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Abstract

A major problem in understanding the clay and shale hydration process in oil exploration
is the ability to merge information on the microscopic and macroscopic swelling nature of
the minerals. Added to this, is the introduction of elevated pressures and temperatures in
forming a realistic picture of these processes.

In this project, I present neutron diffraction experiments from 22°C and 50 bar to
140°C and 600 bar pressure in conjunction with isotopic substitution of hydrogen for deu-
terium, to determine full orientational structure of hydrophobic, clay swelling inhibitors
tetramethylammonium chloride (TMA Cl) and intersolvent structure of hexamethylenedi-
amine (HMDA) at 22°C and 1 bar. An increase in the intersolvent structure was observed
within the inhibitor solution compared to bulk however followed bulk like trends with
increasing p & T. Also investigated, for the first time at these elevated conditions, is the
effect of TMA and HMDA inhibitors on the swelling response of vermiculites. Aside from
an initial d-spacing increase of ~3 %, no further interlayer expansion of the Li-vermiculites
or TMA-vermiculites was observed with HMDA 4 or D20 flooding respectively and in-
creasing p & T.

Conversely, macroscopic swelling measurements performed primarily on compacted Li
and TMA-vermiculite samples, using a bespoke rig, have shown that there is fluid absorp-
tion and a height increase of up to 50% upon flooding with water, brine and HMDA (4)-
Spin-echo small angle neutron scattering was employed to investigate the route of fluid
into the compacted clay. Intuitively, it revealed that large pores fill before smaller (inter-
layer) pores highlighting that the locus of the swelling problem may shift to within the
meso-macro pore spaces of the natural shale.

Highlighting the speeds at which interlayer water diffuses, quasi-elastic neutron scat-



tering performed on hydrated terephthalate (TA) exchanged layered double hydroxides
showed that the terephthalate does not contribute to the translational diffusion of the
system even at water content of 1:16.24 TA:water and up to temperatures of 320 K. A

slightly elevated Dyrqns = 6.0 x 1079m2s™! for the interlayer water was measured at 320

K.
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Chapter 1

Introduction

Clay minerals, such as kaolinite, illite, vermiculites and smectites are naturally occurring
layered alumino-silicates and together with water, they are the most commonly found
material in the earths crust'' 13, They are the main constituents in shale, a sedimentary
rock composed of high clay mineral content, mud and small fragments of other minerals

14 The hard laminar form associated with shale is due to the

like quartz and calcite
chemical change of smectite to anhydrous illite transformation which is a major diagenetic
reaction that occurs in the Earths crust!®~!7. The conditions and timescales along which
this occurs are also ideal for the transformation of organic matter (OM) to petroleum
hydrocarbons' and thus shale is readily encountered during the exploration of oil and
gas. Due to their high clay mineral content, the chemical and physical properties of shales
are very much governed by the phases of clay present within them.

Clay minerals are composed of stacks of 2-dimensional layers, with each layer carrying
a net negative charge. To balance this charge, there are counter-ions, namely sodium and

13 Driven by the high enthalpy of hydration of these

calcium in the inter-layer region
counter-ions, water and other polar molecules readily enter the inter-layer region causing
the clay mineral to swell as the layers move apart to accommodate the additional water.
This interlayer crystalline swelling occurs in a stepwise fashion from one to four layers
of water under increasing humidity, a phenomenon which has been widely studied and is
quite well understood ¥23.

Thus, reactive (high expandable clay mineral content) shale will also undergo macro-

20
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scopic swelling?*. Further expansion is caused between clay quasi-crystals in the pore
spaces, osmotic swelling and is typically governed by longer-range electrostatic forces 13181922
This allows the absorption of unlimited amounts of water between clay quasi-crystals which
can lead to full delamination of the clay mineral. It has thus been been proposed that
the mechanisms and time scales of this osmotic capillary swelling have a far greater im-
pact on the bulk swelling of the clay minerals and hence to shale deformation compared

25,26

to the crystalline regime of interlayer swelling Alongside this, illitic and kaolinitic

shales may also be unstable?”?8

, inferring that interlayer expansion cannot therefore be
considered as the sole mechanism causing shale instability.

Swelling of reactive shale formations is particularly problematic to the oil and gas ex-
ploration sector as the oil/gas reservoir will have often have a mud stone/shale cap-rock
with high swelling clay content?. As water-based drilling fluids (WBDF) are increasingly
being used over oil and synthetic-based drilling fluids (OBDF & SBDF) for oil and gas
exploration, swelling of the reactive shale formation is a real problem. This is due to
the recent implementation of stringent laws governing acceptable drilling fluid impact on

t30 and the costs associated with the disposal of oil-contaminated waste.

the environmen
Bulk swelling of the shale formation is extremely problematic during drilling operations
as it results in both short-term and long-term issues of agglomeration of drilled cuttings
on the drill-bit and wellbore instability respectively. Thus leading to loss of production
costs estimated as greater than $500 M per annum, particularly in North Sea fields3!:32.
It is therefore useful to investigate the effects of pressure and temperature on the swelling
properties and pore-fluid structure of these minerals and the drilling fluid inhibitors along-
side diffusive motion of water and inhibitors within the materials. This will allow for a
better understanding of fluid processes akin to those encountered in the well-bore and to
improve on current methods of clay swelling inhibition for both the short and long-term
problems.

There are limited experimental studies into the combined effects of pressure and tem-
perature on the swelling of clay minerals and experiments have mostly been designed to
investigate the crystalline swelling in pure phases of clay minerals with Group 1 and 2
metal interlayer cations. Studies on smectite dehydration using synchrotron sources and
diamond anvil cells, revealed a three to two layer hydrate with increasing pressure and

33-35

temperature . Similarly for vermiculites in the presence of hydrostatic pressure and

temperature, a decrease in d-spacing also occurs®® however at slightly lower temperatures
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than for those observed for smectites. Na-smectites in brine solutions under elevated con-
ditions®” however showed no changes in the d-spacing inferring that the mineral exists
as a two-layer hydrate. This is supported by computer simulations showing evidence for
enthalpy driven dehydration of Na-smectites at increased pressures temperatures and the

stability of 1-2 water layer hydrates3® 4!

. Focussing more on clay-water-inhibitor systems,
neutron scattering investigations into the effect of hydrostatic pressures on the osmotic
swelling of alkylammonium-exchanged vermiculite showed that the there was a five and a
half times increase in the d-spacing as the pressure was increased from ambient to 2000
bar??. This was attributed to the favourable entropy change with the change in vol-
ume from the compacted to swollen phase however this work was not accompanied with
any increasing applied temperature. Conversely, MD simulations*® show that compounds
with long hydrophobic backbones and charged end groups may serve best as clay swelling
inhibitors since they can cation exchange with the existing interlayer counter-ions and
interaction of water molecules with the hydrophobic backbones would be unfavourable
helping to keep water out from the interlayer.

The method of re-compaction is a standard technique used to study the macroscopic
response of the wellbore clay and shales?*%® however this introduces capillarity effects
with the introduction of air at atmospheric pressures?®. Moreover at depth, samples
remain saturated with extremely low suction pressures?*%6 demonstrated by the fact that
preserved shale samples remained inert when immersed in water in laboratory conditions?’.
On the other hand, Wyoming Bentonite is particularly good as a synthetic shale for its
observable swelling properties, thought to be due to its low porosity when compared to
different types of bentonite®, and is therefore a useful indicator for the effectiveness of
swelling inhibitors4*%°. However the simplicity of the Wyoming bentonite becomes invalid
when considering the larger non-clay content found in natural shales and thus the wider

51 as well as the diagenetic and sedimentary features found in a typical

variety of pore sizes
shale.

There is limited information on the combined effect of pressure and temperature on
clay-water-inhibitor systems which we aim to investigate. There is also a gap in our
understanding of how the microscopic swelling properties translate to the macroscopic
effects observed in the wellbore which we also aim to bridge. We aim to primarily use

neutron scattering to investigate the swelling behaviour of clay-inhibitor systems at these

elevated pressures and temperatures alongside investigations of their macroscopic swelling
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in order to optimise and refine clay swelling inhibitive methods for use in the oil industry.



Chapter 2

Background and Motivation

This section aims to brief the reader in the fields applicable to this work and to introduce
the scientific and technological motivation for in situ studies of clay hydration. The
chapter reviews the relevant aspects of the hydration of clay minerals science, explains the
application of clay minerals in oil and gas exploration and reviews the hydration inhibition
techniques currently in use for their optimisation and refinement.

For more detailed information on the structure and chemistry of clay minerals see Crys-
tal Structure of Clay Minerals and their X-ray Identification'® and Chemistry of Clays and
Clay Minerals'®.

2.1 Structure of Clays

Clay minerals are formed from two structural elements: corner sharing YO, tetrahedra
forming an infinite two-dimensional sheet; and edge linked octahedral cations Z of com-
position ZOg to form another two-dimensional sheet. In a perfect case, the tetrahedral
co-ordinated Y cation is Si*T and the octahedral co-ordinated Z cation is AI>* or Mg+
as shown in Figure2.1.

These tetrahedral (T) and octahedral (O) sheets alternate giving the clay its layered
structure to form clay platelets and the name phyllosilicate.

When one tetrahedral sheet is linked to one octahedral sheet as the repeated unit, a

T-O or 1:1 clay layer is formed as in kaolinite(AlySizO5(OH)4)'; when one octahedral

24
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(a) (b)

Figure 2.1: Building blocks of clay sheets in their condensate trimorphic form. In these
structures, O=red, H=white, Si=beige, Al=grey. (a):tetrahedral building block of clay
sheet. (b):octahedral building block of clay sheet.

Negative charge

Structural Formula o
per silicate layer

Mineral Group  Nature of Octahedral Sheet(s)

1. Kaolinite 1:1 dioct Y4Z4010(OH)g 0
Serpentine 1:1 trioct Y6Z4010(OH)g 0
2.  Pyrophyllite 2:1 dioct Y417Z3020(OH)4 0
Talc 2:1 trioct Y6Z8OQO(OH)4 0
3. Micas 2:1 dioct Y4Z8020(OH)4 2
2:1 trioct Y6Z8020(OH)4 2
Brittle micas 2:1 dioct Y4Z3020(OH)4 4
2:1 trioct Y6Zg020(OH)4 4

Chlorite 2:1 dioct Y 47Z5020(OH)4 variable

2:1 di,trioct Y4Zg020(OH)4 variable

2:1 trioct Y6ZsO20(OH)4 variable

Smectite 2:1 dioct Y4Z8020(OH)4 0.5-1.2

2:1 trioct Y6Z8OQQ(OH>4 0.5-1.2

Vermiculite 2:1 dioct Y4Z8020(OH)4 1.2-1.9

2:1 trioct Y6Z8OQO(OH)4 1.2-1.9
Palygorskite - - Y4Z8020(OH)2(OHz)4 -
Sepiolite - - Ynggogo(OH)4(OH2)4 -

Table 2.1: Classification and generalised structural formulae of phyllosilicates. Dioct -
dioctahedral clay, trioct - trioctahedral clay.
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Silica sheet (T) Silica sheet (T)

Alumina sheet (O)

Alumina sheet (O)

Silica sheet (T)
Hydrogen bonding I No hydrogen bonding I
Silica sheet (T) Silica sheet (T)

Alumina sheet (0)

Alumina sheet (O)

Silica sheet (T)

(a) (b)

Figure 2.2: Illustrations of the structure of (a):1:1 clay minerals, (b): 2:1 clay minerals.
Compared with the 1:1 case, no hydrogen bonding between platelets occurs for the 2:1
case.

sheet is sandwiched between two tetrahedral sheets a, a T-O-T or 2:1 clay is formed as in
talc and vermiculite as shown in Figure 2.2.

The unshared oxygen atoms from the octahedral sheet become hydroxyl groups (OH™)
which extend into the centre of the hexagonal cavities of the tetrahedral sheet. In order to
obtain charge neutrality, all positions in the octahedral sheet must be occupied in the case
of Mg?* however only 2/3 of positions need be filled in the case of AI>* thus generating
vacancies in this layer. We therefore obtain two further subgroups for classifying clay

types according to the composition of this octahedral sheet:

e Trioctahedral when all positions in the octahedral layer are filled, e.g. Mg?™.

e Dioctahedral when 2/3 of the positions in the octahedral layer are filled and the

remaining sites are vacant, e.g. A3,

When these clay minerals were formed in the Earths crust, Si*t, AI3* and Mg?T were
not always present in the correct ratios so perfect cases of 1:1 and 2:1 clay minerals are
uncommon. Instead, these cations underwent isomorphic substitution and were replaced
by cations of similar size but of lower valence leaving the clay sheets with a permanent
net negative charge. In the tetrahedral sheet, the Si** is replaced by Al** and in the
octahedral sheet, typically there is a distribution of AI3*, Mg?t, Fe?t and Fe?*. The size
of the layer charge is an important parameter for clay classification as shown in Table 2.1,
To achieve electro-neutrality of the clay sheets, charge balancing counter-ions such as Na™,

Lit or Ca %% intercalate into the spacing between individual clay platelets or adsorb onto

the surface. Clay sheets oriented with parallel ¢ axes and randomly oriented a and b
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axes®? form clay platelets (quasi-crystals) which vary in size from microscopic in the case
of smectites and macroscopic such as the vermiculites. Each quasi-crystal consists of
between two to many thousand individual layers stacked together.

Water must also be present during formation of the clay minerals, thus the interlayer
region may contain water in the form of (partially) hydrated balancing counter-ions. Micas
do not possess water in the interlayer region, i.e. they have un-hydrated balancing counter-
ions and chlorites have positively charged hydroxide sheets in the interlayer region; thus
they have fixed repeated cell units of 10 A and 14 A respectively'®. Hydration of the
charge balancing counter-ions in smectites and vermiculites does occur and varies with
humidity and therefore they have variable thicknesses. It is the hydration (solvation)
of these interlayer counter-ion species that partially gives rise to the property of shale

swelling.

2.1.1 Layered Double Hydroxides

Similarly to the chlorites, there are a class of hydrotalcite-like materials or layered double
hydroxides (LDHs) which have repeating units of positively charged hydroxide sheets.
They are represented by the general formula:

(M) MU (O ) AT nH>0)7 (2.1)

with 0.1 < & < 0.33. The positive surface charge is as a result of partial substitution of
divalent by trivalent cation and the excess layer charge is compensated by the incorporation
of anions into the interlayer space. The term ’'hydrotalcite’ is reserved for the forms in
which Mg?* and AI3* occupy the cation sites and the Cng anions originally occupy
the interlayer spacing. As with their oppositely charged clay counterparts, the charge-
balancing anions draw water into the interlayer region, usually in the form of a mono-

molecular film as seen in Figure 2.3. The layered structure is similar to that of 1 : 1 clays.

2.2 Clay, Shale, Petroleum

The decomposition of organic matter (OM) under prolonged exposure to elevated pressures

and temperatures and in the absence of oxygen will lead to the formation of fossil fuels.
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<4—— Brucite-like layer

‘ Interlayer anion
o

H,0

OH-anion

Figure 2.3: Schematic of a hydrotalcite layered double hydroxide.

The ideal temperatures and pressures required for this transformation are found in all
sedimentary basins and lead to the formation of sedimentary, oil/gas sources such as
sandstones, carbonates and shale.

Weathering of the Earths surface begins the formation of all clay minerals which are
transported by rivers into sedimentary basins and subsequently buried. The clay min-
eralogy responds to the change in chemical conditions from weathering to burial in a
sedimentary basin, and undergoes diagenesis, the irreversible, chemical transformation
from one mineral to other mineral types. The clays have a long residence time in the
sedimentary environment and during the burial process, organic matter and water are

adsorbed onto the clays®3.

Burial is also accompanied with an increase in temperature
and pressure of the environment subjecting the clays to heating over various periods of
time and incurring further diagenesis. All these factors govern the route that the clay
diagenesis will take, driven towards higher thermodynamic stability and thus the various
proportions of clay types in the environment. The last stage of clay mineral diagenesis
is the beginning of metamorphism which describes the recrystallization of the clays into
larger grains and varying crystallographic compositions, as well as the creation of new
silicate materials so that the phase of clay minerals no longer persists in the environment.

Porosity of a formation is a measure of the percentage of total volume that is pore-

space and in the case of clay minerals, the volume occupied by interlayer fluid. Depending

also on the geothermal gradient, which in the North Sea fields!4%354 is 30 - 40 °Ckm ™!,
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we have a general formula for porosity, ¢ of a shale:

bulk (wet) volume - grain (dry) volume

bulk volume

Initial porosity of the formation is high (between 50 - 80 % 4:53)

; the expandable clay
minerals contain several layers of adsorbed water and have no directional arrangement
at the surface. The near surface sediments are also comprised of mostly expandable clay
minerals. As time is spent in burial, mechanical compaction aligns the minerals creating
the bedding plane and squeezes pore-water from the sediment reducing porosity exponen-

tially with distance'# to approximately 20 % in the first kilometre33.

The compaction
of the clay minerals and quartz in the environment due to burial begins the formation of
shale. Beyond this to about 1700 m, chemical compaction causes water to be expelled from
the clay mineral lattices decreasing porosity linearly and therefore vertical permeability.
This is associated with the gradual disappearance of swelling clays and the appearance of
non-expandable clays, i.e. the smectite to illite transformation (I-S transformation) which
is the beginning stage of metamorphism. Beyond 1700 m, porosity is reduced below 15
% alongside a drastic reduction of water permeability and at this point, the swelling clay
content is enormously reduced.

The formation now has a far greater proportion of non-swelling clays such as illite or

hydromica which contain no interlayer water. The general structural formula for these

non-swelling clays as given by North!# is:

(A14F64Mg4)(Si7A1)020(OH)4 oK (23)

Organic material requires subjection to moderate temperatures over long periods for the
transformation to kerogen (the precursor of petroleum). This transformation occurs from

shallow depths to ~1000 m and from temperatures of 50°C up to 150°C 455

, where one
would find high expandable clay mineral content in the formation. It is a misconception
that very high temperatures (300 - 400°C) are required for transformation of OM to
petroleum. Instead, the OM requires subjection to moderate temperatures over long
periods and therefore places swelling clays in an environment favourable for the formation

of petroleum 459,
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2.3 Hydration of clays

Clay minerals are subject to two types of swelling processes: i) crystalline swelling occur-
ring between individual clay sheets involving the limited intercalation of water molecules
into the interlayer spacing; ii) bulk swelling due to several different processes which will
be described in Section 2.3.2 leads to unrestrained adsorption of water by the clay up to
10g HoO/g clay!'® between individual clay layers and theoretically, an unlimited amount
of water between quasi-crystals. Immersion of swelling clays in dilute aqueous solutions
is generally when macroscopic swelling will occur and leads to formation of the clay into
a gel like phase and in the case of excess water, fully dispersed clay layers, i.e. the clay
quasi-crystal has completely delaminated into individual sheets within the solution. This
latter type of swelling is what causes the problems specific to the hydration of clays in the

oilfield.

2.3.1 Crystalline Swelling

Microscopic or crystalline swelling is a short-range process that occurs in discrete steps
where one observes the occurrence of one to four layers (beyond this, the regime is no longer
considered crystalline) in the clay interlayer under increasing relative humidities !8:23:56-58,
The extent and rate of crystalline swelling is dependent on the species of the charge
balancing counter-ion and the size of the surface charge of the clay®”%%. It has been
found that water intercalation and adsorption decreases with increasing interlayer counter-
ion valence; the biggest difference occurring between mono- and di-valent counter-ions®®.
This is very important when thinking about methods for the inhibition of crystalline clay
mineral hydration since it is the solvation of the interlayer counter-ions which drives water

56,61

into the interlayer . This occurs in discrete steps, after which a maximum of four water

layers is observed #19:62 This process has been seen to be hysteretic® which is supported
by the results of molecular simulations performed by Tambach et al%* and Zheng et al%.

Slade et al?? observed that the counter-ions within the clay interlayer and the cations
in the external solution compete for water molecules. As the interlayer counter-ion concen-
tration is very high (~4 molal) and if only the attractive potential energy which arises from
the Coulombic attraction between the positive interlayer counter-ions and the negatively
charged sites in the clay sheet, caused by isomorphous substitution, hinder the solvation

of the counter-ions, very high concentrations of cations in the external solution would
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Ton Lit Nat KT TMA™* Mg?t Ca?t Fe?t

Hydration Enthalpy -396
kJ mol ! 545 418351 (Nagano 1988)67

-1923  -1653 -1981

Table 2.2: Enthalpy of hydration for mono- and di-valent cations commonly found in the
interlayer”.

be needed to limit swelling. This was later verified by Laird% through X-ray diffraction
measurements of osmotically controlled swelling in Na-smectites.

Therefore in general, it is the 2:1 smectite and vermiculite clay minerals that show
the strongest swelling properties. For the 1:1 clays, the individual clay platelets are very
strongly hydrogen bonded and have a very small layer charge therefore swelling of kaolinite
is not usually seen. Although crystalline swelling is the necessary first stage of the very
initial hydration processes of clay minerals, it only amounts to an uptake of approximately
0.5g HoO/g clay and this is not enough to cause the types of problems that occur in the
oil field.

Effect of Interlayer Counter-ions on Swelling

The effect of the type of charge balancing counter-ion present in the interlayer region
is heavily correlated with the swelling properties of the clay. The role of counter-ion
charge and its hydration energy in the swelling of the clay mineral is so great that it can
even inhibit crystalline swelling entirely as in the case of potassium substituted clays3!:6
and subsequently, potassium levels partially govern the rate and degree to which smectites
transform to anhydrous illite in a clay mineral containing formation. Table 2.2 presents the
data for the enthalpy of hydration for some mono- and di-valent cations. The counter-ions
are mobile within the interlayer region and when immersed in a salt solution of differing
cation but same charge, the counter-ions can undergo a cation exchange reaction. The
rate at which this exchange occurs for a particular clay type is called its cation exchange
capacity (CEC). CEC is conventionally expressed in the units milliequivalents per gram
(meq g~!) however as it also represents a charge per unit mass, in SI units is expressed as
coulombs per unit mass (C g=!). Typically for that of a medium charge montmorillonite,
the CEC is 96.5 C g~!'. Vermiculites in general have a much higher layer charge of 80 -
150 C g .

Counter-ions can also be solvated with polar organic solvents such as methanol and

ethyl glycol 66 and substituted with larger ions such as alkyl- ammonium derivatives 87
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The exchange of counter-ion species with these surfactants lowers the surface energy of
the clay and can render the phyllosilicate compatible for polymer intercalation*.%? sug-
gested that the substitution of counter-ions with surfactants such as tetramethylammo-
nium (TMA) and tetraethylammonium (TEA) will lower the swelling potential of clay
minerals but this has yet to be studied and data on TMA exchanged vermiculite is pre-
sented in this study in chapter 5.

In this project, a variety of clay minerals and natural samples have been investigated.
For the natural shale systems, counter-ion species and proportions of clay mineral depend
on where the sample is quarried in terms of its geographical location and depth below the
Earths surface. For the experiments involving single types of clay minerals, each set of
samples have been prepared in mono-ionic form. Experimental work has well established

the effect of counter-ion species for vermiculites and smectites®%:6!,

2.3.2 Bulk Swelling

When swelling clays with specific types of interlayer counter-ion combinations are im-
mersed in dilute aqueous solutions, the minerals can absorb water such that the spacing
between individual platelets can reach 900 A as observed in vermiculite by Crawford et
al™ or even become fully dispersed as in smectites?® and other mineral combinations”.

Before bulk swelling can occur, it has been postulated by Skipper et al ™ that one layer
of water must exist between the interlayer counter-ions and the clay layer. This would act
as a screening potential between the charges and once the attractive electrostatic forces
between the counter-ions and the layers was overcome it would allow an unlimited amount
of water into the interlayer region. Thus in turn, allowing osmotic access of water from the
external solution into the pores and the formation of the electric double layer (EDL ).
A portion of total negative charge of a quasi-crystal is expressed on an external surface
forming one half of the electric double layer and therefore a net positive charge in the
solution adjacent to that external surface, called the diffuse region of the clay platelet.
When two platelets approach due to Brownian motion such that their positively charged
diffuse regions overlap, an electrostatic repulsive force develops. There have been many
discussions on balancing the stability of this diffuse double layer (DDL) repulsion with
a long-range attractive force driven by van der Waals interaction and is described by
the well-established DLVO theory"®"” named after Derjaguinand Landau, Verwey and
Overbeek.
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Figure 2.4: Schematic of a natural clay system' showing bulk arrangements of clay
platelets (shaded) and structural defects A, B, C, D, E described in text. Inset shows
the crystalline arrangement of montmorillonite.

