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Abstract

This thesis is the collation of four papers, adapted from their original versions as to form here

four distinct chapters. In the first chapter we illustrate and solve the pricing problem of a target

volatility option (TVO) using three different methodologies. In the second chapter we study

the pricing PDE for a general contingent claim involving an asset and its realized volatility, and

then solve it for a variety of actual models and payoffs. The third chapter introduces a class

of time-changed stochastic processes based on which a martingale asset price evolution can be

devised. Pricing equations for volatility-linked derivatives are also obtained in this framework.

In the final chapter we analyze one specific model of this class; we conclude that it does show

high flexibility in explaining the forward volatility skew dynamics and that it can capture certain

interesting stylized facts.
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Preface

My PhD research stems from the dissertation I produced in 2009 as a task for completing the

MSc on Mathematics and Finance at Imperial College London. Back then I was assigned to an

intern cooperation at Deutsche Bank London with Dr Giuseppe Di Graziano; he introduced me

to the topic he was researching at the time, the target volatility option, and very kindly shared

some of his core results. Based on further developments, we were later able to produce the joint

paper [30] on the subject.

As I obtained a full-time PhD position at King’s College in 2010, I was fortunate enough to

find in Professor William Shaw a supervisor who believed in the potential of the strain of research

I was pursuing, and who constantly supported my efforts during these years. The following year

I moved to UCL where I completed my research as a part-time student. The outcome of my

studies is the present work.

This thesis is in the “collection of essays” format. It consists of four chapters written in the

form of journal papers dealing with certain common topics. Although the work is spread over

separate projects, I have put some effort in maximizing the cross-referencing. The content of

this document is organized as follows. In the introduction we outline and provide motivation for

the work done; also, we discuss some related issues and recent developments in the literature.

Chapters 1 and 2 are edited versions of the published works [30] and [96]; the paper [30] has also

appeared in the collection [56] based on a series of presentations made at the Fields Institute of

Toronto. Chapter 3 is a slight improvement of the ArXiv eprint [97], a version of which is at the

moment under peer review for a scientific journal. Chapter 4 is serving as a basis for a joint work

with Professor Martino Grasselli. The four chapters are wrapped up by a one-page conclusion

summarizing the contributions of our work.

To facilitate the comparability with the original works, the notation of each chapter has been

kept the same as the corresponding paper. This may sometimes lead to the repeated definition

of the same objects across the chapters, at times through different symbols: for example, the

quadratic variation process is denoted by It in chapter 2 and by 〈X〉t in chapter 3. Appendices

containing proofs are placed at the end of each individual chapter.
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Introduction

The present thesis is the result of four years of research, one spent at King’s College London as

a full-time student, and the other three at UCL in a part-time non-resident PhD scheme. By the

time I begun my work I did not have in mind a single subject to focus on. My starting point

was my MSc dissertation on pricing a certain type of target/controlled volatility investment. As

a first step, I assisted my former MSc supervisor Giuseppe Di Graziano in turning such a work

into the paper [30]. However, it was unclear to me at that time whether such a topic could have

been suitably developed into a full doctoral thesis.

I thus begun to look from a wider perspective at the elements defining the target volatility

financial products: an equity -a martingale- and its realized (or historical) volatility -a quadratic

variation process. The interplay of these two is not only relevant to the financial practice, as for

instance it appears in the target volatility option (TVO) paper [30], but it is also a cornerstone of

the modern martingale representation theory: examples are the Dambis and Schwarz’s theorem

[92] and Monroe’s theorem [83]. These theorems reveal that, in some sense, continuous mar-

tingales are characterized by their quadratic variations. On the other hand, quadratic variations

do appear in derivative payoffs, as it is the case of volatility derivatives, or in mixed payoffs,

such as the TVO itself. Also, a strictly related concept is that of a time change, that is, a pro-

cess describing the activity rate at which the trades occur, that generalizes the idea of accrued

volatility.

The realized volatility process therefore plays two rather different roles for derivative pric-

ing. As a historical measured variable, it can directly affect the price, for example by appearing

as a payoff component. As an abstract stochastic process, it can be used to model the “market

activity rate”, that is, the speed and magnitude at which the markets reacts over a certain time

span to the information flow. Broadly speaking, this PhD thesis consists of a series of separate

works where these two concepts of “volatility” are brought to interact with each other, as well as

with other classic asset modeling features, such as the presence of jumps in returns, correlation

effects, or multifactor model specifications. In the final chapter all these elements are combined

into a single novel asset pricing model constituting the culmination of this research.

Even though each chapter represents a self-consistent project, some common features are

identifiable across the thesis as a whole. In first place, the approach to derivative pricing taken

throughout is the classic Fourier/Laplace inversion technique. This is only natural since we ana-

lyze models whose characteristic functions are available in closed form. The distinctive feature

here is assuming that a contribution to the derivative price is given by the quadratic variation of

the returns, which requires an additional second variable to be included in the integral inversion

19



20 Introduction

process. Although efficiency issues are outside the scope of this work, it would be of course a

remarkable achievement to solve the problem of finding an optimal integration contour in the

multivariate setting presented here. Another similarity across the different chapters is the techni-

cal approach to the derivation of the characteristic functions. Those are computed by using either

the classical differential/PDE/Feynman-Kac approach, or the change of measure technique used

prominently by Carr and Wu in [15]. Finally, pricing equations are normally tested against a

Monte Carlo simulation.

Chapter 1 is a slightly expanded version of the target volatility option paper [30] written

jointly with Giuseppe Di Graziano. Back in 2008 markets started to show interest in target

volatility options and asset allocation strategies, i.e. investments where the asset exposure is

set, and possibly rebalanced, according to the volatility realized by the asset over a certain time

frame, with the aim of keeping the volatility of the investment at a desired level. Two main types

of target volatility investments can be distinguished: the target volatility option, a derivative, and

target volatility portfolio strategies/asset allocations.

The study presented here mainly refers to the derivative product. The problem of asset allo-

cations aiming at maintaining a fixed volatility has also been documented in recent times. Since

target volatility portfolios can be associated with a constant volatility level, funds of this type can

be of interest for the purpose of transparently meeting the risk levels prescribed by the regulatory

agencies while limiting the portfolio downside (see [95]). Stoyanov, [95] proves some statistical

properties of a target volatility fund in the Heston model; Morrison and Tadrowski [84] assess

the guarantee costs of entering a target volatility investment; in [22], Coles provides additional

results on pricing, hedging and managing the skew of options written on a target volatility port-

folio. A number of other studies illustrating the performance of target volatility funds are also

present [19, 82, 100]. Criticism over the risk reduction properties of target volatility portfolio

strategies has been raised in [50, 101], pointing out that when the underlying asset is discontinu-

ous and jumps at random times, a periodic rebalancing at fixed times cannot offset the volatility

fluctuations. We maintain an interest in the topic, and believe that there are unanswered points

in the extant literature; in section 1.7 we sketch a continuous-time portfolio model for the target

volatility allocation that essentially follows [95].

Instead, a target volatility option is an option, normally written on an equity or an index,

whose payoff is normalized at expiry with the volatility realized by that same index or equity

and then multiplied by a contractually-agreed constant giving the subjective volatility view of

the investors, the target volatility. The ratio between the target and the realized volatility hence

determines the total notional exposure of the payoff. There are various financial motivations for

buying a TVO. In first place the price of the option is generally lower than that of a vanilla call

option written on the corresponding index or equity. Secondly, the price of the option, for short

maturities and at-the-money contracts, is of Black-Scholes-type with implied volatility equal to

the target volatility. Typically, an investor chooses to enter a TVO contract when plain vanilla

quoted options are not affordable due to high implied volatilities. At the same time, if the “tar-

get” prediction is correct, she still retains chances of receiving a similar or even higher payoff.

The main contribution of this first chapter is to provide practical pricing equations for this new



Introduction 21

type of derivative. To achieve this we relied on the simplifying assumption that the returns of

the asset are independent from the stochastic volatility. Three methodologies are provided: one

Taylor strike price expansion, one Laplace integral inversion, and a polynomial approximation.

The assumption of independence further allows pricing the TVO by replication with claims on

the underlying, which in turn can be decomposed in a portfolio of call and put options (by the

Breeden and Litzenberger formula, [10]), an argument already endorsed by Carr and Lee [14]

for the valuation of pure volatility derivatives. We also reintroduce a third approach, present in

the Imperial College MSc dissertation but left out from the paper [30], consisting in a uniform

approximation of the TVO payoff through polynomial claims on the underlying. Also, com-

paring to the published paper, the numerical part has been revised and expanded, and figures

relating to the various methods have been added.

Having established several valuation methods mostly relying on an independence assump-

tion, the relaxation of one such an assumption represented a clear further research objective.

While it looked problematic to introduce correlation in the pricing by replication argument, the

integral inversion method does not seem to suffer from the same drawback. Indeed, characteristic

functions of analytical models naturally account for dependence between the various equations

of a diffusion process.

In order to add correlation between price and volatility, in chapter 2 we restate the pricing

problem of a TVO from a purely theoretical standpoint. We augment an Ito diffusion consisting

of a correlated pair of equations for the price and the stochastic volatility with the ODE giving the

dynamics of the realized volatility. By means of the the usual Feynman-Kac argument, we can

associate to these equations a PDE with terminal condition given by the TVO payoff; the solution

of such a PDE yields the derivative price. We soon realized that there is no specificity at all in

assuming the terminal condition to be the TVO payoff, and that we can select as a contingent

claim to be priced any sufficiently regular function of price and volatility. The discussion and

the derivation follow quite closely the book by Lewis, [75]: by Fourier-transforming the PDE

and using the unity as a terminal condition, we can in some significant cases solve the equation

explicitly, thus obtaining the joint characteristic function of the asset and its accrued volatility.

By then plugging this function in the inverse-Fourier representation for the derivative value, we

produce the pricing equation we were aiming at.

However, in principle, the introduction of a second variable to be modeled calls for a re-

vision of the discussion on the conditions that the diffusion must satisfy in order to guarantee

the existence and uniqueness of the solution. It is well-known that when some growth constraint

on the coefficients on the diffusion process are not met, problems arise in the correspondence

between the stochastic and the analytical solution of the PDE. A financial interpretation of these

issue is the case for the so-called “volatility explosions” and “volatility vanishings” (Lewis [75],

Sin [94]). It has been long- known (Feller [39, 40]) that the martingale property of the stochastic

solution is linked to the non-finiteness of a certain functional of the volatility process. Failing

this, the Feynman-Kac argument identifying the stochastic and analytical solution for the PDE

breaks down, meaning that the stochastic solution is a supermartingale only. In this case the dif-

ference in value with the true price represents the premium to be paid as to account for the pos-
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sibility of a volatility explosion or vanishing. Although practitioners are normally well aware of

the conditions under which the calibration procedure fails to meet volatility explosion/vanishing

tests, we remark that a less recognized issue in the PDE solution/discounted expected value cor-

respondence is that also regularity conditions on the payoff must be imposed (Friedman, [45]).

This means that in principle not every payoff can be priced in a given stochastic volatility model;

in the case of power claims in the Heston model, an important work is that of Andersen and

Piterbarg [3]. We also take into consideration these conditions throughout our discussion.

Since the general set up taken allows to value a variety of joint payoffs, in the pricing

problem we consider contingent claims different from the TVO. We thus end up introducing

some derivatives written on the joint performance on an asset and its accrued volatility that we

hope could be of interest for financial uses. On the other hand, the general valuation formula of

chapter 2 does not account for the specificity of the TVO. By comparing equation (2.15) with

the corresponding pricing relation (1.43) in chapter 1, one sees that in the latter a single complex

integration variable is present, as opposed to the full complex bivariate inversion of equation

(2.15). This is because in (1.43) we exploit the integral representation of the inverse square root,

which is a specific feature of the Fourier transform of the TVO payoff. This significantly shortens

both the computational burden and the truncation error entailed by (2.15).

So far the content of the paper [96]. In this thesis, we extend the treatment to jump diffusion

models. The presence of jumps in the price has a major impact on the volatility realizations,

since it adds to the continuous quadratic variation process random jumps whose magnitude is

given by the sum of the squares of the log-price discontinuities. Therefore, by adding to the

exponential Brownian equation a jump part, we also turn the SDE for the realized volatility into

a jump diffusion. In full analogy with the purely diffusive case, we apply the Fourier transform

to the associated PIDE and, by assuming the terminal condition to be 1, we then derive the

characteristic function of the transition probability densities. The regularity conditions on the

resulting jump diffusions must be then complemented by the usual mild requirements on the

decay of the distribution of the jumps.

Finally, we added a part on hedging a joint asset and volatility derivative when the under-

lying follows a jump diffusion. The two arguments offered are both very standard: namely, the

replication argument by “completing the market” with a traded instrument further to the under-

lying (e.g. Wilmott [99]) and the classic mean-variance hedging strategy for jump diffusions. In

both cases, the formulae obtained are in line with those known for derivatives depending on an

underlying asset only. The reason seems to us to lie in the fact that the quadratic variation is a

random process completely dependent to the stock price movements. Therefore, the equations

for hedging do not account for extra terms as it would happen if we were minimizingL2 distances

on spaces spanned by more than one martingale, or tried to replicate the pathwise movements of

multiple Brownian components.

Chapter 3 has its foundations in a pattern that can be observed in the formulae of chapter 2.

The equations in chapter 2 for the joint characteristic function of the log-price and its quadratic

variation can be seen to retain the same functional structure of the univariate case of the log-

returns, differing from it only by a substitution involving the second Fourier variable. This has
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to do with a probabilistic interpretation of the characteristic function of the log-price. As pointed

out by Carr and Wu [15] among the others, such a transform can be written as a characteristic

function of the quadratic variation after a change of measure keeping track of correlations. In

our case, this relationship provides a direct analytical connection between the asset returns and

their quadratic variation. This ultimately means that we are able to express the joint character-

istic function of the returns and the quadratic variation in terms of a transform of the quadratic

variation only, calculated for some combination of the two Fourier parameters.

A useful mathematical representation contributing to a financial view of this relationship is

that of a time change, that is, an increasing almost surely finite process dictating the random ar-

rival times of trades. Realized volatility, understood as the pathwise integral of an instantaneous

volatility process, is one instance of a time change. The powerful feature of time-changed mod-

eling is that it easily specifies to many different popular models from the literature (stochastic

volatility models, jump diffusions, Lévy processes etc.). Time-changed asset models are typ-

ically applied to Lévy processes; also, under a certain condition, the time-changing operation

preserves the local martingale property of the underlying process. In this respect, our contri-

bution to the time-changing theory is that we found out that it is possible to time-change the

continuous and jump part of some underlying Lévy process with two separate and possibly de-

pendent processes, in such a way as to obtain a local martingale. If we assume the time changes

to be absolutely continuous, this means that we can build a price process with two associated

rates of activity: one for the stochastic variance and one for the jump rate. That is, we can postu-

late a pair of processes that respectively model the rate of occurrence of “normal” and “critical”

price changes. It stands to reason that those effects in real markets may very well be linked or

correlated, a stylized fact that we are then able to capture. We christened these models decoupled

time-changed (DTC) Lévy processes.

To a certain extent, DTC asset pricing models were investigated before by Huang and Wu

in [63]. However, their work leaves open questions on the theoretical standing of this kind of

processes. For example, the martingale properties of the asset price are not shown in their work.

By appealing to the theory of Jacod [65], we find that DTC Lévy processes are local martin-

gales if subject to a synchronization property between the underlying Lévy process and the time

changes. Namely, the underlying Lévy process must be constant on the discontinuity sets of

the time changes. Clearly, the same applies to ordinary time changes, a fact that was not fully

recognized in the work of Carr and Wu [15]. It is our view that to gain a better understanding of

time-changed Lévy processes one must directly inspect their martingale representation given by

their local characteristics (Jacod and Shiryaev [67], chapter 2). The bottom line is that the char-

acteristic triplet of a Lévy process is well-behaved with respect to the time-changing operation

only if the synchronization properties mentioned above hold. This ground of analysis starkly

contrasts with the previous literature, where proofs normally rely on Doob’s optional sampling

theorem. Arguments of this kind seem to us to be fundamentally flawed, since time changes

are not almost surely bounded processes, nor are the exponential martingales arising from Lévy

processes uniformly integrable in general.

From the practical viewpoint, DTC processes are of importance because they not only spec-

ify to standard time changed models, but also to other important asset pricing models, like the
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stochastic volatility model with jumps (Bates, [6, 7]) and the stochastic volatility model with

jumps and stochastic jump rate (Fang, and Huang and Wu [37, 63]). Moreover, joint asset and

volatility payoffs can be priced within our proposed DTC framework, a simple property whose

search led to the whole body of theory just mentioned. The third chapter of this thesis is a rather

faithful adaptation of the paper [97].

Still, one may very well question whether, theoretical subtleties apart, a DTC theory could

be of benefit for further asset modeling research. A fair objection would be that this kind of

processes may just represent a mathematical shorthand of already known models. Furthermore,

a full empirical analysis has been already conducted in [63], and our work does not add from

that angle. As an answer to this objection, we believe to have found (section 3.6) a new way

to asset modeling which makes full use of the new features allowed by a DTC process; most

importantly, the ability to model dependency between the stochastic volatility and a stochastic

jump rate within an analytical pricing framework.

The idea is to move away from the traditional choice for the instantaneous volatility pro-

cesses as given by a classic system of SDEs, typically given by CIR-type equations. As Grasselli

and Tebaldi [55] have shown, in the class of exponentially-affine models it is highly unclear if a

multivariate set-up based on exogenously-correlated Ito diffusions can generate analytical trans-

forms for the model. Instead, we assume the activity rates to follow the diagonal entries of a

multivariate matrix process called the Wishart process, carrying a more sophisticated intrinsic

correlation structure. The mathematics of the Wishart process have been extensively studied by

Bru [12], and have been already used in financial modeling by Grasselli and da Fonseca [27, 28]

and Gouriéroux and Sufana [52, 53], to name a few. The analytical properties of the Wishart

process carry on to the Laplace transform of a DTC price model based on it. At the same time,

the interdependencies between the entries of the Wishart process generate in our context an en-

dogenous stochastic correlation between the jump arrival rate and the instantaneous variance of

the process.

In chapter 4 we generalize and make more precise the ideas sketched on chapter 3, section

3.6. In order to model the instantaneous activity rates, we employ this time two projections of

a common underlying Wishart process of arbitrary dimension. The model retains a dependence

between the activity rates; moreover, it is a multifactor model, a property that allows to explain

the volatility surface by means of several stochastic factors. In such a way not only we obtain a

correlation between the jump activity and the stochastic volatility, but we are also able to generate

a stochastic correlation between the log-asset returns and the volatility, a distinctive property of

the multifactor models. This is a desirable feature if one intends to model forward volatility

smiles, which is in turn essential for correctly pricing forward-starting derivatives (da Fonseca et

al. [28], da Fonseca and Grasselli [26]). Also, the ability to capture the effects of sophisticated

volatility/asset dependencies makes of this model an ideal candidate for the valuation of heavily

volatility-dependent derivatives like the TVO.

Ultimately, in this final chapter we combine in a concrete model all of the elements in-

troduced in this thesis: mixed payoffs of volatility and equity, activity rates and time changes,

inverse-Fourier pricing, transform analysis by changes of measures, jumps, correlations, and so

on. We believe that direct inroads to this new model would have been much more difficult if we
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did not have the theoretical DTC framework at hand to refer to.

At the time of writing this introduction some of the ideas contained in this thesis seem to

have caught on. In [98] Wang and Wang add to the TVO analysis of [30] by studying the hedging

problem from the point of view of the mean-variance optimization. They derive an explicit

Föllmer-Schweizer decomposition for the TVO price (Föllmer and Schweizer, [43]), when the

underlying follows an exponential Lévy process, in both a continuous and discrete time set-

up. Since the Föllmer-Schweizer decomposition operates on semimartingales, if we assume the

underlying to be a semimartingale in the real statistical measure, this should allow for a hedging

strategy in which the orthogonal component gives the cost of the hedge. In contrast, we notice

that the mean-variance optimization argument provided in chapter 2 minimizes the hedging error

with respect to the risk-neutral measure, i.e. we directly assume martingale dynamics for the

underlying, yielding to a Kunita-Watanabe type decomposition for the hedge (see e.g. Cont and

Tankov [23]). This is a weaker result, since the hedging error in this case cannot be readily

interpreted in terms of actual portfolio profits and losses, for the latter require to be calculated in

the market measure.

Another relevant contribution to the theory of the target volatility options has been put forth

by Grasselli and Marabel Romo [54], who make a case for pricing the TVO using a multifactor

model. The authors argue that a TVO is highly sensitive to the volatility skew and correlation

modeling. To this end, it can be for example noted that a linear correlation between returns and

volatility induces a monotonic relationship between the option price and the movements of the

underlying. Indeed, assuming the leverage to be negative as logical, a price increase is associated

with a volatility reduction and thus to an even higher call TVO price. However, if we assume

a variable correlation between returns and volatility, as truly observed in the markets, this no

longer needs to be true. Typically, variable (and in particular, stochastic) correlation effects

can be obtained by means of a multifactor model specification. The authors thus carry out an

empirical analysis by calibrating both the two factor model by Christoffersen et al. [20] and the

classic Heston [60] model, and use the parameters to price a call TVO. As expected, they find

relevant price discrepancies between the two model. As a side result they also give formulae for

the Vega and Vomma sensitivity of the TVO; in particular the TVO Vomma (sensitivity of Vega

with respect to the volatility) is negative. Implied volatilities from the option increase precisely

when Vega decreases. Therefore TVOs can be used to Vega-hedge other exotic derivatives, like

e.g. the reverse cliquet option, whose Vomma has opposite sign. This property makes of the

TVO a possible hedging instrument for this portfolio sensitivity measure. Finally, they provide

pricing formulae for a forward starting TVO, that is, a TVO whose strike price is set at a date

later than the inception of the contract.

The Fourier inversion technique applied to joint asset and volatility products used in [30,

96] and reproduced in this thesis has been recently improved by da Fonseca et al. [25]. By

conditioning to the total variance paths the authors combine the inverse Fourier pricing equation

also found in [96] (chapter 2, equation (2.15)) with the integral representation of the inverse

square root of the total variance used for instance in (1.43). This yields a mixed Laplace/Fourier

transform of the transition densities to be used in the semi-closed formula for the TVO price.

They extend this technique to other path-dependent volatility derivatives, like the double digital
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call option introduced in chapter 2, section 2.6, and the corridor swap. Finally, they provide

analytical formulae for pricing these derivatives under a number of models, including the Heston

[60], Bi-Heston [20], and Multi-Heston [28] volatility models.

