administration of the L-type Ca2+ blocking 

drug nimodipine [Wankerl et al. 2010; 18]. It was suggested that after a period of rest, cTBS 

induces a large Ca2+ influx into postsynaptic neurones via NMDA receptors as well as L-type 

Ca2+ channels causing the LTP-like effects. However, nimodipine blocks some of the influx 

and a smaller amount of Ca2+ entry (via the NMDA channels) leads to LTD-like effects. It 

could be therefore, that prior contraction causes an activity dependent change in L-type Ca2+ 

entry, again resulting in MEP suppression as described originally. Mild (10% of the 

maximum) voluntary contraction during TBS abolishes the after-effect of TBS [Huang et al., 

2008; 62]. One possible reason is that contraction increases the membrane conductance of 

postsynaptic neurons, so that synaptic current produces less voltage change across the 

membrane, and consequently less Ca2+ entry into the neuron. Interestingly, the same amount 

of contraction immediately after TBS reversed the inhibitory effect of 20-second cTBS into 

facilitation and enhanced the facilitatory effect of iTBS [Huang et al., 2008; 62]. This was not 

seen when the contraction was performed 10 min after 20-s cTBS or immediately after 40-s 

cTBS [Huang et al., 2008; 62]. The explanation for this is unclear. Immediate contraction 

could well disrupt the early stages of plasticity induction. Given some minutes to consolidate, 

contraction at a later time might then have no effect. However, this does not account for the 

increase in effectiveness of iTBS unless we also propose that contraction only interferes with 

the LTD-like effects of TBS. If iTBS produces a mixture of inhibitory and facilitatory after-
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effects, then removal of the inhibitory component would enhance its facilitation. Mild 

voluntary contraction of an antagonist muscle during cTBS enhances the depressive effect of 

cTBS. The authors proposed that reciprocal inhibition of the target muscle reduced the 

excitatory component of the cTBS effect, increasing the overall amount of suppression. 

Interestingly forceful (60% of maximum) antagonist contraction blocks all effects of cTBS, 

perhaps because it is usually accompanied by low levels of activity in the agonist (target) 

muscle [Fang et al., 2014; 63].  

 

TBS and metaplasticity 

Metaplasticity is defined as modification of the direction, magnitude and/or duration of 

plasticity by previous activity in the same postsynaptic neuron or neural network [Abraham, 

2008, Hulme et al., 2013; 64,65]. It is often described in terms of the Bienenstock-Cooper-

Munroe (BCM) theory, which implies that plasticity at any given synapse is bidirectional i.e. 

LTP or LTD can be induced, and that the likelihood for LTP/LTD-induction is not stable over 

time but depends homeostatically on the activity history of the postsynaptic neuron 

[Bienenstock et al., 1982; 66]. Work from animal experiments demonstrates that 

metaplasticity plays significant roles in the regulation of network function and behavior.  

 Beside In addition to a single study showing a non-homeostatic metaplasticity 

interaction between a suprathreshold 5-Hz rTMS protocol able to elicit short-term 

potentiation (STP) and iTBS/cTBS-induced LTP/LTD-like plasticity [Iezzi et al., 2013; 67], a 

number of studies have examined metaplasticity processes tested by subsequent TBS 

protocols applied to M1. Todd et al. [Todd et al, 2009; 68] initially found that giving iTBS 

10min before cTBS converted the expected inhibition (from cTBS alone) into facilitation. A 

similar pattern of homeostatic interaction was observed by Murakami et al. [Murakami et al., 

2012;69] who examined all possible pairs of cTBS and iTBS, separated by an interval of 

15min. Application of identical protocols (iTBS→iTBS and cTBS→cTBS) suppressed the 
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non-primed TBS effects, while pairs of different protocols (cTBS→iTBS, iTBS→cTBS) 

enhanced the non-primed TBS effects in a homeostatic manner. Murakami et al. also 

investigated the effects on SICI, and again concluded that plasticity in inhibitory circuits of 

M1 is also regulated by homeostatic metaplasticity, and could contribute to the homeostatic 

regulation of excitatory circuits [Murakami et al., 2012; 69]. These results were confirmed by 

Gamboa et al. [Gamboa et al., 2011; 70] who tested protocols separated by 2, 5 or 20min. In 

most cases, the interactions were homeostatic. 

 However, more recent cTBS→cTBS experiments using a 10min interval demonstrate 

a non-homeostatic interaction with significant lengthening of the LTD-like MEP decrease 

>120min [Goldsworthy et al., 2012a,b; 71,72], that was resistant to de-depression by 

voluntary contraction or short-duration iTBS [Goldsworthy et al., 2015; 73]. The mechanisms 

of these non-homeostatic interactions are currently unclear. It should be noted that this 

particular combination of paired cTBS with a 10min interval had never been tested in the 

previous studies that emphasized homeostatic interactions. As reported in other plasticity 

protocols such as TDCS [Monte-Silva et al., 2010 or 2011?; 74] the interval between TBS 

blocks may be critical for the after-effects. However, studies with much larger numbers of 

participants are required to resolve this problem satisfactorily. 