2.3.3 Pore Swelling

The environments in which swelling clay minerals are found however, have a more com-
plicated structure than simple layering. Due to the existence of other material in the
natural sample and the compression over time, natural samples contain faults shown in
Figure 2.41: (A) voids, (B) edge to face stacking, (C) regions of excessive folding, (D)
ordered domains and (E) disordered stacking.

When considering natural samples, swelling within the interlayer portion of the clay
mineral cannot solely contribute to the total swelling response of the natural material since
illitic and kaolinitic shales are also found to be unstable in the wellbore?”2%. Though the
DLVO theory describes the double-layer swelling Laird?® describes several other processes
which contribute in conjunction to macroscopic swelling of the clay including the formation
and breakup of quasi-crystals, cation demixing which is a problem when clay minerals with
different interlayer counter-ions are present, co-volume swelling and Brownian swelling;

the latter two being entropic processes. Also, since the DDL thickness is found to be
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of similar or larger magnitude than the micro and meso-pores in compressed shale, the
exposed clay surfaces in the pore spaces would lead to electrostatic repulsion and increased
pore/hydration pressure in these illitic and kaolinitic shales®!.

In the context of real oil drilling systems, the consideration of these processes becomes
very important due to the mechanical disturbance that drilling has on the shale formations
thereby exposing the pore network, (A) in Fig 2.4, of the natural clay to the drilling fluid
unlike the static conditions applied in a laboratory experiment. In this situation, the
problematic regions with respect to shale instability and its inhibition is moved from the
interlayer of the swelling clays to the charged external surfaces of the various clay minerals

that face the walls of the shale pores.

2.4 Effect of Pressure and Temperature on the Swelling of

Clay Minerals

Investigations into the combined effect of pressure and temperature to the interlayer struc-
ture of clay minerals have traditionally been difficult to perform. This is mostly due to the
difficulty in building apparatus required to be able to apply both pressure and tempera-
ture to macroscopic samples and allow incident radiation onto the material to measure the
interlayer spacing. Studies on smectite dehydration using synchrotron sources by Huang
et al®* and Wu et al? revealed a three to two layer hydrate with increasing pressure and
temperature between 200 - 605°C and 1 - 1.4kbar pressures. Increasing temperature and
pressures required for dehydration were in the order Mg, Na, Ca. Previous high pressure
and temperature work performed by De Sequeira et al?>35 focussed on the effect of in-
terlayer cation ( Mg?*,Ca?* and Na®) on smectites and vermiculites under hydro-static
pressures and temperatures using time-of-flight neutron scattering. The results revealed a
decrease (001) peak as a transition from three-layer hydrate at ambient to two-layers above
180°C and 900 bar for Ca?* and Na™ however a stable interlayer d-spacing for Mg?*. Con-
versely, n-butylammonium vermiculite in a 0.1 M solution of n-butylammonium chloride
under applied hydrostatic pressures of 1050 bar at 20°C, has been observed to osmotically

swell to an expanded d-spacing 6 times of the original c-axis value*?.

The process was
found to be entropically favourable with the volume change of the phase transition.
More recently, there have been advances in high pressure chambers developed to

study mineral interactions with gasses at elevated pressures and temperature developed
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by Koster van Groos and Guggenheim®. Their work however focussed on the response
of smectites under CO?* pressure in increasing brine concentration solutions with appli-

cations in enhanced oil recovery (EOR).

2.5 Problems faced in the oil field

Swelling is a general property of clay minerals and occurs in many parts of the drilling
process. However, this project is focused on studying the effects of WBDF when they
initially come into contact with the reactive shale at the very start of the drilling process
and studying the hydration of the rock foundation and the drilling fluid itself during the

first five minutes of the drilling process.

2.5.1 Role of Drilling Fluid

For a comprehensive review of the role of drilling fluids see Composition and Properties of
Drilling and Completion Fluids by Gray ™. In conjunction with minimising the hydration

of the surrounding shale formation, the drilling fluid has many functions:
e Control subsurface pressures.

In order to compensate for the loss in pressure when a well-bore is drilled, the drilling
fluid must have sufficient density to maintain the subsurface pressure. I.e. The density of

the fluid must match or be higher than that of the formation.
¢ Remove cuttings from the well.

When drilling the well bore, the shale excavated to create the well must be removed

efficiently and effectively such that blockage of the hole does not occur.

e Minimise damage to the oil reservoir through prevention of the inflow of fluids

(oil/gas/water) into permeable rocks penetrated.
e Maintain the stability of uncased sections of the borehole.

e Optimise the drilling process through:

— Maintenance of Rates of Penetration (R.O.P.). This is the speed at which the

drill-bit breaks the rock under it, typically measured in metres per hour.
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— Lubrication of the drill bit and drill string (the assembly of drill pipes behind
the drill-bit).

In order to keep the process cost effective, the drilling fluid must allow for drilling rates

(R.O.P.) to be maintained and lubrication of the drill-bit is key to this.

e Assist in the collection and interpretation of information available from the drilling
cuttings, cores, fluid sampling and electrical logs detailing the resistivity of the geo-

logical formations penetrated by a borehole (this requires a conductive medium).

e Compliance with HSE acceptability. The drilling fluid must comply with the
Health and Safety Executive regulations set out as in the HSE safety reports®® for
the North Sea area. A risk assessment scheme can also be found in the CHARM®!

report.

Oil-based drilling fluids (OBDF) are the most effective at keeping formation damage
to a minimum and providing well-bore stability as well as being excellent lubricants for
the drill-bit, therefore maintaining high R.O.P. and returning drilled cuttings back to the
surface. OBDF are also more effective at meeting the other drilling fluid functions such as
having temperature stability. However due to the revised environmental laws describing
the correct treatment of oil-contaminated waste cuttings and off-shore regulations®’, this
leads to huge increases in costs due to the difficulty in containment and disposal of these
cuttings and used drilling fluid®2. The requirements for the treatment of waste when using
OBDF thus pose a problem towards the industrys drive for improved cost-effectiveness.

Hence a huge shift has been made towards using water-based drilling fluids as the
dangers to the environment and treatment of cuttings and fluid are minimised. However
there are some cases when OBDF are currently the only option. For example in very deep
wells when the fluid may be subject to extremely high pressures and temperatures as there
is no stability of WBDF above 250°C 83,

Despite this, water based drilling fluids are still preferential in their use due to their

compliance with environmental laws.

2.5.2 Problems of Clay Swelling in the Oilfield.

This move to the increased use of WBDF in the oil field introduces water into the clay min-

eral containing shale formation and therefore the problems associated with uncontrolled
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hydration/dehydration of the clay minerals.
e Cuttings disintegration.

With the release of the cutting from the formation, the in situ stresses are suddenly
released and the fluid that makes up the drilling mud has an opportunity to infiltrate the
cuttings. If the mud pressure is too low then water and other additives in the drilling fluid

will enter the cuttings thereby causing them to break apart.
e Well-bore instability.

Pore network of shale allows filtrate to invade into shale along a pressure gradient and
therefore hydration of clay minerals in the rock formation. This causes sloughing of the
walls of the well-bore leading to mechanical failure of the rock due to softening of the

formation and increased pore pressure.

e Agglomeration of drilled cuttings.
The hydration of drilled cuttings softens them due to the water uptake by the clay

minerals. This makes them plastic like?? and ”sticky” therefore leading to:

— Reduced hole-cleaning efficiency. - Softened cuttings stick to the drill-

string and are difficult to remove.

Stuck pipe and difficulty when running casing.

— Bit-balling. - this is a problem due to the cuttings sticking to the drill-bit

and thereby reducing its efficiency at drilling the wellbore.

— Reduced R.O.P.

The most effective method of clay swelling inhibition is to use oil-based muds as they
do not invade the cuttings or the rock formation. They provide a solution to reducing the
risk of clay agglomeration and therefore bit-balling to maintain high rates of penetration.
This is not a long-term solution to clay hydration inhibition however due to the environ-
mental difficulties associated with oil based muds® and subsequently the huge costs in

the treatment and disposal of oil-contaminated cuttings.
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2.6 Current solutions for the inhibition of clay hydration

There are many ways in which inhibition of clay hydration is addressed governed by the
chemo-mechanical properties of the formation encountered and the conditions which the
formation is subject to. Whether the oil/gas reservoir is on-shore or off-shore also plays an
important role. Thus, many factors have to be taken into consideration before a specific
inhibition method is chosen. For ease of comparison, the following swelling inhibitor
solutions have been arranged chronologically. A comprehensive study into the problems
associated with the swelling of shales in the oilfield and current inhibitive methods has

been performed by Van Oort?? and Anderson??.

2.6.1 Potassium Chloride (KCI)

Traditionally, the solution when using WBDF has been to add large concentrations of
potassium chloride into the drilling fluid. If KT is added in excess, it undergoes cation
exchange with existing counter-ions present in the clay and due to its low enthalpy of hy-

31,85

dration , inhibits the swelling of the clay minerals. Conveniently, K™ is approximately

the same size as the interlayer spacing which aids in keeping it unhydrated.

2.6.2 Surfactant muds

Partially-hydrolysed Polyacrylamide (PHPA)

K™ is generally used in conjunction with other polymer compounds which act to displace
the water molecules around the pillared cations. One of the first polymers to be used
in conjunction with potassium chloride is partially hydrolysed polyacrylamide (PHPA).
PHPA is a water-soluble anionic synthetic polymer with a high molecular weight. It is
believed to seal micro-fractures and coat shale surfaces with a thin filter-cake making it
impermeable to water. PHPA therefore helps maintain pressures within the formation and
inhibits dispersion and disintegration of cuttings®. PHPA has become the precursor to
developing and using hydrogels that are formed in situ and thus more efficient at blocking
pore throats and keep individual clay platelets from dispersing®’. This does improve
the stability of the shale formations but does not eliminate the swelling from the shale

completely 8.
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Glycol Additives

Muds containing the addition of glycols, glycerols and polyalkylene glycols have been used
since the genesis of oil exploration. Polyols are a useful addition to WBDF' as they form
monolayers in the interlayer region in the presence of K*8%. Polyglycol/glycerol alone does
not inhibit shale swelling but needs the presence of KCl to be effective as they require
potassium to bind to as opposed to binding to layers themselves.

It is believed that the glycol added to the drilling fluid disrupts the hydrogen bonding
network of water with the siloxane surface, i.e. displaces water molecules. Na™, Li* and
Ca?* have higher charge density therefore more difficult to remove solvated water from
around these ions. However there is still a controversy over the inhibition mechanisms of
polyol additives.

These polyols are seen to work at large depths however they cannot be used at high
temperatures > 150°C as the surfactants become thermally unstable?. It is therefore of
interest to use polyalkalene glycols. The stability of the carbon-carbon double bond means
that they can be used to temperatures up to 250°C in the absence of oxygen which is the
environment in which oil and gas is found?!.

As shown by Liu et al%2, glycols are most effective when used in conjunction with
KCl however, potassium as an inhibitor is environmentally undesirable and in some areas,
such as the Gulf of Mexico, high concentrations of potassium are not permitted having
a negative impact on the performance of most glycols. Thus, there is a clear need for

potassium-free WBDF to perform as a viable alternative.

2.6.3 Silicates

Soluble silicates invade into the shale and react with ions in the pore fluid forming insoluble
precipitates. The precipitates form a coating around shale cutting, known as a ”silicate-
cake”, which act as an osmotic membrane preventing flow of water into the shale but still

allowing osmotic transfer of water observed by Van Oort et al®

. This property is then
exploited as chemical potential gradients can be set-up using high concentrations of KT

or Na™ to dehydrate the shale. Silicates are most often used in conjunction with KCI.
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2.6.4 Amine chemistry

The advantages of using amines as swelling inhibitors has been known for some time?%?,

but it is only recently that the mechanisms behind the behaviour of amines have been
probed for their exploitation.

Due to the similar hydration volume (ionic radius) that the ammonium cation, NHI,
has to the potassium ion, it was thought that ammonium salt derivatives could be used
in an analogous way to potassium chloride. By performing Fourier Transform Infrared
Spectroscopy (FT-IR) of PPO-NH; intercalated Nat-montmorillonite, Greenwell et al?
showed that significant H-bonding occurs between the unprotonated amines and clay sur-
faces; this was also observed through performing similar studies on diamines by Zhong
et al*®. For the case of the protonated ammonium ion however, it has long been known
that it ion exchanges with the interlayer cation”. Thus, the two mechanisms via which
amines can inhibit clay swelling are i) direct cation exchange of ammonium ions with the
interlayer counterion and i7) intercalation of amine into the interlayer region where the
amine groups hydrogen bond with the siloxane surface.

The simplest quaternary ammonium salt is tetramethylammonium chloride(TMACI)?,
(CH3)4N ™, which has been used for shale swelling inhibition along with other higher molec-
ular weight quaternary ammonium salts?” (see Table 2.2). Research beyond the small
TMA™ ion has shown that longer chain amines such as hexamethylene diamine (HMDA)
perform better as swelling inhibitors as they can be synthesized to have hydrophobic back-
bones which help keep water out of the interlayer region once they have been expelled by

the exchange of the ammonium headgroups with the clay counterions?%:98

. Not only is
there a reduction of water in the interlayer region but once the amines are bound to
the surface of the clay layers, Xuan et al have shown using X-ray photoelectron spec-
troscopy and zeta-potential measurements, that for the case of dopamine(DA) intercalated
montmorillonite, the DA monomers polymerize in the interlayer region. At high enough
monomer concentration, this polymerization eventually leads to the collapse of the diffuse
double layer causing aggregation of clay platelets.

Inhibitor synthesis based on ammonium salts has boosted the WBDF use as they can
be used without the presence of KCI thus can be used on land and in areas where there

94,100-104

is a requirement of low salinity . However they are far from being optimised as

Tt should be noted that in industry, tetramethylammonium chloride is referred to as TMAC.
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there is a lack of information on the structure and behaviour of amine-intercalated clays
when subjected to burial conditions. Investigating the effects of elevated pressures and
temperatures on the structure of clay intercalated ammonium salts and polymeric amines,

will form the basis of the large-scale experiments performed for this project.



Chapter 3

Characterisation Through

Scattering

Neutron and X-ray scattering are excellent tools for investigations into the structure and
dynamics of matter. The experimental techniques used in this PhD. to investigate the
structure of clay-drilling fluid-inhibitor systems were neutron and X-ray diffraction, time-
of-flight and spin-echo small angle neutron scattering (SANS) and quasi-elastic neutron

scattering (QENS).

3.1 Neutron Scattering

Neutrons are uncharged particles. They are therefore able to penetrate deeply into matter
without interaction or destruction of the material unlike X-rays and electrons. The de
Broglie relationship for neutrons permits the tuning of neutron velocities (energies) such
that they are comparable to that of inter-atomic spacing and molecular excitations. Neu-
tron wavelengths can also be tuned to those of larger scale structures comparable to those
within amorphous systems permitting the study of artifacts which are microns in size, for
example pore spaces within the clay matrix. They also have a magnetic moment enabling
the study of magnetic structures and excitations using spin polarised neutrons.

Neutrons are scattered by the strong nuclear force with a magnitude dependent on the

spin state and composition of the scattering nucleus. This is in contrast to the scattering

42
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of X-rays from the electrons, the magnitude of which increases with atomic number. Thus
it is very difficult using X-rays to see a low mass atom in a system of heavier ones or
to differentiate between atoms with similar mass numbers. In general for neutrons, the
light elements such as H, C, N and O, which predominate in pore and interlayer fluids
and also form the basis of many clay swelling inhibitor species, scatter neutrons strongly
(Table 3.2). The magnitude of the neutron scattering varies between isotopes of the
same element® enabling the use of the powerful technique of isotopic labeling and allows
the separation of individual correlation functions from the average correlation function
achieved in a diffraction measurement. This technique is especially sensitive to hydrogen
and deuterium and therefore can be used to "highlight’ different aspects of the clay-water-

95 One can also manipulate the neutron scattering lengths of certain

inhibitor system!
metals to create null-scattering sample containers (Table 3.2). Titanium-zirconium sample
cells are used for sample containment as the alloy is chemically unreactive, mechanically
strong and invisible to neutrons. This makes neutron diffraction a very powerful tool for
structural studies of systems containing hydrogenous fluids and neutron spectroscopy for
perturbing the dynamics of water and aqueous solutions.

By far the biggest drawbacks of neutron scattering experiments are those associated
with the problem of low neutron flux. This makes experiments performed with neutrons
slow and expensive and potentially difficult to study quick, time-dependent processes.
However, the information derived from these experiments is second-to-none.

This chapter concentrates on the theory of neutron scattering and the application
of diffraction and spectroscopy to the study of clay—drilling fluid systems under in situ
burial conditions. For a more detailed treatment of the relevant theories behind neutron
diffraction and spectroscopy, see Theory of Neutron Scattering from Condensed MatterS.

For an overview of experimental techniques involved see Experimental Neutron Scattering?.

3.1.1 Neutron Properties

The neutron is a subatomic nuclear particle; its basic properties are shown in Table 3.1.

The momentum, P, of a neutron is given by:

7= hk (3.1)

where k is the wave-vector of the neutron, the magnitude of which is given by \E| = 27”
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Property Magnitude
Mass 1.775 x 10727 kg
Charge 0

Spin %
Magnetic dipole moment —1.93un

Table 3.1: Basic neutron properties.

and A is the de Broglie wavelength of the neutron. The neutron velocity, v, is given by:
v=— (3.2)

The neutron energy is related to its wavevector by:

h2k?

E= hw (3.3)

2m

where w is related to k through the dispersion relation, w = %

3.1.2 Neutron Scattering Geometry

In a neutron scattering experiment, a beam of neutrons with initial wave vector and energy
(ko, Eo) interacts with the sample and is scattered with wave vector and energy (k1, Ey).
A full description of the scattering process requires information of the momentum transfer
between incident and scattered beam, known as the scattering vector, Cj and the energy

transfer, AFE.

hQ = hko — hk; (3.4)
and

AE = hw = Ey — By (3.5)

A visual representation of Cj can be seen in Figure 3.1.
If the magnitude of k‘z is less than k_f), the scattering process is inelastic and some
energy must have been transferred to the sample. However in a diffraction experiment,

the scattering event is elastic and |k;| = |ko|.
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Figure 3.1: Scattering geometry for single nucleus event in (a) real space and (b) reciprocal
space.

In a scattering experiment the origin of the coordinates is at the position of the nucleus
and the neutron is scattered to a position 7. The direction of the scattered beam is defined
by the azimuthal angel ¢ and the angle 20 between incident and scattered beam. The
scattering occurs in a cone of solid angle d2. This geometry can be seen in Figure 3.2

taken from Squires'®, page 5.

3.1.3 Scattering Cross-Sections

The measurement made in scattering experiments is the neutron cross-section, o of a
system and is defined by its ability to scatter neutrons. There are three cross-sections
which can be measured: total cross-section, oy, differential cross-section (DCS), %, and
double-differential cross-section (DDCS), %.

The total cross-section, oy, is the total number of scattering events in all directions
every second per unit flux, thus the total probability of the scattering.

For purely elastic processes, like in diffraction experiments, where there is no transfer

of energy to or from the sample, dw = 0, we measure the DCS. Here, we simply evaluate

the angular dependance of the incident flux ®¢ thus giving:

E __no. of neutrons scattered per sec. in df2 (3.6)
aQ Dy A2 ’

For inelastic or quasi-elastic process where there is a transfer of energy between the
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Figure 3.2: The geometry of a neutron scattering experiment?.

neutrons and the sample, dw # 0, we measure the DDCS:

d’s  mo. of neutrons scattered per sec. in dQ with energies|w;w; + dw] (3.7)
dQ dw B (I)o dQ dw1 '
The cross-sections are then related by integration over the scattered energy, dw:
(3.8)

dQ dQ dw

Otot — / dQ/ a0 d(JJ (39)

However, a neutron scattering experiment physically measures the number of neutrons

detected per second (intensity of the scattered beam), I, which can be expressed in terms

of the double-differential cross-section:

d%e B I
dQdw  ®(Ep) dw dQ

(3.10)

Thus a direct relationship between the intensity of the scattered beam and the incident
neutrons is made. Spectrometers measure the DDCS in the above way to obtain the

combined elastic and inelastic scattering function, S (Q, w). Diffractometers measure the
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integral of the DDCS over all w and at a given 26 to obtain the DCS which is proportional
to the elastic scattering function, S (@) And finally the integral of the DCS over all
Q) gives the total cross-section, proportional to N: the total number of scatterers present.

Relations will be made in the following chapter between the DCS and S(Q) and the DDCS
and S(Q,w).

3.1.4 Scattering from a single nucleus

Neutrons can scatter from the nuclei of atoms, either by the interaction via the strong
nuclear force or via the interaction of the incident neutron spin and any net magnetic
moment the scattering atom may possess. No magnetic studies are being undertaken thus
magnetic interactions shall not be developed upon.

Let us first consider scattering from a single nucleus. The incident beam of neutrons
traveling in the z-direction is a plane wave with wave vector Eo (as described previously)

and wave function:
o = otkoz (3.11)

where kg is the magnitude of k_E). The scattered wave vector is El. The wavelengths
of neutrons used in the following experiments are of the order of 10710 m, far exceeding
the range of nuclear forces and radii probed in these experiments which are of the order
107" — 107" m. The bound nucleus can therefore be considered as a point scatterer
by the incident neutron beam and the scattering is isotropic s-wave scattering with wave

function:

(3.12)

This scattering geometry is shown in Figure 3.3. r is the distance of the scattered
wave at position 7 from the fixed scattering nucleus placed at the origin (7 = 0). b is
the scattering length of the nucleus and is an experimentally determined parameter. It is

related to the total cross section by:
Otor = 4mb? (3.13)

b describes the effective area of the nucleus viewed by the neutron and is called the neutron
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scattering length of an atom species. The role of b is described in more detail in section

3.1.6.

Plane wave Spherical wave
Yo = etkox etkar
Y1 =-b

r

Figure 3.3: A scattering event from a single point scatterer by a plane to spherical wave.

3.1.5 Scattering from many atoms

We must now consider the nuclear scattering by a general system of particles, by evaluating
an expression for the double differential cross-section de";El describing the transition of
the system from one quantum state to another. We know that neutrons can scatter from
the nucleus either via the strong nuclear force or via the interaction of the neutron spin
with any magnetic moment that the scattering atom may possess. So first we ignore the
magnetic interaction of the neutron and thus define its state solely on its momentum, i.e.
wave-vector k.

The differential cross section defined in eqn 3.8 represents the sum of all processes
in which the state of the scattering system changes from Ag — A1 and the state of the

neutron changes from kg — k1 and can be expressed as:

da> 11
_ - We o - (3.14)
Ko, ho—k1,A
( d Ao—A1 ® dQ Eyin dQ 00T
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where W is the number of transitions per second from the initial state Eo, Ao

Eo,Mo—k1,M1
to the state El, A1. The incident and scattered neutron has initial and final wave functions
1o and Y respectively.