A further work related to the pricing of exotic derivatives through joint transforms is that

of Zheng and Zeng [103]. In the context of a 3/2 volatility models the authors derive a formula

for the triple joint characteristic function of the log-price, the realized volatility and the instanta-

neous volatility. En route to this result, the authors recover the formula for the joint log-price and

integrated variance already presented in [96] (chapter 2, section 3.5). They also extend the treat-

ment to the computation of joint forward characteristic functions for the 3/2 model, and use these

for pricing forward-starting target volatility options and other volatility-dependent products.

These and other pieces of research confirm that the body of financial and mathematical

theory on cross volatility/equity payoffs is enjoying a significant expansion in recent times. The

introduction of these products in financial markets calls for a more accurate modeling of the

possible interplay between these two factors. In particular, in order to treat these new payoffs

one must improve the ability to handle the interactions between the evolution of an asset and that

of its volatility. This is the general research area we are trying to contribute to with the present

thesis. In writing this piece of research, we have followed a path that starts off with the analysis

of a new volatility-linked payoff and terminates with an asset pricing model providing a natural

environment for its valuation.



Chapter 1

Target volatility options and asset allocations

Variance and volatility swaps were the first instances of volatility derivatives. They were intro-

duced in the late nineties to allow investors to trade pure volatility risk (see [29] for a detailed

account). Over the past few years, volatility products have become very liquid and widely traded

instruments. Investors use volatility derivatives to hedge the volatility risk of their portfolios or

to speculate on future realized volatility levels.

Variance and volatility swaps have been extensively studied in the literature. Derman et al.

[29] show how to price and statically hedge variance swaps in a model independent fashion by

investing in a portfolio of call and put options when the underlying exhibits continuous sample

paths. In a seminal paper, Carr and Lee [14] provide several methods for pricing and hedging

a large class of functions on the quadratic variation. Prices and hedges of quadratic variation

claims are expressed in terms of weighted portfolios of European contracts on the terminal value

of the underlying. Fritz and Gatheral [46] instead study some ill-posed problems connected with

the replication strategy suggested by Carr and Lee [14] for certain payoffs and propose some

regularization schemes.

A new type of volatility derivatives was introduced around 2008 under the name of target

volatility option (TVO). TVOs allow investors to take a joint view on the realized volatility of a

given underlying and its price. For example, a target volatility call pays at maturity the terminal

value of the underlying ST minus the strike K, floored at zero, rescaled by the ratio of a given

target volatility (an arbitrary constant, say σ̄) and the realized volatility RVT of the underlying

over the life of the option:

φ(ST , RVT ) =
σ̄

RVT
(ST −K)+ . (1.1)

TVOs are popular with investors and hedgers because they are typically cheaper than vanilla

options. As long as realized volatilities are lower than the target volatility, the payoff of the

former is higher than the payoff of the corresponding vanilla option.

During the 2008 financial crisis for example, implied volatilities across asset classes expe-

rienced a steep increase, with a significant impact on option (long vega) costs. The generalized

increase in implied volatilities was in part a consequence of higher expected future realized

volatilities, but was also connected with dealers limits/reluctance to increase their short vega

positions. TVOs were then introduced to allow investors to take a bullish/bearish view on the

underlying asset in an option format at a relatively low cost.

27
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A target volatility asset allocation (TVA) is instead a portfolio strategy aiming at maintain-

ing a constant investment volatility over the time horizon. In order to achieve this, the equity

exposure is periodically adjust at pre-specified dates, according to an inverse relationship with

the volatility realized by the underlying during the previous holding period. If the volatility falls,

the equity exposure is increased to take advantage of the bullish market situation. In contrast,

as volatility increases and equity prices fall, the portfolio tends to lock the earnings in a bond

position. On balance, the asset allocation should offset the equity volatility shocks and maintain

the total investment volatility at an approximately constant level σ. This portfolio strategy is im-

portant for two reasons. Firstly, for risk management purposes the amount σ of volatility targeted

does provide the desired risk exposure of the investment. Secondly, in a valuation framework,

the price of a derivative written on a target volatility index is approximately the Black-Scholes

value of volatility σ.

In this chapter we provide three methodologies for the pricing of TVOs. We shall assume

that volatility is independent from the Brownian motion driving the returns underlying asset. This

assumption is in general quite restrictive and its relaxation will be treated in the next chapter. The

assumption of independence however allows us to reduce the TVO pricing problem to calculating

the expectation of a portfolio of quadratic variation claims. Secondarily, we give an overview of

the continuous-time TVAs, by essentially following the approach suggested by Stoyanov [95],

and add some ideas for further research.

This first chapter is structured as follows. In the next section we state the main assump-

tions and introduce some notation. In section 1.1 we illustrate some properties of a volatility

payoff equivalent to that of the TVO when independence is assumed with the stochastic volatil-

ity process. In section 1.2 we derive the first approximation method which is based on Taylor

expansions. The price of a TVO at inception is approximated by a sum of integrals of certain

functions of the underlying asset variance. The subsequent section extends the result of section

1.2 to a generic time t to take into account the effect of the cumulated variance. A second pric-

ing methodology based on the log-strike Laplace transform of the option payoff is introduced in

section 1.4. The results of the section can be applied to a large class of stochastic volatility mod-

els to obtain TVO prices by inverting numerically the Laplace transform of the claim value. In

section 1.5, we provide a representation of the price of the TVO in terms of a weighted portfolio

of vanilla call and put options. In particular, we show that the price of a TVO is equal to the

expectation of some linear combination of functions of the terminal value ST of the underlying.

We then apply the Breeden and Litzenberg [10] formula to decompose the expectation above in

a weighted portfolio of calls and puts and provide a formula for the weights. In section 1.6 we il-

lustrate a further pricing methodology which makes use of a uniform polynomial approximation

of the equivalent variance claim. In section 1.7 we briefly turn our attention to the problem of

modeling TVAs in a continuous-time framework. Numerical analysis is provided in section 1.8,

whose graphical output is shown at the end of the chapter. All of the methods presented exhibit

high levels of accuracy. Proofs of the main results are provided in the appendix.

Our market is represented by a filtered probability space (Ω,F ,Ft,P) satisfying the usual

conditions. Throughout the chapter we will assume that there exist a money market account
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process Bt paying zero interest rates. We shall also assume that there exists a pricing measure Q
under which any non-dividend-paying asset St satisfies the stochastic differential equation:

dSt = σtStdWt, (1.2)

where Wt is a Q-Brownian motion and σt > 0 is a stochastic volatility process. All expectations

are taken with respect to the measure Q.

We will restrict our attention to processes σt satisfying a diffusion equation of the type

dσt = µt(σt, t)dt+ νt(σt, t)dZt, σ0 > 0 (1.3)

where the Q-Brownian motion Zt is independent of Wt.

Let Xt = log(St/S0). The quadratic variation of the process Xt is given by

〈X〉t =

∫ t

0
σ2
udu. (1.4)

Define an arbitrary constant σ̄ > 0, which we shall refer to as the target volatility. A target

volatility call option with strike K is a contingent claim on St and 〈X〉t with time-t price given

by

CTVt (St,K, 〈X〉t) = Et

[
σ̄
√
T√

〈X〉T
(ST −K)+

]
. (1.5)

Similarly the time-t price of a put TVO can be obtained by calculating the following expec-

tation:

P TVt (St,K, 〈X〉t) = Et

[
σ̄
√
T√

〈X〉T
(K − ST )+

]
. (1.6)

TVOs allow option buyers to take a joint bet on the price of the underlying and its volatility.

The target volatility typically represents the option buyer’s expectation of the future average

realized volatility of St during the tenor of the option. In particular, if volatility realizes at or

below the target level, the payoff of the option will be greater or equal than the payoff of the

corresponding vanilla option. If implied volatilities are relatively high compared to the buyer’s

expectations, TVOs provide a way to gain exposure to the underlying at a reduced premium.

1.1 Properties of the equivalent payoff
One first important remark about (1.5) is that it is a joint function of the stock price and variance

of the form p(ST )q(〈X〉T ) for measurable functions p and q. Indeed, having chosen σt and Wt

independent, a standard conditioning argument ensures that we can equivalently write (1.5) as a

variance claim.

Proposition 1.1.1. Let σt be independent of Wt. Let CBS(S0,K, x) be the Black-Scholes price

of the vanilla European call option of initial underlying value S0, strike K and total realized

variance x on [0, T ], that is

CBS(S0,K, x) = S0N(d+(x))−KN(d−(x)) (1.7)
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where N(·) is the cumulative normal distribution and

d±(x) =
log(S0/K)± x/2√

x
. (1.8)

Then the function

h(x) = σ
√
T
CBS(S0,K, x)√

x
(1.9)

is such that:

E[H(ST ,K, 〈X〉T )] = E[h(〈X〉T )]. (1.10)

Under independence, the pricing problem has been therefore reduced to the pricing of a

claim on the stock’s quadratic variation only. Extensive treatment of this kind of claims is given

in Carr and Lee, [14]. Nevertheless, for h(x) as in (1.9), the results of [14] cannot be directly

applied in order to get a useful pricing formula. Depending on the parameters S0 and K, the

function h(x) may or may not be bounded on the half real line, thus not falling under the cases

accounted there. More generally, we have the following result for the asymptotics of the equiva-

lent payoff h(x):

Lemma 1.1.2. Let h(x) be as in (1.9). Then

lim
x→0+

h(x) =


0 if S0 < K

σ
√
TS0/

√
2π if S0 = K

O(x−1/2) if S0 > K

(1.11)

and

lim
x→+∞

h(x) = 0. (1.12)

Lemma 1.1.2 is intuitively clear: if the option begins out-of-the-money and the volatility is

sufficiently small the payoff will not be triggered, regardless of how big 1/
√
〈X〉T can get. On

the other hand if the options begins in-the-money, for small values of volatility the difference

between terminal stock and strike is going to be positive while the inverse square root of the

volatility diverges. Interestingly, for at-the-money (ATM) options these effects balance out to

yield a version of the Bachelier formula. Therefore we see that for the pricing problem to be

well-defined for every moneyness regime we need the following integrability condition:

E[〈X〉−1/2
T ] <∞. (B)

As an example, this condition holds true for sensible parameter choices when the volatility pro-

cess is given by the CIR equation (see e.g. [32], theorem 4.1).

1.2 Taylor expansion approximation
We begin this section with a simple motivating example. Using the well-known Bachelier ap-

proximation formula and proposition 1.1.1 and the independence of the volatility and price pro-

cesses, it is straightforward to see that the price of the at the money TVO is approximately equal
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to the price of a vanilla option with implied volatility σ̄:

CTV0 (S0, S0, 0) = E

[
σ̄
√
T√

〈X〉T
E[(ST − S0)+ | FσT ]

]

= E

[
σ̄
√
T√

〈X〉T
CBS(S0, S0, 〈X〉T )

]

' S0E

[
σ̄
√
T√

〈X〉T

√
〈X〉T

2π

]

= S0σ̄

√
T

2π

' CBS(S0, S0, σ̄
2T ). (1.13)

As stated, the price at inception of an at-the-money TVO is thus approximately the Black-

Scholes price of the equivalent ATM vanilla call. For out and in-the-money options we can de-

velop the Black and Scholes formula as a function ofK in its Taylor series around the ATM level

S0. We shall show that each term of the expansion can be written as an integral of some exponen-

tial function of the quadratic variation 〈X〉T . Expectations of such quantities can be explicitly

calculated for a large class of parametric models or can be derived using a non-parametric ap-

proach à la Bredeen and Litzenberger [10]. The following lemma allows us to express the Black

and Scholes price as a weighted sum of functions of the cumulative variance:

Lemma 1.2.1. The Black and Scholes (call) equation admits the following Taylor expansion as

a function of the strike K around the ATM point S,

CBS(S,K, x) = S − (S +K)N

(
−
√
x

2

)
+ e−x/8

f(n)∑
j=0

x−(1/2+j)Wn,j(K) + O((K −S)n+3),

(1.14)

where

Wn,j(K) =
1√
2π

n∑
k=2j

(−1)kcf(k)−j,k (K − S)k+2

Sk+1(k + 2)!
, (1.15)

and

f(k) =

{
k
2 , k even;
k−1

2 , k odd.
(1.16)

The coefficients cj,n can be derived explicitly by solving a simple recursive equation (see

the appendix for details). In order to calculate the TVO price it is convenient to simplify the

functions of the quadratic variation obtained as a consequence of the previous step using the

results below:

Lemma 1.2.2. For any x, r > 0 the following equalities hold:

1√
x
N

(
−
√
x

2

)
=

1

2
√
π

∫ ∞
0

e−(z+1/8)x√
z + 1/8

dz, (1.17)
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and

x−r =
1

rΓ(r)

∫ ∞
0

e−z
1/rxdz. (1.18)

Substituting equation (1.14) into (1.9) and using (1.17) and (1.18), we have the following

proposition:

Proposition 1.2.3. The price of a call TVO can be approximated by a linear combination of

integrals of some exponential function of the quadratic variation,

CTV0 (K) ' σ̄
√
T

2S0√
π
I

1/2,0
0 − S0 +K

2
√
π

Φ
1,1/8
0 +

f(n)∑
j=0

W̃n,j(K)I
j+1,1/8
0

 , (1.19)

where we have defined:

Ir,a0 =

∫ ∞
0

E
[
eλ

r,a(z)〈X〉T
]
dz, (1.20)

Φr,a
0 =

∫ ∞
0

E
[
eλ

r,a(z)〈X〉T
]

√
z + a

dz, (1.21)

λr,a(z) = −(z1/r + a), (1.22)

and

W̃n,j =
Wn,j(K)

(j + 1)!
. (1.23)

The use of Fubini’s theorem to interchange the order of integration in the formula above is

justified whenever the decay of the characteristic function of 〈X〉t is sufficiently fast, as it is in

the case for example of exponentially-affine models. Integrals Ir,a0 and Φr,a
0 can be calculated

explicitly for a variety of parametric models for which the Laplace transform of the quadratic

variation is known in closed form. For example we could model the instantaneous variance

process σ2
t as a CIR process. More generally we can make use of the abundant literature on

affine processes (see Duffie et al. [42] for a detailed treatment) to derive closed form solutions

for the price of the TVO.

In section 1.5 we shall use a model independent approach in the spirit of Carr and Lee [14],

to express integrals (1.20) and (1.21) and thus the TVO price as a weighted portfolio of traded

options.

1.3 Taylor expansion for t > 0

So far we have dealt with the pricing problem at time zero. As variance cumulates during the

life of the option, the pricing problem changes and formulae become slightly more involved,

although the solution remains similar in nature.

Let us consider the price of a TVO at time t > 0. We need to solve an expression of the
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form

CTV (St,K, 〈X〉t) = Et

[
σ̄
√
T√

〈X〉T
(ST −K)+

]

= Et

[
σ̄
√
T√

ε+ 〈X〉T−t
CBS(St,K, 〈X〉T−t)

]
, (1.24)

where we have set ε = 〈X〉t. Thanks to the Markovian structure of the stock price and volatility,

the t > 0 pricing problem is very similar to the one encountered in the previous section. How-

ever the presence of the term εt causes a lack of symmetry between the powers of 〈X〉T−t in

the numerator and the square root in the denominator when substituting the Black and Scholes

formula with its Taylor series. When t > 0 proposition 1.1.1 easily extends to

Et[H(ST ,K, 〈X〉T )] = Et[hε(〈X〉T )]. (1.25)

where hε(x) = h(x + ε), ε > 0 are the shifted payoffs. After expanding the time-t Black and

Scholes formula appearing in hε around the strike K, we are left with calculating expressions of

the form:

q1(x) =
N(−

√
x/2)√

ε+ x
, (1.26)

q2(x) =
x−(j+1/2)

√
ε+ x

. (1.27)

In principle, we could represent q1(x) and q2(x) as double integrals of exponential functions

of x by considering the numerator and denominator separately. However, because of singularities

in some of the integrals involved, this approach does not allow us to derive model independent

prices. An alternative approach is to consider a Taylor expansion of N(−
√
x/2) and x−(j+1/2)

around the point x+ ε:

q1(x) =
N(−

√
ε+x
2 )

√
ε+ x

+
e−(ε+x)/8

√
2π

m∑
i=0

ωi,m(ε)(ε+ x)−(i+1) + O(ε+ x)m+2), (1.28)

where

ωi,m(ε) =

m∑
k=j

(−1)k+1γi,k
εk+1

k + 1!
, (1.29)

and γj,k satisfies the following recursion1:

γ0,0 = −1/4

γ0,k =
(
−1

8

)
γ0,k−1, k = 1 . . .m

γk,k = (1/2− k)γk−1,k−1, k = 1 . . .m

γj,k =
(
−1

8

)
γj,k−1 + (1/2− j)γj−1,k−1, j = 1 . . .m, k = j + 1 . . .m.

(1.30)

1The closed form solution of the recursion is γj,k = − 1
4

∏j
i=1

1−2i
2

(
− 1

8

)k−j (k
j

)
for j ≥ 1 and k ≥ j.
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Similarly,

q2(x) =

m∑
k=0

ζk,j(ε)(ε+ x)−(j+k+1) + O(m+ 1) (1.31)

where we have defined ζ0,j(ε) = 1 and

ζk,j(ε) =
εk

k!

k−1∏
i=0

(j + i+ 1/2) (1.32)

for k ≥ 1.

These approximations can be substituted in the Taylor expansion of the time-t Black and

Scholes price. By putting all terms 〈X〉T − 〈X〉t as common factor, after some rearrangements

we obtain the following proposition

Proposition 1.3.1.

CTVt (K) ' σ̄
√
T

2St√
π
I

1/2,0,0
t − St +K

2
√
π

Φ
1,1/8
t +

m+f(n)∑
j=0

Ŵn,m,j
t (K, 〈X〉t)Ij+1,1/8,0

t

 ,
(1.33)

where

Ir,a,bt =

∫ ∞
0

e−(z1/r+b)〈X〉tEt
[
eλ

r,a(〈X〉T−〈X〉t)
]
dz, (1.34)

Φr,a
t =

∫ ∞
0

e−(z+a)〈X〉t
√
z + a

Et
[
eλ

r,a(〈X〉T−〈X〉t)
]
dz, (1.35)

λr,a(z) = −(z1/r + a), (1.36)

and the weights of the linear combination are given by:

Ŵn,m,j
t (K, ε) =

1

(j + 1)!

{
− St +K√

2π
e−ε/8ωj,m(ε)

+

min(j,f(n))∑
k=0

Wn,k(K)ζj−k,k(ε)Ij≤m

+

min(m,f(n)−j+m)∑
k=0

Wn,j−m+k(K)ζm−k,j−m+k(ε)Ij>m

}
. (1.37)

Note that to simplify the notation, we have imposed that the summation in the Taylor ex-

pansion of q1(x) and q2(x) is up to m for both functions.

1.4 TVO pricing using Laplace transforms
An alternative approach to the use of Taylor series to derive the price of a TVO is based on

Laplace transform techniques. In particular, we shall consider the Laplace transform of the

payoff in the log-strike variable. As we will show later in this section, this approach leads to

very simple semi-analytical solutions which are also efficient from a computational point of
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view. The main drawback of the methodology is that the model-independent approach cannot be

applied.

Let us consider the pricing problem of a put TVO. It is convenient to express the payoff of

the option is in terms of the log-strike k = logK

Pt(St, e
k, 〈X〉t) = Et

[
σ̄
√
T√

〈X〉T
(ek − ST )+

]
= P (k). (1.38)

By Laplace-transforming the option price in the log-strike k, we can eliminate the max

function appearing in the payoff of the TVO. This will allow us to reduce the problem to the

pricing of a quadratic variation claim rather than a joint claim on the terminal value of the stock

and the quadratic variation.

For any complex α such that Re(α) > 1, the Laplace transform of P (k) is equal to:

P̂t(α) =

∫ ∞
0

e−αkPt(k)dk

= σ̄
√
TS1−α

t Et

[
1√

εt + 〈X〉T − 〈X〉t
e(1−α)(XT−Xt)

α(α− 1)

]
. (1.39)

Using formula (1.18) we can represent the denominator of (1.39) in integral form:

1√
ε+ x

=
2√
π

∫ ∞
0

e−z
2(ε+x)dz. (1.40)

Under the assumption of independence of σt and Wt, after applying Fubini’s theorem, we

can write P̂ (α) in terms of St and the quadratic variation

P̂t(α) = 2σ̄

√
T

π
S1−α
t

∫ ∞
0

e−z
2〈X〉tEt

[
e−z

2(〈X〉T−〈X〉t)+(1−α)(XT−Xt)

α(α− 1)

]
dz

= 2σ̄

√
T

π
S1−α
t

∫ ∞
0

e−z
2〈X〉tEt

[
eλz,α(〈X〉T−〈X〉t)

]
α(α− 1)

dz, (1.41)

where we have defined the function:

λz,α = −(z2 + α(1− α)/2). (1.42)

The Laplace transform (1.41) can be calculated explicitly for a variety stochastic volatility

models (e.g. exponentially-affine models), and the price of the TVO can be then obtained by

inverting (1.41) numerically. In particular, pricing the TVO amounts to calculating the following

integral

Pt(k) =
4eakσ̄

√
T

π3/2

∫ ∞
0

∫ ∞
0

e−z
2〈X〉tRe

(
S1−a−iu
t Et

[
eλz,a+iu(〈X〉T−〈X〉t)

]
(a+ iu)(a+ iu− 1)

)
cos(uk)dzdu.

(1.43)
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Numerical integration can be achieved by using, for example, the Abate-Whitt method [1]

which is based on an application of the trapezium rule combined with the Euler summation. The

Laplace method is fast, easy to implement and produces accurate and stable results.

1.5 Robust pricing
Many authors in recent years (see for example Schoutens et al [93]) have highlighted some prob-

lems related to model dependence in the context of exotic option pricing and hedging. For ex-

ample, local volatility models are known to lead to significantly different results from stochastic

volatility models when pricing forward-starting and cliquet options. Even within the stochastic

volatility class, different models lead to different prices for path-dependent options when cali-

brated to the same volatility surface.