  

TBS and functional brain connectivity 

A number of authors have investigated the effect of TBS applied over distant motor and non-

motor brain regions in order to produce lasting changes in the excitability of ipsilateral or 

contralateral M1. In all of the studies reviewed here, TBS effects have been monitored 

indirectly by measuring changes in MEP amplitudes evoked single-pulse TMS over M1. The 

most likely explanation for the effects is that TBS changes the excitability of the distant area 

and modulates the amount of ongoing activity in its connections with M1. M1 excitability is 

affected because of this changes the balance of inhibitory and excitatory inputs that it 
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receives. A second possible explanation is that TBS directly stimulates connections from the 

region of interest onto M1. These then directly change M1 excitability. However, this seems 

less plausible given that TBS at 80% AMT is unlikely to cause any direct discharge in 

efferent pathways from the stimulated cortex. 

 cTBS of M1 in the opposite hemisphere increases, while iTBS decreases MEP 

amplitudes elicited by single TMS pulses delivered over the target M1 [Ishikawa et al., 2007; 

Mochizuki et al., 2007; Suppa et al., 2008; Stefan et al., 2008; Di Lazzaro et al., 2008; 

15,75,76,77,78]. The hypothesis is that cTBS/iTBS reduces/enhances the amount of tonic 

activity in long-range (perhaps transcallosal) cortical projections to M1. Given the current 

view that the interactions between the two hemispheres are largely inhibitory [Ishikawa et al., 

2007; Mochizuki et al., 2007; Suppa et al., 2008; Stefan et al., 2008; Di Lazzaro et al., 2008; 

15,75,76,77,78], this means that when cTBS reduces the ongoing activity in that connection, 

it removes inhibition from M1 and increases its excitability. The opposite is true of iTBS. 

TBS of dorsal premotor cortex (PMd) and supplementary motor area (SMA) also changes 

excitability of M1 [Mochizuki et al., 2005, Koch et al., 2007; Stefan et al., 2008; Wilkinson et 

al., 2009; Huang et al., 2009, 2010; 78,79,80,81,82] and can disclose abnormalities in patients 

with movement disorders such as dystonia [Huang et al., 2010; 83]. 

 CTBS of the lateral cerebellum (Cer) decreases the amplitude of MEPs elicited from 

contralateral M1 while iTBS of Cer increases MEP amplitudes [Koch et al., 2008; Li Voti et 

al., 2011; 84, 85]. As with the M1-M1 interaction above, it is thought that cTBS reduces the 

activity of Purkinje neurons that tonically inhibit the (excitatory) cerebello-thalamo-cortical 

pathway. This removes excitation from M1 resulting in smaller MEPs. CTBS of Cer also 

enhances subsequent induction of LTP-like plasticity by PAS at 25 ms interstimulus interval 

(PAS25) of M1, while iTBS of Cer occludes this form of LTP-like plasticity [Popa et al., 

2013; 86], in line with homeostatic metaplasticity. One possible explanation for this would be 

a homeostatic interaction between the Cer inhibitory priming of M1 and the subsequent 
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PAS25. However this seems unlikely since the same Cer priming protocols do not interfere 

with LTP-like plasticity induced by iTBS of M1 [Popa et al., 2013; 86]. It has been suggested 

that afferent input responsible for the PAS25 effect might travel via a cerebellar pathway. If so 

then the effect of Cer TBS on PAS25 might be due to an interaction with the sensory afferent 

volley rather than a direct effect on M1. 

 TBS over the primary sensory area (S1) modulates the amplitude of ipsilateral and 

contralateral somatosensory evoked potential (SEP)’ high frequency oscillations (HFOs) but 

has inconsistent effects on MEP amplitude [Ishikawa et al., 2007; Katayama and Rothwell, 

2007, Katayama et al., 2010; Jacobs et al., 2012, 2014; 75,87,88,89,90]. In contrast, several 

studies applying TBS over higher-order somatosensory areas including Brodmann area 

5 (BA5) found increased MEPs after cTBS suggesting that compared to S1, BA5 may have a 

stronger influence on excitability of ipsilateral and contralateral M1 [Premji et al., 2011; 

Jacobs et al., 2014; 90,91].  

 

TBS and motor learning 

The term motor learning mainly refers to practice-related changes in motor performance 

induced by repeating a voluntary motor task. Motor learning evolves through an early and a 

late phase. The early phase of motor learning consists of a practice-related improvement in 

motor performance that is retained over a relatively short time (motor retention) and then 

consolidated after several hours (motor consolidation) (Agostino et al., 2008; Iezzi et al., 

2010; Teo et al., 2011; 92, 93, 94). Conversely, the late phase of motor learning consists of 

further incremental performance triggered by additional sessions of motor practice (Agostino 

et al., 2008; Iezzi et al., 2010; Teo et al., 2011; 92, 93, 94). Plasticity processes in M1 are 

known to contribute to the early phase of motor learning (Agostino et al., 2008; Iezzi et al., 

2010; Teo et al., 2011; 92, 93, 94). There have been few studies of the effects of TBS of M1 

on motor learning. In all cases the effects were “non-homeostatic”, in that excitatory iTBS 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jacobs%20M%255BAuthor%255D&cauthor=true&cauthor_uid=22666612
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given 10min before the task enhanced learning of ballistic movements [Agostino et al., 2008; 

Teo et al., 2011; 92, 94)], whereas cTBS impaired learning and retention [Iezzi et al., 2010; 

93]. Gating mechanisms may explain why these interactions were non-homeostatic [Ziemann 

and Siebner, 2008; 95]. Priming the lateral cerebellum with cTBS had no effect on practice-

induced changes in peak acceleration of simple movements although it disrupted their 

retention when tested at a later time [Li Voti et al., 2014; 85]. In contrast, it impaired the skill 

acquisition of more demanding reaching-to-point movements [Li Voti et al., 2014; 85]. These 

findings suggest that the lateral cerebellum is involved in long-term memory of these motor 

skills, and in learning of high-skilled goal-directed voluntary movements. 