When the neutron enters the material it will experience a potential V (7) at point 7

in the sample and the transition described in eqn 3.14 has transition probability given by

Fermi’s golden rule in quantum mechanics:

2 - o
> Woor = T (En MV () Fo. Mo) o, (B1) (3.15)
El in dQ2
where py, (E1) is the density of the final state or in other words the scattered neutrons
that fall onto the detector opening with energy E;. In order to evaluate equation 3.14
the method of box normalisation is adopted. This is a regime in which the neutron and
6

scattering system are contained in a large box with sides of length L1 allowing Pr; 10

to be written as:

L Smlﬂ

The wave functions of the neutrons become:

1 .~ -
(S 3 etk (3.17a)
2
L
g, = —5e€ (3.17b)
L2

The incident neutron flux is given by the product of the neutrons’ density and velocity:

o LIk

=25 (3.18)

Given that @ = kB — k:;, using planar integral and substituting equations 3.15, 3.16,

3.18 into equation 3.14, obtains the following expression:

Aoy ki my:

The range of the scattering potential V'(7) is assumed to be short due to the relatively

(3.19)

/ 37V (7) dF]

small size of the nucleus. Thus V(7) can be expressed as a sum of Fermi pseudo potentials
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directly related to the individual scattering centres at positions R; in the material:

2T

h2 _
v == ijé(F—Ri) (3.20)

where b; is the scattering length of the jth nucleus. If we combine equations 3.19 and

3.20 and since [ F(z)d(z — z;) dz = F(z;) equation 3.19 becomes:

da> k1 / G 1
— = 2| [ b;e@75 a7
< dQ Ao— A1 k;O ’

Equation 3.21 describes the scattering process that occurs when there is no change in

2
(3.21)

energy between the initial and final state of the neutron and the system. i.e. the scattering
is completely elastic.

We must now define the double-differential cross-section. If Fy and FE; are the
initial and final energies of the neutron and E), and E), are the initial and final energies

of the scattering system, then via conservation of energy:
Ey+ E)\O =F + E)\l (322)

Mathematically, the energy distribution of the scattered neutrons is a J§-function,
d(Ex, — Ex, + Eop — Eq) and therefore integrates to unity. Following from equation 3.8,

the expression for the partial differential cross-section is now:

d20 > kl / O
—_— = — | [ b;e'@7i 47
< dQdEL ), L\, ko)
06

By expressing the é-function for energy as in integral with respect to time as follows '%6:

2
5(E)\0 — E‘,\1 + Ey — El) (3.23)

1 00 i(By; —Eyg)t

0(Exo — Ex, + B0 — Br) = 5 — » e h e Wt (3.24)
where the energy change of the neutron is finite and written as:

hw = Ey — Ey (3.25)

w ia positive for energy loss and negative for energy gain. Substituting equation 3.24

into equation 3.23, the resulting expression for the double-differential cross-section is writ-
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ten as:

d*0(Q) —iG-r(0) 07 (1) \ o —iwt
(m) k:027rhzbb/ (e @ OAT0 ) et (3.26)

This is for a system in which the scattering length b varies from one nucleus to another,
i.e a poly-atomic system. The angular brackets denote an average over all starting times
for observations of the system, equivalent to averaging over all thermodynamic states of

the system.

3.1.6 Coherent and Incoherent Scattering

The scattering length b varies from one nucleus to another according to their nuclear spin
state and are not correlated for neighbouring isotopes. For atoms j and j’, we therefore
let the value b; occur with relative frequency f; such that y fj = 1. The average value

of b for the system is then:
b= fb; (3.27)
J

and the average value of b? is:

=3 f0? (3.28)
j

There are two cases to consider, j = j' or j # j/, referred to as coherent and incoherent

respectively. Equation 3.26 can then be rewritten as:

d%0(Q) —iG15/(0) i (1) it
( a0 dE, ko 27Th Z / ’ >e dt
ki 1 5 —zQ r; ZQ 75 (t) \ j—iwt
o 27 ¢ Z / HOeiaT > dt

(3.29)

The double-differential cross section is thus split into two terms. The first term on
the r.h.s, the coherent scattering tells us about the correlated motions of all the atoms
e.g. phonons and magnons (inelastic coherent) or the sample’s average structure (elastic
coherent). The contribution to the coherent scattering of j = j’ is normally quite small as

the total number of nuclei is very large. The second term is due to properties of individual
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Species H D O N4 C Ti VAS Mg Si Al
b/fm -3.74  6.67 581 937 6.64 -344 7.16 538 4.15 345

Table 3.2: Neutron incoherent scattering lengths by, for selected species®. Note H and
D have radically different neutron scattering lengths.

atoms and their motions and is known as incoherent scattering. Thus, it provides
information on diffusive motions of the atoms: rotation, molecular vibration, translation
(inelastic incoherent). It also reveals the isotopic inhomogeneity of the sample as well as
the geometry of any confinement effects on the diffusion mechanism (elastic incoherent).
In general, due to the isotropy of incoherent scattering, it adds a structureless background

to the coherent signal obtained in a diffraction experiment.

The neutron scattering lengths can then be defined in terms of whether they are

incoherent/coherent:
beoh = b (3.30a)
bine = 1/ b2 — (b)2 (3.30D)

There is no correlation between the scattering lengths of the elements and their atomic
number as is the case with X-rays. The neutron scattering lengths are determined exper-
imentally and the vast difference in hydrogen and deuterium scattering lengths can be
exploited to great effect. Table 3.2 shows the values for the coherent scattering lengths,
beon, for some important elements. Some elements have a negative scattering amplitude
which occurs with elements whose nuclei scatter 180° out of phase.

Hydrogen also has a very large incoherent neutron scattering length of 25.27 fm and
therefore this must be accounted for during data reduction for diffraction measurements

as described in section 4.3.

3.1.7 Correlation functions

It is useful to relate the cross-section for neutron scattering to thermal averages of operators
belonging to the scattering system because these are the physical measurements made by
the spectrometers and diffractometers in an experiment. These thermal averages are

known as correlation functions.

e the pair correlation funcion, G(7,t): the probability of finding a nucleus at position



3.2. Neutron an X-ray Diffraction 53

(7, t) given that there is another one at a position (7,¢) = (0,0) (coherent scattering)

e the self correlation function, Gge(7,t): the probability of finding a nucleus at (7, t)

if the same nucleus was at (7,t) = (0,0) (incoherent scattering)

Be defining S(Q,w) is the dynamical structure factor:

N 1 .= - .
S(Q,W) = m/z <e—'LQ~(T‘j/(O)—Tj(t))> e—zwt dt (331)
Jg’

we can rewrite the DDCS from equation 3.29 in a more useful way:

2O'

<ds(zidE>h Zé@ NSeon(@,) (3.32)
2, - .

<d£dEl>l Z;N(b (0)%) Sinc(Q,w) (3.33)

where N is the number of nuclei in the scattering system. S (Q, w) combines contributions
from all atoms in the sample and is the measurement made in a scattering experiment.
Scoh(@, w) is the double Fourier Transform in both space and time of the pair correlation
function G(7,t) and similarly, Sin.(Q,w) is the double Fourier Transform of the self-

correlation function G (7, t):

Qf—wt) = 4
Seon(Q w 27rh// dr dt (3.34)

i(@F-wt) g
Smc 27Th//G86lf 7, t di dt (3.35)

We can see how the scattering functions are thus also the same probabilities as the corre-

lation functions (pair/self) but expressed in the reciprocal space.

3.2 Neutron an X-ray Diffraction

3.2.1 Diffraction in Clays

Consider an array of point scatterers, arranged in planes a distance d apart (Figure3.4).
A neutron wave with wavevector k_é and wavelength A is incident at an angle 6 to the

planes. For total constructive interference, the path difference between the scattered wave
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Figure 3.4: Geometry of scattering from two planes of atoms, a distance d apart. The
momentum transfer vector () is perpendicular to the planes of atoms. For scattering from
clays, each plane can be visualized as a clay layer.

k1 must be equal to an integral number of wavelengths. I.e. satisfying Bragg’s law:
2d sin(6) = nA (3.36)
Elastic coherent scattering only occurs at regular intervals in Q which correspond in real

space to the distance d separating the planes of atoms in real space. L.e.

= 4msin(f) 27w

Q=" =2 (337)

Now consider a crystalline solid made up of an infinitely repeating pattern of atoms. The
group of atoms which make up the repeating unit, or unit cell, of the material is called
the basis. The real-space lattice unit vectors are Ei,g and ¢ which combine to make the

real-space vector R through:
R = ud + vb + wé (3.38)

where u,v and w are integers. Fourier analysis of this lattice requires that R-G=2m

and results in its reciprocal with transformation vectors:

éhkl = hd* + k‘g* +Ic* (3.39)
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For R -G = 2mn to hold true:

- 2
G| = n#l (3.40)

where n is any integer and dpy; is the distance between the planes denoted with the
given hkl values. The Laue condition is thus that, if the above holds true, we obtain the
relationship between the scattering vector Cj and the reciprocal lattice vector for elastic
coherent scattering: C} = éhkl.

These indices give the order with respect to the axis of the unit cell the scattering
is occurring from. For example if we consider scattering from a particular Bragg plane
with [ = 1,2,3,4(000) it would correspond to the reflections from the planes of atoms
perpendicular to the c-axis of the unit cell. This direction is important here since the
layers of the clay lie perpendicular to the c-axis, Figure3.4.

For neutron diffraction of these systems, if we sum the contributions of all the atoms
J of scattering length b; in the plane hkl we get the structure factor which also predicts

the position and intensity of the Bragg peak which is an evaluation of eqn.3.21:

2
Z(gj)2e(éhkﬂ§) — |Shkl|2 =7 (3.41)

J

In X-Ray scattering the b; is replaced with f;(Q) which is the atomic form factor.

3.2.2 Diffraction in Liquids

For a full description of neutron studies of liquids see Fischer et al97.

Coherent neutron scattering gives information about the relative motions and positions
of different particles in the liquid. Using the correlation function formalism, and make
the ’static approximation’: energy of incident neutron is much greater than the energy
transferred between the interaction between the neutron and the nucleus. lLe. E > hw
and |ko| = |k1]|. If we consider the liquid with uniform density, p = %, we write the partial
structure factor, S,p(Q) containing the information about the correlation between atom

of type « and of type 8 in QQ-space, as:

4mpo
Q

Sap(Q) — 1= /000 r[gap(r) — 1] sin(Qr) dr (3.42)
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Since this equation only contains information about atoms « and 3, the differential cross-
section measured in the neutron scattering experiment containing N atomic species, must
be written as a weighted sum of all the individual structure factors arising from the

correlations between the different pairs of atoms.

do N < Y& T T
<dQ) - Z cab? + Z Z CaCababp[Sas(Q) — 1] (3.43)
a=1

a=1p=1

where ¢, and cg are the atomic fractions of atoms « and 3 respectively. The first term on
the r.h.s. is the self-scattering term which the diffraction data is corrected for in the data
reduction described in section 4.3. The second term is then defined as the total structure

factor:
FQ) =33 cacsbabslSus(@) — 1] (3.44)
o B

F(Q) is the neutron weighted sum of all the individual partial structure factors and the
final function extracted from raw diffraction data once the raw data has been corrected for
self and incoherent scattering. As F'(Q) and S(Q) are in QQ-space (reciprocal space) we can
inverse Fourier transform the individual S,5(Q) to directly obtain real space information

found in the individual pair distribution functions g(r) which can be calculated via:

_ 1
~ 2m2rpg

G () — 1 /0 " [505(Q) — 1]sin(Qr) dQ (3.45)

Integrating the real-space pair distribution functions along r calculates the average number
of atoms (coordination number) of type [ surrounding atom type o between the distances

r1 and 7o as follows:

T2

n_g = 47rn005/ 2 gap(r) dr (3.46)

T1

where ng is the atomic number density of the sample (e.g. in units of atomsA~3).
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3.3 Small-Angle Neutron Scattering

A generalised expression for the small-angle scattering from any sample is

(“9) - mrar@s@) (3.47)

where N, is the number of identical particles, each of volume N, in the sample. P(Q)
is the shape factor and S(Q) is the inter-particle structure factor taken from equation
3.42. p, 2 is the scattering length density of the sample. Suppose we are scattering from a

solution of molecules which have a tendency to cluster. The scattering process is governed

by the interference between waves scattered by regions of minimum length [ = Qi:m of the
instrument. The volume of these regions is called the resolution volume, v. The distance
[ is large compared to interatomic distances but small compared to the linear size of the
molecular clusters. The local scattering length density, p(r) is obtained by summing the

coherent scattering lengths of all atoms in the resolution volume v, centred on position r,

and dividing by the volume. Therefore p(r) is given by:
1
o) = 22 (r) (3.48)

where b;(r) is the scattering length of the atom 7 at position r. p(r) can be calculated for
the solvent pg and also of the molecular cluster of volume V, py. Therefore the average

scattering density of the solution (or the scattering length density) is given by:

Pp = PV — Ps (3.49)

The shape factor term P(Q) describes the influence of the shape of the scattering molecular
clusters on the observed cross-section and emerges quite exactly depending on whether the
scattered cluster is a sphere, ellipsoid, rod etc. A table of form factors can be found in
Willis & Carlile p.1812. The inter-particle structure factor S(Q), accounts for the influence
on the measured cross-section of local order between the scattering clusters. Here we can

use the expression Eqn. 3.42 for a liquid by replacing the atoms by clusters:

S(Q)-1= 47TQN /000 rlgp(r) — 1] sin(@Qr) dr (3.50)
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Figure 3.5: Schematic representation of an incoherent neutron scattering spectrum, dis-
playing a single quasi-elastic component, centred at zero, broadening the base of the elastic
line having amplitude A; and half width half-maximum (HWHM) T'y,,.

where N is the number of clusters per unit volume and g,(r) is the pair distribution

function representing the probability that a pair or clusters is a distance r apart.

3.4 Neutron Spectroscopy

3.4.1 Quasi-elastic Neutron Scattering (QENS)

In a spectroscopy experiment, the measured quantity is the incoherent scattering function
Smc(@,w), Equation 3.35 gives the temporal and spatial correlations between pairs of
atoms in the sample. In the quasi-elastic neutron scattering experiment described here,
the intensity is dominated by incoherent scattering from the hydrogen atoms in the sample
due to the size of the neutron cross-section. Table 3.3 gives some incoherent cross-section
values. The term quasi-elastic describes those process which are almost elastic and do not
occur as discrete inelastic peaks but as a Doppler broadening to the elastic line. Thus for
the systems in the experiment here, the QENS describes the molecular diffusion through
translation, rotational and vibrational shifts of hydrogen atoms in the sample. Figure 3.5

shows the region of interest to this study.
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Species H D O N4 C Ti Zr Mg Si Al
Oine/barn  80.26 2.05 0.0008 0.5 0.001 287 0.02 0.08 0.004 0.008

Table 3.3: Incoherent neutron cross-sections oy, for selected species?. H has by far

the biggest incoherent scattering cross-section, and therefore dominates the quasi-elastic
neutron scattering from our systems.

—

The incoherent intermediate scattering function,Z;,.((@),t), obtained by a temporal
Fourier transform of the correlation function, correlates all the stochastic motions of a
single particle. Both the rotational and translational modes of diffusion result in an

exponentially decayingl;,.((Q),t), the rate of decay being proportional to the relaxation

time of the motion,r .

Self Diffusivites

In the QENS experiments for this thesis, the incoherent scatterers are primarily the hy-
drogen in the water but also the hydrogen atoms on the aromatic ring of the terephthalate
ion.

Due to the different time-scales of the three motions!'%®, they are assumed to be un-
coupled and the scattering function can be written:

inf
Sine(@.0) = @ | A @)ate) + Y Ayt LR

=l (3.51)

inf

IDIEA()
n=1

where Dp is the rotational diffusion coefficient. The exponential in the front is the Debye-
Waller factor which describes the vibrational part i.e the attenuation due to thermal
motion. The first term inside the square brackets is the elastic component, the second due
to rotational motion and the last term is due to the translation diffusion, i.e. a Lorentzian.
The quasi-elastic Lorentzian is seen as a broadening to the original elastic line, the width
of which,I';,,, depends on the precise dynamics of the scatterer.

The elastic component, 6(w), has a Q-dependent intensity given by the elastic inco-

herent structure factor (EISF):

Iel

(Iel + Iql) (3‘52)

EISF = 40(Q) = lim [Ine(@.1)] =
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where I; is the elastic intensity and I, the quasi-elastic intensity. It is the intensity
attributed to the elastic collisions with scatters and is related to the static geometry of
the scattering process'%. The behaviour of the EISF as a function of @ is indicative of
the diffusion mechanism i.e. is it continuous, jump, rotational, and also the proportion of
rotation to translational motion. When motion is purely translational, the EISF is zero
for all @ > 0. If diffusion of the hydrogen scatterers is purely rotational, then the EISF is
constant with @) indicating that they are localised. If both motions are present, then the

EISF falls to a minimum at some specific ()-value.

Jump diffusion

For times which are long compared to the mean time between atomic collisions, translation
is governed by the Brownian diffusion process, and the HWHM of the QE Lorentzian

function, has a Fickian form:

Fm(Q) = h Dirans - Q2 (353)

However for diffusion at atomistic scales, it is no longer applicable since the diffu-
sion is restricted due to confinement, strong interactions, bonding restrictions or diffusion
happening in jumps. At very low @, we lose the details of the jump mechanism so the
diffusion can be described by Fick’s law, Equation 3.53. Otherwise we use one of the sev-
eral analytical models describing the jump mechanism which are discussed below. They
involve fitting of the HWHM describing the translational part of the incoherent scattering
function in this restricted regime.

The diffusion models developed by Hall and Ross''? and Singwi and Sjolander!!!,
assume that a water molecule oscillates with a particular mean square amplitude (u?)
around an equilibrium position and for an average time ( 7 ), before it jumps a distance [
to another equilibrium position, where 12 >> (u?).

The Gaussian jump-length distribution model of Hall and Ross(HR)!'!? gives the
broadening of the HWHM as :

Tt

T(Q) = h [1 - e<—Q2Dm>] (3.54)

with mean square of the jump length [ in the form: [? = fooo r2p(r)dr = 37"(2) ; and the
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Figure 3.6: Angle labelling using Larmor precession. The external magnetic field B, with
inclined entrance and exit faces, is applied for a length L before the sample. An equal but
opposite field is applied to the beam after the sample so that neutrons that do not scatter
from the sample can be eliminated. Scattered neutrons experience different amounts of
depolarisation depending on the angle 20 through which they are scattered.

diffusion coefficient, Dypqns = 6%. p(r) is the probability of finding the diffusing molecule
at a particular jump site position r after jumping. 7 is the position of the site occupied
by the diffusing species before jumping. 7 is the residence time of the water molecule at
a specific position before it rapidly jumps to the next position.

The exponential distribution of jump-lengths of Singwi and Sjélander (SS)!!'! de-

fines the broadening of the HWHM as:

r(Q) = DG

_ 3.55
1+ D, - Q%r, (3.55)

and the mean square jump length 1% = 61"8.
The Chudley and Elliot model (CE)!'2 has a constant jump distance [ and the
HWHM of the QE Lorentzian broadening has the the form:

LoQ) = M1~ sine(@ 1) (3.56)

Dy can then be calculated from the parameters observed from fitting the CE equation.

3.5 Spin-Echo Small Angle Neutron Scattering: OffSpec

To obtain extremely broad spatial and high energy resolution, the spin-echo technique can
be exploited since it eliminates the need to prepare an incoming beam with a wavelength
distribution as narrow as the required resolution. Instead the neutron spin wavefunction
with an external magnetic field is utilised. For a full mathematical description of the
spin-echo technique for small angle scattering, see Mezei'!® and Rekveldt !,

The principle in the spin-echo case is that a beam of incoming polarised neutrons are
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made to Larmor precess according to the externally applied magnetic field B. The Larmor
precession or ’spin-echo length, r’, corresponds to the size of the objects that are scattered
from and shown diagrammatically in Figure 3.6. It can be tuned using the above setup

by changing any of A\, B, L or 6y through the following relationship:

A2BL cot 6,
po cot fg (3.57)
27

where ) is the wavelength of the incoming polarised neutron beam and L and 6, are the
length and angles of the B-field.

After scattering at the sample, the beam travels through a symmetric setup but with
opposite B-field which ’cancels out’ the original precession. The neutrons which are not
scattered by the sample hit the detector with the same polarisation that was applied to
the incoming beam and the scattered neutrons will have depolarised according to the angle
260 that they make when exiting the sample. The polarisation of the beam which hits the
detectors is therefore a weighted sum of the polarisation vectors of the scattered and non-
scattered neutrons. By ensuring that the initial beam is polarized along the z-axis, that
all scattered neutrons land in the detector and looking at the neutrons that only scatter
with small angles, the measured beam Pjgpe is related to a form of the one-dimensional

real-space autocorrelation function G(r) through:

359

o and t are the attenuation coefficient and thickness of the sample respectively. OffSpec

is the low background, polarised, reflectometer optimised for the measurement of off-
specular reflection used for the SE-SANS investigation in the following experiment (Sec.
5.3). At its upper limit OffSpec allows the angle 6y to be varied continuously from 50°
to 90° over the length of the B-field thus allowing simultaneous observations of scattering

objects from 10 nm to 30 um in diameter.



Chapter 4

Aqueous Structure of
Hydrophobic Amines using

Neutron Diffraction

This chapter presents the in situ neutron scattering experiments designed to investigate the
structure of the quaternary ammonium salt tetramethylammonium chloride as a 1 molar
solution in D2O subjected to elevated pressures and temperatures. Previous experimental
work on aqueous TMA has focused on ambient pressure and temperature conditions!!®
and with higher concentrations!!6, the effect of which is seen as the intersolvent structure
to represent that of bulk at lower temperatures. The new science described in this chapter
is the behaviour and structures of hydrophobic salt solutions at elevated pressure and
temperature conditions where we find the TMA ion acts to maintain bulk like intersol-
vent structure at the same p & T conditions. We also observe the formation of solvent
separated TMA - Cl ion pairs which persist throughout the application of pressure and
temperature. Pre-established geological gradients have been followed, Table 4.1, under
controlled conditions for this investigation.

Also presented is a preliminary investigation into the effect of 2 molar hexamethylene-
diamine (HMDA) in D20 on the water-water structure. At this concentration, we observe

an ’ice-like’ intersolvent structure i.e. highly intense water-water structure however slightly

lower density which is seen with other hydrophobic molecules 6.

63
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4.1 Neutrons at Large-Scale Facilities

Production: Spallation

The neutrons at ISIS are produced via spallation, a process where pulsed beams of high
energy protons are bombarded into a heavy metal (tantalum) target?. Figure 4.1 shows

the components of the ISIS pulsed neutron source.
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Figure 4.1: Neutron production at the ISIS facility taken from Pietropaolo?.

Protons start out as H™ ions formed from the ionisation of hydrogen gas and are ac-
celerated by a linear accelerator to 70 MeV. The H™ beam is injected into the synchrotron
and is passed through thick aluminium oxide foil to strip the H- of its electrons resulting
in a beam of protons. The protons are accelerated to 800 MeV and into 2 bunches via
an increasing harmonic radio frequency before being extracted from the synchrotron to
the tantalum target either in target station 1 or 2. This knocks out neutrons from the
metal target with high energies therefore moderators are used to slow them down to use-
able speeds. The neutrons are then collimated to produce short pulses of neutrons with a

range of energies.

It must be noted that fission sources are also available for the production of neutrons.
Fission of the uranium isotope 235 by slow neutron capture releases more neutrons per

fission process than are required to initiate the process. The spectral distribution of the
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fissioned neutrons is described by a Maxwellian:

b efr (4.1)

with a characteristic energy Fr = 1.2MeV. Importantly, fission reactors produce a

continuous flux of neutrons unlike spallation sources.

4.2 Diffraction on the NIMROD Instrument

The Near and InterMediate Range Order Diffractometer (NIMROD)* makes use of the
broad spectral range of the second target station, 0.04 < A\ < 12 A at ISIS for the in-
vestigation of structural studies of disordered materials and liquids allowing continuous
resolution from <1 to >300 A. It also uses the enhanced long wavelength flux to access
low-Q and therefore long range order in these systems. The forward scattering geometry

117

of the instrument minimises inelastic scattering effects’*’ and is therefore ideal for the

performance of hydrogen-deuterium isotopic substitution experiments.