In a pioneering paper, Breeden and Litzenberger [10] showed how to obtain the risk-neutral

density of prices of the underlying asset from traded European option prices. Model-independent

prices for European-style claims on the underlying with sufficiently smooth second derivatives

may then be obtained by forming a portfolio of traded call and put options (see e.g. Carr and

Madan [16]). Although these results are not immediately applicable to volatility derivatives, Carr

and Lee [14] proved that under the assumption of independence, expectations of exponential

functions of the quadratic variation are equal to expectations of some function of the terminal

value of the underlying. The results of [14] allow us to calculate the price of a special class of

highly path dependent claims as if they were European options. Indeed for any complex number

λ we have:

Et[eλ(〈X〉T−〈X〉t)] = Et
[
e(XT−Xt)p(λ)

]
= Et

[(
ST
St

)p(λ)
]
, (1.44)

where

p(λ) =
1

2
±
√

1

4
+ 2λ. (1.45)

In sections 1.2 and 1.3, we showed how to approximate TVO prices by a linear combination

of integrals involving expressions of the form of the central term of equation (1.44). We shall

now show how to apply the Breeden-Litzenberger formula to represent the TVO price in terms

of traded option prices. Let f(S) be a twice-differentiable payoff. For some arbitrary constant η

we have:

f(S) = f(η) + f
′
(k)[S − η] +

∫ ∞
η

f
′′
(x)(S − x)+dx+

∫ η

0
f
′′
(x)(x− S)+dx. (1.46)

By taking conditional expectations on both sides of (1.46), we obtain a representation of the

price of the claim f(S) in terms of vanilla call and put prices

Et[f(ST )] = f(η)+f
′
(η)[St−η]+

∫ ∞
η

f
′′
(x)CMt (St, x)dx+

∫ η

0
f
′′
(x)PMt (St, x)dx, (1.47)

where CMt (St, x) and PMt (St, x) are respectively the prices of calls and puts with strike x.
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1.5.1 Robust pricing via Taylor expansion
In order to apply formula (1.47) to price TVOs, we need to find a function f(ST ) such that

Et[f(ST )] equals the TVO price. As shown in formula (1.33), the price of a call TVO can be

approximated by a linear combination of terms of the form Ir,a,bt and Φ1,a
t for an integer r and

real constants a and b. In order to derive model independent prices for TVOs it is thus sufficient

to apply the Breeden-Litzenberger formula to Ir,a,bt and Φ1,a
t and derive the portfolio of forwards,

calls and puts yielding the model independent price.

Carr-Lee formula (1.44) can then be used to express Ir,a,bt and Φ1,a
t as an expectation of

some integral of the terminal value of the underlying ST . In particular, it can be shown that:

Ir,a,bt =

∫ ∞
0

e−(z1/r+b)〈X〉tEt
[
eλ

r,a(〈X〉T−〈X〉t)
]

= Et

[∫ ∞
0

e−(z1/r+b)〈X〉tRe
(
ST
St

)pr,a(z)

dz

]
, (1.48)

where we have applied Fubini’s theorem to interchange the order of integration and defined

pr,a = 1/2±
√

1/4− 2z1/r − 2a. (1.49)

Similarly,

Φr,a
t =

∫ ∞
0

e−(z+a)〈X〉t
√
z + a

Et
[
eλ

r,a(〈X〉T−〈X〉t)
]
dz

= Et

[∫ ∞
0

e−(z+a)〈X〉t
√
z + a

Re
(
ST
St

)pr,a(z)

dz

]
. (1.50)

The last step is to define the following functions of the terminal value of the underlying S:

Ĩr,a,bt (S) =

∫ ∞
0

e−(z1/r+b)〈X〉tRe
(
S

St

)pr,a(z)

dz (1.51)

Φ̃r,a,b
t (S) =

∫ ∞
0

e−(z+a)〈X〉t
√
z + a

Re
(
S

St

)pr,a(z)

dz. (1.52)

For t > 0 the second derivative in S of functions Ir,a,bt (S) and Φr,a,b
t (S) is well-defined

as 〈X〉t is strictly positive. The left-hand side of equalities (1.48) and (1.50) is equal to the

conditional expectation of functions Ĩr,a,bt (S) and Φ̃r,a,b
t (S) respectively. We can now apply

formula (1.47) to the functions above with η = St and substitute the result in (1.33) to obtain a

representation of the TVO price in terms of traded call and put options.

Note that for t = 0 integrals in expressions (1.51) and (1.52) do not converge and we cannot

use Fubini’s theorem to interchange integrals in equations (1.48) and (1.50). It is therefore not

always possible to calculate the TVO price using formula (1.47). However, if the TVO contract

is redefined as
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CTV0 (S0,K, 0) = E

[
σ̄
√
T√

c+ 〈X〉T
(ST −K)+

]
(1.53)

for some small arbitrary constant c, a “robust price”, in the sense previously defined, does exist.

1.5.2 Robust pricing via Laplace transforms
Can the robust pricing approach be applied to Laplace transform method introduced in section

1.4 ? Using the Carr-Lee formula (1.44) we can express the Laplace transform of the TVO as a

conditional expectation of some function of the terminal value ST ,

Pt(k) =
4eakσ̄

√
T

π3/2
Et

[∫ ∞
0

e−z
2〈X〉t

∫ ∞
0

Re

(
S1−a−iu
t (ST /St)

p±z,α

(a+ iu)(a+ iu− 1)

)
cos(uk)dudz

]
,

(1.54)

where we have set α = a+ iu and defined:

p±z,α = 1/2±
√

1/4− 2z2 − α(1− α). (1.55)

In principle, we could define the function f(S) as

f(S) =
4eakσ̄

√
T

π3/2

∫ ∞
0

e−z
2〈X〉t

∫ ∞
0

Re

(
S1−a−iu
t (S/St)

p±z,α

(a+ iu)(a+ iu− 1)

)
cos(uk)dudz. (1.56)

However the second derivative of f(S) does not exist, because the integral in the variable z

obtained after differentiating (1.56) twice does not converge. It is therefore not possible to apply

the Breeden-Litzenberger decomposition to derive a model independent price for the TVO using

the Laplace transform method introduced in section 1.4.

1.6 Bernstein polynomial approximation
Applying the theory developed in [14], a third way to approach the problem of pricing TVOs is

writing the equivalent claim (1.9) as a uniform limit of a polynomial sequence. The advantage

of this kind of approach is that the approximating claims are much simpler and easy to manage

mathematical expressions, and we do not need to compute hard integral transforms to find prices.

By the Weierstrass theorem continuous real-valued functions on a compact set are known

to be uniformly approximated by some sequence of polynomials. To construct explicitly such

an approximating sequence typically one makes use of the Bernstein polynomials. We have the

following theorem:

Theorem 1.6.1 (Bernstein). Let f(x) be continuous function on [0, 1]. The Bernstein polynomi-

als for f of order n are defined by

Bnf(x) =
n∑
k=0

f (k/n)

(
n

k

)
xk(1− x)n−k (1.57)

and are a sequence such that Bnf(x)→ f(x) uniformly on [0, 1].
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For all c > 0, by means of the transformation y 7→ − log(x/c) we can extend the Weier-

strass theorem to all the positive functions having finite limits. Recall that by lemma 1.1.2, h(x)

can be completed to a continuous function on [0,+∞) converging at +∞ if and only if S0 ≤ K.

In principle we are thus not able to uniformly approximate h(x) with a polynomial. However, we

may very well do so for the shifted polynomials hε(x), because the latter monotonically converge

to h in ε. We have the following result:

Proposition 1.6.2. Let hε(x) = h(x+ ε) , ε ≥ 0. We have, for all c > 0:

Et[h(〈X〉T )] = lim
ε→0

Et[hε(〈X〉T )], (1.58)

Et[hε(〈X〉T )] = lim
n→+∞

n∑
k=0

CnkEt [Pk(ST , S0)] (1.59)

with

Pk(x, y) = (x/y)p
±(−ck), (1.60)

Cnk =

k∑
j=1

(−1)k−jhε∗ (j/n)

(
n

k

)(
k

j

)
(1.61)

and

hε∗(x) = hε (− log x/c) . (1.62)

Again, note that by lemma 1.1.2 if S0 ≤ K the proposition above can be fully restated with

ε = 0 because in such case h will be continuous in 0. On the other hand, if t = 0 and S0 > K,

this proposition allows for an estimate of the option value by choosing ε sufficiently small and

selecting in (1.59) the desired n. In either case, whenever t > 0 then ε can be taken to be the

cumulated variance up to time t and as a consequence of equation (1.25) formula (1.59) directly

gives an estimate for the value of the claim we need to approximate. Thus in some sense under

this method the TVO valuation for t > 0 is a more natural problem.

We have noticed that acting on c varies the speed at which the algorithm converges. Also,

for any given n choosing c < 1/8n makes sure that the approximating value is a real number.

Compared to those of previous sections, the calculations above are very easy to perform; all we

need to do is computing the n values for the claims e−k〈X〉T , the n(n−1)/2 binomial coefficients(
n
k

)
,
(
k
j

)
and the n values hε∗(k/n).

1.7 The target volatility asset allocation
A target volatility strategies is a dynamic portfolio allocation which aims at keeping the port-

folio volatility constant at a desired target exposure σ. Such an asset allocation retains several

properties helpful for portfolio risk management and derivative valuation.

In case the risky asset follows a continuous diffusion model and if continuous-time trading

is assumed, the main properties of the target volatility strategies have been given by Stoyanov in

[95]. In this section we review an expand such an approach while also adding some considera-

tions for possible improvements.
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Our investment universe consists of a riskless bond Bt earning a constant fixed interest rate

r, following the ODE

dBt = rBtdt, B0 = 1, (1.63)

and of a risky equity St driven by the geometric Brownian motion

St = µtStdt+ σtStdWt (1.64)

satisfying the usual assumptions. The dynamics of (1.64) are assumed to be those of the historical

market measure. By trading only in Bt and St we would like to devise a continuous time self-

financing strategy

At = (Θr
t ,Θt) (1.65)

in such a way that the resulting portfolio process has a constant volatility σ. The processes

Θr
t ,Θt are càglàd predictable processes defining respectively the quantities of bond and stock to

be held at each time t.

Assume that C is our initial endowment. We initially set Θ0 = Cσ/(σ0B0) and Θr
0 =

(C −Θ0B0)/S0, so that π0 = C. For t > 0, define the portfolio earning process:

πt =

∫ t

0
Θr
udBu +

∫ t

0
ΘudSu. (1.66)

The cash values at time t of Θr
t and Θt are given respectively by V r

t = Θr
tBt and Vt = ΘtSt.

That the portfolio is self-financing means requiring that V r
t + Vt = πt for all t; by setting

V r
t = wrtπt and Vt = wtπt, this condition is equivalent to wrt + wt = 1. We therefore have:

dπt =ΘtdBt + ΘtdSt =
V r
t

Bt
dBt +

Vt
St
dSt = wrtπt

dBt
Bt

+ wtπt
dSt
St

=rπtdt+ wt(µt − r)πtdt+ wtσtπtdWt. (1.67)

We see that the portfolio process decomposes as a fixed riskless interest rate r paid on the

whole portfolio, a stochastic risk premium proportional to (µt − r) and weighted by wt, and a

volatility term where wt counterforces σt. We wish to set the percentage equity exposure wt in

such a way that the log-returns of πt show constant volatility σ. Clearly, this can be achieved by

setting

wt =
σ

σt
. (1.68)

It is important to observe that wt can be greater than one, an occurrence which takes place

if and only if σt < σ . This means that there could be trading periods during which the equity

exposure must be set to exceed 100% of the portfolio value: to achieve this the cash exposure

must become negative. This is to say that in order to maintain the portfolio we need to borrow

money each and every time that the instantaneous volatility exceeds σ. The target volatility

portfolio is therefore a leveraged portfolio.

Substituting the value (1.68) in (1.67) we have the SDE for πt:
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dπt =

(
r +

σ

σt
(µt − r)

)
πtdt+ σπtWt, π0 = S0. (1.69)

The implications of equation (1.69) from the point of view of the derivative pricing are

clear. If one wishes to write, say, a European derivative F on πt, the theoretical price V of F (πt)

will be exactly the Black-Scholes value FBS(σ) of F on a log-normal asset of volatility σ. This

can be shown by performing the usual measure change via the Girsanov exponential martingale

which eliminates the stochastic risk premium from the expression above, and yields the portfolio

distribution in an equivalent pricing measure. More precisely, the measure Q having Radon

Nikodym derivative

dQ
dP

= exp

(
−
∫ t

0

µu − r
σu

dWu −
1

2

∫ t

0

(
µu − r
σu

)2

du

)
(1.70)

gives the risk-neutral distribution of the asset πt as log-normal with parameters r and σ.

The approach described guarantees the analytical tractability of the portfolio model, but it

does however present several major shortcomings. In first place, using σt to devise a trading strat-

egy is not fully convincing as the instantaneous volatility is not observed in the market and has to

be statistically estimated, with the obvious related robustness issues. Secondly, continuous-time

rebalancing directly linked to the spot market volatility may show wild fluctuations in periods

of high volatility, leading to high transaction costs. Thirdly, no exposure limits are imposed for

the equity component of the portfolio, which is clearly unrealistic. We are currently investigat-

ing alternative definitions for the equity portfolio exposure wt overcoming these issues. One

alternative definition for the trading strategy solving the first issue could be using a discrete time

trading strategy involving the realized volatility. For example we could partition the investment

horizon T in n holding periods of length δn = T/n during which the portfolio holdings are kept

constant. At each rebalancing date the equity exposure is adjourned proportionally to the inverse

of the volatility realized during the holding period. The process wnt would therefore be taken as

wnt := σ

(
δn

σ2
0δn1I{0≤t<t1} +

∑n−1
i=1 I(ti−1, ti)1I{ti≤t<ti+1}

)1/2

(1.71)

where we let I(ti−1, ti) = 〈X〉ti−〈X〉ti . One could then set up an SDE for the portfolio process

πnt by solving (1.67) with wt replaced by wnt . The main result should be that, as n gets larger, πnt
tends to πt in the mean-square sense. However, the process πnt thus constructed is a stochastic

process whose discontinuities occur at fixed times, and increase with n. The implications of this

fact are unclear and currently under analysis.

1.8 Numerical results
We have implemented and tested the pricing formulae presented in the previous sections using

MATLAB. In particular, we have assumed Heston dynamics for the underlying asset process,

dSt =
√
vtStdWt, (1.72)
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with CIR instantaneous variance process for the variance given by the SDE:

dvt = κ(θ − vt)dt+ η
√
vtdZt. (1.73)

As usual, Wt and Zt are independent Brownian motions. The following parameters for the

variance process have been used:

S0 = 100, v0 = 0.2, σ = 0.1, κ = 0.5, θ = 0.2, η = 0.3. (1.74)

For a set of fixed market spot values we compared the TVO call values given by formula

(1.43) with a Monte Carlo simulation of 100.000 samples across three maturities and five differ-

ent moneynesses: ±40%,±20%, 0%. The results are shown in table 1.1 and achieve three-digit

precision.

Table 1.2 compares the ATM TVO values calculated through equations (1.19), (1.43) and

(1.59) for polynomials of various orders n, against a Monte Carlo simulation based on 10.000

sample paths. Again, the strike K ranges between −40% and +40% the spot price. Tables 1.3

and 1.4 contain similar computations where the free parameters are respectively taken to be the

maturity T and the variance realized at the valuation time t. The graphical output of tables 1.2,

1.3 and 1.4 are shown in figures 1.1-1.6.

Overall a Taylor polynomial of order 3 performs better in terms of accuracy of the Bern-

stein polynomial of the maximum order considered, which is 30. However, even at such a high

order, the computational time required for the Bernstein method is shorter than that of the Taylor

method because it does not require numerical integration.

Appendix: proofs

Proof of proposition 1.1.1 . Let FσT be the filtration generated by the process σt from time 0 up

to time T . By the independence of Wt and σt we have that conditional on Fσ the process Wt is

still a Brownian motion. Therefore, by the usual properties of the conditional expectation:

Et

[
σ
√
T√

〈X〉T
(ST −K)+

]
= Et

[
σ
√
T√

〈X〉T
Et
[
(ST −K)+

∣∣∣∣ FσT ]
]

= Et

[
σ
√
T√

〈X〉T
CBS(S0,K, 〈X〉T )

]
= Et[h(〈X〉T )]. (1.75)

Proof of lemma 1.1.2. Let S0 < K. If x → 0+, d+(x) and d−(x) tend both to −∞ and

N(d±(x))→ 0. The asymptotic series for N(z) as z → −∞ is

e−z
2/2

√
2π

(z−1 +O(z−2)) (1.76)
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and so as x goes to 0 from the right we have

S0
N(d+(x))√

x
=

S0√
2π
e−

d+(x)2

2

(
1

log(S/K) + x/2
+O(

√
x)

)
→ 0. (1.77)

The same holds for KN(d−(x))/
√
x. If S0 = K then as x → 0+ the numerator of h(x) tends

to 0 because N(d±(x)) = N(±
√
x/2)→ 1. The McLaurin series for N(z) is

N(z) =
1

2
+

1√
2π

(z +O(z2)) (1.78)

therefore

h(x) =
σ
√
TS0√
x

(
N(
√
x/2)−N(−

√
x/2)

)
→ σ
√
TS0√
2π

. (1.79)

Finally if S0 > K then N(d±(x)) → 1, so that the numerator remains bounded in 0 while

h(x) diverges as x−1/2. Equation (1.12) is immediate since the Black-Scholes price is bounded

in volatility.

Proof of proposition 1.2.3. Consider first the Taylor expansion of the Black and Scholes formula

CBS(S,K, x) = C(K) with respect to the strike K around the ATM point S

C(K) = C(S) + C(1)(K − S0) +

∞∑
k=0

C(k+2)(S)
(K − S)k+2

(k + 2)!
, (1.80)

where Ci(S) represents the i-th derivative with respect to the strike K evaluated at the ATM

point S. Following Estrella [36], the Taylor series converges for 0 < K < 2S, and it is possible

to derive the generic expression for Ck+2(S) for all k ≥ 0:

Ck+2(S) =
1√
2π

exp

(
− σ̂

2

8

)
Pk(d

+)

Sk+1σ̂k+1
(−1)k, (1.81)

where we have defined the time scaled volatility σ̂ = σ
√
t = x. It can be shown that Pn(d+)

satisfies the following recursive equation: P0(d+) = 1 and:

Pk(d
+) = (d+ + kσ̂)Pk−1(d+)− P ′k−1(d+) (1.82)

where d+ is defined in (1.8). Noting that for K = S it is d+ = σ̂/2, we can write the generic

term Pn as a sum of powers of the volatility term, namely

Pk =

f(k)∑
j=0

cj,kσ̂γ(j,k), (1.83)

where cj,k is the j-th term of the polynomial Pk, f(k) is defined in (1.16), and

γ(j, k) =

{
2j, k even;

2j + 1, k odd.
(1.84)
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Polynomials Pk have degree k and consist of a sum of even (odd) powers of σ̂ for k even

(odd). The scaled polynomials

P̄k =
Pk
σ̂k+1

(1.85)

consist only of odd powers of the volatility term σ̂ and are equal to

P̄k =

f(k)∑
j=0

cf(k)−j,kσ̂−(1+2j). (1.86)

Substituting (1.86) into (1.81) and using the result in the Taylor expansion of the Black and

Scholes formula, we obtain

C(K) = C(S)+C(1)(K − S)

+e−σ̂
2/8

n∑
k=0

(−1)k
(K − S)k+2

(k + 2)!

f(k)∑
j=0

cf(k)−j,n σ̂−(1+2j) +O((K − S)n+3).

(1.87)

By inverting the order of summation, taking σ̂ as a common factor and using the definition

of C0(S) and C1(S) we finally see that

C(K) =S

{
N

(
σ̂

2

)
−N

(
− σ̂

2

)}
−N

(
− σ̂

2

)
(K − S)

+
e−σ̂

2/8

√
2π

f(n)∑
j=0

σ̂−(1+2j)
n∑

k=2j

(−1)kcf(k)−j,k (K − S)k+2

Sk+1(k + 2)!
+O((K − S)n+3) (1.88)

and formula (1.14) follows.

Proof of lemma 1.2.2. For any a > 0, the Laplace transform of the function g(z) =

1/
√
π(z + a) is equal to:

ĝ(x, a) =

∫ ∞
0

e−xz√
π(z + a)

dz

=
exa√
x

erfc(
√
ax)

=
2eax√
x
N

(
−
√
x

2

)
. (1.89)

Setting a = 1/8 and rearranging we obtain formula (1.17); the proof of the second equality can

be found in Schürger [90].

Proof of proposition 1.3.1. Let us denote the rescaled Black-Scholes price

C̃BS(S,K, x, ε) =
CBS(S,K, x)√

ε+ x
. (1.90)
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Substituting (1.14) in the right-hand side of (1.90) and using (1.28) and (1.31), we have

C̃BS(S,K, x, ε) ' S√
ε+ x

− (S +K)√
ε+ x

N

(
−
√
ε+ x

2

)

−(S +K)e−(x+ε)/8
m∑
j=0

ωj,m(ε+ x)−(1+j) + e−x/8
f(n)∑
j=0

Wn,j(K)

m∑
k=0

ζk,j(ε+ x)−(1+k+j).

(1.91)

Expanding the sum in the equation above and putting all terms in (ε+x)−(1+j) as a common

factor, we obtain, after some algebra:

C̃BS(S,K, x, ε) ' S√
ε+ x

− (S +K)√
ε+ x

N

(
−
√
ε+ x

2

)
− (S +K)e−x/8

m∑
j=0

(j + 1)!Ŵ (n,m, j)(K, ε)(ε+ x)−(1+j). (1.92)

The time-t TVO price is equal to the t-conditional expectation

CTVt (K) = Et
[
C̃BS(St,K, 〈X〉T − 〈X〉t, 〈X〉t)

]
; (1.93)

substituting (1.92) on the right-hand side of (1.93), making use of the integral representations

(1.17) and (1.18) and applying Fubini’s theorem yields the desired result.

Proof of the applicability of Fubini’s theorem to formulae (1.48) and (1.50) . In order to justify

the interchange of the order of integration in equation (1.48), it is sufficient to prove that

∫ ∞
0

Et

∣∣∣∣∣ e−(z1/r+b)〈X〉tRe
(
ST
St

)1/2±
√

1/4−2z1/r−4a
∣∣∣∣∣
 dz <∞. (1.94)

Without loss of generality, set b = 0. For z →∞ the function

I(z) = Et

∣∣∣∣∣ e−z1/r〈X〉tRe
(
ST
St

)1/2±
√

1/4−2z1/r−4a
∣∣∣∣∣


∼ e−z
1/r〈X〉tEt

[(
ST
St

)1/2
]
→ 0 (1.95)

decays exponentially, since Et
[
(ST /St)

1/2
]
<∞. The justification of equality (1.50) is similar.

Proof of proposition 1.6.1. [79], theorem 1.1.1.