  

TBS studies in patients with hypokinetic and hyperkinetic movement disorders 

Over the recent years an increasing number of studies have investigated the response to TBS 

in patients with various types of hypokinetic and hyperkinetic movement disorders. From 

what is now known about the variance in response to TBS protocols, most of these studies 

might be considered individually underpowered. Thus results that have not been replicated in 

more than one centre should be regarded as preliminary. 

 In patients with Parkinson’s disease (PD), the majority of authors have found reduced 

response to iTBS and cTBS. Whether this is due to changes in intrinsic levels of dopamine in 

M1 [Wang and O’Donnell, 2001; Molina-Luna et al., 2009; Hosp and Luft, 2013; Hsieh et al., 

2014; 96,97,98,99], or to changes in inputs to M1 from basal ganglia and other areas is 

unknown [Suppa et al., 2011; Bologna et al., 2015; 100,101]. In addition, there is still no 

agreement on whether abnormal TBS-induced plasticity is normalized by acute or chronic 

treatment with L-DOPA. Eggers et al. [Eggers et al., 2010; 102] and Suppa et al. [Suppa et al., 

2011; 100] first demonstrated reduced responses to cTBS and iTBS, respectively. Although 

these observations have been confirmed in “de novo” PD patients in the more and the less 

clinically affected arm [Kishore et al., 2012a; 103] a further study failed to find altered 
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responses to TBS in parkinsonian patients [Zamir et al., 2012; 104]. The reason for this 

inconsistency in PD studies may arise from difference in patients’ clinical features including 

disease duration and total daily doses of L-Dopa and other anti-parkinsonian drugs. The 

effects of “acute” and “chronic” L-Dopa therapy are unclear. Suppa et al. [Suppa et al., 2011; 

100] found similar iTBS abnormalities in chronically treated PD patients, on and off therapy, 

and with or without L-Dopa-induced dyskinesias (LIDs), suggesting no beneficial effect of L-

Dopa on TBS-induced plasticity. Kishore et al. [Kishore et al., 2012a; 103] confirmed no 

beneficial effect of acute L-Dopa challenge in “de novo” patients. In chronically treated PD 

patients, without LIDs and taking half their normal L-Dopa dose, Huang et al. [Huang et al., 

2011;105] found no response to iTBS, while the response to iTBS and the amount of 

depotentiation elicited by a specifically designed “repeated” TBS protocol were both restored 

when patients took their full L-Dopa dose. However, in that study Huang et al. [Huang et al., 

2011; 105] did not apply the conventional iTBS protocol which was expected to elicit no 

LTP-like plasticity in PD patients but a modified facilitatory type of TBS (cTBS followed by 

immediate muscle contraction for 1 min) [Huang et al., 2011; 105]. In addition, in chronically 

treated PD patients with LIDs, Huang et al. [Huang et al., 2011; 105] found a normal response 

to the modified facilitatory TBS protocol only when patients received half dose of L-Dopa 

(not eliciting LIDs), but patients failed to show depotentiation. Further information came from 

the study of Kishore et al. [Kishore et al. 2012b; 106] in chronically treated PD patients. 

Kishore et al. [Kishore et al., 2012b; 106] found different types of responses to TBS in 

patients off and on therapy, according to specific patients’ clinical features (stable responders 

to L-Dopa, fluctuating non-dyskinetics and fluctuating dyskinetics). In chronically treated 

patients off therapy, TBS elicited normal responses in “stable responders”, whereas 

“fluctuating non-dyskinetics” manifested normal responses to iTBS but not to cTBS. Finally, 

chronically treated “fluctuating dyskinetics” had reduced responses to both iTBS and cTBS. 

When tested on therapy, an acute L-Dopa challenge deteriorated responses to cTBS in all 
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patient subgroups with a paradoxical potentiation instead of depression of MEPs in 

“fluctuating dyskinetic” patients. The acute L-Dopa challenge also deteriorated responses to 

iTBS in “fluctuating non-dyskinetics”, whereas in “fluctuating dyskinetics”, it left responses 

to iTBS and cTBS globally unchanged. In conclusion, overall these studies in patients with 

PD point to the a relevant role of specific clinical (i.e. stage of the disease) and 

pharmacological factors (i.e. total L-Dopa daily dose) in modulating the response to the TBS 

protocols [Bologna et al., 2015; 101]. 

Relatively small cohorts of patients with atypical parkinsonisms have also been 

studied with TBS. In Progressive Supranuclear Palsy (PSP), responses to iTBS were 

enhanced responses whereas cTBS-induced after-effects paradoxically turned from LTD-like 

to LTP-like plasticity [Conte et al., 2012; 107]. In contrast, patients with Multiple System 

Atrophy (MSA) had reduced response to both iTBS and cTBS [Suppa et al., 2014; 108], and 

the effect was similar in patients with predominant parkinsonian (MSA-P) and cerebellar 