Incident flight line Sample point  Detector blockhouse Beamstop

Jaws and monitors Detector array Low angle detector bank

Figure 4.2: Schematic of the NIMROD instrument and beam propagation taken from the
review of the NIMROD instrument.*

The wider angle array is comprised of 1098 zinc sulphide based scintillating elements,
covering scattering angles from 3.5 to 40. The low angle detector bank covers scattering
angles from 0.5 to 2.2 in a dartboard style and is comprised from 756 detector elements.

These detector banks combined, correspond to a Q-range of 0.02 - 1004~
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Depth Temperature Pressure Density
(k) (K) (bar) (atoms/A”)
0 22 50 0.1003

22 600 0.1019
2 80 600 0.0999
4 140 600 0.0961

Table 4.1: Pressure and temperature gradients.

NIMROD Sample Environment

The sample environment used for this experiment was designed and built through a joint
effort between UCL and RAL for the Ph.D project of Dr. A. De Siqueira to simulate
the conditions that would be encountered in a well bore. The pressure cell environment
had a maximum temperature and pressure of 670 K and 1.7 kbar respectively. These
upper limits were sufficient to maintain the pressures and temperatures required for this
investigation. Table 4.1 relates burial depth to the these pressures, temperatures and
densities of the 1 Molar TMACI-D50O solution at the corresponding p/T. An extra data
point was added at 295 K and 600 bar to isolate the effect of pressure on the system. The
number densities for the solutions were calculated using the analytic equation of state for
water ''® and incorporating by volume, the density of TMACI in its solid state.

The sample cell was made from titanium-zirconium (TiZr) alloy as described previously
so that the alloy became a null scatterer with a flat-plate geometry and wall thickness
of 10 mm. This surrounded a 15 mm by 4 mm sample slot which was 50 mm deep.
Although the wall thickness or large volume of sample (and therefore distance of the beam
travelled within the sample) was not optimal for neutron measurements, it was required
for containing the pressures and temperatures used in the experiment. Two belt heaters
wrapped around the top and bottom parts of the cell to control the temperature of the
sample which was monitored by two Fe thermocouples: one thermocouple measuring the
applied heat and the other measuring the sample temperature. The sample can was
sealed using a silver hollow o-ring. When the cap of the cell was tightened and hydrostatic
pressure applied, the hollow seal collapsed to fill the available space. Each o-ring could
therefore only be used once. Figure4.3 shows the high pressure environment and sample
can used for the experiment.

Pressure is applied hydro-statically with DO via a high-pressure hand pump directly

onto the sample. The pump oil is separated from the DoO by steel pressure bellows and
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(b)

Figure 4.3: High pressure sample environment allowing hydrostatic pressure exertion of

1.7 kbar and a maximum temperature threshold of 670 K.

Fig 4.3(a): High p/T rig.

Fig 4.3(b): TiZr null scattering sample can.

the digital gauges measure the applied pressure and the pressure in the sample can.
Most of the technical difficulties were to do with maintaining pressure in the sample

can due to failure of the hollow seal. This was due to the expansion of the steel bolts

holding the cap of the sample can, however when they were changed to high tensile steel

bolts, there was no leaking of pressure indicating that the seal had been maintained.

4.3 Data Analysis Procedure for Liquid Diffraction Data

The data obtained from the NIMROD instrument was analysed using two programmes:

Gudrun and Empirical Potential Structure Refinement (EPSR).

Gudrun

Gudrun is a program that analyses diffraction data, be it neutron or X-ray data, from
the raw neutron counts to a final differential cross section. It can do this detector by
detector, combine the detectors into groups and will also perform the Fourier transform

on the differential cross sections to yield real-space information. This step , the routines
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used and the theory behind are explained in more detail than given here in the Gudrun

manual 1'%, To obtain fully corrected F(Q) the following scattering measurements are
required:
1. Empty container (sample background)

[\

4

Sample + container
Vanadium slab

Empty instrument (vanadium background)

The steps in the data reduction are then as follows:

e Purge bad detectors

NIMROD has 1098 detectors, not all of which will be stable for a given experiment.
The program ’run purge’ outputs a list of unusable detectors which must not be used
in the analysis. This is based on the ratio of the number of counts with the sample
present and the vanadium. In this work, if there is more than 10% variation in the
spectra for an individual detector in a series of runs, the detector is discarded from

the analysis.

Sample background

This is a measure of the naked beam i.e. with nothing in the scattering position.

Sample container

A measurement must be made with an empty container in the scattering position.
(For experiments which involve variations in temperature and pressure, ideally mea-
surements of the empty sample can must also be taken at those specific temperatures
and pressure combinations.) Conveniently, for this experiment, the sample can is

the null scattering TiZr alloy.

Normalisation to the incident spectrum

Several files are input into Gudrun containing information on detector dead-time
and detector calibration which are used in the data correction. The data is nor-
malised to incoherent scattering via a vanadium measurement. Vanadium is used
since the scattering from the element is almost completely incoherent. Normalisa-
tion is required to allow for variations in wavelength flux which may arise within the

detector.
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e Attenuation and multiple scattering corrections
This step removes scattering due to hydrogen in the sample. Hydrogen has a large
neutron cross-section and therefore, depending on the sample thickness, will undergo
multiple scattering. This will give incorrect detection times which need to be accu-
rate in order to perform T-o-F measurements. Multiple scattering is corrected for
by calculating a wavelength dependent absorption cross-section for all the samples
and then subtracting them from the data. These are obtained by using the ratio of

the transmission data from the sample and background.

Data reduction via Gudrun produces a normalised F(Q) which can then be fit using

Empirical Potential Structure Refinement.

Empirical Potential Structure Refinement Analysis

Measured diffraction data on disordered materials reveals limited information about the
system. The empirical potential structure refinement technique aims to maximise the
information that can be extracted from this data'?%12!, EPSR produces a model with a
simulated differential scattering cross section (D;(Q)), which fits the experiment results
as closely as possible. It also allows us to build 3-dimensional atomistic models of our
system which are consistent with the measured diffraction data by using the experimentally
observed data as a constraint against which the molecular simulation of the system is
refined. The method starts with an equilibrated Monte Carlo representation of the system
based on initial seed potentials. Using information already known about the system, such
as the electrostatic charges, the Lennard-Jones description of the interatomic potentials
and molecular geometry, the simulation iteratively lowers the energy of the system against
these potentials. The measured data is then added as another parameter or empirical
potential to constrain the system. It refines these potentials until the molecular simulation
reproduces the experimental diffraction data. Thus, the measured 1-D data (in r) is
extended into an atomistic box allowing for correlations in 3-D to be extracted. Specific
to this work, EPSR allows for a 3-dimensional structural analysis of the environment
around the TMA™ to be performed as a function of pressure and temperature.

The molecular distributions resulting from the EPSR simulation are visualised using
spherical harmonic expansion for molecular pair correlation functions'2%122. The spherical
harmonic representation is useful because it allows for the system to be perturbed at any

time and in various ways without having to recalculate the atom positions each time. This
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is done by fixing a chosen molecule and at the origin (¢, §;) of the laboratory coordinates
and then using Euler angles to describe a second molecule (¢y,60:,Xm). The spherical har-
monics coefficients are calculated every 5 iterations and averaged every ~1000 iterations.
These are then used to calculate 3-dimensional spatial density plots around each molecule
of interest by defining a set of co-ordinate axes relative to that molecule allowing for the
investigation of relative orientations between molecules as a function of their separation.
The EPSR analysis was checked by following the changes in: (i) Running EPSR with-
out refinement, i.e. just a Monte Carlo simulation, (i¢) monitoring the internal energy
and pressure of the system (ii7) checking for unphysical distance in the individual pair
distribution functions gg(r). This allows us to make a comparison between the refined
data and the seeds, thus ascertaining how the refinement has changed the structure of the

system.

4.3.1 Sample Preparation

Sample No. Mass H12-TMA Mass D12-TMA Mass DoO  Molarity
() () (M)

1 11.1668 - 119.14 1.00051
- 4.2757 38.8835 1.00028
3 0.8222 0.9130 8.3025 1.00060

Table 4.2: Masses and molarity for each of the isotopically substituted samples: fully H,
fully D and H:D 50:50 of the TMA ion.

The experimental work being reported here is focused on studying the structure of
1 Molar tetramethylammonium chloride (TMACI) in D20 solution. Three samples were
prepared: 1M protiated TMACI (CH3)4N*C1™, 1M deuterated TMACI(CD3)4N*Cl~ and
a 50:50 mix of protiated to deuterated TMACI(CH3/CD)2.oN1TCl~. These were prepared
on site when each sample was required. Table 4.2 shows the masses and molarity of the

samples.

4.4 Results: Structure 1M TMAC],, Under Burial Condi-

tions

A single diffraction measurement on tetramethylammonium chloride dissolved in DO,

after correction yields a total structure factor, F(Q). This is a weighted sum of twenty-



4-4. Results: Structure 1M TMACl,q) Under Burial Conditions 71

one different partial structure factors arising from the twenty-one partial pair correlation
functions due to the six distinct atom species in the system: N, C, Hpetnyi, Owaters Hwater,
Cl. The technique of Empirical Potential Structural Refinement (EPSR) analysis fits the
total structure factor, allows for a complete extraction of the individual pair distributions
functions and also permits 3-dimensional analysis of the system.

Importantly, access to the low Q-region was possible to look for evidence of TMA™*-
TMA™T or TMAT-CI™ aggregation, also known as ’salting out’ due to the hydrophobic
nature of the TMA™ 123,124,

The three isotopically distinct samples were measured at four different p/T combina-
tions given in Table 4.1. For a complete data set, it would have been desirable to take
measurements on samples made with mixtures of HoO and D2O to remove the solvent
scattering altogether. However, due to the large volume of sample required to fill the sam-
ple can, the solvent used was only DoO. Any protiated water would lead to large amounts
of inelastic scattering which would be almost impossible to correct for.

Data was also collected on pure D2O at the same pressures and temperatures as used

for the TMA 44 so that a comparison in the inter-solvent structure could be made.

4.4.1 Aims

In considering the structural implications of the results, the following points will be ad-

dressed:

e In what way if at all does the TMA™ order the water molecules in the hydration

region?

e Is there any evidence for ion pairing between the TMA™ and Cl~ or for TMA™-
TMA™ hydrophobic clustering?

e Do the observations indicate any hydration changes with an increase in pressure and
temperature?
4.4.2 Simulation Detalils

EPSR simulations were carried out on each of the four sets of diffraction data (obtained
at each combination of temperature and pressure). The simulation box was a cubic box

of side ~38.0A containing 1650 DO molecules, 30 TMA™ cations and 30 Cl~ ions. The
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Atom Type o (A) ¢ (kcal mol~1) Charge, q (e)
C 3.7 0.8 —0.18746
N 3.2 0.7 +0.03021
ety 0 0 40.1433
Cl~ 4.191 0.566 -1
Ouwater 3.1 0.65 —0.8476
Hyater 0 0 +0.4238

Table 4.3: Potentials used in EPSR analysis of form:
. 12 6
Vitr) = 4 deos | ()" - (52)]

initial seed potentials are classical Lennard-Jones pairwise potentials, the parameters of

which are in Table 4.3 and taken from empirical potential structure refinement carried
out by Soper and Weckstrom 2% for C1=. MOPAC'2% is run on the ions and charges are
distributed according to the solution of the AM1 Hamiltonian. SPC/E parameters taken
from Berendsen et al'?" are used for the D and O in DO molecules. Since the pressures
and temperatures applied maintained the solvent D50 in a liquid state, these descriptions
of the molecules were taken to be valid.

A representation of the system is shown in a snapshot of the EPSR ensemble in Fig-

ure 4.4. This is not a time averaged image however highlights the system under question.

4.4.3 Total Structure Factor

Typical fits of the EPSR ensemble (D;(Q), green lines) to the total structure factors (F(Q),
black circles) derived from Gudrun for the three samples at 25°C 50 bar and 140°C 600
bar, the lowest and highest p/T combinations respectively, are shown in Figure 4.5. The
full Q-range of the data is from 0.02 A7 1030 A" however only 0.02 A< Q<12 AT
has been plotted in order to see salient features more clearly.

The EPSR fits are exceptionally good at representing the data but there very sub-
tle differences found at very low-Q in the fully hydrogenated (H12-TMAT™) sample in
particular and can be explained by an imperfect removal of inelastic scattering!?4128
Otherwise, all other features are very well reproduced. Care must be taken to ensure
that the model resulting from the EPSR analysis is realistic alongside the interpretations
that are made. Therefore, the chi-square, internal energy and pressure of the system were
monitored throughout the analysis to ensure that their values were reasonable. Coupled

with this, the individual g(r)s and bond lengths of the TMA™ ion were also monitored for

any nonphysical short distances.
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Figure 4.4: Snapshot of ensemble box taken when the EPSR has completed fitting the
diffraction data for the measurement at 25°C 50 bar. Key: Nitrogen-blue, Carbon-Grey,
Oxygen-red, Chloride-green. Hydrogen atoms on water molecules have not been displayed

for clarity.

L.2p (3) 50:50 H12:D12 TMACI] L2y (3) 50:50 H12:D12 TMACI]
= 2 = 1 2
X} Ny
= 03 |2 osf f
= 06l (2) D12-TMACI = 06l (2) D12-TMACI
g -
< <
= 2
g c
= (1) H12-TMACI = 02 (1) H12-TMACI
O
0.2 :
2 4 6 8§ 10 12
o -1
QA ]
(b)

Figure 4.5: The total normalised structure factors F(Q) (black) with extremely good
EPSR fits D;(Q) (green) at (a) 25°C 50 bar and (b) 140°C 600 bar, (highest and low-
est p & T combination) for each of the three solutions, (1) [N(CHs)4]TCl™ in D20, (2)
[N(CD3)4]"C1™ in D20, (3) [N(CH3z: CD3)4]"Cl™ in D2O. The results have been shifted
vertically for clarity.
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D(Q)

Figure 4.6: D;(Q) from EPSR simulation (green), F(Q) of the data (black circles), residuals
(red) for bulk solvent DO. See that fit to data is extremely good and supported by minimal
residuals which are only significant at very low Q.

4.4.4 Pressure and Temperature Effects on Pure D,O

In order to draw conclusions about the effect of TMACI on the structure of the solvent
and the effects of an increase in p & T on the structure of the solutions, first we must
look at the effect of an increase of pressure and temperature on the bulk solvent, D2O.
Figure 4.6 shows the EPSR fit to the reduced data acquired from Gudrun for the pure
D50 solvent. The EPSR shows an extremely good fit to the data as the residuals are only
significant at low-Q. This is similar as with the 1M TMACI solutions in Figure 4.5 and is
due to imperfect removal of inelastic scattering.

To begin the structural examination, the pairwise distribution between the water
molecules in the pure DoO sample was investigated as a function of pressure and tem-
perature.

At 22°C 50 bar, the hydrogen bond length gop(r) for bulk DoO is 1.8 A. There is a
slight discrepancy with measurements made by Soper!'?® at ~1.85 A but can be explained
by the fact that there is 50 bar pressure in the ambient readings in this investigation. This

first peak position for all 3 water RDF's shift to slightly smaller values when the pressure is
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Figure 4.7: Site-site partial RDF's for all atomic pairings of the water molecule in bulk
D20. The RDFs are taken from the EPSR analysis of the neutron diffraction data of bulk
D20 at 22°C 50 bar (red) and 22°C 600 bar (blue) to isolate the effect of pressure. The
RDFs are almost indistinguishable other than a small decrease in intensity and shift in
the first peak by 2% to smaller r.

increased to 600 bar which is to be expected as the system is in a constant volume regime
and an external pressure is being applied. The first peak position for the gop(r) shifts
down from 1.8 A to 1.77 A (a small change of 2%). This is reasonable as the molecules are
squeezed together under the applied hydrostatic pressure, and therefore peaks will shift
to smaller r values.

Figure 4.8 isolates the effect of temperature on the system as it is increased from
ambient through to 140°C. As the system moves from 22°C to 140°C, it gains thermal
energy and the system becomes more disordered. Thus the bonds are weakened and there
is a dramatic decrease in the 1st peak intensity and broadening in peak width. The average
position in the highest disordered state has shifted back to 1.8 A as for the ambient run
indicating that the increase in temperature acts to undo the effect of the applied external

pressure.
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Figure 4.8: Site-site partial RDF's for all atomic pairings of the water molecule in bulk
D20 at constant pressure at 22°C (blue) and 140°C (red). Note here the decrease in
intensity and broadening of the first peak indicating greater disorder within the system.
Also note the slight shift (2%) of both peaks to higher r values implying an inverse effect
of pressure and temperature on the system.

4.4.5 Inter-solvent Structure Comparison: 1M TMACI vs Pure D,O

We can now attempt to study the effect of the TMA™ and Cl~ on the inter-solvent
structure at these pressures and temperatures. From the resulting EPSR ensemble, the
individual site-site radial distribution functions (RDFSs), gag(r), for the relative density
of atoms of type 8 as a function of their distance r from one atom of type «, can be
extracted.

The solvent-solvent structure is disseminated in two manners:

1. Investigating the influence of the dissolved TMACI on the solvent structure compared

to bulk solvent at specific p/T state points.

2. Investigating the effect of elevated pressures and temperatures on solvent structure

within the TMACI solution.

In order to study the evolution in solvent-solvent structure, the analysis focusses on
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Figure 4.9: gop(r) for pure bulk D2O (blue) and solvent D2O in 1M TMACI solution (red)
at (a) 22°C 50 bar (ambient) and (b) 140°C 600 bar. Both peaks are of greater intensity
with the addition of TMACI due to the reorganisation of water molecules for the solvation
of TMA and CI ions. There is no change in peak position between bulk and salt solution
indicating that although there is increased inter-solvent, the bulk like water structure is
preserved.

the changes to the solvent gop(r) RDF (hydrogen-bond).

Figure 4.9 shows the hydrogen bond in the solvent structure in (a) pure D2O and
(b) in 1M TMACI at the lowest p/T combination, 22°C 50 bar. There is no shift in
peak positions from bulk D2O to 1M TMACI + D20 solution with the first peak position
centered at 1.8 A. Both peaks of the solvent-solvent gop(r) in the salt solution are slightly
more intense with the addition of the TMA™. This can be attributed to a small increase
in intensity of the average local solvent structure reorganisation in accommodating the
TMA™ and Cl~. The first peak height increases in intensity by 8% and the 2nd peak by
4% indicating that at 1 molar concentration of TMACI in D50, there is no huge departure
of solvent structure from bulk.

When the solvent-solvent RDF's are compared with bulk at the highest p/T conditions,
the system follows the same trends as bulk solvent structure. Figure 4.9(b) shows a
comparison between the solvent O-D RDF for bulk and salt solution at 140°C 600 bar.
The initial peak for the salt solution at both temperature and pressure conditions are
more intense than for bulk indicating that despite the increase in energy to the system,
the solvent remains more ordered in the presence of TMACI. A broadening in this initial

peak is seen at 140°C 600 bar due to the increase in thermal energy to the system, however
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interestingly, it is more pronounced in the salt solution. This can be further investigated by
comparing the solvent-solvent RDF's for the salt solutions to isolate the effects of pressure
and temperature.

Figure 4.10(a) compares the solvent O-D RDF of the salt solution at (a) 22°C 50 bar
and (b) 22°C 600 bar. As with the bulk solvent measurements, there’s a slight (2%) shift
of the first peak to smaller 7 from 1.8 A to 1.77 A as the pressure is increased from 50 bar
to 600 bar at constant temperature. Again, this is expected with an increase in pressure
on the system pushing the intermolecular distances to smaller values.

Figure 4.10(b) shows the effect of temperature on the solvent O-D RDF extracted
from the salt solution. The first peak position shifts back to higher r to 1.8 A. Tt is
accompanied with a dramatic drop in intensity and broadening of this peak due to the

increase in thermal energy of the system, as seen with pure D2O.

4.4.6 TMAT - X Correlations and Structure in 1M TMACI .

The local structure around the TMA™ can also be determined by looking at the solvent-
TMAT pair distribution functions. Here, the nitrogen atom of the TMA™T cation has
been taken as its centre and all TMA™T related correlations will be N-X pair distribution
functions.

Figure 4.11(a) shows the TMA — O,, RDF at ambient (red) indicating the first solvation
shell of the TMA to reside at a distance of 4.41 A from the TMA centre. As the pressure
is increased to 600 bar (blue), this peak shifts to larger  of 4.59 A and increases intensity.
The first solvation shell around the TMA ion is very slightly more structured at 22° 600
bar compared to ambient but pushed further out from the TMA ion whereas the second
shell is pulled closer to the ion from 8.07 A to 7.44 A. Interestingly, when the temperature
is now increased to 140°, Figure 4.10(b), the first shell shifts back to 4.41 A and the
second shell shifted out slightly to 7.59 A. This is in contrast to the inter-solvent O-D
RDF where both neighbouring shells of a central water molecule responded in the same
manner: shifted to smaller » with increased pressure and then higher r with an increase
in temperature. The coordination number, derived from integrating under the first peak
at ambient conditions, is ~30 water molecules indicating that 55% of the water molecules
are being involved in the first solvation shell of the TMA ion.

The location of the chloride ion with respect to the TMA ion can also be determined.

Figure 4.12 shows the nitrogen-chloride RDF with the peak also at 4.41A at ambient
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Figure 4.10: gop(r) for solvent DyO in TMA solution at (a) 22°C 50 bar (red) and 22°C
600 bar (blue) and (b) 22°C 600 bar (red) and 140°C 600 bar (blue).



4-4. Results: Structure 1M TMACl,q) Under Burial Conditions 80

16— 1.6

1.4¢ 1.4}

1.2t 1.2f
17 It
= =
Q0. Q 0.8¢
bZO08 bZO08

0.6 0.6

0.4f 0.4f

0.2 0.2
Oy Oy

2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12

r [A] r [A]

Figure 4.11: gno(r) for TMA solution at (a) 22°C 50 bar (red) and 22°C 600 bar (blue)
and (b) 22°C 50 bar (red) and 140°C 600 bar (blue).

conditions. This indicates that the chloride and TMA ions exist as solvent separated pairs
also seen by Soper et al 30,

Figure 4.12 also shows the overall change in the N-Cl RDF'. Increasing from 22°C 50
bar to 140°C 600 bar does incur a slightly narrower and less intense peak however the
chloride stays at the same distance from the TMA centre. This indicates that although
the peak at 140°C 600 bar, broadens and is less intense due to increase in thermal energy,
the time-averaged structure of the liquid still remains quite robust against the application
of the external pressure and temperature. The number of chloride ions found at this
distance remains at ~1 across all p & T thus inferring that the TMA™ and Cl~ stay as
solvent separated pairs and do not directly ion-pair. This is also supported by the fact
that there is no evidence of small angle scattering in the total structure factors, Figure 4.5.

Figure 4.13 shows the variation in the Cl-Ow RDF with just an increase in pressure to
the system at 22°C, from 50 bar (red) to 600 bar (blue), Figure 4.13(a), and with only an
increase in temperature at 600 bar, from 22°C (red) to 140°C (blue), Figure 4.13(b). The
Cl-Ow peaks at 3.12 A at ambient and 3.09 A at 600 bar. The effect of pressure slightly
decreases the Cl-O distance which is expected however the increase in temperature incurs
an increase in the intensity of the Cl-O RDF indicating the greater solvent structure around
the chloride ion. Calculating the coordination numbers, there are ~6 water molecules in
the 1st solvation shell of the chloride ion at 22°C 50 bar. This is in accordance with

131,132

investigations into halide ion solvation at low salt concentrations . The 1st solvation

shell of the chloride ion does not alter greatly with increasing p & T with the coordination
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Figure 4.12: Site-site partial RDFs for N-O (TMA-O) and N-Cl ((TMA-CI1)) at 22°C 50
bar (red) and 140°C 600 bar (blue). Notice minor perturbation to gno(r) as compared to
gn—c1(r) with increasing p & T.