Proof of proposition 1.6.2. As ε → 0, the variables hε(〈X〉T ) converge almost surely and

monotonically to h(〈X〉T ) so (1.58) is clear. Being hε(x) continuous on [0,+∞) and

limx→∞ h
ε(x) = 0 we see that hε∗(x) is uniformly continuous on [0, 1] and hε∗(0) = 0. But
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then by the Bernstein theorem

Bnh
ε
∗(y)→ hε∗(y) (1.96)

uniformly in [0, 1]. Therefore if y = e−cx we have that

Bnh
ε
∗(e
−cx)→ hε∗(e

−cx) = hε(x) (1.97)

uniformly in [0,+∞), so that Bnhε∗(e
−c〈X〉T )→ hε∗(e

−c〈X〉T ) in mean. In particular:

Et[hε(c〈X〉T )] = lim
n→∞

Et
[
Bnh

ε
∗(e
−c〈X〉T )

]
. (1.98)

Finally, using the Newton binomial formula, shifting the j index, and changing the summation

order we find that

Et
[
Bnh

ε
∗(e
−c〈X〉T )

]
=

n∑
j=1

hε∗ (j/n)

(
n

j

)
Et
[
e−cj〈X〉T (1− e−c〈X〉T )n−j

]

=

n∑
j=1

hε∗ (j/n)

(
n

j

)
Et

[
e−cj〈X〉T

n−j∑
k=0

(
n− j
k

)
(−1)ke−ck〈X〉T

]

=
n∑
k=1

k∑
j=1

hε∗ (j/n)

(
n

j

)(
n− j
k − j

)
(−1)k−jEt

[
e−ck〈X〉T

]
(1.99)

and then (1.59) follows from
(
n
j

)(
n−j
k−j
)

=
(
n
k

)(
k
j

)
and equation (1.44).
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Tables and figures

K Laplace transform Monte Carlo
T=1 T=2 T=3 T=1 T=2 T=3

60 8.34817 9.66239 10.60295 8.35267 9.66416 10.60701
80 5.21582 6.86439 8.04389 5.21659 6.86492 8.04662
100 3.03340 4.83608 6.13997 3.03152 4.83438 6.14030
120 1.69640 3.42085 4.73886 1.69431 3.41623 4.73499
140 0.93701 2.44696 3.70588 0.93408 2.44317 3.70266

Table 1.1: St0 = 100, t = 0.25, 〈X〉t = 0.1. TVO prices for different strikes and maturities, using the
Laplace method.

K Taylor polynomial Bernstein polynomial Laplace Monte
n=1 n=2 n=3 n=10 n=20 n=30 transform Carlo

60 10.1534 11.1768 11.3814 21.3617 12.3200 11.6830 11.3919 11.4362
80 8.4475 8.7033 8.7289 13.5985 9.1500 8.8486 8.7301 8.7390
100 6.7416 6.7416 6.7416 6.7103 6.7348 6.7376 6.7416 6.7424
120 5.0357 5.2915 5.2659 5.0745 5.1940 5.2216 5.2672 5.2675
140 3.3298 4.3532 4.1485 3.9826 4.0867 4.1161 4.1699 4.1683

Table 1.2: St0 = 100, T = 3, t = 0, 〈X〉t = 0. TVO prices for different strikes, using different pricing
methods.

T Taylor polynomial Bernstein polynomial Laplace Monte
n=1 n=2 n=3 n=10 n=20 n=30 transform Carlo

1 0.0776 0.7889 0.6822 0.6531 0.655 0.6557 0.6796 0.6765
2 1.7862 2.3835 2.2939 2.1247 2.2005 2.2306 2.2961 2.3028
3 3.1676 3.6829 3.6056 3.4280 3.5206 3.5510 3.6106 3.6023
4 4.3426 4.7952 4.7273 4.5311 4.6526 4.6818 4.7340 4.7254
5 5.3720 5.7746 5.7142 5.4329 5.6341 5.6718 5.7722 5.7166

Table 1.3: St0 = 100, K = 130, t = 0.5, 〈X〉t = 0.25. TVO prices for different maturities, using
different pricing methods.

〈X〉t0 Taylor polynomial Bernstein polynomial Laplace Monte
n=1 n=2 n=3 n=10 n=20 n=30 transform Carlo

0.2 10.1790 10.7804 10.8706 10.9431 10.9183 10.9065 10.8849 10.8862
0.4 9.0426 9.5578 9.6351 9.5958 9.6298 9.6355 9.6467 9.6486
0.6 8.2371 8.6934 8.7618 8.6894 8.7370 8.7471 8.7667 8.7660
0.8 7.6247 8.0372 8.0991 8.0144 8.0643 8.0752 8.0963 8.0967
1 7.1374 7.5159 7.5727 7.4828 7.5314 7.5419 7.5623 7.5607

Table 1.4: St0 = 100, K = 70, T = 5, t = 2. TVO prices for different realized variance levels, using
different pricing methods.
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Figure 1.1: TVO value against the strike. Data from table 2, Taylor polynomials compared to the Monte
Carlo simulation.
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Figure 1.2: TVO values against the strike. Data from table 2, Bersntein polynomials compared to the
Monte Carlo simulation, in-the-money strikes only (divergence occurs for OTM options; see section 1.6).
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Figure 1.3: TVO values against maturity. Data from table 3, Taylor polynomials compared to the Monte
Carlo simulation.
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Figure 1.4: TVO values against maturity. Data from table 3, Bernstein polynomials compared to the
Monte Carlo simulation.
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Figure 1.5: TVO values against realized variance. Data from table 4, Taylor polynomials compared to
the Monte Carlo simulation.
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Figure 1.6: TVO values against realized variance. Data from table 4, Bernstein polynomials compared
to the Monte Carlo simulation.



Chapter 2

Pricing joint claims on an asset and its realized
variance in stochastic volatility models

In this chapter we further develop some of the ideas of chapter 1, and we do so in two different

senses. In first place, we remove in the TVO pricing problem the assumption of independence

between the asset and the stochastic volatility. Secondly, we find a general pricing technique

valid not only for the TVO, but for any sufficiently regular joint asset and volatility payoff. In

addition, we also consider a more general asset price model set-up.

In a general stochastic volatility framework, we find a partial differential equation giving

the time-t price of a contract written jointly on an asset and its realized volatility, and solve it by

Fourier transform methods. More precisely, denoting the quadratic variation of the log-returns

of a market asset St by

It =

∫ t

0
vudu, (2.1)

where vt is the instantaneous variance at time t, we are hereby interested in pricing European-

style contingent claims maturing at time T of the form

FT = F (ST , IT ), (2.2)

for some function F of two variables giving the underlying asset price and its quadratic variation.

In a continuous stochastic volatility model the statistical realized variance and volatility of St are

approximated respectively by IT /T and
√
IT /T , so that the class (2.2) is completely equivalent

to that of the joint asset and realized volatility (variance) claims.

Far from being a mere theoretical exercise, introducing the historical variance in a payoff

may very well lead to sensible real-life derivative products. As we shall see, coherently with the

rationale standing behind the TVO, by means of a volatility correction it is possible to modify a

European payoff f into a claim f̃ , in such a way that taking a position in f̃ will be less costly, and

still produce the same payoff as f if some predicted volatility event takes place. If an investor

wishes to trade in f and has a strong belief about future volatility, he may choose to trade in f̃

instead, eventually being better off if his prediction was correct.

Although our main result is dependent upon the choice and calibration of the dynamics for

the stochastic variance, it is universal in the sense that works with any sufficiently well-behaved

stochastic volatility model. The possible alternative approach, a parameter-free replication pric-

51
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ing like the one advocated by Carr and Lee [14] and detailed in the previous chapter, although not

prone to estimation errors, would evidently rely on the Breeden-Litzenberger formula replicating

a claim on an asset through a portfolio of European call and put options. In practice, the issue

with this approach is that the market may not offer a sufficient range or density of traded strikes,

leading to truncation or discretization errors in the formula, especially for long maturities. In

such instances a model-dependent choice, like the one suggested here, may be preferable.

Similar versions of our main equation are already present in literature. Lipton [77] gives

the Fokker-Planck equation corresponding to the log-price version of (2.3). Fatone et al. [38]

give a solution for such backward equation in the Heston model by means of a Fourier inversion,

and then use the arising family of probability densities to obtain the price of pure volatility

derivatives. Therefore, in their work a double integration is needed for a claim depending on

a single state variable. Sepp [91] instead presents (the log-transformation of) equation (2.3)

for jump diffusions and solves it with a method similar to ours, but then he excludes the price

variable from the analysis and reverts to solutions for pure volatility derivatives in the Heston

model. In contrast, we shall obtain pricing formulae for claims depending also on the final asset

price at expiry for any well-behaved stochastic volatility model, while at the same time keeping

the integration involved to a minimum.

In the spirit of the systematic study by Heath and Schweizer [58], care has been taken

in emphasizing a series of sufficient conditions that make the pricing problem mathematically

unambiguous. We do this by referring to the well-established theory of parabolic equations and

SDEs (Friedman [44, 45], Feller [39], Kunita [73]).

The solution approach proposed is the natural two-dimensional extension of the pricing

method found in Lewis [75]. Our fundamental transform will be taken with respect to the

quadratic variation It, besides the log-price x. Strikingly, only minor modifications in the fi-

nal formulae of Lewis are needed, which is indicative of how powerful such method is. It is

noteworthy that the several-dimension Fourier transform idea can be in principle applied to the

pricing of claims depending on other kinds of non-traded market factors (e.g. Asian options). As

a matter of fact, this technique also applies to jump model. Hence, we do also state and solve the

PIDE associated with pricing joint payoffs in a jump diffusion. As a further extra contribution,

we briefly overview the hedging problem for the class of payoff we are studying, and give simple

formulae for the hedging by replication and mean-variance hedging strategies.

In section 2.1 we define our model and derive the pricing equation, which is solved in sec-

tion 2.2 together with a derivation for the Greeks. Section 2.3 shows the fundamental transforms

for various models and deals with existence/uniqueness issues. In section 2.4 we treat and solve

the PIDE for joint payoffs under a jump diffusion model while in section 2.5 we discuss the

hedging problem. In section 2.6 some claims of the form F (ST , IT ) are introduced, which are

then tested numerically in section 2.7. Technical details are provided in the appendix.

2.1 Setting up the equation
The single asset scenario that we are assuming consists of a three-factor Ito process Xt =

(St, vt, It), t ≥ 0, describing the evolution in time of a risky asset St, its stochastic instanta-

neous variance vt and its realized variance It. A constant market risk-free rate r exists, and the
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asset St continuously pays to its owner a proportional constant dividend yield d. Valuations re-

lying on such a stochastic variance model are unique modulo different choices of a market price

of risk, which we hereafter assume to be fixed. This induces a risk-neutral pricing probability

measure P, which is the only one relevant in all that will follow. Under such a law the price St
will therefore exhibit a log-return rate of r − d.

Let (Ω,P,F , {Ft}t≥0) be a filtered probability space satisfying the usual conditions, and let

W 1
t , W 2

t be two Ft-adapted Brownian motions having correlation ρt. The underlying diffusion

Xt is assumed to be of the form:
dSt = (r − d)Stdt+

√
vtStdW

1
t

dvt = α(t, vt)dt+ β(t, vt)dW
2
t

dIt = vtdt.

(D)

We are interested in the behavior of this process in a finite time range [0, T ]. We assume

the coefficients α(t, x) : R2
+ → R, β(t, x) : R2

+ → R+ to be locally Lipschitz-continuous in x,

uniformly in t; that is, for all compact sets K ⊂ R+, ∃CK > 0 such that:

sup
0≤t≤T

|α(t, x)− α(t, y)|+ sup
0≤t≤T

|β(t, x)− β(t, y)| < CK |x− y|, ∀x, y ∈ K. (LL)

In general, (LL) is sufficient to ensure that a unique strong solution to (D) exists only up to

a random exit time of R3
+. To obtain an everywhere well defined solution we must impose the

(in the words of Feller [39]) natural boundary conditions:

Px,t

(
sup
t≤s≤T

vs = +∞

)
= Px,t

(
inf

t≤s≤T
vs = 0

)
= 0, ∀x ∈ R+, t ∈ [0, T ). (NB)

We also say that the 0 and +∞ boundaries for the variance process must not be attainable.

Most of the commonly used models for stochastic volatility satisfy (LL) but not necessarily

(NB) for every possible choice of parameters. In practitioner’s terms, failure to meet (NB) is

interpreted as the possibility of “volatility explosions” or “volatility vanishings”.

We wish now to find the PDE corresponding to the diffusion problem (D). Suppose one

wishes to trade a derivative that pays off at the maturity date T a certain function of two vari-

ables: the underlying terminal asset value and the quadratic variation accumulated over [0, T ].

The payoff is represented by the random variable F (ST , IT ), where F (x, y) is an integrable

function in the joint distribution of ST and IT . By the usual dynamic hedging argument we set

up a portfolio that is long the contract, and short certain amounts of the underlying and another

variance dependent contract. By choosing the hedge ratios so as to cancel the portfolio ran-

domness, we argue that under the no-arbitrage condition, for the given market price of risk, the

portfolio process must earn the risk-free rate r. The time-t value V (St, It, vt, t) of the contract

can be thus seen to satisfy the following parabolic equation:

∂V

∂t
+ (r− d)S

∂V

∂S
+α

∂V

∂v
+ v

∂V

∂I
+
vS2

2

∂2V

∂S2
+
β2

2

∂2V

∂v2
+ ρβ

√
vS

∂V

∂S∂v
− rV = 0. (2.3)

Pricing a cross asset-quadratic variation derivative F (ST , IT ) therefore amounts to solving
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the Cauchy free-boundary problem (2.3) in R3
+ × [0, T ] with the following terminal condition:

V (ST , IT , vT , T ) = F (ST , IT ). (2.4)

This is the generalized version, in the price variable, of equation (13) of Sepp [91], and the

dual of the Fokker-Planck equation appearing in Lipton [77] and Fatone et al. [38].

As it happens when dealing with parabolic equations arising from financial modeling, exis-

tence and uniqueness results for solutions may not be readily available from the standard theory

of parabolic equations. Typically, this is for two reasons: coefficient constraints are not met, or

terminal conditions (payoffs) are not continuous.

However, even if solvability remains an issue one has to live with1, uniqueness of V es-

sentially carries over from the uniqueness of a solution for (D), which is in turn enforced by

assumptions (LL) and (NB). In addition, under these assumptions, we can invoke the Feynman-

Kac theorem to link the discounted risk-neutral expectation of the payoff to the solution of the

pricing equation. This is a standard requirement in the literature and it motivates our assumptions

on (D).

Proposition 2.1.1. Under assumptions (LL) and (NB) there exists at most one C2,1 solution to

problem (2.3)-(2.4); if such a solution does exist, for x = (St, vt, It) it is given by:

V (x, t) = Ex,t
[
e−r(T−t)F (ST , IT )

]
. (2.5)

Therefore under (LL) and (NB) pricing a claim of the form (2.2) is a well-posed problem,

provided that (2.3) is solvable. We finally impose some growth constraints, this time directly on

V :

V (S) < K1(1 + Sh1), V (I) < K2(1 + Ih2) (GC)

for some K1(I),K2(S) > 0, h1, h2 ≥ 0.

The reason of this assumption is technical in nature and will allow us to perform the nec-

essary reductions while solving the equation. The theory of parabolic equations (Friedman

[44, 45]) provides sufficient conditions on the problem itself under which (GC) holds ([45],

theorem 4.3, p. 147). However, it is difficult to give a comprehensive set of such assumptions

in a financial setting, owing to the lack of the necessary regularity in many cases of interest:

namely, superlinear growth of the coefficients of (D) or discontinuity of F . Alternatively, (GC)

can be checked case by case, for example by using estimates along the lines of those derived by

Bergman et al. [8], theorem 1. In any case, this condition is seen to hold for most of the cases

accounted in section 2.3 (see appendix).

2.2 Solution to the PDE
We shall characterize the solution of the PDE by identifying a fundamental transform, which is

a characteristic function for the model. To do this we will apply the Fourier transform to (2.3)

with respect to both variables I and logS. Once a fundamental transform has been found, we

1See, for example, Andersen and Piterbarg [3] on the non-existence of moments in the Heston model.
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can invert it on a suitable domain in C2 and then conclude from proposition 2.1.1 the existence

of a unique price for F .

Let V (t, S, v, I) be the solution of (2.3) and consider the substitutions:
τ = T − t
x = logS + (r − d)(T − t)

W (x, y, v, τ) =

{
erτV (e−(r−d)τ+x, y, v, T − τ) if y > 0

0 if y ≤ 0.

(2.6)

Equation (2.3) can then be seen to be equivalent to the problem

v

2

(
∂2W

∂x2
− ∂W

∂x
+ 2

∂W

∂y

)
+ ρβ

√
v
∂W

∂x∂v
+ α

∂W

∂v
+
β2

2

∂2W

∂v2
=
∂W

∂τ
, (2.7)

with initial condition:

W (x0, y0, v0, 0) =

{
F (ex0 , y0) if y0 > 0

0 if y0 ≤ 0.
(2.8)

For (η, ω) ∈ C2, let the two-dimensional Fourier transform of W (x, y, v, τ) be:

Ŵ (ω, η, v, τ) =

∫
R2

eixω+iyηW (x, y, v, τ)dxdy. (2.9)

We denote derivatives by subscripts. Consider the transform Ŵ· of the partial derivatives of

W . By substituting (2.7) in the integral above and integrating by parts we find that:

Ŵτ = Ŵτ , Ŵx = −iωŴ , Ŵxx = −ω2Ŵ

Ŵy = −iηŴ , Ŵv = Ŵv, Ŵvv = Ŵvv

Ŵxv = −iωŴv

(2.10)

provided that:

eiωxW (x)|+∞−∞ = eiωxWx(x)|+∞−∞ = eiηyW (y)|+∞ = 0 (2.11)

holds true for some ω, η. These relations are clear if we know V to satisfy (GC), which then

yields (2.10) in a two-strip:

Ω1 = {a1 < Im(ω) < a2, Im(η) > 0} ⊂ C2. (2.12)

Fourier-transforming both sides of (2.7) and substituting the above relations, we have the

fundamental PDE for Ŵ :

β2

2

∂2Ŵ

∂v2
+
∂Ŵ

∂v
(α− iω

√
vρβ)− v

2
(ω2 − iω + 2iη)Ŵ =

∂Ŵ

∂τ
. (2.13)

A fundamental transform Ĥ(ω, η, v, τ) for (2.7) is a solution to (2.13) such that

Ĥ(ω, η, v, 0) = 1. Assume that such a solution exist. Up to a sign shift in the arguments,

Ĥ is the characteristic function of the transition probability density associated with the process
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(logSt, It), and it is thus a holomorphic function2 on a certain multi-strip Ω2 ⊂ C2.

Denote the Fourier transform of the payoff in the log-price and quadratic variation by

F̂ (ω, η) := Ŵ (ω, η, v, 0), itself a holomorphic function on a third multi-strip Ω3 ⊂ C2. Since

F̂ (ω, η) does not depend on the variables v and τ we see that the product Ĥ(ω, η, v, τ)F̂ (ω, η)

is also a solution to (2.13) having initial condition F̂ (ω, η). Therefore by taking the Fourier

inverse of Ĥ(ω, η, v, τ)F̂ (ω, η) on a multi-line

Σ = {(ω, η), ω = s+ ik1, η = t+ ik2, s, t ∈ R} ⊂ Ω =
3⋂
i=1

Ωi, k1, k2 ∈ R, (2.14)

and finally unwinding the variable change we are led to the solution of (2.3):

V (S, I, v, t) =
e−r(T−t)

4π2
×∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
S−iωe−iω(r−d)(T−t)e−iηIĤ(ω, η, v, T − t)F̂ (ω, η)dωdη. (2.15)

Finally, proposition 2.1.1 establishes that (2.15) is the unique price of F (ST , IT ). Of course,

such an argument is meaningful provided that a common domain of holomorphy Ω ⊂ C2 of Ĥ

and F̂ actually exists.

We summarize the above discussion in the following proposition:

Proposition 2.2.1. Assume that the solution Xt of (D) is such that the dynamics for vt satisfy

(LL), (NB), and that (GC) holds. Further assume that Ω 6= ∅ and let k1, k2 ∈ R be such that:

Σ = {(ω, η), ω = s+ ik1, η = t+ ik2, s, t ∈ R} ⊂ Ω. (2.16)

If a fundamental transform Ĥ(ω, η, v, τ) can be found, the price of a claim F written on St and

It is given by equation (2.15).

This formula is completely general: in principle, under the given assumptions, it allows

pricing under any stochastic volatility model. Another attractive feature of equation (2.15) is

that it allows us to separate, by means of Ĥ and F̂ , the pricing information coming from the

model from that coming from the payoff. This was one of the contributions of Lewis’s work on

stochastic volatility models and is equally valid here. Changing the stochastic volatility or the

function to be valued only requires changing the corresponding transform to be used in (2.15),

and not the whole re-computation of the solution.

2.2.1 Greeks

The representation found also allows for a straightforward computation of the Greeks. Calling

J(ω, η, v, τ) the integrand in (2.15) and differentiating V under integral sign we find that the

2See Lukacs [80], theorem 7.1.1. Since we are not confined to real arguments, we do not need to consider analytic
continuations around 0, and may instead develop around any point in whose neighborhood Ĥ is holomorphic. This
means that Ω2 will exist somewhere, even if in general it may not contain the real axis.
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Delta for the contract F is:

∆ =
∂V

∂S
= −e

−r(T−t)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞

iω

S
J(ω, η, v, τ)dωdη. (2.17)

Likewise, the Gamma is seen to be given by:

Γ =
∂2V

∂2S
=
e−r(T−t)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞

iω − ω2

S2
J(ω, η, v, τ)dωdη. (2.18)

The derivative ∆ is one the two coefficients to be used in the hedge ratios yielding equation

(2.3). The sensitivity to the initial instantaneous variance ∂V/∂v can be sometimes expressed

in a similar fashion as (2.17) and (2.18), for example in exponentially-affine models. Clearly,

the ability to fully hedge will depend also on the possibility to identify a fundamental set of

securities for the market.

2.3 Model-specific fundamental transforms

We analyze here in more detail the fundamental transforms of the Heston model, the 3/2 model

and GARCH models. The analytical tractability that characterizes these models in a standard

stochastic volatility scenario carries over when realized volatility comes into the picture. Re-

markably, the solution of (2.13) depends on the coefficient of the linear term as a parameter.

As the variable η appears only in such coefficient, the derivations are identical to those already

present in literature, to which our equations reduce when η = 0.

Below are the transforms, together with their domains of holomorphy, given as functions

of two complex variables. Being a Fourier integral, Ĥ is everywhere holomorphic in its domain

of definition. Complex square roots are always understood to be the positive determination.

In accordance with our initial assumption, the parameters for the models already incorporate

the market price of risk adjustment. For a sketch proof of the derivation of (2.20) consult the

appendix; a complete treatment can be found in Lewis [75].

2.3.1 Heston model

In the model by Heston [60], a fundamental transform can easily be obtained. The dynamics of

the instantaneous variance are:

dvt = κ(θ − vt)dt+ ε
√
vtdWt, (2.19)

with κ, θ, ε > 0. Volatility explosions never occur; taking 2κθ ≥ ε2 ensures that the 0 boundary

is not attainable. Thus under these conditions assumption (NB) is met.