(MSA-C) features [Suppa et al., 2014;108]. More recently, a study in a small cohort of 

patients with Corticobasal syndrome (CBS), a rare neurodegenerative disorder characterized 

by parkinsonism combined with other asymmetric and heterogeneous motor (dystonia and 

myoclonus) and non-motor symptoms (apraxia, cortical sensory deficit, and alien limb 

phenomena), showed a more complex scenario [Suppa et al., 2016; 109]. When TBS was 

applied over the M1 contralateral to the less affected limb (manifesting only parkinsonism), 

iTBS and cTBS both elicited reduced responses. By contrast, when assessing the M1 

contralateral to the more affected limb manifesting parkinsonism plus other motor and non-

motor symptoms, TMS elicited heterogeneous responses. A first subgroup of CBS patients 

disclosed exceptionally decreased M1 excitability possibly due to cortico-spinal neuronal 

loss, a finding that prevented the examination of M1 LTP/LTD-like plasticity. A second 

subgroup of patients predominantly manifesting parkinsonism plus other motor symptoms 

showed reduced responses to TBS, whereas a third subgroup of patients predominantly 
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manifesting non-motor symptoms was characterized by increased responses to iTBS and 

cTBS [Suppa et al., 2014; 109]. Overall these findings suggest that TBS may help to 

understand the pathophysiological bases of the clinical and neurophysiological heterogeneity 

of patients with atypical parkinsonisms.  

 Several authors have investigated TBS-induced changes in MEP amplitudes in 

patients with hyperkinetic movement disorders. The two published studies with TBS in 

dystonia have apparently conflicting results. Edwards et al. [Edwards et al., 2006; 110] found 

a prolonged response to cTBS in patients with DYT1 generalized dystonia and cervical 

dystonia (CD), whereas DYT1 gene carriers without dystonia had reduced responses. They 

speculated that the prolonged response to cTBS observed in patients, like the increased 

response to the PAS25 [Quartarone et al., 2005; 111] was linked to the pathophysiology of 

dystonic symptoms, whereas the reduced response to cTBS observed in non-manifesting 

DYT1 carriers reflects a compensatory mechanisms to protect susceptible individuals from 

appearance of dystonia [Edwards et al., 2006; 110]. In contrast, Belvisi et al. [Belvisi et al., 

2013; 112] found a reduced response to iTBS in patients with focal hand dystonia. The 

difference between studies could relate to the different versions of TBS, or to the different 

body part affected by dystonia, but more data is needed to address that question. There is only 

one study of cTBS in patients in the early phase of Huntington's disease (HD) and in 

asymptomatic HD carriers [Orth et al., 2010; 113]. Responses to cTBS were reduced in both 

groups suggesting that altered plasticity may play an important role in the pathophysiology of 

HD. Responses to iTBS and cTBS have also been reported to be reduced in patients with 

Gilles de la Tourette Syndrome (GTS) [Suppa et al., 2011, 2014; 114,115]. The effect was 

comparable in patients with pure motor symptoms and in those manifesting psychiatric 

comorbidity and unaffected by chronic medication [Suppa et al., 2014; 115]. These findings 

suggest abnormal LTP/LTD-like plasticity in M1 as a possible factor contributing to the 

pathophysiology of hyperkinetic movement disorders including GTS [Suppa et al., 2011, 
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2014; 114,115]. Overall these studies have reported a number of abnormalities in patients 

with different types of hyperkinetic movement disorders. However, whether and through 

which physiological mechanisms the above mentioned abnormalities contribute to the 

pathophysiology of hyperkinetic symptoms remains largely unclear. 

 

 

TBS IN ANIMAL STUDIES 

 

Animal models supplement human TMS studies by opening the possibility to apply invasive 

in vivo electrophysiology, post-stimulation in vitro electrophysiology and histology, in 

addition to behavioral testing. Fortunately, TBS protocols are very suitable for experiments on 

animals because the short duration allows stimulation of fully awake animals in a stress-free 

manner after adequate familiarization to the experimental situation including manual restrain 

[Hoppenrath and Funke, 2013; Mix et al., 2010, 2015; Papazachariadis et al., 2014; Castillo-

Padilla and Funke, 2015; 116,117,118,119,120]. 

 

A rat model of TMS 

The study of TMS in small animals like rats is confronted with a scaling problem. The human 

brain is about 700x larger than the rat brain, making a focal stimulation of distinct rat brain 

areas difficult if not impossible. Even recent developments of small rodent coils (Cool-40, 

MagVenture) do not solve this problem completely. The main limitations are achieving 

sufficient current flow in a small coil without overheating, a problem that is magnified when 

applying high-frequency repetitive stimulation. To achieve certain degree of focal stimulation, 

the peak of the magnetic field is either centered above the cortical area to be stimulated, e.g. 

for evoking motor responses as in humans [Hsieh et al., 2015; 99], or somewhat eccentric to 

limit stimulation to one hemisphere [Keck et al., 2001; Rotenberg et al., 2010; 121,122]. 
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Alternatively, the coil is centered on the midline over the corpus callosum with mediolateral 

orientation of the induced electric field [Benali et al., 2011; Ghiglieri et al., 2012; 123,124]. 

The former method needs a higher magnetic field strength of about 50-80% of maximal 

machine output (MO), while the latter requires only 20-30% MO to achieve cellular effects. It 

is postulated that midline TMS will initiate action potentials in callosal axons and induce 

primarily supragranular cortical activity in both hemispheres, via synaptic connections with 

pyramidal cells and interneurons within layer 2/3 and also via action potentials back-

propagating to the cells of origin of the callosal projections and to all synapses of local axon 

collaterals (see Figure 4A1 and A2). The lower stimulation intensity needed to activate callosal 

axons reduces the risk of stimulating deeper parts of the brain directly. In animal models, the 

principal neuronal effects of patterned stimulation of the human brain using TMS can also be 

modelled by applying the same stimulation patterns via conductive electrodes, thus enhancing 

focality and bypassing the necessity of using TMS coils for stimulation [Barry et al., 2014; 

125]. 