Figure 4.13: gno(r) for TMA solution at (a) 22°C 50 bar (red) and 22°C 600 bar (blue)
and (b) 22°C 50 bar (red) and 140°C 600 bar (blue).
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Figure 4.14: (a) 22°C and 50 bar (red) and 22°C 600 bar (blue). The first shoulder is
maintained with increasing pressure, and the 2nd (main) peak increases in height and
narrows. TMA ions are forced closer together with application of pressure. Nitrogen-
nitrogen RDFs at (b) 22°C and 50 bar (red) and 140°C 600 (blue) bar to show overall
effect of combined p & T. The initial shoulder decreases in intensity and TMA ions are
pushed into the second preferred orientation and distance.

of water molecules in this shell increasing slightly to ~6.2 molecules at 140°C 600 bar.
This is similar to the remarkable independence of the 1st solvation structure to the increase

in salt concentration115:125,131

which is due to the energetic costs to the system in order
for a change in the solvation shell to occur!33. Overall, the perturbation to the system of
the increase in pressure and temperature is relatively small. The application of pressure
reduces the inter-molecular, inter-solvent distances, however the thermal energy given to
the system with the increase in temperature increases the disorder in the system and
causes an overall broadening of the RDF's and small increases to the RDF distances. The
hydrogen bonding network of the solvent water molecules remains and resembles that of
bulk solvent at the same conditions with the exception of a small increase in the structure
in the presence of the salt. This is because the TMA ion has a large surface area over which
the ionic charge is distributed therefore there is minimal binding to the water molecules.
It is observed that the interactions between the TMA-Ow and the TMA-CI compensate
in order to preserve the hydrogen bonding network of the solvent at higher p & T as this

is the lowest energy state of the intersolvent D2O.



4-4. Results: Structure 1M TMACl,q) Under Burial Conditions 83

120 120
100} 100}
o} 22°C 50 bar g} 140°C 600 bar
S 60 2 60}
(Nbo C\lho
=40t =40t
20} 20}
0 I 0 e
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
r [A] r [A]

Figure 4.15: Gaussian fits to 72gyx at (a) 22°C 50 bar and (b) 140°C 600 bar. The dots
show the measured data, the lines show the error bars, the red line the total Gaussian fit
and the individual Gaussian peaks in blue.

4.4.7 TMAT — TMAT Correlations

In order to analyse the TMAT-TMA™ correlations, we must look at the nitrogen-nitrogen
pair distribution functions shown in Figure 4.14.

Figure 4.14(a) shows the effect of an increase in pressure from 50 bar to 600 bar on
the N-N pair distribution function. Initially at 22°C and 50 bar (red), the main peak is
at 8.64 A and the initial smaller peak is at 6.84 A with the distance of closest approach
at 4.95 A. This indicates that the Van der Waals radius of the TMA ion as measured
by neutron diffraction at 22°C 50 bar is 4.95 A in agreement with Turner et al''6. The
presence of two peaks show that the TMA ion cannot be assumed to be spherical and
has two orientations in which closest approach can occur. Since the TMA-O,, distance is
4.41 A, solvent separated ions should be at a distance of ~8.82 A and therefore it can be
deduced that the second peak is due to this.

As the pressure is increased, the second peak becomes sharper and more intense in-
dicating that the orientation the TMA™ adopts in the second peak is preferred and the
N-N structure increases. However, when the temperature is increased to 140°C, Fig-
ure 4.14(b), the first peak diminishes greatly and the second distance, at 8.70 A, becomes
more favourable.

Figure 4.15 shows the calculation of the coordination numbers at 22°C 50 bar (4.15(a))
and 140°C 600 bar (4.15(b)). This is achieved by fitting Gaussians to the r2g(r)134. At

22°C 50 bar, the coordination number in the first shell is 0.2 atoms and in the second shell
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Figure 4.16: Spatial density functions (SDFs) for (a) the 15% most likely positions for
solvent D2O molecules around other solvent molecules and (b) the 15% most probable
positions for chloride ions correlated around a solvent molecule. SDF for solvent DO in 1
M TMACI solution showing the most likely positions for molecules in the 1st coordination
shell (0-5 A) at 22°C 50bar (ambient). Oxygen - red, deuterium - white, probability
density of coordinating molecule/atom - green. These are plotted to show that EPSR has
extracted reasonable water-water and water-chloride correlations from the data.

is 1.3 atoms indicating that there is a preference of solvent separated pairs. At 140°C 600
bar, the coordination numbers in the first shell and second shell are 0.1 atoms and 1.5
atoms respectively. Thus corroborating the fact that the preference for solvent separated
pairs at the elevated conditions remains.

Across all RDFs, it is clear that the application of both temperature and pressure
together, act to maintain relatively bulk like solvent structure with the slight increase in

overall structure from bulk to salt solution.

4.4.8 Spatial Density Functions

Knowing the relative distances atoms are from each other (radial distribution functions
extracted from the EPSR simulation above), the 3-dimensional local structure around
various molecules can be probed using spherical harmonic representation. The probability
density from the RDF is plotted as an iso-surface and fractions of this iso-surface can be
chosen to visualise the most likely positions of the probability density. For example if
20% of an iso-surface is plotted, this image describes the 20% most likely positions for any
given 3 dimensional correlation.

As a test, the 3-dimensional water correlations (and therefore its structure) at ambi-
ent pressure and lowest pressure are shown in Figure 4.16. It is clear that in the first

solvation shell of water, the highest probability of finding another water molecule is above
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Figure 4.17: Spatial density functions from 0 — 5 A for TMA™ correlations in 1M in salt
solution at 22°C 50 bar (ambient). Key: Blue-nitrogen, Black-methyl group, Red-Oxygen,
White-deuterium. (a) Probability density of 1st solvation shell of Cl~ co-ordinating
TMA™. (b) Probability density of 1st solvation shell of solvent water molecules co-
ordinating TMA™. (c¢) Probability density of 1st solvation shell of TMA™ co-ordinating
solvent water molecules. (d) Co-ordination of solvent molecules around TMA™ at a frac-
tional iso-surface of 30%.

the hydrogen electron density and the lone-pairs of the oxygen, Figure 4.16(a). For the
chloride-water SDF, the negatively charged chloride ion has a probability density that sits
above the hydrogen electron density. It is calculated as a ring above the hydrogens as
the water molecule can rotate about the z-axis and the probability is averaged over 6.
The first solvation shell of solvent water molecules coordinating a central solvent water
molecule is shown in Figure 4.16(a). The probability density is over the deuterium elec-
tronic density implying a directionality of the hydrogen bond and over the oxygen at the
apex of the molecule. As expected, due to the spherical nature of the chloride ion, the
Cl™ probability density forms a circular ring over the deuterium of the water molecule

seen in Figure 4.16(b). Both these plots show reasonable inferences of water-water and
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Figure 4.18: Spatial density functions showing the 15% most likely positions for TMA™
around a central TMA™ ion in 1M TMACI solution in the region of 0 — 10 A, at (a) 22°C
50 bar and (b) 140°C 600 bar. At ambient, the SDF clearly shows the 2 positions where
the second TMA can be found with respect to a central TMA ion (plotted) as seen in the

g (1)
water-chloride correlations and we can therefore look toward the SDFs calculated for TMA
solvation.

Figure 4.17 shows the 3-dimensional correlations for the TMA ion at 22°C 50 bar
(ambient) in a 5A radius from its centre. A tetrahedral coordination around the TMA ion
of the chloride ions and the water molecules is seen with their probabilities situated in the
faces of the tetrahedron. This corresponds to the first peak in the N-Cl and N-O RDF's
at 4.41 A. If a larger fraction of the probability density for the solvent co-ordinating a
central TMA™ is plotted, shown in Figure 4.17(d), it is clear that the secondary position
for the solvent molecules is on the edges of the tetrahedron, corresponding to a distance
of 8.1 A thus forming a cage like structure around the TMA ion. Figure 4.17(c) shows the
co-ordination of the TMA™ around the water and it is clear that the water molecule orients
itself such that the two hydrogens can form two hydrogen-bonds in bulk like tetrahedral
arrangement. I.e the TMA ion does not disrupt the hydrogen-bond network of the solvent
D-»0O.

Figure 4.18 shows the 15% mostly likely TMAT — TMA™ 3-dimensional correlations
at 22°C 50 bar and 140°C 600 bar. The inner lobes at 22°C 50 bar in Figure 4.18(a),
correspond to the shoulder at 6.84 A and here the spatial density plot indicates that the
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methyl groups point toward the 2nd TMA ion and the outer region lies in the faces of the
central TMA ion. Also visible is the 3-fold symmetry of the tetrahedral TMA ion. At
140°C 600 bar, the inner lobes disappear and the probability of the second TMA is more
evenly distributed over the faces of the central TMA ion. We can discern the orientation
of the 2nd TMA ion with respect to this central ion in both of the regimes by taking
2-dimensional slices of the SDF and fixing the orientation of the 2nd TMA ion.

Figure 4.19 shows the orientation of the TMA ions with respect to each other in the
two peaks of the gy n(r) at 22°C 50 bar. If we look along the z-axis of the first TMA ion,
keep the second fixed with identical Euler angles with respect to the first and make a 2-
dimensional plot of the probability as a function of (r, ®,,) of the second TMA ion, we see
that at closest approach, the TMA ions are corner to face, Figure 4.19(a). Looking through
the face of the first TMA ion, and fixing the second TMA ion at (¢, 0m, xm = 180,0,0)
w.r.t the first ion, one can similarly plot the probability as a function of ®,,, Figure 4.19(b).
The axes in the corner denote which projection the TMA ion is pictured in. In this case,
the second peak at 8.64 A is primarily a result of TMA ions being face to face, however
other orientations of the second TMA ion do contribute to this peak too indicated by the
lack of sharp edges to the probability distribution. This is also the preferred orientation

of the TMA ions at closest approach with increasing p & T.
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Figure 4.19: 2-dimensional plot in polar coordinates from r = 0 — 10 Aof the second TMA
ion, denoted ’2’; for rotation about ®,, (white circle) when looking along (a) z-axis of
first TMA ion denoted ’1’ and (b) when looking through the face of first TMA ion and
second is at (Pm, Om, Xm = 180,0,0) w.r.t the first ion. The first TMA ion is fixed at the
origin of the laboratory coordinates and the second is described using Euler angles with
respect to the first. Dotted arrow denotes which direction we are looking along. Solid
arrow denotes ¢, = 0°
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Sample (ND2)H-HMDA H-HMDA 1,6 D4~-HMDA D20 Molarity
No. () () () () (M)
1 - 11.6232 - 56.0140 1.977
2 - - 2.3975 11.1100 1.987
3 - 1.1784 1.2215 11.2416 1.999
4 0.5055 - - 2.2200 1.915

Table 4.4: Masses and molarity for each of the isotopically substituted samples: fully H,
1,6-D4 and H:Dy4 50:50 of the HMDA molecule.

4.5 Structure of Hexamethylene diamine at Ambient Con-
ditions

This section presents the data for neutron diffraction taken on the NIMROD beamline
at ISIS to probe the structure of 2 molar hexamethylene diamine (HMDA) in D2O at
ambient conditions. Similarly to the quaternary ammonium salt TMA™, HMDA is used
as a clay swelling inhibitor but it has two key differences from the TMA ion: it is not
ionic but has two polar amine head groups and it has a long hydrophobic chain backbone.
In considering the structural implications of the 2 molar HMDA aqueous solution, the

following points will therefore be addressed:

Aims

e How does the HMDA perturb the water-water (inter-solvent) structure of the sol-
vating D2O7?

4.5.1 Methodology

Four isotopically distinct samples of 2 molar HMDA ,, were prepared shown in Ta-
ble 4.4. Due to the lack of availability of a fully deuterated HMDA molecule, the 1,6D4—
hexamethylenediamine isotope Figure 4.20 was used for the deuterated HMDA ,4) mea-
surements. Also synthesized were deuterated amine NDs end groups on hydrogenated
backbones. This was possible by successive washing and drying of the fully hydrogenated
HMDA in D5O. Deuterating the amine end groups would ensure that all hydrogen scat-
tering in the data was from the HMDA backbone only.

Since these runs were only to be performed at ambient conditions, a 1mm thick TiZr
sample can with a beam size of 30 x 30 mm was used. This allowed for more of the sample

to be illuminated in the beam and minimised multiple scattering events compared to data
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Figure 4.20: Deuterated isotope of HMDA: 1,6 D4—hexamethylene diamine. Notation be-
low arrows describe the labels used for the specific atomic species in the EPSR simulation.

Atom Type o (A) ¢ (kcal mol~1) Charge, q (e)
C1 3.7 0.8 —0.07459
H1 0 0 -+0.09083
C2 3.7 0.8 —0.16140
H2 0 0 +0.09083
N1 3.2 0.7 —0.35296
HN 0 0 +0.14256
Oyater 3.1 0.65 —0.8476
Huyater 0 0 +0.4238

Table 4.5: Potentials used in EPSR analysis of form:

Vij(rij) = q;iqj] + 4deqp {(Uﬁf) _ (‘:%/3) ]

taken for the TMA ,,). Data was collected for 3 hours on each sample.
Data reduction was performed in the same manner as described in Section 4.3 and

EPSR was used to fit and analyse the data.

Simulation Details

EPSR simulations were carried out on each of the four diffraction data sets. The simulation
box had sides of length ~37.8A containing 1400 DO molecules and 50 HMDA molecules,
therefore a ratio of HMDA:D5O of 1:28. MOPAC'?6 was run on the HMDA molecule
and charges are distributed according to the solution of the AM1 Hamiltonian given in
Table 4.5. The labelling of the atoms on the molecule is shown in Figure 4.20. SPC/E

1127 are used for the D and O in D3O molecules

parameters taken from Berendsen et a
and the o and e for HMDA are given from MOPAC. The density was calculated by
incorporating the HMDA molecule by volume in its solid state.

A representation of the system is shown in Figure 4.21.
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Figure 4.21: Snapshot of ensemble box for 2 molar HMDA solution in D2O taken when
the EPSR has completed fitting the diffraction data for the ambient measurement. Key:
Nitrogen-blue, Carbon-Grey, Oxygen-red. All hydrogen atoms have not been displayed
for clarity.

4.5.2 Total Structure Factor

The fits of the EPSR ensemble (D;(Q), green lines) to the total structure factors (F(Q),
black circles) derived from Gudrun for the four samples at ambient conditions are shown
in Figure 4.22. The data for the full Q-range from 0.02 A" t0 30 A7 has been plotted.

The EPSR fits closely represent the data but at low-@Q, there are observable discrep-
ancies between the fit and the data. Again, this is due to an imperfect removal of inelastic

124,128 and since the samples are highly concentrated and hydrogen is present in

scattering
all data sets, the removal of the inelastic is very difficult to perform. Otherwise, all other

features are reproduced well enough to comment on.

4.5.3 Inter-solvent Structure: HMDA ,, vs Pure D,0

The inter-solvent RDFs for the 2 molar aqueous HMDA in DsO solution are shown in
Figure 4.23. Alongside the HMDA are the RDFs for bulk D5O.
It is clear from this figure that the inter-solvent correlations are distorted in the HMDA-

D50 solution when compared with correlations for bulk DO in the absence of the diamine.
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Figure 4.22: The total normalised structure factor F(Q) (black) with relatively good EPSR
fits D;(Q) (green) at ambient conditions for each of the four solutions, (1) C¢Hi2(NHz)2
in DQO, (2) CGH8D4(NH2)2 in DQO, (3) 50:50 CGH12/06H8D4(NH2)2 in DQO, (4)
CsH12(ND3)2 in D20O. The results have been shifted vertically for clarity.
The first notable difference between HMDA (44 to bulk is the dramatic increase in intensity
and narrowing of the first peak for both the first and second peak in all three RDFs.
This indicates a very highly structured inter-solvent region in the HMDA solution and a
significant perturbation to the water structure by the HMDA molecules. This extends out
to the third solvation shell since we measure a noticeable third peak in all three RDfs.

If we calculate the coordination numbers in the 1% solvation shell for each RDF,
Table 4.6, the number of molecules in this shell is slightly smaller in the HMDA solution
than it is in bulk. An increased intersolvent structure yet smaller coordination numbers

indicates an ’ice-like’ structure which has been observed for other ammoniated compounds

RDF bulk D>O 2M HMDA
T'min [A] ng('r) Tmin [A] ng(r)
goo(r) 3.83 4.81 3.23 3.83
gop(r) 2.34 1.84 2.31 1.76
gDD(I‘) 2.86 4.87 2.82 4.30

Table 4.6: Coordination numbers for the water-related RDF's for the 2 molar HMDA
solution and Pure D>O at ambient conditions.
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Figure 4.23: All inter-solvent RDFs in 2 molar HMDA ;) (red) compared to bulk D2O
(blue). (a) goo(r), (b) gon(r), (c) gpp(r)

at increasing concentration ''®. There is also a small shift of both the first and second peaks
to smaller r of the gop(r) and goo(r) of ~ 1.5 % and can be considered within the error

of the analysis. However the shift to smaller r is more noticeable in the gpp(r) of ~ 4 %.

4.6 Summary

This chapter presents the results from the in situ neutron scattering experiment investi-
gating the structure of 1-molar TMACI in DO under oil well conditions and the effect
of HMDA on the intersolvent structure of a 2 molar solution at ambient conditions. This
is the first time hydrophobic salts have been looked at under both elevated pressure and
temperature conditions.

We have found that with the addition of the TMA salt, there is an increased inter-

solvent structure ascribed to the reorientation of the solvent D3O around the TMA ions.
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This behaviour persists with increasing pressure and temperature however follows the
same trends as bulk D>,O at the same conditions. The water is observed to orient itself
in a cage like structure around the TMA ion such that the the water molecule can still
maintain bulk hydrogen bond network. The TMA™T and Cl~ exist as solvent separated
pairs throughout increasing p & T conditions and no hydrophobic TMA™ clustering is
observed. In terms of its use in the oilfield, the lack of hydrophobic ordering is good since
this would hinder cation exchange and the swelling inhibitive effect. Looking at TMA-
TMA correlations, the ions have two orientations at closest approach, corner-to-face and
face to face however with increasing p & T, a preference for the face to face position is
observed indicating that the elevated conditions are pushing the solute molecules apart.
Similarly, we observe a very highly ordered intersolvent structure in the 2 molar HMDA
solution. The structure is almost ice-like since the water RDF's occur at slightly small r ,
are more intense and coordination numbers in the HMDA solution are less than for bulk.
The hydrophobicity aspects of the HMDA-water have yet to be probed and simulations de-
termining the spherical density plots are ongoing. This will shed light on any hydrophobic
ordering of water molecules around the backbone and HMDA-HMDA correlations.



Chapter 5

Interlayer and Pore Structure in

Clays - Neutron Study

This chapter presents the results of three neutron scattering experiments:

e The effect of pressure and temperature on TMA exchanged vermiculite - investigating

the changes to the interlayer structure with the addition of water.
e The effect of pressure and temperature and 2-molar HMDA ) flooding of Li-vermiculite.

e A proof of concept SE-SANS investigation into time resolved changes in pore struc-

ture of compacted bentonite with water and brine invasion.

5.1 TMA-Intercalated Vermiculite Under Burial Conditions

The results presented here are the first investigation into the effect of combined pressure
and temperature on organic-intercalated vermiculite. Neutron diffraction has been per-
formed on TMA-intercalated Eucatex vermiculite from temperatures of 22°C to 200°C
combined with pressures of 50 to 800 bar with D2O flooding. The data has revealed that
without the presence of water in the system, the d-spacing of the clay is 13.43 A. With
the addition of D50, this increases to 14.03 A. This value for the d-spacing remains with

the application of both pressure and temperature.

95
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The use of amines in wellbore productions and drilling fluids have been exploited for
some time®?. The TMA ion, as described in Section 2.6, has a similar hydration volume to
the potassium ion, K™ and has therefore been used in a similar vein to potassium to coun-
teract clay swelling downhole. From the work reported in Chapter 4, we found that there
is little perturbation to the inter-solvent structure due to the dissolution of TMACI in
D50 and that there are no prevailing hydrophobic interactions at the higher pressures and
temperature. Therefore the following experiment was designed to investigate the extent
to which the TMA ion binds the clay sheets against an increase of pressure, temperature
and D20 flooding by monitoring the change of the (001) peak of clay. Previous work on

such clay systems have focussed on ambient pressure and temperature conditions in hec-

135 136

torite *°° and vermiculite °° and non-organic interlayer counter-ions at elevated conditions

for vermiculites2®:36.

5.1.1 Sample Preparation and Experimental Methods

The NIMROD beamline at ISIS was utilised for the investigation into interlayer structure
of TMA-intercalated vermiculite under burial conditions.
The vermiculite sample used for this investigation were from Eucatex, Brazil which

3 - cm?, thus

naturally occurs as macroscopic single crystals, typically with volume mm
making them useful for isolating interlayer behaviour of clay minerals. The vermiculite
was pre-prepared with sodium ions in the interlayer region and therefore ion-exchange was
carried out by soaking the crystals in 1M hydrogenated-TMACI in D>O and leaving for
24 hours. It was washed with DO and dried at 80°C before each exchange which was
performed 6 times. After the final exchange, the clay was washed with DO to remove

the excess salt and stored fully expanded in D2O. The formula of the TMA-intercalated

Eucatex was:

Sig.30M g5.44 Al 65 Feq.6020(OH)4 0 1.3(CH3)yN ™ (5.1)

where the (CHs)4N*t is the TMA ion. The TMA-exchanged Eucatex was placed
in the vacuum oven for 12 hours at 80°C so that it could be loaded dry into the TiZr
null-scattering sample can that was used previously for the TMA ) in Chapter 4. The
platelets of the clay were loaded such that the c-axis of the platelets were in alignment.

This allowed for the sample can to be placed in the beam with the c-axis perpendicular
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Depth Temperature Pressure
(km) (K) (bar)
0 22 50
- 22 600
- 40 600
- 60 600
2 80 600
4 140 600
~ 6 200 800

Table 5.1: Pressure and temperature combinations for each measurement.

to the @-vector of the beam. The contrast in this experiment is between the deuterated
clay with all -OH groups exchanged for -OD and the TMA-fully hydrogenated.

Data was first collected on the dry TMA-Fucatex. The system was then flooded with
D50 at 22°C and 50 bar pressure and data collected for 1 hour. This was done at each
p & T combination given in Table 5.1. Although it can be argued that 1 hour may not
be sufficient due to low neutron flux and therefore higher background and low statistics,
since the Bragg peak was quite intense due to presence of hydrogen in the TMA, counting
for this long was sufficient.

Data treatment is the same for the liquid diffraction data collected on TMA,,) de-
scribed in Section 4.3 however due to the minimal amount of hydrogen in the system,
no incoherent scattering corrections were performed. Since the experiment is performed
with the Q—Vector perpendicular to the c-axis of the clay, the contributions to the final
DCS is the interlayer species, small-angle scattering from clay particle size, Bragg peak
corresponding to the d-spacing of the clay and D5O for the data sets after the DyO was
added.

5.1.2 Results and Discussion

Figure 5.1 shows the DCS against Q-vector (log z-axis) of the baked (dry) TMA-intercalated
Eucatex at 22°C and 50 bar pressure. The prominent feature in the DCS is (001) peak

of the baked TMA-intercalated Eucatex. This occurs at 13.43 A which indicates that

36

the TMAT are in plane within the interlayer region® This is slightly smaller than

137 and Breu et al*3® however this difference is

the measurements made by Vahedi-Faridi
likely since clay in this investigation is deuterated and there are different physico-chemical

properties between the two isotopes.
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Figure 5.1: Differential cross section as a function of @ for dry TMA-exchanged Eucatex
vermiculite at 22°C and 50 bar. (001) peak of clay is easily identified.
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Figure 5.2: Differential cross section as a function of @ for TMA-exchanged vermiculite
with D20 loading and increasing hydrostatic pressure and temperature. Note no change

in (001)

peak after initial addition of D3O even with increasing p & T.
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Figure 5.2 shows the data for the TMA-Eucatex after flooding with DO at increasing
pressures and temperatures given in Table 4.1. There is an initial increase in (001) peak
distance of the clay from 13.43 A to 14.03 A indicating that the clay is absorbing water
into the interlayer region indicating a bi-layer water hydrate?3136 The TMA ions move
from an in plane configuration to being offset from the centre to accommodate for the

water 43,136

which is drawn into the interlayer as the TMA ion is hygroscopic. There is
now also a peak observed at @) = 1.889A " for the presence of D20 in the system. This
is not the interlayer DoO but the supernatant fluid. As the pressure and temperature is
increased, the (001) peak does not move however, the DoO peak is clearly seen to shift
to higher @ and broaden due to the increased thermal energy to the system discussed in
Chapter 4. MD simulations of the hydration energies of TMA-smectites with increasing
water content“® have been calculated as similar to bulk SPC water meaning that the clay
sheets should continue expanding beyond the observed amount. The explanation for the
lack of expansion of the TMA-vermiculite with increasing p & T has therefore attributed
to unfavourable hydrophobic interactions with the water molecules*3. However this seems
unlikely since the TMA perturbation to the water structure is minimal (Section4.4.6) and
also TMA ion is known to by hygroscopic. We do know that for vermiculites however,
the TMA resides closer to the clay sheet than it does for smectites3® due to its higher
layer charge and therefore could contribute to an increase in the hydration energies of the
system. Therefore we can conclude that TMA does perform as a clay swelling inhibitor,
however this is for pre-exchanged and relatively pure vermiculite clay. In a real situation,
the TMA would be pumped downhole and the exchange of the TMA ions with the existing

charge-balancing ions needs to be taken into consideration.