The fundamental transform of the Heston model is:
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Ĥ(ω, η, v, τ) = exp[C(ω, η, τ) + vD(ω, η, τ)]

C(ω, η, τ) =
κθ

ε2

(
τ(b(ω)− d(ω, η))− 2 log

(
e−d(ω,η)τ − c(ω, η)

1− c(ω, η)

))

D(ω, η, τ) =
b(ω) + d(ω, η)

ε2

(
1− ed(ω,η)τ

1− c(ω, η)ed(ω,η)τ

)

c(ω, η) =
b(ω) + d(ω, η)

b(ω)− d(ω, η)

b(ω) = κ+ iεωρ

d(ω, η) =
√
b(ω)2 + ε2(ω2 − iω + 2iη).

(2.20)

The expression for C uses the argument by Guo and Hung [57] and Lord and Kahl [78]

to avoid discontinuity issues in the complex logarithm. The only singularities occur when 1 −
c(ω, η)ed(ω,η)τ = 0 causing divergence in both C and D; hence the domain of holomorphy of Ĥ

is C2 \ Sκ,ε,ρ,τ where

Sκ,ε,ρ,τ = {(ω, η) ∈ C2| e−d(ω,η)τ = c(ω, η)}. (2.21)

2.3.2 3/2 model

We consider the general form as introduced by Lewis [75]. The instantaneous variance is given

by:

dvt = κ(θvt − v2
t )dt+ εvt

3/2dWt. (2.22)

Whenever 2κ ≥ −ε2 we have that +∞ is unattainable; the 0 boundary is natural for any choice

of parameters. We have the following fundamental transform for the model:

Ĥ(ω, η, v, τ) =
Γ(β − α)

Γ(β)
X

(
2κθ

ε2v
, κθτ

)α
1F1

[
α, β,−X

(
2κθ

ε2v
, κθτ

)]
X(x, t) =

x

et − 1
α(ω, η) = c(ω, η)− b(ω)

β(ω, η) = 1 + 2c(ω, η)

b(ω) = (κ+ ε2/2 + iωρε)/ε2

c(ω, η) =
√
b(ω)2 + d(ω, η)

d(ω, η) = 2(ω2 − iω + 2iη)/ε2.

(2.23)

1F1(α, β, z) is a confluent hypergeometric series and Γ is the Euler’s Gamma function. Since β

cannot be a negative integer the singularities of Γ are avoided, so that the domain of the transform

is the whole C2.
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2.3.3 GARCH model

We only take into account a particular instance of this model, namely when the dynamics are

those of a geometric Brownian motion with drift. We also assume ρ = 0; the case ρ 6= 0 can be

obtained by a simple modification of the derivation in [75]. The equation for the instantaneous

variance is

dvt = θvtdt+ εvtdWt, (2.24)

with ε > 0. Clearly, condition (NB) is always met. The fundamental transform is:

Ĥ(ω, η, v, τ) =

2β+1

d(ω, η)β

1I{β<0}

[−β/2]∑
j=0

−β − 2j

j!Γ(1− β − j)
K−β−2j(d(ω, η))e(βj+j2)ε2τ/2

+
1

4π2

∫ ∞
0

∣∣∣Γ(β + iz

2

) ∣∣∣2z sinh(zπ)Kiz(d(ω, η))e−(β2+z2)ε2τ/8dz

]
β = 2θ/ε2 − 1

d(ω, η) = 2
√

2(ω2 − iω + 2iη)v/ε.

(2.25)

Here 1I is the indicator function and Kx the modified Bessel function of second kind. By use of

the appropriate series representation, Kx can be extended to an entire function. So we see that

Ĥ is a holomorphic on C2 \ {ω2 − iω+ 2iη} whenever 2θ > ε2, and it is everywhere analytical

on C2 otherwise.

2.4 Pricing in stochastic volatility models with jumps

We want now to turn the diffusion (D) into a jump model and see if some useful pricing differ-

ential relation can be extracted from the resulting jump diffusion. Namely, by adding jumps to

the asset evolution in (D), we consider the following model:
dSt = (r − d− κ)St−dt+

√
vtSt−dW

1
t + (exp(J)− 1)St−dNt

dvt = α(t, vt)dt+ β(t, vt)dW
2
t

dIt = vtdt+ J2dNt.

(D*)

As usual, W 1
t and W 2

t are two linearly correlated Brownian motions with correlation coefficient

ρt. The process Nt is a Poisson arrival process of rate λ and J a random variable giving the size

of the jumps in the log-price process. The coefficient κ is the compensator for the jump part;

since the jumps are of finite activity we have κ =
∫
R(ex−1)ν(dx) where ν is the associated Lévy

measure. The constraints on α and β are the same as in (D). Moreover, a necessary condition on

ν(dx) for St to be a square-integrable martingale is that:∫
|x|>1

e2xν(dx) <∞ (2.26)
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(see e.g. [23]) which is in particular satisfied for the typical choice of J being normally dis-

tributed. Equation (2.26), together with condition (NB), is sufficient to ensure that St is a mar-

tingale. Indeed, in the equivalent martingale measure and assuming no dividends are paid, the

solution of St is given by:

St = S0 exp

(∫ t

0

√
vudW

1
u −

∫ t

0
vudu/2 + rt

)
e−κt

∏
t≤Nt

eJ . (2.27)

The pair W 1
t ,W

2
t is orthogonal to Nt − κ and thus, under the given assumptions, so are the

continuous and pure jump martingales in (2.27). That is, St is the product of two orthogonal

martingales, and therefore is itself a martingale.

It is important to compare the equations for It in (D) and (D*). When the log-process Xt of

an underlying asset is a discontinuous semimartingale, its quadratic variation is discontinuous as

well, and equals:

It = 〈Xc〉t +
∑
t

∆X2
t (2.28)

where 〈·〉t is the quadratic variation operator and Xc
t is the continuous part of Xt in the semi-

martingale representation of Xt, and ∆Xt = Xt − Xt− . In our situation equation (2.28) takes

the form (D*).

It is well-known that the pricing PDEs associated to ordinary stochastic volatility models

can be easily modified into partial integro-differential equations for some related jump diffusion

(see e.g Bates [6, 7]); for the augmented diffusion (D*) the same idea applies. The argument

runs as follows. In the diffusion above, let V (St, It, vt, t) be the value at time t of a claim paying

off F (ST , IT ) at time T . Since discontinuous claims are not perfectly hedgeable, we are not

able to apply a portfolio replication argument; however, risk-neutral measures still exist and by

the fundamental theorem the expectation of the discounted value of V under every such measure

must be a martingale. As usual, one first applies Ito’s lemma for discontinuous functions to

e−r(T−t)V (St− , It− , vt, t) = Ṽ , yielding:

dṼ =
∂Ṽ

∂t
dt+ (r − d− κ)St−

∂Ṽ

∂S
dt+

√
vtSt−

∂Ṽ

∂S
dW 1

t + α(t, vt)
∂Ṽ

∂v
dt+ β(t, vt)

∂Ṽ

∂v
dW 2

t

+ vt
∂Ṽ

∂I
dt+

vS2
t−

2

∂2Ṽ

∂S2
dt+

β(t, vt)
2

2

∂2Ṽ

∂v2
dt+ ρβ(t, vt)

√
vtSt−

∂Ṽ

∂S∂v
dt+(

Ṽ (St−e
J , It− + J2, vt, t)− Ṽ (St− , It− , vt, t)

)
dNt (2.29)

We see that Ṽ is a martingale if and only if the expectation of the above differential is

zero. The PIDE for the stochastic volatility model with realized volatility (D*) satisfied by V is

therefore

∂V

∂t
+ (r − d− k)S

∂V

∂S
+ α

∂V

∂v
+ v

∂V

∂I
+
vS2

2

∂2V

∂S2
+
β2

2

∂2V

∂v2
+ ρβ

√
vS

∂V

∂S∂v
+∫

R
(V (St−e

z, It− + z2, vt, t)− V (St− , It− , vt, t))ν(dz)− rV = 0. (2.30)

which is an equivalent of equation (2.3) that also accounts for the jumps in the asset and in the
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realized volatility, as well as the the Lévy compensator of the jumps.

When the stochastic volatility model is specified as a square-root process, the equation

above is a version of the PIDE derived by Bates in [6] (equation A4) by equilibrium arguments,

only augmented with the additional terms for the realized volatility. In analogy with the Heston

case, we can find the fundamental transform by setting the terminal condition to 1 and then taking

the Fourier transform of (2.30) with respect to the log-price and realized variance. Let W be as

in (2.6) with r−) replaced by r − d − κ in the second equation. Remembering the rules on the

Fourier transformation of a shifted function, we recognize the analogous of (2.13) as

β2

2

∂2Ŵ

∂v2
+
∂Ŵ

∂v
(α− iω

√
vρβ)−

(
v
ω2 − iω + 2iη

2
+

∫
R

(eiωz+iηz
2 − 1)ν(dz)

)
Ŵ =

∂Ŵ

∂τ
.

(2.31)

We are thus looking for a solution Ĥ of the above equation subject to Ĥ(ω, η, v, 0) = 1. For

example if vt is given by a square root process, and the joint Laplace transform of J and J2

is known, Ĥ is computable in closed form3. Again, we then reverse the transformation, apply

equation (2.15) to a target claim F (ω, η), and we have the desired price of F under the jump-

diffusion (D*). In chapter 3 we will recover the results of the foregoing analysis, as well as those

from the previous sections, by using a probabilistic method.

2.5 Hedging a joint claim
In this section we outline and solve the problem of hedging a financial derivative F (St, It) writ-

ten on an asset St and its realized variance It in a typical incomplete market situation.

In many respects, the hedging problem under the class of models of the form above is akin to

the hedging problem of a vanilla product in incomplete markets. The realized volatility is a state

variable whose random evolution is completely determined by the evolution of the stochastic

variance dynamics, and does not require independent modeling or sources of randomness, like

the introduction of a new Brownian motion or jump components.

In what follows we describe the problem of hedging a joint payoff by using two well-known

hedging strategies for derivative products in incomplete market scenarios, namely:

• hedging by replication using the underlying and a second traded instrument;

• the mean-variance hedging technique.

The first strategy is known to perfectly replicate a claim in a stochastic volatility setup, so

we can apply it when the asset dynamics are given by (D). The second strategy is a popular

method when exact replication is not allowed, as it is the case for a model with jumps, so we

shall illustrate it in the context of the model (D*).

2.5.1 Hedging using a second traded instrument
Hedging in a continuous stochastic volatility model using a further liquidly traded derivative is

the usual approach found in e.g. [99] and others. We show that this method extends at verbatim

when the payoffs depend on the realized volatility.
3For explicit calculations see chapter 3, where the present set-up will be recovered through a different technique.
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Assume that in the market there exists a sufficiently liquid instrument Gt, whose value

depends on St, typically a plain vanilla instrument like a call option. We want to show that

we can perfectly hedge F by using a quantity Γt of the options Gt, a number φt shares of the

underlying St and an amount ψt of cash in the bank accountBt. To do so, we set-up the portfolio:

Πt := φtSt + ΓtGt + ψtBt (2.32)

and set the hedge ratios as:

Γt =
∂V

∂v

∂G

∂v

−1

(2.33)

φt =
∂V

∂S
− ∂V

∂v

∂G

∂v

−1∂G

∂S
(2.34)

ψt =
1

rBt

[
∂V

∂t
+ v

∂V

∂I
+
vS2

2

∂2V

∂S2
+
β2

2

∂2V

∂v2
+ ρβ

√
vS

∂V

∂S∂v

−∂V
∂v

∂G

∂v

−1(∂G
∂t

+
vS2

2

∂2G

∂S2
+
β2

2

∂2G

∂v2
+ ρβ

√
vS

∂G

∂S∂v

)]
. (2.35)

With these choices we have that Πt is a self-financing portfolio, that is, a portfolio whose

change in value is only due to the portfolio earning/losses, that perfectly replicates Vt, i.e. Vt =

Πt for all t. Note that the hedge ratios of (φt, ψt,Γt) are exactly the same that should be used

for a contingent claim F (St) paying only on the asset terminal value (compare again with [99]).

Another possibility to try to attain a perfect hedge for F (St, It) is using a pure volatility

derivative Pt, whose value instantly depends only on t and vt. We let Pt be the time-t value of

such a volatility. This time we build the portfolio:

Πt := φtSt + ΛtPt + ψtBt (2.36)

where (φt, ψt,Λt) are the hedging ratios to be considered: φt shares of St, a value of ψt in cash,

and a position in Λt quantities of Pt. In this case we obtain that:

Λt =
∂V

∂v

∂P

∂v

−1

(2.37)

φt =
∂V

∂S
(2.38)

ψt =
1

rBt

[
∂V

∂t
+ v

∂V

∂I
+
vS2

2

∂2V

∂S2
+
β2

2

∂2V

∂v2
+ ρβ

√
vS

∂V

∂S∂v

−∂V
∂v

∂P

∂v

−1(∂P
∂t

+
β2

2

∂2P

∂v2
+ v

∂P

∂I

)]
(2.39)

Typically Pt will be a variance swap, as these are the most liquid volatility derivatives. It

is noteworthy that a strategy in a stochastic volatility model where we “completed the market”

using a volatility derivative instead of a derivative depending on the underlying price (such as a

call option), yields a much simplified formula for the hedge ratio φt.

The hedging technique recalled in this section is a perfect hedge, which means that in a
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frictionless market where continuous-time trading is possible, the value of a claim on an asset

following a stochastic volatility model can be exactly reproduced as a linear combination of the

underlying, a money market account and an auxiliary liquid asset.

The formulae of this section are thus perfectly in line with those for hedging an asset-based

derivative product in a stochastic volatility model, the reason being that the quadratic variance It
is not a source of risk external to the log-returns and the stochastic variance.

2.5.2 Mean-variance hedging

In the more general case of the model (D*), the inclusion of jumps makes the market intrinsi-

cally incomplete. In the previous sections, we were able to devise a strategy to cancel the extra

randomness due to the stochastic variance by adding another asset whose value is known. In

contrast here the jump randomness can never be completely hedged away, and we have to rely

on an approximate hedge using one of the many techniques proposed in the literature.

Let V0 be the initial endowment for the hedge, i.e. the initial price of the security F (St, It).

What we shall consider is the mean variance hedging strategy, a strategy aimed at minimizing

the hedging error that we briefly recall. Consider the self-financing portfolio (V0, φt, ψt) with

associated earning process

πt(φ) = V0 +

∫ t

0
ψudBu +

∫ t

0
φudSu. (2.40)

This strategy is said to be optimal whenever φt is chosen as the minimizer at maturity of the

L2(Ω) norm of the difference between the value Vt of the claim F and the portfolio πt, for all

t ≤ T . That is, φt must be such that:

||Vt − πt(φ)||L2(Ω) = inf
θ∈A
||Vt − πt(θ)||L2(Ω) (2.41)

for all t ≤ T . The set A is the set of all the admissible trading strategies involving the underlying

St, that is, the set of all the predictable càglàd processes θt whose stochastic integral with respect

to St is square-integrable. After discounting by r, the problem (2.40)-(2.41) can be restated as

that of finding φt such that:

||Ṽt − π̃t(φ)||L2(Ω) = inf
θ∈A
||Ṽt − π̃t(θ)||L2(Ω) (2.42)

where

π̃t(φ) = V0 +

∫ t

0
φudS̃u. (2.43)

From a theoretical perspective, the existence of a pair (V0, φt), where φt is a process satisfying

the above requirements, is proved by a direct application of the Kunita-Watanabe decomposition

(see e.g. Cont and Tankov [23]). Unfortunately, the Kunita-Watanabe decomposition does not

yield a constructive method to explicitly calculate an actual hedging strategy φt, and does not

show that such strategy is indeed admissible , i.e. it is càglàd. However, by assuming F (x, y) to

be such that:

|F (x, y)− F (x0, y0)| ≤ C||(x0, y0)||, C > 0 (2.44)
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that is, the payoff F to be be Lipschitzian in R2, it is proved in the appendix that the minimal

hedging strategy can be explicitly calculated by a standard differentiation argument, and it is

attained by setting

φt =

(
vt
∂Ṽ

∂S̃
+ S̃−1

t

∫
R

(Ṽ (S̃t−e
x, It− + x2, vt, t)− Ṽ (S̃t− , It− , vt, t))(e

x − 1)ν(dx)

)
×(

vt +

∫
R

(ex − 1)ν(dx)

)−1

. (2.45)

In financial terms, φt is the position in the underlying asset minimizing the hedging error

with the actual derivative value. If compared to the formula for the mean-variance hedging in a

jump diffusion setup were the payoffs bear no dependence on It (see for example [23]), here we

notice that there is an extra integration term arising from the presence of discontinuities in the

value function caused by the jumps in the realized volatility. This is because in the Ito differential

representation, the realized volatility in (D*) contributes with a stochastic term. This contrasts

with the case of hedging under a pure stochastic volatility model treated in the previous section,

were the contribution from the realized volatility was a drift term to be hedged with cash, and as

such did not impact the holdings in the risky asset.

2.6 Some joint asset/volatility derivatives
We present here a list of European-style derivatives paying off a joint function of a terminal asset

value and its realized variance or volatility. As explained in the introduction, these can all be

considered as volatility-modified versions of well-known payoff structures, where the volatility

factor reduces the initial price without affecting the payoff if the investor’s volatility foresight

happens to be correct. The target volatility option is one currently traded product of this kind.

2.6.1 Target volatility option

As we already discussed, a target volatility call option is the option to buy a certain fractional

amount of shares if the underlying is worth more than the strike price at maturity. Such an

amount is stochastic and depends upon both the target parameter σ set when writing the contract

and the volatility realized by the asset in [0, T ]. Under the independence hypothesis between

the Brownian motion driving the underlying and the process for the instantaneous volatility, the

value of an at the money call TVO is approximately the Black-Scholes price of a call option of

constant volatility σ (see section 1.2). The payoff of a call TVO is:

F (ST , IT ) = σ

√
T

IT
(ST −K)+, (2.46)

and its Fourier transform in the log-price and quadratic variation is given by:

F̂ (ω, η) = σ(1 + i)

√
πT

2η

K1+iω

(iω − ω2)
, for Im(ω) > 1 , Im(η) > 0 . (2.47)

As it happens for vanilla options, a target volatility put will have the same payoff transform as a

call, but in the domain we will instead have Im(ω) < 0.
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2.6.2 Double digital call

A derivative delivering at maturity a unit of cash if both the underlying asset and its realized

variance at T are above two strike levels K1 and K2. In practice we are adding a further strike

threshold to a digital call option, so it is intuitively clear that this derivative has to be priced less

than it, and yet it must yield the same payoff if the terminal variance is higher than K2. The

claim is defined as:

F (ST , IT ) = 1I{ST≥K1, IT /T≥K2}, (2.48)

whereas the transform in log-price and quadratic variation is:

F̂ (ω, η) = −K
iω
1 eiTK2η

ωη
, for Im(ω) > 0 , Im(η) > 0. (2.49)

Clearly any other put/call combination in the two variables can be imagined.

2.6.3 Volatility capped call option

As in the previous example we can cheapen the price of a European call by adding the fur-

ther constraint that the payoff is not triggered if the terminal realized volatility is not within an

acceptable range. At maturity this product pays off:

F (ST , IT ) = (ST −K)+1I{K1≤
√
IT /T≤K2}

, (2.50)

and has a log-price and quadratic variation transform given by:

F̂ (ω, η) =
(
eiηK

2
1T − eiηK2

2T
) K1+iω

(ω + iω2)η
, for Im(ω) > 1 , Im(η) > 0. (2.51)

A more natural version of this product could be obtained by requiring that to get a positive

payoff the volatility should never leave an interval [K1,K2] at each given time t < T . The re-

sulting derivative is a “volatility version” of a double barrier option; pricing it therefore amounts

to solve problem (2.3)-(2.4) with an added boundary condition. This escapes the pricing frame-

work presented; however, such a payoff could be of interest for future research in a context of

volatility path-dependent claims.

2.6.4 Volatility-struck call option

This product gives the writer the option to buy an asset at maturity for a notional amount N ,

times the realized volatility of the underlying. The more the stock is subject to shocks, the less

likely is the option to be triggered; hence investors could enter this contract if they are expecting

low volatility levels. Just like for a TVO, predictions about the future realized volatility σ are

reflected in setting the notional N . As a payoff we have:

F (ST , IT ) =

(
ST −N

√
IT
T

)+

, (2.52)



66 Chapter 2. Pricing joint claims on an asset and its realized variance

with transform:

F̂ (ω, η) =

(
N√
T

)1+iη

Γ

(
3 + iω

2

)
(−iη)−3/2−iω/2

iω − ω2
,

for 1 < Im(ω) < 3, Im(η) > 0. (2.53)

2.7 Numerical testing
Computations for the payoffs introduced in section 2.6 have been carried out in a Heston model4

with parameters from chapter 1, in order to compare the values obtained there with the new

methodology. The underlying process for the variance is given by

dvt = κ(θ − vt)dt+ η
√
vtdWt, (2.54)

with:

κ = 0.5, θ = 0.2, η = 0.3, v0 = 0.2. (2.55)

For different state variables and sets of parameters defining the claims, we compare a MAT-

LAB Monte Carlo simulation based on an Euler scheme with exact sampling (Broadie and Kaya,

[11]), against a MATHEMATICA implementation of (2.15). For the TVO, figures from the

Laplace transform pricing method described in [30] are provided. A comparison of the prices

of the products introduced with their vanilla counterparts is also given; it is striking how much

cheaper the new claims are. Nevertheless, under favorable volatility scenarios, they produce the

same payoffs as their standard versions.

K Laplace Monte Carlo PDE Vanilla
transform simulation pricing call

60 11.3919 11.3897 11.3909 40.0061
80 8.7301 8.7281 8.7299 20.7211
100 6.7416 6.7415 6.7415 6.9013
120 5.2672 5.2618 5.2672 1.4252

Table 2.1: T = 3, t = 0, σ̄ = 0.1, S0 = 100, r = d = ρ = 0. TVO valuation for different strikes.
The Black-Scholes price of a call option of constant volatility σ̄ is given for comparison (see chapter 1,
section 1.4).

2.8 Conclusions
In this chapter we have explained possible reasons for the introduction of derivatives written

jointly on an underlying asset and its accrued volatility. We have discussed the general problem

of pricing European claims depending at maturity on such an asset and the total quadratic varia-

tion it exhibits. A pricing PDE has been derived, and a universal model-dependent solution has

been found and characterized in terms of the model and the payoff.