 

Neuronal activity and plasticity markers 

The first TBS studies on neuronal activity and plasticity markers in anaesthetized rats 

demonstrated increased c-Fos and zif268 early gene expression but also decreased amounts of 

proteins expressed in inhibitory interneurons, like the GABA-synthesizing enzyme GAD67 

(67kD isoform of glutamate decarboxylase) and the calcium-binding proteins parvalbumin 

(PV, Figure 4B) and calbindin (CB) [Aydin-Abidin et al. 2008; Trippe et al., 2009; Benali et 

al., 2011; 123,126,127]. Studying the changes in protein expression at different times post-

iTBS (600 pulses, awake rat) [Hoppenrath and Funke, 2013; 116] revealed that c-Fos, zif268 

and GAD65 (65 kD GAD isoform expressed in GABA-ergic terminals) were strongly 

increased as early as 10 minutes post-iTBS and recovered within 20 minutes, while a 

reduction in PV, CB and GAD67 expression appeared earliest after 20-40 minutes (see Figure 
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4C). The former may reflect the acute effects of neuronal stimulation, including activation of 

GABAergic synapses as indicated by the increase in GAD65. The latter are a sign of neuronal 

plasticity, probably induced by the degree and temporal pattern of changes in intracellular 

calcium concentration [Grehl et al., 2015; 128]. The reduction of GAD67 and CB could last 

for hours, and even days in case of PV [Benali et al., 2011; 123] without further intervention 

(see below). The effects of stimulation increase in a dose-dependent fashion with each TBS 

block applied [Volz et al., 2013; Thimm and Funke, 2015; 129,130] and require activation of 

NMDARs [Labedi et al., 2014; 131]. Interestingly, in dark agouti rats iTBS primarily reduced 

the expression of PV [Benali et al., 2011; 123], a protein specifically expressed in fast-spiking 

interneurons mediating perisomatic inhibition and thereby controlling rate and temporal 

pattern of pyramidal cell output activity [Markram et al., 2004; 132]. In contrast, cTBS had 

little effect on PV but reduced the expression of CB, expressed in non-fast-spiking 

interneurons controlling primarily dendritic input to pyramidal cells. It thus appeared that 

different TBS protocols may be able to affect different subsets of the cortical network, a 

finding closely related to the different effects of iTBS and cTBS on human cortical I-waves 

(see above). 

 

Cortical electric activity 

A recent study addressing the effects of TBS on rat motor cortex replicated the opposing 

effects of the two TBS protocols as usually found in human studies, with iTBS increasing and 

cTBS decreasing the amplitude of MEPs for more than 30 minutes [Hsieh et al., 2015; 99] 

(see Figure 4D). Thimm and Funke [Thimm and Funke, 2015; 130] analyzed evoked sensory 

responses in the barrel cortex of anaesthetized rats before, between and after five blocks of 

either iTBS or cTBS. iTBS disinhibited sensory responses in the layer 3/4 border region by 

increasing late components of evoked responses (see Figure 4E1) and by reducing paired 

pulse suppression at short intervals (20 ms). The effect increased with each of the five blocks. 



 

 26 

In contrast, the first cTBS block caused a slight suppression of sensory responses but a weak 

disinhibitory effect evolved with further repetitions (see Figure 4E2), indicating that the cTBS 

effect may reverse with repeated or prolonged stimulation [Gamboa et al., 2010, 2011; 

70,133]. Another TBS study on rat somatosensory cortex [Benali et al., 2011; 123] showed 

that iTBS, but not cTBS, increased spontaneous neuronal activity in the gamma frequency 

range. 

 

Learning and memory 

In 2010, Mix et al. [Mix et al., 2010; 117] demonstrated that iTBS, but not cTBS, improved 

the ability of rats to learn a tactile discrimination task in darkness (Figure 4F1). Analysis of 

cortical activity marker expression one day after the last session revealed that iTBS, but less 

cTBS, reduced the expression of PV, CB and GAD67. Since magnetic stimulation was not 

focused to a particular cortical area, these changes were evident in multiple cortical areas of 

all animals whether they performed the task or not. However, cortical areas involved in the 

learning process (frontal and barrel cortex) had significantly less reduction of PV and CB 

expression than the visual cortex which was not involved in the task (see Figure 4F2). It thus 

appears that better learning in iTBS-treated rats relates to initial cortical disinhibition, which 

promotes functional network plasticity. Inhibition normalizes and almost recovers to pre-

stimulation conditions during the course of learning related plasticity. 

 

Factors of variability 

iTBS and cTBS produce different outcomes in different strains of rat [Mix et al., 2014; 134]. 