5.2 HMDA,, Flooding of Li—Vermiculite under Burial Con-
ditions

This section presents the results of the first investigation organic diamine in aqueous so-
lution flooding of Li—vermiculite at elevated pressures and temperatures. Neutron diffrac-
tion has been performed on lithium-vermiculite from Flexitallic from temperatures of 22°C
to 140°C combined with pressures of 1 to 800 bar with 2 molar hexamethylenediamine
(HMDA (,4) flooding. The subsequent data has revealed that without the presence of fluid
in the system, the d-spacing of the clay is 9.87 A. With the addition of 2 molar HMDA
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in D,0, this increases to 10.07 A signifying no intercalation of the HMDA. This value for
the d-spacing remains with the application of both pressure and temperature.

In real systems, inhibitor compounds are added to the drilling fluid and subjected to
subterranean pressures and temperatures. Therefore in contrast to the previous exper-
iment, the as received clay was flooded with a 2 molar solution of the amine inhibitor
molecule HMDA. It also has a long hydrophobic backbone which which we believe helps
to dispel water in the interlayer region. Therefore, the following experiment was designed
to investigate to what extent the HMDA exchanges and to observe the effects of pressure

and temperature to the (001) peak of clay.

5.2.1 Sample Preparation and Experimental Methods

The NIMROD beamline at ISIS was utilised for the investigation into interlayer structure
of Li-vermiculite with HMDA (,4) flooding under burial conditions.

The vermiculite sample used for this investigation was from Flexitallic, which is made
via cation exchange in excess LiCl solution. The clay is dried and mixed with talc (a non
expanding clay) left to settle before being consolidated into 0.3 mm thick sheets which
can be cut to any preferred size. Although the platelets are left to settle before rolling,
the particles exhibit alignment akin to that of a powder sample. Figure 5.3(a) is an SEM
image of the sample showing random orientation of the platelets i.e. effectively a powder
sample. Figure 5.3(b) is a macroscopic picture of the sample in its consolidated form that
was put into the beam.

The consolidated vermiculite was cut into 10 x 28 mm pieces in order to fit into the
high pressure sample can used in the previous two experiments. The cut clay wafers were
deuterated by leaving in a sealed chamber with a pot of D2O. The DO was changed
daily for 5 days. A full elemental analysis of the vermiculite used in this experiment

9

was attempted but due to the ”"naturalness” of the clay i.e. not purified, it was not
possible to give a perfect atomic composition of the clay. The closest analogue, in terms
of the structural elements is the Brazilian Eucatex. We therefore use this as the elemental

composition but with lithium as the counterion:

Sig.30M g5.44 Al 65 Feq6020(OH )4  1.3Li+ @ 4H30 (5.2)

X-ray diffraction (XRD) was performed at ambient conditions on the consolidated
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Figure 5.3: (a) SEM of the consolidated vermiculite used in the experiment; Image ob-
tained by Yuji Suzuki. Note the lack of alignment of clay quasi-crystals and powder nature
of the sample. (b) picture of the consolidated clay put into the beam.

vermiculite samples along with the pure talc XRD shown in Figure 5.4.

The (001) and (003) peaks from the talc and the expandable part of the remaining
material i.e the vermiculite d-spacing are denoted on the graph. Under ambient conditions
and in the presence of air, we measure the d-spacing of the vermiculite to be ~ 11 A. The
talc peaks are also seen to shift minutely to lower @ in the consolidated mixture. The
vermiculite-talc wafers were placed in the vacuum oven for 12 hours at 80°C so that it
could be loaded dry into the TiZr null-scattering sample can. The sample can was filled so
that the clay had room to expand if needed, which allowed for 10 wafers to fit comfortably
inside the can.

The test fluid used was a ~ 2 molar HMDA in D50, therefore a ratio of 1:28 HMDA:D>O.
The HMDA at 98% purity, was obtained from Sigma Aldrich. Three distinct isotopes were
used to flood the clay according to Table 4.4: (1) fully hydrogenated HMDA, CgH12(NHj3)o
in D20, (2) D4-HMDA - CgHgD4(NHz)2 in D20, (3) 50:50 mix CgH;2/CgHsD4(NHsg)s in
D5O with the idea in mind that the location of the HMDA would be able to be determined
as it intercalated into the clay. However due to the large volume of sample required for the
experiment, the inelastic scattering from the fully hydrogenated and 50:50 mix samples
was very large and swamped the low-Q) data which we were interested in and therefore are

not considered in the rest of the analysis. The focus is therefore on the deuterated isotope
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Figure 5.4: X-ray diffraction pattern of powder sample at ambient pressures and temper-
atures of _ talc and the __ Li-vermiculite, talc mixture (Li-verm) from Flexitallic.

Depth Temperature Pressure
(km) (K) (bar)
0 22 1
2 80 300
4 140 600

Table 5.2: Pressure and temperature combinations for each measurement for HMDA ()
of Li-vermiculite.

of the HMDA.

Data was first collected on the dry sample. The system was then flooded with with 2
molar D4-HMDA ;) at 140°C and 600 bar pressure and data collected for 3 hours. The
pressure and temperature was successively decreased to each p & T combination given in
Table 5.2 and data collected for 3 hours at each point.

Data treatment is the same for the liquid diffraction data collected on TMA ) de-
scribed in Section 4.3. For the clay-fluid data at ambient, since we have neutron data
for the same fluid composition also at ambient (from Section 4.5), a direct subtraction of
the HMDA solution from the clay-fluid system can be performed such that the only clay
data remains. For the subsequent clay-fluid data at higher pressures and temperatures, a

comparison between the differenctial cross section (DCS) will need to be made.
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Figure 5.5: Neutron differential cross-section for the dry deuterated consolidated Li-
vermiculite before flooding with inhibitor solution alongside the normalised count XRD
intensity of the hydrogenated analogue. Arrows denote peaks in the neutron data. __
neutron, — X-ray.

5.2.2 Results and Discussion

Dry Li-vermiculite

Figure 5.5 shows the neutron differential cross section for the dry deuterated consolidated
Li-vermiculite before flooding with inhibitor solution alongside the normalised count XRD
intensity of the hydrogenated analogue. Since the sample at the microscopic scale, is a
powder, the c-axis cannot be aligned with the beam and therefore we observe scattering
from the clay sheets as well as from the (001).

The intensities of the peaks from neutron to X-ray vary according to the scattering
cross section of the element and the electronic density respectively for each technique.
Therefore, we do not expect the same intensities. However since we are looking for the
Bragg scattering from the (001) peak of the clay, the Bragg peak positions should match
from neutron to X-ray diffraction pattern. Using the talc (00]) peaks as a marker, we do
see these peaks line up however there is a small shift of 0.015 A~ to higher Q of the XRD
pattern. Since this shift is seen across all the peaks, it is accepted to be due to the sample

being very slightly misaligned in the beam when taking the XRD data. The value of the
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Figure 5.6: Neutron differential cross-section for the dry deuterated consolidated Li-
vermiculite before and after flooding with deuterated inhibitor solution. _ dry Li-

vermiculite, __ D4-HMDA flooded vermiculite with the D4-HMDA fluid removed from
the data. Note broad clay (001) at A.

d-spacing measured by neutron diffraction is ~ 11 A.

2M D4-HMDA (,,) Flooding of Li-Vermiculite

Figure 5.6 shows the neutron DCS from the dry Li-vermiculite and the subsequent DCS
after flooding with 2M D4-HMDA in D2O. The data for the clay-fluid system has the
supernatant D4-HMDA solution subtracted as a background leaving just the contribution
from the clay and any interlayer fluid. The talc peaks remain unshifted, however we can
see a broad peak at "A’ which combines the clay (001) and the talc (001). The lack of
scattering from the interlayer could be due to there being little intercalation of the HMDA
in this region or the inelastic scattering overwhelming the small clay (001) and (003).

Figure 5.7 shows the neutron DCS for the clay-HMDA fluid system with increasing
pressure and temperature. It combines the scattering from the supernatant D4-HMDA )
and the Li-vermiculite. Looking at 'B’ we observe a decrease in the D2O peak, possibly due
to the broadening of distances between molecules as temperature is increased. Looking at
"A’, the (001) of the clay is not discernable from the data.

We therefore performed XRD on the sample, post experiment with the data for this
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Figure 5.7: Neutron differential cross-section of the clay-fluid system at — 22°C 1 bar,
— 80°C 300 bar and 140°C 600 bar.
shown in Figure 5.8.

The (001) peak for the vermiculite is very much suppressed. The analysis of the XRD
is therefore focussed on the (003) peak variation.

Figure 5.9(a) shows the change to the talc (003) peak before and after the experiment.
From pure talc to consolidated in the vermiculite/talc mixture, the peak shifts to higher
Q by 0.3% and again by another 0.3% from as received to post experiment. This is
a systematic shift across all the talc peaks and therefore attributed to misalignment of
the sample in the beam and can be considered the error on the values measured for the
d-spacing of the clay.

Figure 5.9(b) shows the (003) reflection for the pre and post experiment Li-vermiculite/talc
mixture. A broad peak with maximum at @ = 1.91A7" is measured for the as received
clay. The XRD data set for the vermiculite post neutron experiment shows a more in-
tense and sharper (003) with a shift to lower @ ~ 1.87A7" indicating an expansion of the
d-spacing of the clay form 9.87 A to 10.08 A. This can be attributed to the inclusion of
a layer of water in the interlayer since cation exchange of the lithium for HMDA should
incur a larger increase in the (003). We can also infer that there is no intercalation of

HMDA into the clay since MD simulations by Suter et al*? which show that there the
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Figure 5.8: X-ray diffraction pattern of powder sample at ambient pressures and tem-
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HMDA flooding and application of pressure and temperature and __ pure talc, for (a)
talc and (b) (003) the vermiculite (003) peak .
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d-spacing of dehydrated HMDA intercalated smectite is 13.0 A and with addition of water,
should increase to 15.2 A.

However, when the sample was removed from the sample can, post experiment there
was no exfoliation of the clay sheets and it was entirely intact and firm. Previously, in
the presence of water, we had observed full exfoliation of the sheets within minutes. This
indicates that there is no excessive intercalation of water into the interlayer region. We
therefore postulate that the HMDA is on the surfaces of the clay. Any further intercalation
of water into the interlayer would mean unfavourable interactions of the water molecules
with the hydrophobic backbone*? thereby hindering access of water to the interlayer region.
This is also supported by the sharpening of the (003) peak. The lack of pore spaces for
the HMDA to travel through due to the consolidation of the vermiculite wafers, may also
contribute to the lack of exchange observed.

We therefore conclude that rather than stopping clay swelling via exchange of HMDA
with interlayer cations, flooding of 2M HMDA ,,) acts to hinder the swelling process by
sealing the interlayer regions from water and that this is robust against the application of

pressure and temperature.

5.3 Porosity of Compacted Bentonite — A SE-SANS Inves-
tigation

This section presents the results of the first spin-echo small angle neutron scattering exper-
iment designed to investigate the change to the porosity of compacted bentonite samples
with the addition of water and brine at seawater concentration (~ 2.02 molar NaCl(,)).
The overall outcome of the experiment was the observation that the larger pores of the
compacted bentonite filled before the smaller ones.

Up to this point, we have investigated the behaviour of the interlayer in the presence of
clay swelling inhibitors. We have observed that there is no bulk expansion of the interlayer
in the presence of the inhibitors TMA and HMDA. However the oilfield standard test of
inhibitor success is not to measure the interlayer expansion but the uniaxial expansion of
compacted clay samples in the presence of varying swelling inhibitor solutions. As will
be described in Chapter 7, we observe uniaxial expansion of compacted clay samples in
the presence of clay swelling inhibitors. However, when the d-spacing of these samples

was monitored with fluid invasion under pressure and temperature, Sec 5.1 & 5.2, no



5.8. Porosity of Compacted Bentonite — A SE-SANS Investigation 108

_—Polariser

Inclined Field

Regions l
Analyser l
Detector

Figure 5.10: Sketch of the OffSpec® instrument detailing the important features of the
beam line.

expansion of the d-spacing was observed. The expansion in the compacted samples was
thus attributed to the capillary forces present due to the introduction of air into macro
and meso-pores within the sample during compaction. Despite these points, the method
of measuring the uniaxial swelling of compacted, naturally occurring clay is still used
as an oil-industry standard for testing the swelling response of the clay. It is clear that
the compaction method alone cannot provide the whole story of the swelling clays. We
therefore proposed a SE-SANS study to obtain time resolved observations of the variation
to the pore distribution of compacted clay samples within the first hour of submersion
in various test fluids, to determine the route of the fluid into these oil-field standard
materials. Since this investigation was the first time compacted clays had been studied
using the SE-SANS method, it must be pointed out that this is very much a proof of
concept study.
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5.3.1 Methodology

OffSpec Instrument

The OffSpec!3® instrument at ISIS was used for this spin-echo investigation. It utilises
the neutron spin at low incident angles to allow for a continuous length scale from 0.01
— 30 wm to be probed, as well as being able to exploit the difference in total neutron
scattering length of hydrogen and deuterium in the experiment. It also allows for a higher
flux beam since the neutrons do not require a specific . Alongside these advantages, the
measured parameter is the polarisation of the scattered beam which is directly related
to the real-space autocorrelation function (G) as opposed to (5), the reciprocal space
correlation function. I.e. the data received is output as a function of the real-space
distance of the scattered objects. A sketch of the instrument is shown in Figure 5.10 with

the key features labelled.

Sample Preparation

The investigation here was performed on compacted bentonite. The bentonite used is the

SWy-1 from CMS with general formula:
(Cap.12N ag.32K0.05) [Al3.01F€((ﬁlI) Mng.01 M go.54T"10.02][S17.98Alo.02)O20(OH) 4 (5.3)

0.75 g of bentonite clay was used for making the compacted disks in a die and hydraulic
press with the application of 20,00psi (~ 10 Tonnes) pressure. Since the clay scattered
very strongly, the amount of clay in the beam had to be kept to a minimum and 0.75 g
was the lower limit on the amount of clay that would still hold together when taken out
of the die. To minimise scattering from clay due to large incoherent scattering length of
hydrogen, samples were deuterated by placing the compacted clay disks in a sealed 100%
D20 humidity atmosphere with the D2O source changed daily for 5 days. Prior to loading
in the beam, the clay disks were baked in a vacuum oven at 80°C for 6 hours and the mass
and thickness recorded.

The final experimental procedure was as follows:

The clay disks were placed in sealed Hellma cans and aligned such that the flat face
of the disk was normal to the incident beam direction. A scan of the baked deuterated
clay was taken. 0.5 g of D2O was added to the bottom of the Hellma sample can and

left to equilibrate overnight, Figure 5.11(a). 5 minute long scans were taken during this
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Figure 5.11: Sample environment including the (a)Hellma can containing sample equi-
librated with D20O. (b) Sample fully dispersed in brine at the end of the experiment.
Contrast in (a) is between the air in the pores and the deuterated clay. Contrast in (b) is
between the air in the pores and the deuterated solution as the liquid fills the pores and
finally system becomes a dispersion.

time so that the equilibration of the sample and fluid could be monitored. The sample
was then fully immersed in brine and again, 5 minute long scans were taken for 2 hours

to capture the initial hydration of the material. The final state of the system is shown in

Figure 5.11(b).

Data Treatment

The measured polarisation of the sample Pyyppie is a function of the spin-echo length r
and therefore becomes P(r). A measurement of the empty beam Py is taken and then the
normalised polarisation (Psgmpie/Pemptybeam) 15 related to a form of the one-dimensional

real-space autocorrelation function (G) through:

P(r) — cucer)-1)
P =e (5.4)

o and t are the attenuation coefficient and thickness of the sample respectively. We

can therefore plot %g) against r and look at the variation in r with time.
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Figure 5.12: Spin-echo micrograph showing depolarisation according to 0.5 g D2O absorb-
tion into compacted bentonite disk. Each set of data points is taken at a time after DoO
loading and the arrow denotes the direction of time. Vertical lines denote error bars.

dry deuterium exchanged compacted bentonite, __ 10 mins, 30 mins, — 60 mins,
4 hrs.

5.3.2 Results and Discussion

Although the range of the instrument allows investigations to probe length scales from 10
nm to 30 wm, since the sample scattered very strongly in the beam, we were not able to
obtain data below ~ 150 nm or above ~ 1.5 pum.

Figure 5.12 is a spin-echo micrograph showing the depolarisation of the beam as a
function of spin-echo length (size of scattering object) as the sample is equilibrating to the
0.5 g D3O at the bottom of the sample can. Each set of data points is taken at some time

after the addition of the D3O denoted in the caption. The depolarisation of the incoming

B _

beam is a function of the normalised beam 7

P. The arrows on the plot show the
direction of time after adding the drop.

For the dry clay run, there are no discontinuities in the data implying a continuous
distribution of scattering objects which are not of any particular shape, i.e. spherical,
rod etc. When a drop of D3O is added to the base of the sample cell, the clay absorbs

the water into the pore spaces. There is now a higher contrast in these pore spaces since

they are filled with D50 instead of air and the beam depolarises in these regions. This is
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Figure 5.13: Spin-echo micrograph showing depolarisation for DoO equilibrated compacted
bentonite disk, fully immersed in brine. Blue arrows represent direction of time as clay
equilibrates with the initial 0.5 g DoO addition. Black arrows represent direction of time

after adding brine. Vertical lines denote error bars. _ dry deuterium exchanged com-
pacted bentonite, __ 4 hrs after DoO, __ 8 hrs after DoO, __ 5 mins after brine immersion,
10 mins after brine, __ 1 hr after brine

observed in Figure 5.12 to occur for spin-echo lengths of >300 nm, i.e. the larger pores are
filling. This behaviour is continuous across the resolution window up to 1500 pum, however
at very low r <200 nm, we see that scattering objects of this size are relatively unaffected
in the 1st hour of equilibrating with the DoO. We also observe that as we go from a fairly
uniform sample (dry) to having equilibrated in D2O, the error on the data also increases
as the pores become less well defined.

After full equilibration with the initial D2O, the sample is immersed in brine of seawater
concentration (2.02 molar NaCl,,)) and again, measurements are taken every 5 mins
thereafter. Figure 5.13 shows the data for the initial equilibration with the D,O at 4
hours and 8 hours after having added the DO and also the full response of the clay to
the brine solution. The direction of time after having added the D20 is shown with blue
arrows. The direction of time after having added the brine is shown with black arrows.
Brine is then flooded into the system and the beam depolarisation very quickly decreases
at large r (shown by black arrows). This is believed to be due to the pore matrix filling

with brine and therefore the clay platelets are no longer held together with a definite pore
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distribution. There is also a loss of contrast as the air from the clay leaves the system and

the clay forms a suspension in the brine.

5.4 Summary

This chapter presents the results for the investigations into the crystalline swelling of
TMA-vermiculite and Li-vermiculite in the presence of DoO and 2 molar HMDA solution
at increasing pressures and temperatures. For both the clays we saw an initial expansion
of the d-spacing with introduction of water into the system to a probable 2-water layers
however no further swelling was observed. For the TMA-vermiculite, this is attributed to
the enthalpy of hydration of the ion. For the Li-vermiculite, we do not observe exchange
of lithium with HMDA since we do not observe a large enough d-spacing increase but
argue that the HMDA sits on the surfaces of the clay sheets. The hydrophobic backbone
renders interaction with the water unfavourable and therefore acts as a barrier for the
water entering the clay.

Also presented in this chapter are the results of a ”proof of concept” spin-echo small
angle neutron scattering experiment designed to investigate the change to the porosity of
compacted bentonite samples with the addition of water and brine at seawater concentra-
tion (~ 2.02 molar NaCl,g)). The overall outcome of the experiment was the observation
that during the initial stages of hydration, the larger pores, ~1 um, of the compacted

bentonite filled before the smaller pores, <300 nm.



Chapter 6

Diffusive Motion of Water in

Terephthalate-LDH using QENS

This study focuses on diffusive motion of water molecules in terephthalate (TA) interca-
lated into % = 5.7 layered double hydroxides (LDHs). LDHs have a layered structure
similar to that of 1 : 1 clays. The difference here with other clay minerals is that the overall
interlayer charge is positive and thus negative charge-balancing compounds exist within
the interlayer region. The TA ion is most often used as a pillar compound, facilitating the
insertion of bulkier anions however it has a comparative size to many mid-length chain
amines which are used downhole as swelling inhibitors making it a useful system to study.

Two LDH-TA with varying amounts of water in the interlayer were investigated and
the temperature range analysed was between 5 to 320 K. The first sample had a ratio of
1:16.24 TA:H50O and the second sample had 1:7.88 TA:H5O. It was not possible to resolve
the motion of the TA which we believe to be because it was outside of the resolution of the
instrument however the motion of the water was observed. Two different jump diffusion
models were used to describe the translational motion of the water: the Singwi-Sjélander
(exponential jump length distribution), the Hall-Ross(Gaussian jump length distribution)
and Fickian diffusion has been calculated for each sample exhibiting translational diffusion.
The motion of the water was found to be heavily dependent on ratio of TA:HoO in the
interlayer since the amount of water governed the interlayer expansion and therefore the

mobility of the water molecules. Consequently, translational motion was only observed

114
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for the 1:16.24 TA:H50. From 0 to 260 K no motion was observed; at 260 K only rotation
of the water molecules and full translation according to the Singwi-Sjolander model with
Dirans and 7 of 3.4x1072 m?s~! and 6.60 ps at 280 K and 6.0x107° m?s~! and 3.15 ps
respectively at 320 K.

Previous diffusion studies of LDH-TA compounds have focussed on the motion of the
water within the % = 2 compound?, therefore a TA:H,O ratio of 1:4. This was in
the temperature range of 323 to 423 K (0 to 150°) using neutron spectroscopy. Deys at

these temperature limits was calculated to be 2.47 and 4.60 x10~7 m?s~!

respectively,
increasing with temperature. This is two orders of magnitude higher than that observed

for bulk water'%: 2.5 x107° m?s~! and therefore unsure of the reliability of the values.

6.1 Spectroscopy on the IRIS Instrument

Spectroscopy measurements were made using the high-resolution spectrometer, IRIS, the
important features of which are shown in Figure 6.1. The dynamic scattering function
S(Q,w) was measured using the 002 reflection of pyrolytic graphite within an inverted
geometry (back-scattering) regime. With this analyser and an incident neutron wavelength
of 6.6 A, IRIS has a FWHM energy resolution of 17.5 peV, with a total energy window
of + 0.5 meV'?. The time resolution of IRIS is 107! — 107!2 ps and it also has long
diffraction capabilities allowing for simultaneous measurement of d-spacing of samples.
IRIS also allows for insertion devices, in this case a closed cycle cryo-cooler (CCR) to be

used for cooling of samples.