Issues on the uniqueness and existence of such a solution have been addressed, and a de-

4For a numerical analysis of the jump diffusion in section 2.4 with the Bates [6] specifications, see chapter 3.
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ρ Monte Carlo PDE pricing Vanilla call
-0.8 10.3154 10.3975 41.5145
-0.4 9.9415 9.9505 41.3683

0 9.4398 9.4549 41.1688
0.4 8.9645 8.9059 40.8992
0.8 8.3136 8.3025 40.5433

Table 2.2: T = 5, t = 2.5, r = 0.08, d = 0, σ̄ = 0.1, St = 100, K = 85, It = 0.46. TVO prices
for various correlations. Here we compare to a European call option in the Heston model having same
parameters.

It Monte Carlo PDE pricing Vanilla digital call
0.2 0.0951 0.0943 0.5358
0.3 0.2366 0.2426 0.5358
0.4 0.4393 0.4395 0.5358
0.5 0.5335 0.5330 0.5358

Table 2.3: T = 2.5, t = 1, r = 0.1, d = 0.01, K1 = 100, K2 = 0.24, St = 120, ρ = 0.2. Double
digital call for different realized variance levels. Note how the prices converge to that of a digital call as
K2 becomes more likely to be hit.

K2 Monte Carlo PDE pricing Vanilla call
0.35 7.7812 7.7743 37.2632
0.4 16.3226 16.3006 37.2632

0.45 25.1122 25.0732 37.2632
0.5 31.6069 31.5497 37.2632

Table 2.4: T = 2, t = d = 0, r = 0.07, St = 110, K = 100, K1 = 0.2, ρ = −0.3. Volatility capped
call option prices for different values of K2. The reference call has same parameters as the volatility
capped call. As the gap between K1 and K2 widens, the price approaches that of the vanilla call.

T Monte Carlo PDE pricing
2 4.8291 4.8810
3 8.9873 8.9383
4 11.8885 11.9086
5 14.1661 14.2002

Table 2.5: It = 0.18, t = 1, r = 0.05, d = 0.02, St = 50, N = 150, ρ = −0.5. Volatility-struck call
option prices for different maturities.
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tailed mathematical discussion of the domains of holomorphy of the involved functions has been

carried out. Furthermore, we have provided an analytical representation for the Greeks, and

have given formulae for specific models and payoffs. Pricing results have been extended to the

case of an underlying being modeled through a jump diffusion, and hedging strategies for these

derivatives have been discussed for both the continuous and discontinuous framework.

Numerical tests support our main result. In addition, figures confirm the intuition that it

is possible to conceive volatility modifications of liquid instruments, less expensive than the

original product, but paying off the same amount in market situations that an investor may want

to exploit.

Appendix: proofs
Proof of proposition 2.1.1. The proof is an adaptation of Heath and Schweizer [58], theorem 1,

the existence of a solution being assumed. See also Friedman [45], chapters 5-6.

Let Dn be a family of smooth bounded domains invading R3
+, and assume V (x, t) is a

C2,1(R3
+ × [0, T )) solution to (2.3)-(2.4). Let τn = {inf t|Xt /∈ Dn}. By Ito’s formula it can be

readily seen that if Xt is a solution to (D) then for all x ∈ Dn and t ≤ T ,

Vn(x, t) = Ex,t
[
e−r(T−t)V (XT∧τn , T ∧ τn)

]
(2.56)

is a solution to the differential problem (2.3) with boundary condition Vn(x, t) = V (x, t), x ∈
∂Dn, and terminal condition V (XT∧τn , T ∧ τn); furthermore, it is the only solution there by

the weak maximum principle. By (NB) and (LL) we have that the probabilistic family yielding

(2.56) is strongly Markovian, so taking the conditional expectation at time τn (2.5) and then

using the strong Markov property shows that V (x, t) coincides with Vn on Dn for all n. Hence,

V satisfies (2.3)-(2.4) on the whole space. Finally, again (LL) and (NB) imply (see for example

Feller [39], Kunita [73]) that vt, hence Xt, is (weakly) unique and finite almost surely, and this

proves the claim.

Proof of condition (GC) for the payoffs of section 2.6. Let V (S, I) = Ex,t
[
e−r(T−t)F (S, I)

]
where F is a payoff from section 2.6. For a double digital call we have F (S, I) ≤ 1 so that

V (S, I) ≤ 1 and (GC) is trivially verified. If F is a volatility capped call then for all I we have:

V (S, I) ≤ Ex,t
[
e−r(T−t)(ST −K)+

]
≤ S, (2.57)

where the last inequality follows at once from [8], theorem 1, and its generalization on page

1600. Also, by arguing that the no-crossing property (lemma, p. 1577) for St must also hold

for the augmented diffusion (D), we see that theorem 1 can be extended to a payoff F (S, I). In

particular if F is given by (2.52) we see that:

∂V (S, I)

∂S
≤ sup

S

∂F (S, I)

∂S
= 1, (2.58)
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hence V (S, I) ≤ S, ∀S, I . Similarly for a TVO we have:

∂V (S, I)

∂S
≤ σ

√
T/I, (2.59)

which implies V (S, I) ≤ C1S for some C1 > 0, because V is bounded around I = 0.

Proof of equation (2.20) and solution to (2.31). We make the ansatz:

Ĥ(ω, η, v, τ) = exp[C(ω, η, τ) + vD(ω, η, τ)] (2.60)

and substitute this in (2.13) with parameters from the Heston model. One obtains the decoupled

ODEs for C(τ) and D(τ):

C ′ = κθD

D′ =
ε2

2
D2 +D(κ+ iερω)− 1

2
(ω2 − iω + 2iη).

(2.61)

The Riccati equation for D is solved by switching to an associated linear second order ODE for

its logarithmic derivative. C is then found by direct integration.

In the case when Ĥ instead satisfies a PIDE of the form (2.31) with normally-distributed

jumps of intensity λ, we modify the ansatz as:

Ĥ(ω, η, v, τ) = exp[C(ω, η, τ) + vD(ω, η, τ) + λτ(φJ,J2(ω, η)− 1)]. (2.62)

By taking C and D like in (2.61), and letting φJ,J2 be the joint characteristic function of J

and J2 we see that (2.62) satisfies (2.31).

Condition (NB) for the accounted models. For the GARCH model the result is trivial. The most

convincing way of checking (NB) for the other models described is using Feller’s explosion test

(Feller, [40]). In our case, the scale function for the variance dynamics in the Heston model is:

p(x) =
2

ε2

∫ x

1
u−2κθ/ε2e

2κ
ε2

(u−1)

(∫ u

1
z2κθ/ε2−1e−

2κ
ε2

(z−1)dz

)
du (2.63)

A necessary and sufficient condition for the process to attain 0 or +∞ is that p(0), p(+∞) <

+∞. As u→ +∞ the integrand is exponentially divergent, whereas convergence in 0 is happens

if and only if 2κθ < ε2. For the 3/2 model we have instead:

p(x) =
2

ε2

∫ x

1
u2κ/ε2e

4κθ
ε2

(1/u−1)

(∫ u

1
z−2κ/ε2−3e−

4κθ
ε2

(1/z−1)dz

)
du. (2.64)

so that this time it is p(0) = +∞ for any choice of parameters, and p(+∞) < +∞ if and only

if 2κ < −ε2.

Proof of the hedge by replication. Consider the hedging error

εt = Vt −Πt. (2.65)
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Assuming the self-financing property, and applying Ito’s lemma, we see that Πt evolves

according to:

dεt =

(
∂V

∂t
+ v

∂V

∂I
+
vS2

2

∂2V

∂S2
+
β2

2

∂2V

∂v2
+ ρβ

√
vS

∂V

∂S∂v

)
dt

− Γt

(
∂G

∂t
+
vS2

2

∂2G

∂S2
+
β2

2

∂2G

∂v2
+ ρβ

√
vS

∂G

∂S∂v

)
dt

+

(
∂V

∂S
− φt −

∂G

∂S
Γt

)
dSt +

(
∂V

∂v
− ∂G

∂v
Γt

)
dvt − rψtBtdt. (2.66)

To perfectly hedge the position, we set Γt and φt as in (2.33)-(2.34), canceling the first two terms

in the last line; whatever is left as a portfolio value must be borrowed from/invested in the cash

position. That is, by further letting ψt as in equation (2.35) we have εt = 0, implying Vt = Πt.

To verify that (φt, ψt,Γt) is indeed a self-financing portfolio, one just substitutes the ratios back

in (2.32), obtaining

φtdSt + ΓtdGt + ψtdBt =

1

rBt

[(
∂V

∂t
+ v

∂V

∂I
+
vS2

2

∂2V

∂S2
+
β2

2

∂2V

∂v2
+ ρβ

√
vS

∂V

∂S∂v

)
− ∂V

∂v

∂G

∂v

−1(∂G
∂t

+
vS2

2

∂2G

∂S2
+
β2

2

∂2G

∂v2
+ ρβ

√
vS

∂G

∂S∂v

)]
rBtdt

+

(
∂V

∂S
− ∂V

∂v

∂G

∂v

−1∂G

∂S

)
dSt +

∂V

∂v

∂G

∂v

−1

dGt =

dVt −
∂V

∂v
dvt +

∂V

∂v

∂G

∂v

−1∂G

∂v
dvt = dVt. (2.67)

In the case we are hedging with a volatility derivative P , notice that the Ito differential of Pt is

given by

dPt =
∂P

∂t
dt+

β2

2

∂2P

∂v2
dt+ v

∂P

∂I
dt+

∂P

∂v
dvt. (2.68)

Applying Ito’s formula to the hedging error εt then yields:

dεt = dVt −Πt =

(
∂V

∂t
+ v

∂V

∂I
+
vS2

2

∂2V

∂S2
+
β2

2

∂2V

∂v2
+ ρβ

√
vS

∂V

∂S∂v

)
dt

− Λt

(
∂P

∂t
+
β2

2

∂2P

∂v2
+ v

∂P

∂I

)
dt

+

(
∂V

∂S
− φt

)
dSt +

(
∂V

∂v
− Λt

∂P

∂v

)
dvt − rψtBtdt. (2.69)

This time εt = 0 is achieved by letting φt, Λt and ψt as in (2.37)-(2.39). The self-financing

property is proved as in the previous case.

Proof of the mean-variance hedging formula. Consider the hedging error ε(V0, φ) up to time T ,

given by

ε(V0, φ) = VT − V0 −
∫ T

0
φtdS̃t. (2.70)
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In first place, we have that the optimal value for V0 is E[F ] because E[ε(φt)
2] can be rewritten

as the sum of positive quantities

E

[(
F − V0 −

∫ T

0
φtdS̃t

)2
]

= E[(E[F ]− V0)2] + V ar

[
F −

∫ T

0
φtdS̃t

]
(2.71)

Now applying Ito’s lemma for discontinuous processes to Ṽ and combining it to the (discounted

version of) the pricing relation (2.30) we have:

ε(V0, φ) =

∫ T

0

(
∂Ṽ

∂S̃
(S̃t− , It− , vt, t)− φt

)
√
vtS̃t−dW

1
t

+

∫ T

0

∫
R

(
Ṽ (S̃t−e

x, It− + x2, vt, t)− Ṽ (S̃t− , It− , vt, t)− φtS̃t−(ex − 1)
)
γ(dxdt)

−
∫ T

0

∫
R

(
Ṽ (S̃t−e

x, It− + x2, vt, t)− Ṽ (S̃t− , It− , vt, t)− φtS̃t−(ex − 1))
)
ν(dx)dt, (2.72)

where we denoted with γ(dxdt) the random jump measure associated with the jump part of the

asset dynamics.

In principle, equation (2.72) is the sum of two local martingales. Square integrability of the

integrands is required to prove that the summand are strict martingales. However, by assumption

(2.44) F is Lipschitz, so that V is also Lipschitz; therefore ∂Ṽ /∂S̃ is bounded. Combining

this with the assumptions on φt, we deduce that the integrand in the first line of (2.72) is square

integrable. To see that the compensated pure jump martingale in the second and third line are

also square integrable, we directly use the Lipschitz property of V yielding:

E
[∫ T

0

∫
R

(Ṽ (S̃t−e
x, It− + x2, vt, t)− Ṽ (S̃t− , It− , vt, t))

2ν(dx)dt

]
≤ Ct

∫ T

0
E[S̃2

t ]dt

∫
R

(e2x − 1)ν(dx) + T

∫
R
x4ν(dx) <∞ (2.73)

where the finiteness of the integrals in ν(dx) follows by assumption (2.26) and the existence

of the second moments of the price process is also assumed. By using Ito’s isometries and the

fact that W 1
t and Nt are orthogonal, it is possible to compute the second moment of the hedging

error:

E
[
ε(V0, φt)

2
]

= E

∫ T

0

(
∂Ṽ

∂S̃
(S̃t− , It− , vt, t)− φt

)2

vtS̃
2
t−dt

+

∫ T

0

∫
R

(Ṽ (S̃t−e
x, It− + x2, vt, t)− Ṽ (S̃t− , It− , vt, t)− φtS̃t−(ex − 1))2ν(dx)dt

]
. (2.74)

We observe that the expectation above coincides with the variance of ε(V0, φt), being

ε(V0, φt) a martingale starting at 0. Finally, by differentiating the quadratic expression (2.74)

with respect to φt, passing the derivative inside the expectation, and equating the result to 0, we
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find that the global minimum for E[ε(V0, φt)
2] must satisfy

0 =

(
∂Ṽ

∂S̃
− φt

)
vtS̃

2
t

+

∫
R

(Ṽ (S̃t−e
x, It− + x2, vt, t)− Ṽ (S̃t− , It− , vt, t)− φtS̃t−(ex − 1))(ex − 1)S̃t−ν(dx),

(2.75)

from which (2.45) follows. A fortiori, we remark that φt is indeed càglàd. By reverting back to

the spot price strategy πt, we see that the equation above enforces ψt = φtSt/Bt.

Note that by minimizing a functional at the terminal time T , that is, by performing a global

optimization, we were able to produce a local optimal strategy, i.e. a process minimizing the

squared error at all times t ≤ T . This is in general unfeasible when S̃t is not a strict martingale:

more on this can be learned in [23] and [43].
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Valuation of asset and volatility derivatives
using decoupled time-changed Lévy processes

The use of Lévy models in finance dates back to to the classic work of Merton [81], who proposed

that the log-price dynamics of a stock return should follow an exponential Brownian diffusion

punctuated by a Poisson arrival process of normally distributed jumps. In that work, two of

the main shortcomings of the Black-Scholes model, the continuity of the sample paths and the

normality of returns, were addressed for the first time. Over the years, Lévy processes have

proved to be a flexible and yet mathematically tractable instrument for asset price modeling

and sampling. One of the easiest ways of producing a Lévy process is to use the principle of

subordination of a Brownian motion Wt. If Tt is an increasing Lévy process independent of

Wt, then the subordinated process WTt will still be of Lévy type. Subordination is the simplest

example of a time change, that is, the operation whereby one considers the time evolution of a

stochastic process as occurring at a random time.

Return models depending on time-changed Brownian motions have been conjectured since

Clark [21]; further theoretical support to the financial use of time-changed models is given by

Monroe’s theorem [83], asserting that any semimartingale can be viewed as a time change of

a Brownian motion. Consequently, any semimartingale representing the log-price process of

an asset can be considered as a re-scaled Wiener process. Empirical studies (Ane and Geman

[4]) confirmed that normality of returns can be recovered in a new price density based on the

quantity and arrival times of orders, which justifies the interpretation of Tt as “business time”

or “stochastic clock”; the instantaneous variation of Tt is hence the “activity rate” at which the

market reacts to the arrival of information. Further advances were made by Carr and Wu [15],

who demonstrated that much more general time changes are potential candidates for asset price

modeling, and effectively recovered many models from the standard literature by using a time-

changed representation.

However, not all the possibilities in time change modeling are exhausted by the Carr and

Wu framework. For example, the stochastic volatility model with jumps (SVJ) treated among

the others by Bates [6], and the stochastic volatility model with jumps and stochastic jump rate

(SVJSJ) studied by Fang [37], although retaining a time re-scaled structure, are not time-changed

Lévy processes as they are understood in Carr and Wu [15]. Indeed, in these two classes of

models the jump component does not follow the same time scaling as the continuous Brownian

part: in the SVJ model the discontinuities have stationary increments, whereas in the SVJSJ

73
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model the jump rate is allowed to follow a stochastic process of its own. In other words, price

models for which the “stochastic clock” runs at different paces for the “small” and “big” market

movements have already been proposed and tested. The statistical analyses of Bates [6] and Fang

[37] confirm that these models are capable of an excellent data fitting. As pointed out by Fang,

there are various other reasons for conjecturing a stochastic jump rate. If activity rates are to be

interpreted as the frequencies of arrival of new market information, it seems unlikely that such

rates could be taken as constant, as this would imply a constant information flow. Moreover, a

constant jump rate implies stationary jump risk premia, which also seems unreasonable. Another

stylized fact potentially captured by a model with a stochastic jump rate is the slow convergence

of returns to the normal distribution, which is not a feature of stationary jump models. Despite

all these considerations, the idea of a stochastic jump rate has never really caught on.

On the other hand, if we want to exogenously model the market activity, the assumption of

independence between the jump and the continuous instantaneous rates seems to be overly sim-

plistic, as in reality the two corresponding information flows may very well influence each other.

For example, a market crash or soaring certainly impacts the day-to-day volume of trading in

the days following such an event. Conversely, a sustained high activity trend over a long period,

typically associated to falling prices, may eventually lead to a sudden, panic-driven plunge in the

shares’ value. These and similar scenarios provide heuristic arguments for the assumption of a

correlated pair of activity rates.

Motivated by these arguments, the natural question that arises is whether it is possible to

manufacture consistent general time-changed martingale price processes in which the continuous

and discontinuous parts of the underlying Lévy model follow two different, possibly correlated,

stochastic time changes. We show in this chapter that the answer is affirmative. The family of

stochastic processes we investigate is that obtained by time-modifying the continuous and jump

parts of a given Lévy process Xt by two, in principle dependent, stochastic time scalings Tt and

Ut satisfying a certain regularity condition (definition 3.2.1). We call such processes decoupled

time changes. In a formula:

XT,U := Xc
Tt +Xd

Ut , (3.1)

where Xc
t and Xd

t represent respectively the Brownian and jump components of Xt.

The decoupled time-changed (DTC) approach allows to embed in a unifying mathematical

framework many previously-known models or classes of models, so that the presented theory

offers a natural generalization of some of the extant asset modeling research. In addition, the

assumption of a pair of dependent activity rates can be captured by making use of decoupled

time changes. In section 3.6 we illustrate an actual example of a model having this property by

considering an explicit asset evolution based on a multivariate version of the square-root process

known as the Wishart process (e.g. Bru [12]; Gourieroux [51]; da Fonseca et al. [28]), which we

use to model the instantaneous activity rates.

Price processes based on DTC Lévy processes have been treated in the empirical analysis by

Huang and Wu [63], who successfully calibrated several different Lévy and time-change speci-

fications within the DTC framework. The authors focus on parameter estimation and goodness-

of-fit rather than analyzing the jump/diffusive volatility dependence relations. Thus, their work
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does not provide any theoretical justification for the martingale property of the general asset price

equation used. Furthermore, when coming down to the actual specifications, they effectively did

not introduce a new analytically tractable model with true dependence between the activity rates.

This is not unexpected, and it is an intrinsic issue that occurs when choosing the activity rates as

belonging to the family of the affine jump diffusions (see section 3.5.4). Ultimately, as widely

illustrated by Grasselli and Tebaldi [55], in such a framework it does not seem to be possible to

explicitly derive the Laplace transform of the model when the instantaneous activity rate SDEs

are correlated. In contrast, the model of section 3.6, which is not a jump diffusion in the sense

of the classical Duffie et al. [31] framework, allows for a true dependence between the jump

and the continuous activity rate, while at the same time retaining analytical tractability. Further

to this, the extant literature on time changes in finance (e.g. [15, 63]), also seems to ignore a

number of pitfalls that arise in time-changed modeling, for example:

• a time-changed (exponential) martingale is not, in general, a (an exponential) martingale

(see the counterexample in the appendix);

• a time-changed local martingale is not, in general, a local martingale;

• a time-changed Markov process is not, in general, a Markov process (see footnote 3).

In setting up our framework, we prevent these issues by imposing sufficient conditions under

which the good properties required for financial modeling are maintained when time changing,

i.e. when considering a random time evolution of the underlying Lévy drivers. In this respect,

the overall message of this chapter is that time-changed asset price processes are best understood

by appealing to the theory of semimartingale representation (Jacod and Shiryaev, [67]).

In the spirit of the discussion carried out in the previous chapters, we use the DTC asset

representation for the purpose of pricing financial derivatives depending jointly on the terminal

price of the asset and its historical volatility. The pricing technique we use is the extension of

equation (2.15) when the underlying is not given by a diffusion process but is rather based on a

general exponential DTC evolution. Specific instances will be also analyzed; it should be appar-

ent that in all the models we investigate there is no particular reason not to consider mixed price

and volatility payoffs as the default input of pricing models e.g. for numerical implementation.

This is because introducing the realized volatility in the characteristic function of the model does

not cause the Fourier-inversion technique to break down. Clearly, pricing both vanilla and pure

volatility derivatives is still possible within this framework, since the corresponding payoffs can

be regarded as particular cases of our more general setting.

The remainder of the chapter is organized as follows. In section 3.1 we lay out the assump-

tions; in section 3.2 we derive martingale properties for a decoupled time-changed Lévy model.

Section 3.3 shows the fundamental relation linking the characteristic function of the log-price

and its quadratic variation and the joint Laplace transform of the time changes as computed in an

appropriate measure. Section 3.4 is dedicated to the derivation of a pricing formula for products

whose payoffs depend jointly on St and TVt, including forward-starting ones. We devote section

3.5 to characterizing the DTC structure of a number of known models, and computing the joint
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characteristic function discussed in section 3.3 for each of them. In section 3.6 we introduce an

exemplifying model of DTC type featuring correlation between the time changes/activity rates.

Finally, in section 3.7 we implement our formulae to valuate different asset and volatility deriva-

tives under various market conditions and asset price models, and briefly summarize our work.

The more technical proofs have been placed in the appendix.

3.1 Assumptions and notation

As customary, our market is represented by a filtered probability space (Ω,F ,Ft,P) satisfying

the usual conditions. Throughout the chapter we will assume that there exists a money market

account process paying a riskless constant interest rate r.

Let St be a non dividend-paying market asset. S̃t will denote its time-zero discounted value

e−rtSt. The total realized variance on [0, t] of St is by definition the quadratic variation of the

natural logarithm of St, that is:

TVt := 〈logS〉t = lim
|π|→0

∑
ti∈π
| logSti+1 − logSti |2. (3.2)

The limit runs over the supremum norm of all the possible partitions π of [t0, t]. The total realized

volatility is
√
TVt. The period realized variance and volatility (or realized variance/volatility tout

court) are given respectively by RVt = TVt/t and
√
RVt. If Xt = logSt is a semimartingale,

by taking the limit in (3.2) it is easy to check that:

〈X〉t = X2
t − 2

∫ t

0
Xu−dXu. (3.3)

The algebra of the square matrices of order nwith real-valued entries is indicated byMn(R) and

that of the symmetric real matrices by Simn(R). Matrix product is denoted by juxtaposition; the

scalar product between vectors is either indicated by multiplying on the left with the transposed

vector ·T or by the usual dot notation. The symbol Tr stands for the trace operator.