The clear difference between both protocols seen in Dark Agouti (DA) rats, a strong reduction 

in PV with iTBS but little effect on CB, and vice versa with cTBS, was almost absent in 

Sprague Dawley (SD) rats. A study on these and a third strain, Long Evans (LE), revealed 

that the iTBS effects are quite consistent with about 40% reduction in the number of PV+ 
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cells and 20% reduction in the number of CB+ cells in all strains. However, the cTBS effects 

differed between strains, with opposite effects in SD and DA rats, and the LE in between (see 

Figure 4G). One factor possibly contributing to the inter-strain variability was seen in the 

different basal number of interneurons of a certain class, pointing to variations in cortical 

circuits and a likely genetic factor (see above). A recent rat study further revealed that iTBS-

induced reduction in cortical PV expression is age-dependent [Mix et al., 2015; 118]. It 

cannot be induced before maturation of the perineuronal nets surrounding the cell bodies and 

proximal dendrites of PV+ interneurons, accompanied by maturation of cortical synaptic 

inputs. This finding indicates that TBS effects may depend on the developmental changes of 

cortical areas, which are still in progress during adolescence. Application of iTBS to rats 

visually deprived from birth to the end of the early cortical critical period prevents the 

detrimental effect of dark rearing on visual performance of rats which is also associated with 

iTBS-induced reduction in PV expression but also an increase in cortical BDNF level 

[Castillo-Padilla and Funke, 2015; 120]. Interestingly, a tactile enriched environment during 

dark rearing has a similar effect on visual performance and cortical BDNF level but is not 

associated with the reduction in PV expression observed with iTBS (see Figure 4B). 

 

Disease models 

To date, animal disease models using TBS applied via TMS are limited to experimental 

parkinsonism in rats. The iTBS protocol was found to increase striatal excitability and to 

rescue long-term depression at cortico-striatal synapses, which had been almost eliminated by 

6-hydroxydopamine treatment [Ghiglieri et al., 2012; 124]. Using a similar rat model of 

experimental Parkinsonism, Hsieh et al. [Hsieh et al., 2015; 99] recently demonstrated that the 

potential of iTBS to induce M1 plasticity declines with depletion of dopaminergic neurons 

within the substantia nigra, and with severity of motor deficits. A rat cortical lesion model 

mimicked TMS-induced cortical activity by applying the iTBS pattern via implanted 
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electrodes [Barry et al., 2014; 125]. The authors demonstrated that this procedure weakens 

inter-hemispheric inhibition and improves recovery of motor functions if applied to M1 

contralateral to the lesioned hemisphere. 

 

 

HARNESSING TBS FOR THERAPY 

 

How to harness metaplasticity in brain disease with disordered network activity is currently 

most extensively studied after cerebral stroke in order to improve functional outcome. Several 

studies have been Bbased on the certainly oversimplifieda simple concept of a dysbalanced 

inter-hemispheric equilibrium with  (1) decreased excitability in the ipsilesional hemisphere, 

(2) increased excitability in the contralesional hemisphere, and (3) exaggerated inhibitory 

control from the contra- to ipsilesional hemisphere [Ward and Cohen, 2004; 135]. , several 

proof-of-principal studiesThey have demonstrated that increasing excitability of the 

ipsilesional M1 with enhancing iTBS of the ipsilesional M1 or excitability depressing the 

excitability of the contralesional cortex with cTBS of the contralesional M1 concurrent with 

motor practice can improve motor skill and motor learning when applied concurrent with 

motor practice [Butler et al., 2013, Hsu et al., 2012; 136,137]. Along this lineFollowing the 

same reasoning it was suggested further to increase excitability of the ipsilesional M1 by 

priming stimulation to enable non-homeostatic gating of subsequent practice-dependent motor 

recovery [Bolognini et al., 2009; 138]. Accordingly, training of paretic-hand grip-lift kinetics 

improved after priming (15 min earlier) with iTBS of ipsilesional M1 or cTBS of 

contralesional M1, but deteriorated after sham TBS in subcortical chronic stroke patients 

[Ackerley et al., 2010, 2014; 139,140]. Applying the principle of homeostatic metaplasticity 

to enhance stroke recovery appears somewhat counterintuitive in this context of a prevailing 

concept of interhemispheric rivalry and reduced excitability of the ipsilesional hemisphere 
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[Cassidy et al., 2014; 141]. Consequently, only one small-scale clinical trial so far has tested 

the effects of homeostatic metaplasticity in chronic stroke patients [Di Lazzaro et al., 2013; 

142]. Priming of the ipsilesional M1 with excitability decreasing cTBS followed by motor 

training of the paretic hand/arm resulted in improvement of hand function as tested with the 

Jebsen Taylor Test in the real cTBS group but not in the sham group [Di Lazzaro et al., 2013; 

142]. This provides first preliminary evidence that the concept of homeostatic metaplasticity 

may be utilized to improve functional outcome after cerebral stroke. 

 To date, TBS has not been used as extensively as other rTMS protocols in clinical 

studies [Cramer et al., 2011; 143]. Several studies have examined the potential of cTBS 

applied to the temporal/temporoparietal cortex for reducing symptoms of tinnitus. The 

findings are mixed with some studies reporting significant improvements [Forogh et al., 2014; 

144] but others no significant effects [Plewnia et al., 2012; 145]. There is some evidence that 

iTBS applied over the leg region of M1 can reduce lower limb spasticity in multiple sclerosis 

when applied daily for 2 weeks [Mori et al., 2010; 146] . This effect may be enhanced when 

iTBS is applied in conjunction with exercise therapy [Mori et al., 2011; 147]. A small number 

of studies have examined the therapeutic potential of TBS in major depression. For example, 

a recent study [Li et al., 2014; 148] compared the effects of two weeks of cTBS (right 

dorsolateral prefrontal cortex - DLPFC), iTBS (left DLPFC), combined cTBS (right DLPFC) 

and iTBS (left DLPFC), or sham TBS in patients with treatment refractory major depressive 

disorder. Of note, the TBS trains were extended and involved 1800 pulses. Patients improved 

in all stimulation conditions but iTBS, and combined cTBS/iTBS, were significantly more 

effective (with the combined approach being best). Bakker and colleagues [Bakker et al., 

2015; 149] compared the safety and effectiveness of 10Hz rTMS and iTBS applied to the 

dorsomedial prefrontal cortex in medication resistant major depression and concluded that 

both approaches were equally effective and safe. It should be noted that in this study the 
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intensity of iTBS was 120% resting motor threshold (RMT), which is significantly higher 

than that used conventionally. 