Time-of-Flight

IRIS uses back-scattering, time-of-flight (TOF) method to measure the change in energy of
the scattered neutrons. The TOF design uses short flight paths to determine the velocity,
and therefore the energy of the thermal neutrons. TOF refers to the time taken for the
neutron to travel from entering the flight path of the instrument to arriving at one of
its detectors and can be achieved by fixing either the incident wave-vector, ko (direct) or
scattered wave-vector, k; (indirect or back-scatter).

The back-scatter IRIS spectrometer, measures Eo and fixes El. This regime allows

us

for a single crystal analyser with Bragg angles close to 7, in this case pyrolytic graphite,

to be used to monochromate the incident beam and thus reflecting specific k1 onto the
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Figure 6.1: Schematic representation of the IRIS back-scattering TOF spectrometer at
RALS.

detectors. The back-scattering geometry is preferable since high resolution (~ 1peV) is
attainable and the neutron energy-loss region of .S (Q,w) for cold samples is accessible in

this configuration.

6.2 IRIS Sample Environment and Experimental Methods

Similarly to the vermiculites exchanged with the TMA ion, here, terephthalate ions have
been exchanged with the pre-existing carbonate anions of the LDHs which have been
prepared with varying proportions of Mg and Al substitutions. They were synthesized
via the technique of co-precipitation by Greenwell™! et al. The product of the synthesis
placed the Mg/Al ratio = 5.7 for the materials used in this investigation and the interlayer
water content at laboratory humidity at 8.4%. This was verified by TGA measurements,
Figure 6.2, performed at UCL on the same sample after drying in the oven at 80°C for 24
hrs and then leaving to re-hydrate in air for 24 hrs at room temperature and humidity.

The measured mass loss was ~ 9.4% and therefore in good agreement with the quoted
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Figure 6.2: TGA curve and its 2" order derivative of LDH-TA with 4¢ = 5.7. The
initial mass loss is associated with the loss of interlayer water. Applied heating rate was
10°C/min.
amount.

At laboratory humidity, and therefore a water content of 8.4% by mass, the sample

has atomic formula:
[Mg5_7Al<OH)13‘3]1+ [(06H4(002)2)0.5 [ 2.4H20]1_ (61)

where the TA is: [C4H4(CO3)2)?~ and the number of water molecules per TA is 4.2.
A d-spacing of 3.46 A for the LDH at laboratory humidities implies that the TA are
lying horizontal in the interlayer. These samples were deuterated by successive drying
in a vacuum oven at 100°C for 12 hours and then placing in 100% DO humidity for 24
hours in order to exchange the HyO in the LDH with DsO. The process was repeated 3
times. Since no observable scattering from the hydrogenated TA was measured within the
deuterated LDH, we switched to using hydrogenated LDH samples with HyO to increase
the scattering from the system. Additionally, we believed that with an interlayer of 3.6 A,
there may not be enough room for motion of the water and TA to occur, so we inserted

additional HoO molecules to the hydrogenated LDH.

Thus, two samples were prepared: (a) hydrogenated-LDH-TA + 20% H20O (b) hydrogenated-
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Figure 6.3: XRD of the hydrogenated LDH-TA at — lab humidity and — 20% added
H,0. Note shift of the (003) to form a broad peak at 0.45 A~! in the 20% added HyO
sample. The a-axis = 3.08A is denoted with 'A’ and the (003) and (006) peaks of the
LDH-TA at lab humidity have been indicated.

LDH-TA + 5% Hy0. XRD of the 20% added HoO and of the LDH at lab humidity is shown
in Figure 6.3. The data for the XRD taken on the LDH with added water was taken by
sealing the LDH with Kapton tape and then removing the background due to the Kapton
post measurement. The data for the 20% added HoO LDH-TA is therefore more noisy.
The (003) peak is reproduced according to Greenwell'! for the sample at lab humidity.
We therefore infer that the broad peak at ~ 0.45 A is from the (001) i.e.d-spacing of
the expanded clay of 13.96 A and that the gallery spacing is therefore ~ 9.2 A follow-
ing subtraction of the hydroxide layer thickness of 4.8 A. This corresponds to the gallery
spacings observed for expanded and collapsed interlayer spacings from previous measure-

ments 141,142

. The samples parameters for the experiment are shown in Table 6.1 along
with the total number of water molecules per TA.

The final analysis is directed towards the motion of the water in the interlayer and the
terephthalate anion.

The sample environment used for this experiment was a standard CCR using liquid

helium as a cooling agent to lower sample temperature to 5K. The sample can used for

the experiment was an annular high-pressure aluminium cell with 1mm thickness. This
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Sample Gallery height Added HyO H>O
P [A] [% by mass] per TA

Lab RH 3.46 - 4.80

a ~ 9.2 20 16.24

b - ) 7.88

Table 6.1: % = 5.7 LDH-TA parameters at laboratory relative humidity, 5% and 20%
additionally hydrated samples.

geometry reduces the probability of multiple scattering events and also minimises beam
attenuation thus was chosen over using a purely cylindrical or flat plate sample cell. The
can was sealed using an indium O-ring and was tested in a vacuum oven for any leaks
prior to loading onto the beamline. The sample can had top and bottom heaters and a
temperature sensor which was accurate to within 2 K.

The 20% added HoO LDH-TA, was cooled to 5K and quasi-elastic and elastic mea-
surements were performed in order to obtain background readings. The sample was then
heated up successively to 150K, 210K, 240K, 260K, 280K and 320K. The 5% added HoO
LDH-TA was cooled to 5K and heated to 220K and 320K. After equilibration at each

temperature, quasi-elastic data was collected for 6 hours to optimise the statistics.

6.3 Data Analysis Procedure for QENS Data

The 49 functional detectors of IRIS were grouped into 17 spectral groups spanning a Q-
range of 0.421 - 1.17 A™'. The QENS data was analysed using the programme MODES,
v3.0143 which corrected for multiple scattering, absorption and detailed balance for each
measurement, detector efficiency and sample container. The resulting data was normalised
to the elastic window intensity at 5K. The lowest temperature data set (at 5K) could be fit
using a delta function and had similar FWHM to the resolution of the instrument making
it viable to be used as the resolution function with which each proceeding data set was
deconvolved with. This allowed isolation of the terephthalate + water motion from the
clay. After deconvolution, a constant background correction was applied to all data sets
and at each temperature, data were fit to the model of an elastic line or both the elastic
and just one quasi-elastic peak. The fit parameters for the elastic and quasi-elastic peaks
were then imported into Matlab and fit using a least-squared fit for the rotational and

translational diffusion models considered in Section 3.4.1.
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Figure 6.4: Elastic intensity calculated by integrating the counts from + 0.01 meV of the
fully grouped quasi-elastic data for the 20% HoO-LDH-TA at each temperature. Blue,
red and green lines indicate the three regions of interest (they are not fits to data).

6.4 QENS Results
Aims

e Study the dynamics of the terephthalate and relate directly the diffusion of the anion

to its orientation as controlled by layer charge.

e Observe the expected freezing out of both rotational and translational motion of the

H50.

6.5 QENS Results 20% H,O LDH-TA

6.5.1 Neutron Scattering intensity

The first sample to be looked at is the LDH with an added 20% by weight of HoO which
means a total of 16.24 HoO molecules per TA. The first method for checking where motion
of the interlayer components freezes out is to plot the variation of total elastic intensity
(dependent on total neutron cross section) with temperature and compare with the inten-

sity at the lowest temperature, 5K. At 5K, we know that the interlayer HoO and the TA



6.5. QENS Results 20% HyO LDH-TA 121

1 T T T T T T T
I%fii 1 % i i
P s % | | | t

L R S be
z | | | | = T 5 s —
3 [}
= s ‘
N S
= L =T s PR
T = B . B [) ::
- ; ; . L ;
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6.5: Normalised elastic incoherent structure factor across the 17 groups in @ of the
20%-LDH-TA. @ 150 K, @ 210 K, ® 240 K, @ 260 K, ® 280 K, = 320 K. Note relatively flat
EISF for 150, 210 and 240 K. First marked drop in EISF at 260 K and again at 280 K.

are not mobile and therefore can take this to be the resolution function for the remaining
temperatures. Any drop in the intensity indicates there is and introduction of HoO or TA
motion since the elastic intensity refers to 'immobile’ material. Figure 6.4 shows the elastic
intensity calculated by integrating the counts between + 0.01 meV of the energy window
and grouping all the data in @ for the 20%-LDH-TA at each measured temperature. This
highlights three regions in the data which may be of interest.

As described in Section 3.4.1, any drop in the intensity of the elastic portion of the
scattering as a function of () indicates that motion is introduced into the system. Therefore
in Figure 6.5 the normalised elastic incoherent structure factors across the 17 grouped
detector banks in @ of the 20%-LDH-TA is plotted for each of the temperatures having fit
1 QE peak and the elastic line to the data. The large error bars on the EISF for the lower
temperatures: 150 K, 210 K and 240 K indicate that 1 QE peak is an over-fit of the data
and that the elastic is sufficient at these temperatures. Also, a relatively Q-independent
EISF =~ 1 is observed at these temperatures implying that there is no translational or

rotational motion observed. The first marked decrease in the EISF is seen at 260 K
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with a definite () dependence indicating the first introduction of motion into the system.
There is another marked decrease in the EISF from 260 to 280 K. There are a few quite
prominent features in the EISF. Firstly, it is clear that at @ = 0, the EISF is not tending
to one. This is because there cannot be completely immobile interlayer material at any
given temperature, and the discrepancy from 1 is attributed to the vibrational part of the
molecular motion. With this in mind, the fits for 150, 210 and 240 K are fit with only the
elastic line.

The number of Lorentzians for the QE component are chosen, not only by looking at
the residuals but also looking at the difference in the normalised x? of the fit to the data for
just the elastic line fit to 1 QE peak and the elastic peak. A dramatic drop in the x? from
0 to 1 QE peak indicates that there is likely to be QE in the data. The fits across a range
of @-values are shown for the lowest 150 K data and highest 320 K data in Figures 6.6
and 6.8 respectively. Figure 6.7 shows the fits, QE peak and residuals at Q) = 0.96A7"
for the temperature data sets from 210 to 280 K. This is to show the quality of the fit
for the chosen number of QE peaks and using the 5K data as the resolution function. We
see excellent fits for all the data sets and can therefore conclude that for 150 to 240 K,
there is no quasi-elastic scattering observed and the rotation and translational motion of
the water and TA are restricted. However for >260 K, a single QE peak is required to fit
the data indicating the the water and TA can now move. Further investigations into the
Q?-dependency of the QE Lorentzian HWHM is required to ascertain the type of motion

occurring.
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Figure 6.6: The QENS fits to a range of spectral groups for the data collected on the
20%-LDH-TA at 150 K fitting only an elastic line and the resolution function (5K data)
to the o data; _ fit; _ elastic line and the resolution function (5K data); — residuals
are also plotted: the difference between the data and the fit. Note the y-axis is a log-scale
for the data and fit, however the residual is shifted up by 40 and plotted on a linear scale
from £+0.01 meV.

What is moving?

Since the water and the terephthalate ions are hydrogenated, the motion of the two are
coupled together. It is possible to ascertain which portion of the TA — water interlayer is
actually contributing to the translational and rotational motion by comparing the ratio of
elastic intensity (Ag) at 5K to the the elastic intensity at 320 K.

At 5K all ions and water molecules are immobile therefore all atoms contribute to the
elastic intensity. At 320 K, diffusion is clearly observed. Atoms which are diffusing are
not immobile and therefore do not contribute to the elastic intensity. Since the incoherent

scattering is used to measure the diffusion of molecules, we can assume that at 5K, the
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Figure 6.7: The QENS fits to the data collected on the 20%-LDH-TA for Q = 0.964 "
at (a) 210 K, (b)240 K, (c) 260 K and (d) 280 K. o data; — fit; — elastic line and
the resolution function (5K data); — residuals; - QE Lorentzian. Note the y-axis is
a log-scale for the data and fit, however the residual is shifted up by 40 and plotted on
normal scale from 4+0.01 meV.

incoherent scattering is at a maximum and all atoms contribute. At 320 K, incoherent
scattering of the diffusing atoms is seen as a QE peak and therefore the incoherent scat-
tering will drop according to the type and proportion of diffusing atoms. We can therefore

equate the ratios of the two:

Ao(5K) brnc(allatoms)

= 6.2
Ap(320K)  brpe(non — dif fusingatoms) (6:2)
From Figure 6.4, the ratio of % = 0.748. If we consider only the interlayer water

to contribute to the motion at 320 K of the 20%-LDH-TA (TA:water 1:16.24), using the

b1, (allatoms) .
non—dif fusingatoms) ~— 0.761.

Table 3.3 of incoherent neutron cross-sections, we obtain Ey(
nc
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Figure 6.8: The QENS fits to a range of spectral groups for the data collected on the
20%-LDH-TA at 320 K fitting only 1 QE Lorentzian. o data; __fit; — QE Lorentzian;
—elastic line and the resolution function (5K data); —residual. Note the y-axis is a log-
scale for the data, fit, resolution function and QE peak; the residual is shifted up by 40
and plotted on normal scale from £0.01 meV.

These two values are in excellent agreement and therefore we can conclude that the motion
at 320 K is primarily related to the water molecules. If we consider only terephthalate to
be moving this ratio is 0.900 and if we consider both the water and the terephthalate to
exhibit translational diffusion, the ratio is 0.662.

Since maximum diffusion occurs at the max T i.e. 320 K, we can assume that any trans-

lational diffusion below this temperature will only be associated with the water molecules.

6.5.2 Freezing Out of Rotation

The normalised EISF and HWHM, having fit 1 QE peak to the data at 240 and 260 K,

is plotted: Figure 6.9(a) and Figure 6.14(b) respectively. Looking at the data obtained
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Figure 6.9: (a)Normalised EISF and (b)HWHM data having fit 1 QE peak to the 20%

added HoO LDH-TA __ 260 K, __ 240 K. The lines between the points in (b) are not fits
but used to emphasise the variation from one point to the next.

at 240 K, the EISF and HWHM data points have extremely large error bars and show a
completely random scatter as a function of (). This implies that a 1 QE peak is an over-fit
of the data and we can fit 240 K with just the elastic line. The EISF at 260 K however,
shows very little Q-dependence (a 0.04% variation between max and min) implying that
the motion of the water is restricted to rotation only. The HWHM shows no Q? variation
either to further support this.

In principle, the EISF can be fitted for the Q-independent rotation to determine the
exact type of rotation that the water exhibits, however due to the presence of Bragg peaks
in the data, this is not possible for the present data. A straight line can be fit to the
HWHM of the 260 K data, Figure 6.10. The first 4 data points have been plotted on the
graph but are left out of the fitting routine due to the very large error bars associated

with them.

6.5.3 Jump Diffusion Models

Two jump diffusion models, Hall-Ross (HR) and Singwi-Sjélander (SS), discussed in Sec-
tion 3.4.1, were applied to the subsequent Q?-dependency of the HWHM of the 280 and 320
K data for the LDH-TA. These are displayed in Figures 6.11(a) and 6.11(b) respectively.
In addition, the trend expected for pure Fickian diffusion is represented by the straight
red line on each graph, obtained by a linear regression fit on the two lowest ()-values. The

Fickian model requires this line to pass through the origin. The calculated diffusion coef-
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ficients Dyyqns, jump length | and residence time 7, have been calculated by least square
fit with the experimental HWHM for both models and are presented in Table 7.3. Also
stated is the QENS measurement for Dyyqns for bulk water at 295 K measured on IRIS 0.

The best fit of the models is the Singwi-Sjolander model for both the 280 and 320
K data sets. It is clear that the diffusion at the these temperatures is not Fickian and
confinement is having an effect on the motion of the water molecules. Although the
calculated Dypqns of this model are relatively high i.e. compared to bulk, at 320 K we
are 47 K above the melting point of water i.e. the system has an increased amount of
thermal energy than bulk at room temperature (300K). Alos, the charged ends of the
terephthalate ions interact with the clay surfaces as opposed to the water molecules and
also act as barriers disrupting the hydrogen-bonding network of the water molecules. This
can allow the water molecules to move faster through the interlayer than they would in
bulk. The terephthalate ions also have a hydrophobic aromatic ring at the centre allowing
for water molecules to ready pass through the interlayer. Added to this, we know that
the d-spacing of the LDH at 20% added water content increases from 3.6 A to ~13.96 A
allowing more space for the water to travel through. We also see a larger Dy,qys for the
sample at 320 K compared to 280 K which is expected due to the increase in thermal
energy to the system. The melting point of HoO is 273.8 K and therefore it is clear that
the extent of the mobility of the water molecules is tied to this. Rotational motion freezes

out at a slightly lower temperature, however since the HyO is confined within the LDH,
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Figure 6.11: QENS HWHM data and models for water diffusion within the 20%-LDH-TA
at (a) 280 K (b) 320 K. __Singwi-Sjolander model, __ Hall-Ross, _ Fickian.

T Fit l T—t Dirans Red
(K] Model [A] [ps] x1079[m? s71] x>
530 HR 3.34 £0.23 7.79 + 0.36 2.4 + 0.3 6.16
SS 3.66 £0.30 6.60 = 0.33 3.4+ 0.6 3.52
290 HR 3.26 4+ 0.10 3.82 4+ 0.09 4.6 + 0.3 5.13
SS 3.37 £ 0.09 3.15 + 0.07 6.0 + 0.4 1.94
295 bulk
(Swenson ") HR 1.4 1.4 2.5

Table 6.2: Comparison of parameters from Hall-Ross(HR) and Singwi-Sj6lander(SS) jump
diffusion fits to HWHM of 5% added LDH-TA QENS data at 280 and 320K, alongside the
Dyrans for bulk HoO as measured by Swenson et al'°.

the melting point will be lower than 276.8 K.

6.6 Results 5% H,O LDH-TA

The second sample to be studied is the LDH-TA with 5% added HyO. There is now
7.88 HoO molecules per terephthalate anion, about half compared to the previous sample.
Figure 6.13 shows the integrated intensity between + 0.01 meV for the 20% added HoO
LDH (red) and the 5% added HoO LDH (blue). If we calculate the total scattering of a
system (total neutron cross-section) with 15% less water, the elastic intensity should drop
by an equivalent amount. This is seen at 5K from the 20% added water LDH to the 5%

added water LDH in Figure 6.13 thus confirming the amount of water absorbed by the
LDH.
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Figure 6.12: Q?-dependence of the broadening of the quasi-elastic components with data
and Singwi-Sjolander fit for the LDH-TA with 20% added water at o 280 K and o 320 K.
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Figure 6.13: Elastic intensity calculated by integrating the counts from 4 0.01 meV of the
fully grouped quasi-elastic data for the @ 20% HoO-LDH-TA, @ 5% HoO-LDH-TA. Note
large difference in intensity at low temperatures however much less at higher temperatures.
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Figure 6.14: (a)Normalise EISF and (b)HWHM data having fit 1 QE peak to the 5%
added HoO LDH-TA __320 K, __ 220 K. The lines between the points in (b) are not fits
but used to emphasise the variation from one point to the next.

To identify how to best fit the 5% added HyO sample, the normalised EISF and
HWHM, having fit 1 QE peak to the data, is plotted: Figure 6.14(a) and Figure 6.14(b)
respectively. Again, looking at the data obtained at 220 K, the EISF and HWHM data
points have extremely large error bars and show a completely random scatter as a function
of ). This implies that a 1 QE peak is an over-fit of the data and we can fit with just
the elastic line. The EISF at 320 K however, shows relative @-independence (a 0.03%
variation between max and min) implying that the motion of the water and terephthalate
is restricted to rotation only. The HWHM is tantamount to this since no Q? variation
is measured. Looking at the ratio of the elastic scattering between 5 to 320 K and the
ratio in the incoherent cross-section between all the atoms and assuming that only the
water is moving, we obtain equal values. From this we can infer that the rotational motion
observed is associated with the water.

The rotational diffusion coefficient of the 5% added HoO LDH-TA at 320 K data can
be obtained by fitting the HWHM with a horizontal line and find the intercept with the
y-axis. This is shown in Figure 6.15. Again, the EISF cannot be fitted to determine the

type of rotation due to the presence of Bragg peaks in the data.

6.7 Summary

We do observe a dramatic effect in the mobility of the interlayer components depending on

both temperature and water content. Firstly, we have quite a small gallery spacing of 3.46
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Figure 6.15: Horizontal straight line fit to the 5% added HoO LDH-TA at 320 K to show
therefore, that motion is rotational.

A which indicates that the TA are lying flat in the interlayer at lab humidity. Although
we do not have data to show this, we assume that at 5% added HyO i.e. TA:water 1:7.88,
the interlayer spacing does not increase that much. No motion is observed in the system
until the temperature is increased to 320 K at which point we are able to fit 1 QE peak to
the data indicating that some translational or rotational motion is present in the system.
We found a @-independent HWHM indicating that the motion is solely rotational. Since
both the TA and the water is hydrogenated, we are not able to quantitatively uncouple
the rotation of the two molecules however we can assume that most of the contribution of
the rotation is from the water by comparing the drop in elastic intensities and incoherent
cross-sections of the mobile parts of the system.

Increasing the water content to 1:16.24 TA:water, expands the interlayer spacing to
~ 13.96 A. We are able to resolve the freezing out of the water motion: no rotation or
translational motion below 260 K, only rotation at 260 K temperature and full translation
between 280 and 320 K however. Since the terephthalate is a bulky ion it can disrupt the
hydrogen bond network of the water alongside minimally interacting with the water. This
allows the water to move passed relatively quickly with translational diffusion coefficient
calculated using the Singwi-Sjdlander Dy qns = 6.0 x107? m?s~! and 3.4 x107° m?s~! at
320 K and 280 K respectively which is larger than bulk at similar temperatures!?. We do
observe the trend of increasing diffusion coefficient with temperature as previous studies

have shown 3. This is attributed to the fact that at this layer spacing, the terephthalate
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Figure 6.16: Elastic intensity calculated by integrating the counts from 4+ 0.01 meV of the
fully grouped quasi-elastic data for the 20% HyO-LDH-TA at each temperature. Blue,
red and green lines indicate the temperature width of the types of motion exhibited by
the water molecules in the interlayer.

ions are lying in plane to the c-axis and opening up the layers. Since it minimally interacts
with the water and the fact that it is a bulky ion which disrupts the hydrogen bonding of
the interlayer water, though confined in the interlayer, water molecules are unhindered in
mobility. At 260 K only rotation is observed and below this all motion is frozen out of the
system. The temperature at which motion freezes out of the system, does seem coupled
with the melting point of water since just below 273 K we observe only rotation which
is possible since confined water has a lower melting point. Below this, all motion of the
water and terephthalate is frozen. Returning to the three aims set out at the beginning,
we have observed that the terephthalate does not contribute to the translational diffusion
coefficient of the sample. The rotation of the anion is however coupled to the rotation of
the water molecules and can not be distinguished quantitatively from the water rotation
since the sample used contained both hydrogenated terephthalate and HyO, however the
discussion explains why we believe we are seeing primarily the water rotation. The motion
of the water very heavily depends on the number of molecules per terephthalate and is
coupled with an increase in the interlayer spacing of the LDH allowing more freedom for

movement. We can therefore redefine the three regions across which each type of motion
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is frozen out of the HyO in the 20% added LDH, Figure 6.16.



Chapter 7

Macroscopic Linear Swelling

Measurements

This chapter presents a preliminary investigation into the macroscopic clay swelling of
compacted vermiculite-talc samples during the very initial stages (0 - 5 mins) of fluid
addition. This is because we aim to investigate the very initial problems that occur,
described in Section 2.5, when drilled cuttings are released from the walls of the wellbore.
Measurements have been made using a bespoke instrument using non-contact sensors to
measure the expansion, with the manufacture of the instrument occurring at the Durham
University. The design of the instrument and work in this chapter was motivated by a
five-week placement spent in the research laboratories at M-I Swaco'* who co-funded
this project. Since I have designed and coded the equipment, it is also a test study of the

instrument itself and has been trialled in the following manner:

Aims

e To design and build a robust instrument that will allow for controlled humidity clay
swelling measurements on compacted clay samples in an environment where the clay

samples are in minimal contact with other aspects of the instrument.

e To measure the initial macroscopic (uniaxial) swelling response of compacted hex-

amethylene diamine (HMDA) and tetramethylammonium (TMA) exchanged vermi-

134
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Sample H>O NaCl HMDA Molarity
No. (8) (8) () (M)
1 280 - - -
2 280 6.6 - 0.40
3 280 12.3 - 0.75
4 22 - 5.10 2.00

Table 7.1: Masses and molarity for each of the fluids with which the macroscopic swelling
of the vermiculites were tested.
culites in HyO and also in test solutions of brine and HMDA (,,) at ambient pressure

and temperature conditions.