If J is an absolutely continuous random variable, we denote by fJ(x) its probability density

function and by φJ(z) its characteristic function

φJ(z) := E[eiz
T J ]. (3.4)

For a Fourier-integrable function f : Cn → C its Fourier transform will be denoted f̂ . For a

complex-valued function or a complex plane subset, ·∗ indicates the complex conjugate function

or set.

When we say that a process is a martingale we mean a martingale with respect to its natural

filtration. The notation for the conditional expectation of a stochastic process Xt at time t0 < t

with respect to Ft0 is Et0 [ · ]. When the distribution of a process Xt depends on other state

variables xt (as in the case of a Markov process) the latter are implicitly understood to be given

at time t0 by xt0 . If Xt is a process admitting conditional laws, the space of the integrable

functions in the t0-conditional distribution of Xt at time t0 < t is indicated by L1
t0(Xt). The
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notation for the bilateral Laplace transform of the distribution of Xt conditional on t0 < t is:

LX(z) = Et0 [e−z
TXt ] (3.5)

where for brevity we drop the dependence on t and t0 on the left hand side. The stochastic

process of the left limits of Xt is indicated Xt− . The symbol ∆Xt stands for the difference

Xt − Xt− or Xt − Xt0 for some prior time t0 < t. Equalities are always understood to hold

modulo almost sure equivalence.

If Xt is an n-dimensional Lévy process, the characteristic exponent of Xt is the complex-

valued function ψX : Cn → C such that:

E[eiθ
TXt ] = etψX(θ) (3.6)

where θ lies in the subset of Cn and where the left-hand side is finite.

For a given choice of truncation function ε(x) (that is, a bounded function which is O(|x|)
around 0) the characteristic exponent has the unique Lévy-Khintchine representation:

ψX(θ) = iµTε θ −
θTΣθ

2
+

∫
Rn

(eiθ
T x − 1− iθT ε(x))ν(dx), (3.7)

where µε ∈ Rn, Σ is a non-negative definite n×nmatrix with real entries, and ν(dx) is a Radon

measure on Rn having a density function that is integrable at +∞ and O(|x|2) around 0. We

shall make the standard choice ε(x) = x1I|x|≤1 and drop the dependence of µ on ε. The triplet

(µ,Σ, ν) is then called the characteristic triplet or the Lévy characteristics of Xt.

A stochastic time change Tt is an Ft-adapted càdlàg stochastic process, increasing and

almost surely finite, such that Tt is an Ft-adapted stopping time for each t. The time change of

an n-dimensional Lévy process Xt according to Tt is the FTt-adapted process Yt := XTt .

3.2 Definition, martingale relations and asset price dynamics
In this first section we introduce the notion of DTC Lévy process and devise an exponential

martingale structure naturally associated to it. This construct serves a twofold purpose. In first

place it allows to formulate a DTC-based asset price evolution whose discounted value enjoys

the martingale property. According to the general theory, this in turn enables to postulate the

existence of a risk-neutral measure that correctly prices the market securities. Secondly, it defines

a class of complex-valued martingales pivotal for the calculations in the next section.

Let B be the space of the n-dimensional Ft-supported Brownian motions with drift starting

at 0, and J be the space of the Ft-supported pure jump Lévy processes starting at 0, that is, the

class of the càdlàgFt-adapted processes with stationary and independent increments orthogonal1

to all the elements of B.

Every Lévy process Xt such that X0 = 0 can be decomposed as the orthogonal sum

Xt = Xc
t +Xd

t , (3.8)

1Two processes Xt and Yt are said to be orthogonal if 〈X,Y 〉t = 0 for all t.



78 Chapter 3. Valuation using DTC Lévy processes

with Xc
t ∈ B and Xd

t ∈ J . We shall refer to Xc
t and Xd

t respectively as the continuous and

discontinuous parts of Xt.

Time changes are fairly general mathematical objects, so we have to introduce some ad-

ditional requirements in order for our discussion to proceed. One property we shall assume

throughout is the so-called continuity with respect to the time change.

Definition 3.2.1. Let Tt be a time change on a filtration Ft. An Ft-adapted process Xt is said to

be Tt-continuous2 if it is almost-surely constant on all the sets [Tt− , Tt].

Obviously, a sufficient condition for Tt-continuity is the almost sure continuity of Tt.

Hence, of particular relevance is the class of the absolutely continuous time changes, with respect

to which every stochastic process is continuous. Given a pair of instantaneous rate of activity

processes, that is, two exogenously-given càdlàg positive stochastic processes (vt, ut), valid time

changes are given by the pathwise integrals:

Tt =

∫ t

0
vs−ds, (3.9)

Ut =

∫ t

0
us−ds. (3.10)

The processes vt and ut describe the instantaneous impact of market trading and information

arrival on the price, and formalize the concept of “business activity” over time.

A decoupled time change of a Lévy process is the sum of the (ordinary) time changes of its

continuous and discontinuous part.

Definition 3.2.2. Let Xt be an n-dimensional Lévy process and Tt, Ut two time changes such

that Tt is almost surely continuous and Xd
t is Ut-continuous. Then:

XT,U = Xc
Tt +Xd

Ut (3.11)

is the decoupled time change of Xt according to Tt and Ut.

By Jacod [65], corollaire 10.12, a first important property of XT,U is that it is an FTt∧Ut
semimartingale. To avoid degenerate cases, in all that follows we always assume Tt and Ut to be

such that Xc
Tt

and Xd
Ut

are Markov processes3.

We now define the class of exponential martingales canonically associated with XT,U when

the time changes are absolutely continuous. The following proposition represents the main the-

oretical tool of this chapter:

Proposition 3.2.3. Let X1
t be an n-dimensional Brownian motion with drift and X2

t a pure

jump Lévy process in Rn. Let T 1
t and T 2

t be two absolutely continuous time changes and set

2Jacod [65] uses Tt-adapted, and Tt-synchronized is sometimes found; however, Tt-continuous is also common
in the literature, and in our view less ambiguous.

3In general, time changes of Markov processes are not Markovian; by using Dambis, Dubins and Schwarz’s
theorem (Karatzas and Shreve [71], theorem 4.6) one can manufacture a large class of counterexamples by starting
from any continuous martingale that is not a Markov process.
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Xt = X1
t + X2

t and Tt = (T 1
t , T

2
t ); define XTt := X1

T 1
t

+ X2
T 2
t

and denote by Θ ⊆ Cn the

domain of definition of E[exp(iθTX2
t )]. The process:

Mt(θ,Xt, Tt) = exp
(
iθTXTt − T 1

t ψX1(θ)− T 2
t ψX2(θ)

)
(3.12)

is a local martingale, and it is a martingale if and only if θ ∈ Θ0, where:

Θ0 = {θ ∈ Θ such that E[Mt(θ,Xt, Tt)] = 1, ∀t ≥ 0}. (3.13)

A first important remark is that the classic subordinated Lévy models of the form WTt can-

not be recovered from this framework, because a Brownian motion does not enjoy the continuity

property with respect to a Lévy subordinator.

Also, notice that when T 1
t = T 2

t , the exponential Mt reduces to an ordinary time change

of the type discussed by Carr an Wu [15]. Even in this simple case proposition 3.2.3 is not

a consequence of the application of Doob’s optional sampling theorem (unlike stated in [15],

lemma 1) to the martingale Zt(θ) = exp(iθTXt − tψX(θ)), because Zt(θ) is not necessarily

uniformly integrable. Indeed, time-transforming a process always preserves the semimartingale

property, but the martingale property after a time change is only guaranteed to be maintained for

uniformly integrable martingales. An actual example of an asset model of the form ZTt that is a

strict supermartingale is given by Sin [94]. Other examples can be found in [72], subsection 3.8.

This demonstrates that some choices of time changes are inherently unsuitable for time-changed

asset price modeling. In the case of XTt being a one-dimensional Brownian integral, sufficient

requirements for (3.13) to be satisfied are the well-known Novikov and Kazamaki conditions

(Karatzas and Shreve [71], chapter 3). The set Θ0 is sometimes called the natural parameter set.

Having obtained martingale relations for a stochastic exponential involving XT,U , the risk-

neutral dynamics for a DTC Lévy-driven asset are defined in the usual fashion. We have the

following immediate corollary to proposition 3.2.3:

Corollary 3.2.4. Let Xt be a scalar Lévy process of characteristic triplet (µ, σ2, ν) and (Tt, Ut)

a pair of absolutely continuous time changes. For a spot price value S0 let, for t > 0:

St = S0 exp(rt+iθ0XT,U−TtψcX(θ0)−UtψdX(θ0)) = S0e
rtMt(θ0, X

c
t +Xd

t , (Tt, Ut)) (3.14)

with θ0 ∈ Θ0 being such that (3.14) is a real number. The discounted process S̃t is a martingale,

and therefore St is a price process consistent with the no-arbitrage condition.

The stochastic process in (3.14) is the fundamental asset model we shall use throughout the

rest of the chapter.

3.3 Characteristic functions and the leverage-neutral measure
Characteristic functions of state variables are the essential component of the Fourier-inverse

pricing methodology, because state price densities are analytically available only for a small

number of models; in contrast, characteristic functions are computable in closed form in many
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instances (e.g. exponential Lévy models, Ito diffusions). This effectively means that in order

to compute expectations (prices), the standard approach is not to integrate a payoff against a

density function, but rather the payoff’s Fourier transform against the characteristic functions of

the price transition densities. Famous examples include the FFT paper [17] by Carr and Madan,

Lewis’s book [75] and subsequent paper [76].

The transform we are interested in is one associated with the price process (3.14). Compared

to the usual inverse Fourier/Laplace framework the characteristic function we shall consider is

not that of the discounted log-price alone, but one that incorporates also the quadratic variation

of the log-process. Indeed, just as the characteristic function of the log-price allows for the

derivation of pricing formulae for contingent claims F (St), the joint characteristic function of

log S̃t and TVt permits the valuation of payoffs of the form F (St, TVt). This fact has been

envisaged before by Carr and Sun [18].

In the present section we compute this transform. There are normally two ways of com-

puting characteristic functions/Laplace transforms of log-price densities. One is the analytical

approach, which is popular for example in affine models, when the problem is ultimately reduced

to solving a certain system of ODEs. The other is the probabilistic approach, in which the char-

acteristic function of the log-price is linked with the Laplace transform of the integrated driving

factors (where available) and then a change of measure is performed to keep track of correla-

tions. As Carr and Wu [15] show this technique is intimately connected with time-changed asset

modeling; in what follows we extend it to the case of the underlying being modeled through a

full DTC Lévy process.

First of all we must verify that the quadratic variation operator respects the additivity and

time-changed structure of XT,U . We have the following “linearity/commutativity property”, of

independent interest:

Proposition 3.3.1. A DTC Lévy process XT,U is such that Xc
Tt

and Xd
Ut

are orthogonal. Fur-

thermore, its quadratic variation satisfies:

〈XT,U 〉t = 〈Xc〉Tt + 〈Xd〉Ut = ΣTt + 〈Xd〉Ut . (3.15)

That is, the quadratic variation ofXT,U is the sum of the time changes of the quadratic variations

of its continuous and discontinuous part.

Crucially, the processes Xc
Tt

and Xd
Ut

are orthogonal but not independent. Without the Tt
and Ut-continuity assumption, this proposition would be false: a counterexample is provided in

the appendix. Proposition 3.3.1 ensures that, in presence of time continuity of the Lévy contin-

uous and jump parts with respect to the corresponding time changes, the quadratic variation of a

DTC Lévy process is itself of DTC-type.

Now, for St as in (3.14) let us define:

Φt0(z, w) = Et0 [exp(iz log(S̃t/St0) + iw (TVt − TVt0))]. (3.16)

For each z, w for which the right hand side is finite, Φt0(z, w) is the Fourier transform is the

joint transition function from time t0 to time t of log S̃t and TVt. The characteristic function
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Φt0(z, w) can be completely characterized in terms of the Lévy triplet of Xt = Xc
t + Xd

t and

the joint Q(z, w)-distribution of Tt and Ut by virtue of the following proposition.

Proposition 3.3.2. Let St be an asset evolution as in corollary 3.2.4, and define the family of P
absolutely-continuous measures Q(z, w) << P having Radon-Nikodym derivative:

dQ(z, w)

dP
= Mt((izθ0, iwθ0), Ct +Dt, (Tt, Ut)) (3.17)

where Ct = (Xc
t , 0), Dt = (Xd

t , iθ0〈X〉dt ) and Mt is given by (3.12). For all (z, w) such that

(izθ0, iwθ0) ∈ Θ0, the characteristic function in (3.16) is given by:

Φt0(z, w) = LQ∆T,∆U (ζ(z, w, µ, σ, θ0), ξ(z, w, ν, θ0)), (3.18)

with the notation LQ∆T,∆U (·) indicating the bilateral Laplace transform of the conditional joint

distribution of Tt − Tt0 and Ut − Ut0 taken under the measure Q(z, w), and

ζ(z, w, µ, σ, θ0) = θ0µ(z − iz)− θ2
0σ

2(z2 + iz − 2iw)/2, (3.19)

ξ(z, w, ν, θ0) = izψdX(θ0)− ψD(izθ0, iwθ0). (3.20)

Notice that unlike the density processes used for standard numéraire changes, the new dis-

tributions implied by (3.17) also accounts for the quadratic variation as a factor. If we assume Tt
and Ut to be pathwise integrals of the form (3.9) and (3.10), it is possible to interpret the Laplace

transform (3.18) as being the analogue of a bivariate bond pricing formula, where the short rates

are replaced by the instantaneous activity rates, and the pricing measure is not given once and

for all, but varies as an effect of the correlation of (vt, ut) with the underlying Lévy process. The

financial insight of (3.18) is that it is possible to formulate a valuation theory by just modeling

the joint term structure of the activity rates vt and ut and their correlation with the stock.

Also of interest is the interpretation of the measure Q(z, w). Let us consider the special

case of Xt being independent of Tt and Ut. In such a case it is straightforward to prove, by using

the laws of the conditional expectation, that one obtains (3.18) with Q(z, w) = P. Therefore,

whenever there is no dependence between the time changes and the underlying Lévy process, no

change of measure is needed in order to extract the characteristic function Φt0(z, w). In contrast,

in presence of correlation between Xt and the time changes, the family Q(z, w) gives a mea-

surement of the impact of leverage on the price densities. Furthermore, in some well-behaved

cases this change of measure can be absorbed in the P-dynamics of the asset through a suitable

parameter alteration of the distributions of Tt and Ut. In accordance with Carr and Wu [15],

we call Q(z, w) the leverage-neutral measure and Φt0(z, w) the leverage-neutral characteristic

function. Just as prices in a risky market can be equivalently computed in a risk-neutral envi-

ronment according to a different price distribution, valuations in the presence of leverage can

be performed in a different economy with no leverage by means of an appropriate distributional

modification.
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3.4 Pricing and price sensitivities

The characteristic function found in section 3.3 is needed to obtain analytical formulae for the

valuation of European-type derivatives with a sufficiently regular payoff F . In the present sec-

tion we find a semi-analytical formula based on an inversion integral that extends the standard

Fourier-inversion machinery to our multivariate context.

Recall that since all the involved processes are Markovian, it makes sense to treat Φt0(z, w)

like a Gauss-Green integral kernel depending only on some given initial states at time t0. The

following proposition extends both theorem 1 of Lewis [75] and proposition 2.2.1.

Proposition 3.4.1. Let Yt = logSt, with St given in corollary 3.2.4. Let F (x, y) ∈ L1
t0(Yt, 〈Y 〉t)

for all t0 < t, be a positive payoff function having analytical Fourier transform F̂ (z, w) in a

multi-strip

ΣF = {(z, w) ∈ Θ, α1 < Im(z) < α2, β1 < Im(w) < β2, α1, α2, β1, β2 ∈ R}. (3.21)

Suppose further that Φt0(z, w) is analytical in

ΣΦ = {(z, w) ∈ Θ, γ1 < Im(z) < γ2, η1 < Im(w) < η2, γ1, γ2, η1, η2 ∈ R} (3.22)

and that Φt0(z, w) ∈ L1(dz × dw). If ΣF ∩ Σ∗Φ 6= ∅, then for every multi-line:

Lk1,k2 = {(x+ ik1, y + ik2), (x, y) ∈ R2} ⊂ ΣF ∩ Σ∗Φ (3.23)

we have that the time-t0 value of the contingent claim F maturing at time t is given by:

Et0 [e−r(t−t0)F (Yt, 〈Y 〉t)] =
e−r(t−t0)

4π2
·∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
e−iw〈Y 〉t0S−izt0

e−r(t−t0)izΦt0(−z,−w)F̂ (z, w)dzdw. (3.24)

It is clear that modifying the asset dynamics specifications only acts on Φt0 , whereas chang-

ing the claim to be priced only influences F̂ . Also, by setting either variable to 0, we are able to

extract from (3.24) the prices of both plain vanilla and pure volatility derivatives. For example,

the pricing integrals by Lewis [75, 76] are special cases of the above equation when F does

not depend on the realized volatility and Φt0 is either obtained from a diffusion or a Lévy pro-

cess. Moreover, equation (2.15) is recovered when St is assumed to follow a stochastic volatility

model.

In addition, this representation is useful if we are interested in the sensitivities of the claim

value with respect to the underlying state variables. Let us consider for instance the Delta (sen-

sitivity with respect to the change in the value of the underlying) and Gamma (sensitivity with

respect to the rate of change in the value of the underlying) of valuations performed through for-

mula (3.24). Call I(r, t0, z, w) the integrand on the right hand side of (3.24); by differentiating
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(if possible) under the integral sign and noting that Φt0 has no dependence on St0 we see that:

∆t :=
∂

∂S
Et0 [e−r(t−t0)F (Yt, 〈Y 〉t)] = −e

−r(t−t0)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞

iz

St0
I(r, t0, z, w)dzdw,

(3.25)

and

Γt :=
∂2

∂S2
Et0 [e−r(t−t0)F (Yt, 〈Y 〉t)] =

e−r(t−t0)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞

iz − z2

S2
t0

I(r, t0, z, w)dzdw.

(3.26)

Mutatis mutandis we can repeat this argument if we want to determine the price sensitivity

with respect to the quadratic variation 〈Y 〉t. Finally, as Φt0(z, w) could also depend on other

variables (e.g. an instantaneous rate of activity vt0) known at time t0, by calling ν one such

variable we have:

Vt :=
∂

∂ν
Et0 [e−r(t−t0)F (Yt, 〈Y 〉t)] =

e−r(t−t0)

4π2
·∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
e−iw〈Y 〉t0S−izt0

er(t−t0)iz ∂Φt0

∂ν
(−z,−w)F̂ (z, w)dzdw. (3.27)

This is especially well-suited to the case in which Φt0(z, w) is exponentially-affine in ν, i.e.

Φt0(z, w) = exp(A(z, w, t− t0) +B(z, w, t− t0)νt0), (3.28)

for some functions A and B, when we have:

∂Φt0

∂ν
(−z,−w) = B(−z,−w, t− t0)Φt0(−z,−w). (3.29)

In section 3.5 we shall explicitly calculate Φt0 for a number of decoupled time-changed

models.

3.4.1 Forward-starting and discretely-sampled payoffs

A forward-starting derivative is a contingent claim where the accrual of the underlying factors to

be accounted for when receiving the payoff is set at a later date than initiation. If we assume, as

usual, that the contingent claim F to be priced depends on the joint performance of St and TVt,

then for a maturity date T , times t0 < t∗ < T , and Yt = logSt,

Ft∗,T (St, 〈X〉t) = F (YT − Yt∗ , 〈Y 〉T−t∗ − 〈Y 〉t∗) (3.30)

is a forward-starting joint derivative activated at t∗ written on St and TVt. According to the

general theory, the value function Vt0,t∗ of Ft∗,T (Yt, 〈Y 〉t) is:

Vt0,t∗ = Et0
[
e−r(T−t0)Ft∗,T (YT , 〈Y 〉T )

]
. (3.31)

In order to compute Vt0,t∗ first of all we define the joint leverage-neutral forward-starting
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characteristic function as:

Φt0,t∗(z, w) = Et0 [exp(iz log(S̃T /S̃t∗) + iw (TVT − TVt∗))]. (3.32)

The interpretation of this characteristic function is the same as that in section 3.3. We can calcu-

late this function as:

Φt0,t∗(z, w) =Et0 [eiz log(S̃T /S̃t∗ )+iw (TVT−TVt∗ )]

=Et0 [Et∗ [eiz log(S̃T /S̃t∗ )+iw (TVT−TVt∗ )]]

=Et0 [Φt∗(z, w)]. (3.33)

In the case where Φt∗(z, w) is exponentially-affine in some state variable νt we can further write:

Φt0,t∗(z, w) =Et0 [exp(A(z, w, t− t∗) +B(z, w, t− t∗)νt∗)]

= exp(A(z, w, t− t∗))Et0 [exp(B(z, w, t− t∗)νt∗)]. (3.34)

The characteristic function of νt in the last equality is available in closed form in some cases,

and for popular models is itself exponentially-affine reflecting the activity rates.

By means of Φt0,t∗ we obtain the forward-starting equivalent of the pricing equation (3.24)

as follows:

Vt0,t∗ =
e−r(T−t0)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
e−izr(T−t0)Φt0,t∗(−z,−w)F̂ (z, w)dzdw (3.35)

where the notation follows that of proposition 3.4.1. Unlike formula (3.24), the equation above

bears no dependence on the spot price and the realized variance state variables.

Exotic derivatives that can be thought of as a portfolio of n forward-starting claims are

rather popular among the investors. Given a partition Π = {t0, t1, . . . , tn = T} of an investment

horizon [t0, T ], let us consider n forward claims set at tk−1 and expiring at tk, that is:

FΠ(Yt, 〈Y 〉t) =

n∑
k=1

akFtk−1,tk(Yt, 〈Y 〉t). (3.36)

We can compute prices for these payoffs by applying (3.35) and the linearity of the integral:

VΠ := Et0 [e−r(T−t0)FΠ(YT , 〈Y 〉T )] =
n∑
k=1

akVtk−1,tk . (3.37)

To give some examples, a derivative of this kind is the so called cliquet option. A cliquet option

consists of a sequence of forward-starting call options on the return of the asset between tk−1

and tk, capped at C > 0 and floored at 0, i.e. in (3.30)

F (x, y) = N max (0,min (C, ex − 1)) (3.38)

where N is a notional amount. Also, a common alternative to the use of the total variance TVt to



3.5. Specific model analysis 85

model a volatility derivative is to discretely sample the variance in terms of the asset’s squared

log-returns. Indeed, this is the actual form of the volatility derivatives traded in the market. For

example, from formula (3.36) one may recover a discretely-sampled variance swap by setting in

(3.30)

F (x, y) = x2/n. (3.39)

Other discretely-sampled volatility derivatives can be priced in this way; for an exhaustive

overview see e.g. Zheng and Kwok [102].