 TBS has also been trialed in several other psychiatric conditions. For example, several 

case studies have reported that both unilateral [Poulet et al., 2009; 150] or bilateral [Eberle et 

al., 2010; 151] cTBS applied over the temporo-parietal, or iTBS applied over the left 

dorsolateral prefrontal [Sidhoumi et al., 2010; 152] cortical areas reduce the medication 

resistant symptom of auditory verbal hallucinations seen in schizophrenia. However, in a 

more recent study, real TBS was shown to be no more effective than sham stimulation 

[Dougall et al., 2015; 153]. In a single case study, cTBS applied in multiple sessions over the 

right dorso-lateral prefrontal cortex reduced medication resistant symptoms of obsessive-

compulsive disorder [Wu et al., 2010; 154]. It is clear that the therapeutic potential of TBS in 

these and other psychiatric conditions needs to be examined in larger well-controlled studies.  

 In terms of functional response, perhaps the most impressive studies are those 

examining the potential of TBS reducing stroke related symptoms of neglect. The design of 

these studies is based on the interhemispheric imbalance approach described above and were 

aimed at reducing the excitability of the parietal cortex in the non-stroke affected hemisphere 

to produce beneficial changes in excitability in the stroke affected parietal cortex. In a 

randomized, double blind and sham controlled study Koch and colleagues [Koch et al., 2012; 

155] demonstrated that 10 sessions of cTBS applied to the posterior parietal cortex (non-

stroke left hemisphere) over two weeks resulted in a significant improvement in hemispatial 

neglect (assessed using the Behavioural Inattention Task) in subacute stroke patients that 

lasted for at least 2 weeks. Using a slightly different approach, that involved the application of 

8 trains of cTBS to the posterior parietal cortex of the non-stroke left hemisphere over 2 

consecutive days, large improvements (assessed with the Catherine Bergego Scale) were seen 

in a group of stroke patients with subacute spatial neglect [Cazzoli et al., 2012; 156]. 
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CONCLUSIONS 

 

In the ten years since its introduction, TBS methods have proved to be a popular and useful 

addition to the growing number of methods now available to interact with presumed synaptic 

plasticity in the human brain. The advantages of TBS are its short duration and use of low 

intensity stimulus pulses, making it more acceptable to participants than some other non 

invasive brain stimulating protocols. Data from animal studies suggest that the effects 

observed in the human brain can be replicated in the rat brain and have given some insight 

into the basic physiological mechanisms involved in TBS effects. Findings indicate that iTBS 

and cTBS have different effects on inhibitory cortical networks. In particular, iTBS may 

increase excitability by reducing perisomatic inhibition of pyramidal cells by PV+ fast-

spiking interneurons. Experimentally, this increases the amplitude of late sensory evoked 

responses consistent with modulation of intracortical connections rather than thalamocortical 

inputs and may correspond to modulation of late I-waves by iTBS in human M1 [Di Lazzaro 

et al., 2008; 15].  

 Yet there are still many unknowns. For example there have been no systematic 

parametric studies. The choice of frequency and intensity of pulses was initially limited by 

technical factors and safety concerns. But excellent effects have been reported with 30 Hz 

(rather than 50 Hz) bursts repeated at 10 Hz (rather than 5 Hz) with an intensity of 80% RMT 

(rather than 80% AMT) [Nyffeler et al, 2006; 157]. More worryingly, the initial parameters of 

TBS appear to produce highly variable results, at least on M1, and these may well account for 

some of the discrepancies between studies in the literature. Effectively, many studies have 

been underpowered with the consequence that reported findings may prove to be less robust 

and reliable than once believed. Some of the variability may be reduced by careful control of 

the baseline state of the brain prior to testing, such as by avoiding active muscle contraction 
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before using TBS over M1, or by testing at a particular time of day. Initial data also suggest 

that much of the variation is caused by differences between individuals, whereas within an 

individual, the response may be more repeatable. If so, this means that repeated measures 

investigations within an individual may prove more reliable than group comparisons between 

different individuals. But more work needs to be done to investigate the daily variation of 

TBS effects within individuals so that we have reliable data for power calculations in future 

studies. 

 A different approach to the problems of variability has been to search for better ways 

to administer TBS. A persuasive argument has been that animal experiments have shown that 

although a single plasticity intervention may induce LTP/LTD-like effects lasting a few 

hours, repeating the intervention after a gap of several minutes can lead to changes lasting 

many hours or days. Recent work in humans using TBS also suggests that repeated sessions 

of TBS may produce a more powerful, long lasting and robust effect than a single session. 