The experiments described here are the macroscopic swelling analogues of the high
pressure neutron studies performed in Chapter 5 in which we observed no crystalline
swelling of the minerals. We have defined 'macroscopic’ in this case to be the behaviour

of the compacted samples in the test fluids.

7.0.1 Methods

Sample Preparation

The as received Li-purified clays were vermiculites from Flexitallic gasket makers with

clay composition:
[Si6.30M g5.44Al1 65F €0 6020(OH) 4>~ 1.3Li" @ 4H,0 (7.1)

To prepare the clay in a homoionic form, the existing lithium interlayer cations were
exchanged for mono- and di-valent cations by placing batches of the as received clay in
an excess 2 molar solution of the chosen salt. 50g batches of the as received vermiculite
were placed in a 2 molar solution of NaCl, KCl, TMACI] and HMDA obtained from Sigma
Aldrich > 98% purity. The TMA- and HMDA-exchanged vermiculite were prepared in
order to compare with the preceding work in chapter 5. The K- and Na-exchanged ver-
miculites have been used as a guide to the relative swelling inhibition of the TMA- and
HMDA-vermiculites since potassium is a standard addition to drilling fluids in terms of
minimising swelling via cation exchange as described in Section 2.6.1. The clay was soaked
in these solutions for 24 hours, washed with de-ionised water and then placed in the oven

to dry at 80°C for 24 hours. This was repeated 3 times. X-Ray diffraction was performed
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on the sampled pre and post treatment to verify that the d-spacings of the exchanged
vermiculites and to see whether in the case of the HMDA, the exchange was successful.

The resulting formulae of the clays were thus:

[Siig.30M g5.44Aly 65 Fe0.6020(OH ) 4) "3 [1.3LiT /1.3Na™ /1.3T M AT /0.65HM D A>T |e4 H,O

(7.2)

The cation exchange capacity of this vermiculite is in the range 50 - 100 mEq /100g
which is slightly low for vermiculites in general and more akin to a CEC found for mont-
morillonites. The exchanged clays were ground to particle size of 20 pm ready for pressing
into compacted disks for the experiments. 1.25 g of milled, exchanged vermiculite was
mixed with 1.25 g of talc of particle size 20 um i.e in a 1:1 ratio. Talc was added in order
to take a first step towards creating a more natural’ sample with a non-swelling compo-
nent for the experiments. In natural mined samples, quartz is the common non-swelling
component. The mixed talc and vermiculite clay was pressed in a 20 mm diameter die at
10 Tonnes of pressure (20,000 psi). The average thickness of the compacted disks was ~
3.5 - 4.0 mm. These were left to equilibrate at lab humidity for 24 hours before using in
a measurement.

Test fluids were prepared in a fume hood as hygroscopic ammoniated salts evaporate .
The fluids were made up to 280 ml volume such that only the base of the clay pellets were
in contact with the test fluid. Four representative fluids were tested given in Table 7.1.

Data was collected for:
e All the various exchanged vermiculites in distilled water
e Li- and TMA-exchanged in brine at seawater concentration and at 0.75M NaCl ).

e Li-exchanged in 2M HMDA 4.

Experimental Setup

Figure 7.1 shows the sketch of the final version of the bespoke instrument designed and
manufactured to perform the non-contact clay swelling experiments. The 'non-contact’
refers to the contact-less linear displacement meters from Omega®) '4® used to measure
the height evolution of the clay pellets. The theory describing how the sensors work can

be found in Appendix A.1. The inductive method used by these sensors does not require
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Figure 7.1: Custom designed and built swellometer for the macroscopic measurements of
clay swelling within a controlled humidity environment.

any part of the sensor to be in contact with the clay or the inductive metal disk placed on
top of the sample, Figure 7.2(a). This means there is no damping to the swelling response
of the clay due to friction as observed in existing sensor technology.

The instrument allows for measurements on four pellets simultaneously in a single test
drilling fluid and pre-equilibrated at a chosen humidity. The humidity probe could be
used to measure the change in the humidity of the chamber as the pellets equilibrate in
the relative humidity created by the salt solution. This is achieved by placing a chosen
saturated salt solution in the salt chamber and leaving the pellets in the sealed instrument
overnight (12 hours minimum) to equilibrate to the relative humidity governed by the salt.
The results presented here do not show the application of this however the opportunity to
do so is available.

Compacted clay samples were set up in the sample holder as shown in Fig 7.2 having
been equilibrated with the lab humidity. The diameter of the sample holder was chosen
to be 25 mm so that there was room for the clay to expand laterally. This is important
primarily to avoid friction between the clay and the sample holder walls, thus heavily
dampening the overall swelling response of the clay. It is also a viable design since when
cuttings are released from the wellbore, they are no longer confined and are free to expand
in all directions. The data acquisition was started just as the final portion of the test fluid
was added and measurements of the height of the pellets were taken every 0.5 seconds for
the duration of 30 minutes. Since the investigation focussed on the the initial swelling
response, 30 minutes was deemed sufficient, however the standard time used in the oil

industry to measure the full swelling response of the material is 16 hours which was
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Figure 7.2: (a) Sketch of sample setup inside the sample holder. (b) Photo of sample
holder and an example of a compacted vermiculite:talc pellet.

possible if required.

Data Acquisition

For a full description of the LabVIEW code used to control the measuring of the instru-
ment, see Appendix A. The sensors were connected into the analogue ports of the Data
Acquisition Card (DAQ card) and then controlled via LabVIEW.

Figure 7.3 shows the simple circuit sketch for the instrument. Each sensor was cal-
ibrated such that the voltages read by the sensors corresponded to a measured height
between the sensor and the metal inductance plate (placed above the clay pellet, Fig-
ure 7.2(a)). The calibration distances were then loaded into a LabVIEW script so that
the raw data was mapped and scaled using these values to turn the voltage readings into a
distance. The distances recorded needed inverting since the actual distance measured by
the sensor decreased as the compacted disk increased in height. This final plotted distance
is presented as an increasing uniaxial swelling height as a function of time. Using the data
obtained from 2M HMDA ,,) measurements, the initial rate of the linear portion of the
swelling has been calculated using an ordinary least squares calculation for two identical
samples. This has been used as a primary guide as to the error within the measurements

also encompassing human error.
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Figure 7.3: Sketch of circuit diagram for simultaneous measurements using four non-
contact linear displacement sensors in the ”swellometer”.

Species Lit Nat K+ TMA™* HMDA?Z+
~ d-spacing A 14.0 14.2 10.1 14.6 13.5

Table 7.2: Approximate d-spacings for the exchanged vermiculites used to make the com-
pacted clay samples for the macroscopic swelling experiments. These are taken from the
peak position of the furthest peak to the right of each XRD pattern in Figure 7.4(b).

7.0.2 XRD Analysis of Exchanged Samples

Figure 7.4 shows the XRD patterns of the milled, exchanged vermiculites after drying in
the oven at 80°C overnight and then equilibrating to lab humidity for 24 hours. The scans
were taken with a stepsize of 0.02 degrees and 10 s scan time at each step. The datasets
are shifted vertically for ease of viewing. The Na-vermiculite has a high low-@Q) scattering
and is not as clean as the other XRD patterns due to amorphous material in the sample.
This is due to not having washed the excess NaCl,q) from the clay adequately post final
exchange, however this does not affect the measurement of the d-spacing. Figure 7.4(b)
shows the d-spacing measurements of the Li-as received and the subsequently exchanged
vermiculites which is the is the first peak on the left of each XRD peak pattern and
converted into d via Bragg’s law.

Table 7.2 lists the approximate measured d-spacing, (001) peak of the exchanged ver-

miculites. The peaks were not fit to obtain their precise location however the XRD was
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Figure 7.4: (a) XRD of the exchanged vermiculite clay. (001) peak is the first peak on the
left. (b): Focus on XRD showing d-spacing of the exchanged vermiculite clay according
to Bragg’s law conversion from Q to d. _ Na®™, __ Kt _ TMAT, _ HMDA?**, _ Lit

performed in order to gauge whether exchange had occurred specifically in the case of
HMDA since we did not observe exchange in the high pressure HMDA flooding of Li-
vermiculite. We believe the HMDA has exchanged since distances match with those give

from Suter et al?3.

7.0.3 Results and Discussion

Preliminary measurements on the uniaxial swelling of compacted as received LiT-vermiculite,
Nat, KT, TMA™ exchanged and HMDA exchanged vermiculite in water are shown in Fig-
ure 7.5.

The first thing to note is the discontinuities present in some of the data sets. In
Figure 7.5 it is for the Li- and K-exchanged vermiculite. This is because there are no
cohesive interactions between the clay platelets and due to the high layer charge, there is
a sharp drop of the electric double layer which means it does not extend greatly towards
the neighbouring platelets. Whereas conversely, smoother swelling curves are observed for
montmorillonites due to the self-sealing property they have**. As water is absorbed into
the pores pushing the clay platelets apart, the weight of the metal inductance plate on top
of the compacted clay is occasionally enough to overcome the pore pressure as water is
drawn into the clay and the platelets move outwards. This is especially evident in the Na™
data as we see a decrease in height after the maximum is reached at which point there is no

outward pore pressure and the dominant force on the clay is the mass of the inductance
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Figure 7.5: Uniaxial expansion (along z-axis) of the vermiculite with varying interlayer
composition: _ NaT, __ KT, __ TMA™T, __ HMDA?*, _ LiT in test fluid of distilled
water. Note the enhanced inhibitive effect of the TMAT and HMDA?* compared to K+
on the overall swelling response of the clay.

plate pushing down on the compacted clay disk. Conversely to the high pressure and
temperature neutron study on the TMA-vermiculite, a macroscopic height increase is
observed in the presence of water. This is observed for all the exchanged vermiculites and
is attributed to the capillary effect of having air in pore spaces. We observe less overall
macroscopic swelling for the HMDA- and TMA-exchanged vermiculites than we do for
the K-vermiculite indicating that although the K+ has the lowest enthalpy of hydration
(this has not been measured for HMDA), this is not the only contributing factor to the
swelling of the mineral as has previously been focussed on3336. The hydrophobicity of
the molecules must therefore also contribute?3.

The Na™ exchanged vermiculite also shows a very clear two step swelling profile in the
initial stages. During compaction, pore sizes generated increase from centre to the outer
edge of the disk ¥ and therefore it is inferred that the swelling should occur in a two step
process: faster as the outer-larger pores fill and then slower as the inner-smaller pores fill.

Figure 7.6 shows the macroscopic swelling of the Li- and TMA-vermiculite in brine
solution at seawater concentration of 0.4M NaCl and at 0.75M NaCl. At seawater concen-

tration we observe an overall slower initial expansion rate and overall less smaller height
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Figure 7.6: Uniaxial expansion of __ TMA™ and _ Li" in test fluid of NaCl at seawater
concentration (solid line) and 0.75M NaCl (dashed line).

change compared to the 0.75M brine solution. If we consider the process to be osmotic
then we can expect greater expansion observed for the higher concentration test fluid.
0.75M brine concentration was chosen since at this concentration, interlayer expansion'®
of the clay mineral is eliminated however an overall height increase of ~40 % of the original
height of the clay disk is observed. Despite this, the effects of the TMA are still felt, since
less swelling is measured for the TMA™ than the LiT indicating that there is some effects
of the interlayer which bleed into the macroscopic swelling that we observe.

The final example of macroscopic swelling of compacted clay samples is shown in
Figure 7.7 of Li-vermiculite in 2M HMDA 4, designed to observe the macroscopic swelling
of the same materials used for the high pressure experiment in Section 5.2. Both data sets
are for the Li-vermiculite and compacted in the same manner. A dramatic macroscopic
expansion of the compacted clay is observed for both with a linear initial expansion rate.
From Figures 7.6 and 7.7, we observe an increasing initial expansion rate with increasing
solute concentration of the test fluid to almost a linear initial expansion rate.

This chapter presents the bespoke instrument designed to measure the uniaxial swelling

of compacted clay samples and a preliminary set of results investigating variation of in-

terlayer cation in the presence of water and test fluids of brine and HMDA ().
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Figure 7.7: Uniaxial expansion of Li-vermiculite in test fluid of 2M HMDA ,,. Two
swelling curves are plotted to highlight the repeatability of the measurements. __ Lit
data and — y = m;x + c fit to linear portion of swelling curve.
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i .1 r
mm min

a 0.6612 0.99

b 0.7292 0.99

Table 7.3: Comparison of gradients m; (in mm ) from fitting linear regression using or-
dinary least squares calculation to linear portion of the swelling curves in Figure 7.7.
According to the square of the correlation coefficients 12, we observe quite good fits and a
ratio of Ti¢ = 0.91. Le. the data are within 10%.

The data indicates that the instrument is robust and does allow for repeatable mea-
surements within a ~ 10 % error and it can be used for systematic tests on any compacted
swelling clay whether natural or synthetic and test fluid-inhibitor systems. This repeata-
bility includes the contribution of human error involved when compacting the samples
and sample loss in the die alongside the variation incurred during the synthesis of the
compacted samples from uneven mixing and different pore-size distributions. Although
not shown directly here, the instrument allows for humidity controlled measurements and
improves on existing instruments measuring height change of compacted clays in that

non-contact sensors are used.
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The swelling data from all the results show that regardless of the fluid chosen and the
interlayer cation present, a macroscopic expansion is measured for all the clay samples. A
possible two-step swelling profile is observed due to the nature of the pore distribution in
the compacted sampled during compaction!#®. We also observe a macroscopic expansion
when the interlayer expansion is known to be suppressed although the type of interlayer
cation does affect the initial rate and overall expansion of the material. We believe this
to be an interplay between the hydration enthalpy of the interlayer counterion and in the

case of the TMAT and HMDA?+ the hydrophobicity of the ions?3.



Chapter 8

Conclusions

The work presented in this thesis is the first investigation into the coupled effect of tem-
perature and pressure, conditions like those found in the wellbore, on the liquid structure
of organo-amine and ammonium compounds and their ability to act as clay swelling in-
hibitors at these conditions in the crystalline regime. The initial aim of the liquid structure
investigations was to see if there were any hydrophobic interactions an ion-pairing at the
elevated pressure and temperature conditions since this would be unfavourable for clay
swelling inhibition. This was then linked to the crystalline and macroscopic swelling of the
clay minerals either exchanged with or in the presence of the organo-amine compounds.
Since we observed a disparity between the clay swelling data in the mico- and macro-scales,
we performed a 'proof of concept’ investigation into whether spin-echo small angle neutron
scattering is a viable technique to look at pore-swelling of compacted clays. Finally we in-
vestigated the dynamics of water and terephthalate diffusion between expanded, relatively
unreactive mineral sheets since the literature showed that even the non-swelling minerals
pose problems down-hole.

The liquid neutron diffraction data of 1-molar TMACI in D2O at oil well conditions
revealed that with the addition of the TMA salt, there is an increased inter-solvent struc-
ture compared to bulk. This is ascribed to the very slight reorientation of the solvent
D20 around the TMA ions however the perturbation of the ion is small since the bulk
hydrogen-bond network is maintained. We observed that the externally applied temper-

ature and pressure act in opposition to each other: pressure reduces distances between
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molecules and temperature increases them. Therefore in systems such as the TMA solu-
tion where the perturbation of the salt is minimal to the intersolvent structure compared
to bulk, the pressure and temperature effects are not felt to such a great extent. The data
also revealed that TMA™ and Cl~ exist as solvent separated pairs throughout increasing
p & T conditions and do not ion pair (salting-in). Neither do we observe any hydrophobic
clustering of TMA™ (salting-out), in fact we see solute ions being pushed apart. This
is attributed to the size of the TMA ion which is relatively large and therefore there is
minimal binding to the water molecules. MD simulations have shown that there is no
excess chemical potential in the TMA solutions therefore no preference for salting-in or
salting-out is observed 47,

The liquid diffraction data for 2 molar HMDA solution reveals a very highly ordered
intersolvent structure which can be considered ice-like since the water RDFs resemble
those of ice and the coordination numbers in the HMDA solution are less than for bulk.
The hydrophobicity of the molecule has yet to be probed and simulations determining the
spherical density plots are ongoing.

The high pressure and temperature investigations into the crystalline swelling of TMA-
vermiculite and Li-vermiculite in the presence of D2O and 2 molar HMDA solution revealed
that cation exchange does not need to occur in order for a clay swelling inhibitor to
minimise the crystalline swelling of the mineral. Both of the clays are structurally stable
as a 2-waterlayer hydrate at these conditions. Similarly, for both clays we measured
an initial expansion of the d-spacing with introduction of water into the system to a
probable 2-water layers*3136 however no further swelling was observed. MD simulations
of TMA-smectite attribute the lack of clay expansion due to unfavourable interactions of
the water with the hydrophobic molecule? since if solely hydration energies are taken into
consideration, expansion should occur beyond the observed. However our liquid diffraction
of aqueous TMA solution showed a minimal perturbation of the TMA to the water and
a cage like water structure around the ion allowing hydrogen bond networking to remain.
The reason for the lack of expansion is therefore attributed to a change in the hydration
energy due to vermiculites having higher layer charge and therefore TMA ions reside closer
to the sheets. For the Li-vermiculite, we do not observe exchange of lithium with HMDA
since we do not observe a d-spacing increase corresponding to HMDA-exchanged clay®3
but argue that the HMDA sits on the surfaces of the clay sheets and that the hydrophobic

backbone makes interaction with the water unfavourable and therefore acts as a barrier
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for the water entering the clay.

Performing macroscopic measurements with methods used in Chapter 7, is an impor-
tant comparison to the microscopic swelling data. It is common in the field to identify the
total swelling response of the clay by overall expansion of these compacted clay samples
subjected to water and drilling fluid submersion. The data from the macroscopic swelling
experiments indicate that the instrument designed is robust and reliable allowing for re-
peatable measurements within a ~ 10 % error. The swelling data from all the results
show that regardless of the fluid chosen and the interlayer cation present, a macroscopic
expansion is measured for all the clay samples. We also observe a macroscopic expansion
when the interlayer expansion is known to be suppressed although the type of interlayer
cation does affect the initial rate and overall expansion of the material. The outcome
of these experiments highlights that although cation exchange is a solution to overcome
the problem of clay swelling in the oilfield, the expansion in the pore spaces cannot be
neglected.

Since tests on recompaction of mined clays is still the primary method for measuring
macroscopic clay swelling behaviour, we performed a proof of concept’ investigation into
whether spin-echo small angle neutron scattering is a viable technique to look at the pore-
swelling of these compacted clay samples. Despite measuring relatively high scattering
from the system, we were able to observe for the first time with resolution from 150 nm
to 15. pm, that overall, the larger of the pores filled before the smaller ones. Although an
intuitive assumption, it highlights the fact that the drilling fluid must pass through the
larger macro- and meso-pores before arriving at the interlayer. This would therefore shift
the locus of the clay swelling problem to the pore spaces, allowing more refined targeting
of the the larger pores by the swelling inhibitors®!' corroborating out macroscopic swelling
experiments.

The QENS measurements made on the diffusion of terephthalate and water in hy-
drated layered double hydroxides show that water content has a substantial effect on the
motion of the anion and overall mobility of the water. At lower water content only rota-
tion of the water molecules are observed at maximum temperature of 320 K and below
this temperature no rotational or translational motion is observed. Increasing the water
content to 1:16.24 TA:water, allows for full mobility of the water molecules. We found
that the terephthalate did not contribute to the translational motion in the system and

coupled with the water can only contribute to the overall rotation corroborating NMR
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studies showing that the terephthalate can only reorient within the interlayer and not

148 We are able to resolve the freezing out of the water motion: full transla-

translate
tion between 280 and 320 K however again only rotation at 260 K and no rotation or
translational motion below this temperature. The Dyyqns is measured for our data at 280
k and 320 K: Dypans 3.4 x1072 m2s™! and 6.0 x107% m?s~! respectively for the higher
water content sample. This shows that water can move faster than in bulk at 295 K'° and
attributed to the minimal interactions of the terephthalate and water and the increased

gallery spacing as the higher water content pushes the sheets apart allowing the TA to act

as pillars.

8.1 Future Work

Our data for the 2 molar HMDA,,) looks very promising in that at a concentration
of 1:28 water:HMDA, we expect to observe some hydrophobic ordering. Also since the
molecule is hygroscopic, investigations into the enthalpic and entropic considerations of the
dissolution of the HMDA would especially aid in discerning the mechanism of solvation.
More information on the diffusion of HMDA in bulk and within the clay interlayers is
needed to ascertain whether exchange is favourable at the conditions of the well pore
and how much of a role the porosity of the material plays in whether this exchange can
occur since the HMDA molecule is bulky and in water we observe this ’ice-like’ structure.
Therefore I would propose QENS studies on HMDA-exchanged smectites and vermiculites
and also if possible QENS on compacted HMDA-exchanged clays.

The spin-echo experiment was very much a test investigation since the spin-echo SANS
technique has not previously been used on compacted clay samples and it is clear that
optimisation of the sample and experiment is required. Similarly, due to the complex
nature of the clay, using natural sample as opposed to pure synthetic and the lack of
control over the pore distribution induced during compaction, fitting of the data is very
difficult. Many different fractal models can be used to fit the data but focus on making
thinner samples and minimising fluid in the beam would prove most efficient at reducing
scatter from the sample and improving the experiment. Once optimised, this could be
linked with neutron imaging of fluid invasion into the compacted sample using selective
isotopic substitution on the various parts of the clay-water-inhibitor system. We did

submit proposals to do this experiment but unfortunately beam time was not awarded.
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In terms of the oil-field applications, the instrument designed in Chapter 7 can be
used for a plethora of further tests of the effectiveness of inhibitor-fluids. I think here
a systematic investigation into the swelling behaviour of these compacted samples as a
function of fluid viscosity and dielectric constant and surface tension map of polar and
non-polar solvents. This is so that we can try and relate the bulk properties of the clay to
the surface interaction of the platelets and the fluids i.e. making and breaking interfacial
tension of the clay-air and clay-fluid surfaces which I think should be explored within the

clay swelling regime.
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Appendix A

A.1 Detection of Non-contact Sensors

The detection method of the sensors is based on inductance. The sensor contains a coil
of segment length dlI, through which a current I is passed and a magnetic field B is
generated according to Amps Law. We can find the magnitude of the field at a radial
distance 7 from the coil by integrating the Biot-Savart Law:

&ﬁ—/dé—mjfhﬂ“" (A.1)

A r3

The sensor contains an oscillator within the circuitry to constantly flip the polarity of the

applied current at a frequency of 500Hz which in turn causes a constant changing B field,

dfi)tB (®p is the magnetic flux). When a metal object is placed close to the sensor, the

oscillating field from the coil induces eddy currents in the metal according to Lenz’ Law:

A I
Emf= 208 _ A2
mf=—g at (A-2)

the Emf is the electro motive force (energy) induced and L is the ’inductance’ in the

d® pmetal

metal object. Since the induced current is also changing, we reverse engineer a T

of the metal object which is detected in the sensor by another coil (set of coils) and is
proportional to the distance of the metal object. We can therefore calibrate the sensors

such that the measured voltages converts to distance from the sensor.
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Figure A.1: Full circuit block diagram for LabVIEW code used to take a measurement
from the swellometer.

A.2 Recording Measurements on Swellometer

Figure A.1 is a screenshot of the graphical LabVIEW code written for taking measurements
simultaneously with the four sensors within the swellometer. It incorporates the scaling
and calibration required to have an output conversion from voltage to distance given from

the sensors.
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