Confusingly however, there are also reports that two sessions of TBS, rather than reinforcing 

each other actually oppose each other (i.e. they show a homeostatic interaction rather than a 

non-homeostatic effect). This might be due to subtle differences in methods and timing 

between the TBS applications, but no systematic studies have yet been performed to find the 

optimal combination of inter-session interval or of the number of sessions to apply. These will 

be of critical importance if this type of approach is to become useful in therapeutic settings 

and if we are to understand the rules that govern homeostatic versus non-homeostatic 

interactions. At present, such terms are little more than descriptions of results that have 

already occurred rather than a priori predictors of response. Thus TBS is, like many other 

NIBS methods, still in its infancy. The next 10 years will be interesting times. 
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FIGURE LEGENDS 

 

Figure 1: The patterns and effects of TBS. (A) The basic element of TBS is a 3-pulse burst at 

50 Hz given every 200 ms (i.e. 5 Hz). Two major patterns, including iTBS and cTBS, are 

commonly used. A short train of 10 bursts lasting for 2 seconds is given every 10 seconds for 

20 cycles in iTBS, while 100 or 200 continuous bursts are given continuously for 20 or 40 

seconds, respectively, in cTBS. (B) iTBS produces a potentiation effect for around 20 min. In 

contrast, after AMT measurement cTBS for 20 and 40 seconds produces a depressive effect 

for 20 min and 60 min, respectively. 

 

Figure 2: Upper part: schematic representation of motor cortex circuits and possible 

preferential site of activation using transcranial magnetic stimulation at different stimulus 

intensities. White circles indicate excitatory neurons, while black filled circle indicate 

inhibitory neuron. This model includes an inhibitory circuit that have connections with an 

excitatory bursting interneuron (white circle in a dotted circle) projecting upon the distal 
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apical dendrites of layer 5 corticospinal cells. It is proposed that low intensity stimulation 

activates monosynaptic connections to corticospinal cells evoking the I1-wave, at higher 

intensities late I-waves are evoked through the activation of a complex circuit composed of 

bursting interneurons and inhibitory neurons that in turn activate the corticospinal cells. At 

high intensities magnetic stimulation also activates directly the corticospinal axons of 

corticospinal cells evoking the short latency wave termed D-wave. 

Lower part: effects of theta burst stimulation on corticospinal activity. 

Left: Epidural volleys recorded in baseline conditions (black trace) and after continuous theta 

burst stimulation (green trace). Each trace is the average of the responses to 10-25 cortical 

magnetic stimuli. After cTBS, the amplitude of the I1 wave is suppressed whereas late I-

waves and D wave are substantially unchanged. 

Middle: Epidural volleys recorded in baseline conditions (black trace) and after intermittent 

theta burst stimulation (red trace). After iTBS, a selective facilitation of late I-waves is 

observed with no change in I1 wave. 

Right: Epidural volleys recorded in baseline conditions (upper trace) and intermittent theta 

burst stimulation (lower) in a chronic stroke patient after stimulation of the affected 

hemisphere. After iTBS, the size and also the number of corticospinal volleys is increased; 

moreover, after iTBS the corticospinal volleys appear much more synchronised. 

 

Figure 3: Factors possibly contributing to inter-subject and intra-subject variability in the 

amount of response to theta burst stimulation (TBS) in healthy humans. 

 

Figure 4: Major findings of theta-burst stimulation (TBS) in rats. (A1,A2) Activation of 

supragranular cortical layers via stimulation of callosal axons in the rat. Pyramidal cells (Pyr, 

green) and inhibitory interneurons (PV, CB, red) will be stimulated transsynaptically while 

Pyr will also be activated antidromically. PV – parvalbumin, CB – calbindin. (B) 
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Diaminobenzidin (DAB) staining of PV+ interneurons in rat visual cortex. Compared to 

controls (con), iTBS strongly reduces PV expression which is prevented if rats are raised in an 

enriched environment (EE). Dark rearing (DR) has little effect on PV expression (according 

to Castillo and Funke, 2015). (C) One block of iTBS (600 pulses) causes an early increase in 

cortical c-Fos and GAD65 expression, reflecting the direct activation of neurons and 

GABAergic terminals, respectively. Late effects of iTBS are a lasting reduction in PV 

expression (modified according to Hoppenrath and Funke 2013). (D) Increase in motor 

evoked responses (MEP) after iTBS applied to rat motor cortex and decrease of MEPs after 

cTBS (modified from Hsieh et al. 2015). (E1) One block of iTBS, but not cTBS, increased 

somatosensory responses in rat barrel cortex. (E2) Stronger effect after five iTBS blocks and a 

weak facilitative effect after five cTBS blocks (modified from Thimm and Funke 2015). (F1) 

Rats treated with iTBS prior to a tactile discrimination task reached the criterion of 75% 

correct responses significantly earlier (less trials needed) than sham-controls and rats treated 

with cTBS. (F2) The iTBS-induced reduction in cortical PV expression (red compared to 

sham controls, yellow; both groups non-learner controls) was diminished after learning 

(hatched bars, red - iTBS-treated learners, orange – sham-treated learners) in cortical areas 

involved in the task (frontal and barrel cortex) but not in the visual cortex being not involved 

(modified from Mix et al. 2010). (G) Variability of TBS effects in rats of different strains (SD 

– Sprague Dawley, LE – Long Evans, DA – Dark Agouti). The iTBS was similar in all 

strains, reducing PV expression much more than that of CB. The cTBS was variable, causing 

strong reduction in CB but not PV expression in DA, opposite effects in SD and almost equal 

but lower reduction of both in LE (modified from Mix et al. 2014). 

 

 

 

 