Finally, joint forward-starting payoffs can also be imagined. For example, a forward-

starting TVO can be defined by letting in (3.30)

F (x, y) = σ

√
y

T − t∗
(ex −K)+. (3.40)

The quantity RVt∗,T =
√

(IT − It∗)/(T − t∗) is the forward-starting realized volatility. Notice

that such definition of a forward option entails a rescaling of the spot price at inception with the

price at the activation date t∗.

3.5 Specific model analysis

We now determine the DTC Lévy structure (3.14) of various popular asset price processes, and

find for each of them the corresponding leverage-neutral characteristic function Φt0(z, w).

Such a derivation allows for the full implementation of equation (3.24) for the pricing of

joint asset and volatility derivatives in all of the cases we shall deal with. What the discussion

below should make apparent is that decoupled time changes offer a natural unifying framework

for a priori different strains of financial asset models (e.g. continuous/jump diffusions, jump

diffusions with stochastic volatility, Lévy processes). By classifying models through their DTC

structure it is possible to recognize a “nesting” pattern linking different models, in which some

can be considered particular cases of some others. This is of use for numerical purposes: as

we shall see in section 3.7, one single implementation of equation (3.24) can produce values for

several models, each one obtained by using a different instantiation of the code. Four categories

of asset models are discussed: standard Lévy processes, stochastic volatility models, DTC jump

diffusions and general exponentially-affine asset models.

3.5.1 Lévy processes

In case of the Lévy process the DTC structure coincides with the underlying Lévy process. To

determine Φt0(z, w) no change of measure is necessary, so this function represents the joint

conditional characteristic function of the log-price and its quadratic variation as given in the

risk-neutral measure. Below, are provided the calculations for some popular models.

Black-Scholes model

The classic SDE with constant parameters σ, r driven by a Brownian motion Wt:

dSt = rStdt+ σStdWt (3.41)
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can be trivially recovered from (3.14) by setting the triplet for the underlying Lévy process

Xt = Xc
t to be (0, σ, 0) and letting Tt = t, Ut = 0, so that XT,U = Xt. From (3.18), we

immediately have:

Φt0(z, w) = exp(−(t− t0)σ2(z2 + iz − 2iw)/2). (3.42)

Jump diffusion models

In their classic works, Merton and Kou [81, 59] proposed to model the log-price dynamics as a

finite-activity jump diffusion. The risk-neutral asset dynamics are given by:

dSt = rSt−dt+ σtSt−dWt + St−(exp(J)− 1)dNt − κλSt−dt (3.43)

where Wt is a standard Brownian motion, Nt is a Poisson counter of intensity λ, and J is the

jump size distribution. Nt and Wt are assumed to be independent, and the compensator κ equals

φJ(−i)−1. For the discounted price S̃t to be a true martingale, conditions on the asymptotic be-

havior of fJ(x) must be imposed. In the Merton model J is normally distributed J ∼ N (m, δ2),

whereas Kou assumed for it an asymmetrically skewed double-exponential distribution, that is,

the density function fJ(x) as given by:

fJ(x) =

αpe−αx if x ≥ 0

βqeβx if x < 0
(3.44)

for α > 1, β > 0 and p+ q = 1.

In these models no time change is involved, so XT,U coincides with the underlying Lévy

processXt having characteristic triplet (0, σ2, λfJ(x)dx). To completely characterize Φt0(z, w),

observe that (Xd
t , 〈Xd〉t) is just a bivariate compound Poisson process of joint jump density

fJ,J2(x, y) and intensity λ, whence:

ψD(z, w) = λ(φJ,J2(z, w)− 1), (3.45)

where φJ,J2(z, w) is the joint characteristic function of J and J2. We conclude from (3.18) that

Φt0 has the exponential structure:

Φt0(z, w) = exp(−(t− t0)(σ2(z2/2 + iz/2− 2iw)/2 + λ(izκ− φJ,J2(z, w) + 1)). (3.46)

Now for the Merton model we have

φJ,J2(z, w) =
exp

(
imz−δ2z2/2+im2w

1−2iδ2w

)
√

1− 2iδ2w
, (3.47)

and the integral converges for Im(w) > −1/2δ2. For the Kou model we can write:

φJ,J2(z, w) = φJ+,J2
+

(z, w) + φJ−,J2
−

(z, w); (3.48)
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the characteristic function of the positive and negative parts are:

φJ+,J2
+

(z, w) =αp
√
πe−

(α−iz)2
4iw

 Erfc
(

α−iz
2
√
−iw

)
2
√
−iw

 , (3.49)

φJ−,J2
−

(z, w) =βq
√
πe−

(α−iz)2
4iw

 Erfc
(

β−iz
2
√
−iw

)
2
√
−iw

 , (3.50)

which both converge for Im(w) > 0.

Tempered stable Lévy and CGMY

Another way of obtaining Lévy distributions for the asset price is to directly specify an infinite

activity Lévy measure ν(dx). In such a case we have XT,U = Xt = Xd
t , with Xt being a pure

jump Lévy process of Lévy measure ν(dx). The two instances we analyze here are the tempered

stable Lévy process (e.g. Cont and Tankov [23]), and the CGMY (Carr et al. [13]) models. Both

of these are obtained as an exponential smoothing of stable distributions; the latter can be viewed

as a generalization of the former allowing for an asymmetrical skew between the distribution of

positive and negative jumps. The Lévy density for a CGMY process is:

dν(x)

dx
=
c−e
−β−|x|

|x|1+α−
1I{x<0} +

c+e
−β+x

x1+α+
1I{x≥0}. (3.51)

which is well defined for all c+, c−, β+, β− > 0, α+, α− < 2. When α+ = α− one has the

tempered stable process. For simplicity in what follows we assume α+, α− 6= 0, 1; for such

values the involved characteristic functions still exist, but lead to particular cases. Since

Φt0(z, w) = exp((t− t0)ξ(z, w, ν(x)dx,−i)) (3.52)

to fully characterize Φt0(z, w) we only need to determine ψdX(θ) and ψD(z, w). Letting

γ1 =
∫ 1
−1 xdν(x), the exponent ψdX(θ) is given by the standard theory (Cont and Tankov [23],

proposition 4.2) as:

ψdX(θ) =γ1 + Γ(−α+)β
α+
+ c+

((
1− iθ

β+

)α+

− 1 +
iθα+

β+

)
+

Γ(−α−)β
α−
− c−

((
1 +

iθ

β−

)α−
− 1− iθα−

β−

)
. (3.53)
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Set γ2 =
∫ 1
−1 x

2dν(x); the positive part ψ+
D of ψD is then seen to be:

ψ+
D(z, w) =

izγ1 + iwγ2 +

∫ +∞

0
(eizx+iwx2 − 1− (izx+ iwx2))

c+e
−β+x

x1+α+
dx = izγ1 + iwγ2+

ic+β
α+
+

(
−wΓ(2− α+)

2iβ2
+

− zΓ(1− α+)

2iβ+
+ iΓ(−α+)

)
− c+(β+ − iz)α+

(
i(β+ − iz)2

w

)−α+/2

×

(√
i(β+ − iz)

w
Γ

(
1

2
− α+

2

)
1F1

[
1− α+

2
,
3

2
,
i(β+ − iz)2

4w

]
−

Γ
(
−α+

2

)
1F1

[
−α+

2
,
1

2
,
i(β+ − iz)2

4w

])
.

(3.54)

Here Γ is the Euler Gamma function and 1F1 the confluent hypergeometric function. The multi-

strip of convergence of (3.54) is the set ΣΦ = {(z, w), Im(w) > 0, Im(z) > −β+}. The

determination ψ−D has a similar expression.

3.5.2 Stochastic volatility and the Heston model

In a stochastic volatility model the asset process is given, in a risk neutral-measure, by the SDE

dSt = rStdt+
√
vtStdW

1
t (3.55)

where vt is some continuous stochastic variance process. By the Dubins and Schwarz’s theorem

any continuous martingaleMt can be written asMt = W〈M〉t for a certain Brownian motionWt,

which implies that the DTC structure of a stochastic volatility model corresponds to a standard

Brownian motion Wt time-changed by Tt as in (3.9). In order to explicitly express the character-

istic function Φt0(z, w) we must make a specific choice for the dynamics in (3.55). For instance,

we can make the popular choice of selecting a square-root (CIR) equation for the instantaneous

variance:

dvt = α(θ − vt)dt+ η
√
vtdW

2
t (3.56)

for positive constants α, θ, η and a Brownian motion W 2
t linearly correlated with W 1

t through a

correlation coefficient ρ. For St to be well-defined, the parameters α, θ, and η need to satisfy the

Feller condition 2αθ ≥ η2. The system of SDEs (3.55)-(3.56) is the model by Heston [60]. As

we change to the measure Q(z, w), the application of the complex-plane version of Girsanov’s

theorem and a simple algebraic manipulation reveals that the leverage-neutral dynamics vzt of vt
are of the same form as (3.56), but with parameters:

αz = α− iρzη; (3.57)

θz = αθ/αz, (3.58)
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(see also [15]). Using equation (3.18), we determine Φt0 as follows4:

Φt0(z, w) =Lz∆T (z2/2 + iz/2− iw), (3.59)

where Lz∆T indicates the transform with respect to vzt which is well-known analytically (e.g.

Dufresne [32]). The case Tt = t reverts back to the Black-Scholes model, when (3.59) collapses

to (3.42) with σ2 = v0.

Other choices for vt are clearly possible, yielding different stochastic volatility models (the

3/2 model, GARCH, etc.). It is clear from the arguments above that for an analytical expression

for Φt0 to exist it suffices that the Laplace transform of Tt is known in closed form5 and that vt
belongs to a class of models that are stable under the Girsanov transformation.

3.5.3 DTC jump diffusions

When the underlying Lévy process is represented by a finite activity jump diffusion, operating

a decoupled time change amounts to either introducing a stochastic volatility coefficient in the

continuous Brownian part, or making the intensity of the compound Poisson processXd
t stochas-

tic, or both. Models carrying this structure have been prominently discussed by D.S. Bates [6, 7]

and H. Fang [37].

Stochastic volatility with jumps

The stochastic volatility model with jumps (SVJ) provides us with a first instance of a decoupled

time change not otherwise obtainable as an ordinary time change. The SVJ model is in fact

a Lévy decoupled time change with a time-changed continuous part and a time-homogeneous

jump part. The dynamics for the asset price are given by the exponential jump diffusion:

dSt = rSt−dt+
√
vtSt−dW

1
t + St−(exp(J)− 1)dNt − κλSt−dt; (3.60)

for some Brownian motion W 1
t , stochastic variance process vt, Poisson process Nt and jump

size J having compensator κ. The underlying DTC structure of the SVJ model is given by

XT,U = Xc
Tt

+ Xd
t with the characteristic triplet for Xt being (0, 1, λfJ(x)dx) and Tt taking

the form (3.9). By assuming as a jump distribution a normal random variable, and as a variance

process the square-root equation:

dvt = α(θ − vt)dt+ η
√
vtdW

2
t (3.61)

we have the model by Bates. For the discounted asset value to be a martingale, the parameters

of the driving stochastic volatility and jump process must be subject to the requirements of both

subsection 3.5.2 and subsection 3.5.1. It is straightforward to see that Φt0(z, w) decomposes

into:

Φt0(z, w) = Φc
t0(z, w)Φd

t0(z, w), (3.62)

4In chapter 2 we have found Φt0 for the Heston model by augmenting the SDE system (3.55)-(3.56) with the
equation dIt = vtdt, and solved the associated Fourier-transformed parabolic equation via the usual Feynman-Kac
argument. As it has to be, the two approaches coincide.

5See e.g. Lewis [75], chapter 2, for the Laplace transform of the cited models.
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where Φc
t0(z, w) and Φd

t0(z, w) are given respectively by (3.59) and (3.46)-(3.47). Therefore:

Φt0(z, w) =Lz∆T (z2/2 + iz/2− iw) exp(−(t− t0)λ(izκ− φJ,J2(z, w) + 1)). (3.63)

So far, we have encountered either exponential Lévy models, or exponentially affine func-

tions arising as solutions of a PDE problem. Here we have a mixture of the two: a time-

homogeneous jump factor, modeled as a compound Poisson process, and a continuous diffusion

factor, whose characteristic function solves a diffusion problem. The degenerate case Tt = t,

yields a Merton jump diffusion with diffusion coefficient
√
v0.

Stochastic volatility with jumps and a stochastic jump rate

Another way of obtaining a DTC model is obtained by introducing a stochastic jump frequency

into the jump diffusion of the log-price. A jump process with stochastic volatility and stochastic

jump rate (SVJSJ) has been suggested and empirically studied by Fang [37]. For a time change

Ut, we assume Nt to be a pure jump process of finite activity such that conditionally on Ut, Nt

is distributed like a Poisson random variable of parameter Ut, and is independent of every other

involved process. Let λt be another continuous stochastic process; with the remaining notation

as in subsection 3.5.3, we define the asset price dynamics as follows:

dSt = rSt−dt+
√
vtSt−dW

1
t + St−(exp(J)− 1)dNt − κλtSt−dt; (3.64)

This model has a clear DTC Lévy structure XT,U given by Tt, Ut as in (3.9) and (3.10) with

ut = λt, and characteristic triplet (0, 1, fJ(x)dx). The model by Fang is obtained by setting:

dvt = α(θ − vt)dt+ η
√
vtdW

2
t ; (3.65)

dλt = αλ(θλ − λt)dt+ ηλ
√
λtdW

3
t . (3.66)

As usual we impose 〈W 1,W 2〉t = ρdt; in contrast, the Brownian motion W 3
t is assumed to

be independent of all the other random variables. If both of the diffusion parameter sets obey

Feller’s condition and the density of J decays sufficiently fast, S̃t is a martingale. Like in the

Bates model, the jumps J are normally distributed. The function Φt0 is then given by:

Φt0(z, w) =Lz∆T (z2/2 + iz/2− iw)L∆U (izκ− φJ,J2(z, w) + 1). (3.67)

Again we recognize that we can decompose Φt0(z, w) = Φc
t0(z, w)Φd

t0(z, w), where Φc
t0 is the

leverage-neutral characteristic function of a Heston process of variance vt, and Φd
t0 that of a

compound Poisson process time-changed with Ut, whose argument was computed in subsection

3.5.1. The Laplace transforms of the integrated-square root processes arising from vzt and λt are

known, and the leverage-neutral version vzt of vt has been given in subsection 3.5.2. Observe that

there is no leverage effect in the jump part because of the assumptions on W 3
t . Finally, notice

that the case Ut = t reduces to the Bates model with a constant jump arrival rate equal to λ0.
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3.5.4 The Huang and Wu approach
In [63] Huang and Wu use a full DTC approach by selecting various jump processes Xd

t and

using as a pair of time changes Tt and Ut the pathwise integrals of a bivariate square root process

whose components have correlation ρ with the Brownian motion Xc
t . The equation for the log-

returns provided is directly in the DTC form

logSt = logS0 + rt+ σXc
Tt +Xd

Ut − σ
2Tt − ψd(−i)Ut (3.68)

The activity rates generating Tt and Ut are given by a bivariate diffusion of the CIR form

dvit = αi(θi − vit)dt+ ηi
√
vitdW

i
t ; (3.69)

for i = 1, 2 and 〈W i, Xc〉t = ρ. Applying the usual machinery, after changing to the leverage-

neutral measure and resorting to Girsanov’s theorem we obtain the leverage-neutral characteristic

function in the standard form

Φt0(z, w) =Lz∆T,∆U (ζ(z, w, 0, 1,−i), ξ(z, w, ν(dx),−i)). (3.70)

Here L∆T,∆U (·) stands for the Laplace transform of the bivariate square root process having drift

parameters whose coordinates are given by the analogous of equations (3.57) and (3.58). How-

ever, such a Laplace transform has no analytical solution, unless we assume the two components

of (3.69) to be independent. The reason why this is the case can be understood by appealing to

the theory of Grasselli and Tebaldi [55]. What the authors prove is that the system of Riccati

ODEs canonically associated to the system (3.69) can only be solved in terms of the parameters

of the system under the condition that the corresponding SDEs are independent ([55], theorem

17). This makes it unfeasible to instantiate (3.68)-(3.69) in such a way as to entail dependent

continuous and jump activities and at the same time obtaining a closed formula for Φt0 .

3.5.5 General exponentially-affine activity rate models
A general theory of affine models for the discounted asset dynamics has been laid out by Duffie

et al. [31], and Filipović [41]. We briefly illustrate how this ties in with decouple time-changed

processes. Suppose we have a Markov process given by the stochastic differential equation:

dYt = µ(Yt)dt+ σ(Yt)dWt + dNt (3.71)

where Wt is an n-dimensional Brownian motion, Nt is an n-dimensional pure jump process

of intensity λ(Yt) and joint jump size distribution F (x1, . . . , xn) on Rn. We fix a discount

functional R(x) = r0 + r1 · x, (r0, r1) ∈ R× Rn and assume for the coefficients the following

linear structure:

µ(x) = m0 +m1x, (m0,m1) ∈ Rn ×Mn(R)

σ · σT (x) = Σ0 + Σ1x, (Σ0,Σ1) ∈ Simn(R)× Simn(R)n

λ(x) = l0 + l1x, (l0, l1) ∈ R× Rn.
(3.72)

For some one-dimensional DTC process XT,U , let Mt be the change of measure martin-
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gale in (3.17) and assume Yt to be two-dimensional, so that the marginals of Yt represent the

instantaneous activity rates vt and ut.

The leverage-neutral characteristic function Φt0 can be recovered as follows. By taking the

Ito differential of logMt one sees that Mt is itself a linear jump diffusion; we can thus define

the three-dimensional augmented process Ỹt = (Yt, logMt) having some associated extended

parameters m̃0, m̃1, Σ̃0, Σ̃1, l̃0, l̃1, F̃ in (3.72). Furthermore, we can rewrite Mt as:

Mt = exp(b · Ỹt) (3.73)

where b = (0, 0, 1)T . Now, according to the results of Duffie et al. [31], appendix C, under the

measure Q = Q(z, w) having Radon-Nikodym derivative Mt, we have:

ΨQ
t0

(u) := EQ
t0

[
exp

(
−
∫ t

t0

R(Ỹs)ds

)
euỸt

]
= e−α(t0)−β(t0)Ỹt0 (3.74)

for all u for which (3.74) is defined, and α(τ), β(τ) following the Riccati system of ODEs6:

β′(τ) = r1 + (m̃T
1 + Σ̃1b)β(τ)− 1

2
β(τ)T Σ̃1β(τ)− l̃1(LF̃ (β(τ) + b)− LF̃ (b)) (3.75)

α′(τ) = r0 + (m̃0 + Σ̃0b)β(τ)− 1

2
β(τ)T Σ̃0β(τ)− l̃0(LF̃ (β(τ) + b)− LF̃ (b)) (3.76)

for τ ≤ t, with boundary conditions β(t) = u and α(t) = 0. By choosing

r0 = 0, r1 = (ζ(z, w, µ, σ, θ0), ξ(z, w, ν(dx), θ0), 0), (3.77)

one notices that:

ΨQ
t0

(0) = Φt0(z, w). (3.78)

The solvability of equations (3.75)-(3.76) is discussed and characterized in Grasselli and

Tebaldi [55]. What we have just shown is that the class of the exponentially-affine processes and

that of the DTC Lévy processes intersect in the class of the DTC processes whose instantaneous

activity rates are given by affine jump diffusions of the form (3.71)- (3.72).

We remark that Ỹt implicitly defines a price process St through the instantaneous activity

rates and the change of measure martingale Mt accounting for the dependence structure be-

tween the time changes and the underlying Lévy process. The augmented diffusion Ỹt is an

exponentially-affine decoupled time change; all the models reviewed so far fall under this cat-

egory7. Another example of a model that can be represented in this form is the “double jump

model” of Duffie et al. [31], given by a jump diffusion with stationary jump intensity, whose

stochastic volatility is itself a jump diffusion process having the same driving Poisson process as

the stock.

6(β(τ)TΣ1β(τ))k := β(τ)TΣk1β(τ), k = 1, . . . , n.
7A DTC model falling outside this intersection is the linear quadratic-affine model by Santa Clara and Yan, [88].

However, for the same reasons as those mentioned for the Huang and Wu model, such model does not possess an
analytically tractable transform to be used for pricing purposes.
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3.6 A novel DTC jump diffusion for derivative pricing

We now illustrate a theoretical model in the DTC framework admitting a closed formula for

Φt0 . The price evolution we consider has several attractive features. In first place, it is a DTC

jump diffusion and therefore allows for the presence of a stochastic jump rate and a stochastic

volatility; also, the dynamics we assume carry the usual linear correlation between the stochastic

volatility and the Brownian motion driving the stock, as well as a dependence structure between

the instantaneous rates of activity. Thus, the hypothesis of a market jump and continuous activity

correlated with each other finds room in this model. As we have seen, the asset modeling research

reviewed in sections 3.5.3 and 3.5.4 cannot capture this effect.

The price process we analyze links to a modern and currently very active strain of research,

which makes use of the so-called Wishart process for financial modeling. The Wishart process is

a matrix-valued affine process, studied foremostly by M.F. Bru [12], that can be thought of as a

multivariate extension of the CIR process. It has been used to model the driving factors of term

structures and price processes by, among the others, da Fonseca et al. [28, 27], and Gouriéroux

and Sufana [52, 53], among the others.

For two matricesQ andM inMn(R), withQ invertible andM negative definite (to capture

mean-reversion), some constant c ≥ n+ 1 and an n× n matrix Brownian motion Bt, a Wishart

process Σt is defined as being the only strong solution of the following multi-dimensional SDE:

dΣt =
√

ΣtdBtQ+QTdBT
t

√
Σt + (MΣt + ΣtM

T + cQTQ)dt. (3.79)

Under these conditions the Wishart process is a symmetric matrix-valued process whose

diagonal elements take only positive values.

We can use Σt to build a one-dimensional DTC jump diffusion model as follows. We

choose n = 2 and let Wt be a two-dimensional Brownian motion such that 〈W 1, B1,1〉t =

〈W 2, B2,1〉t = ρt for some correlation parameter ρ andWt is independent of all the other entries

of Bt. Let Nt be a finite activity jump process like in subsection 3.5.3, that we further assume to

be independent of both Wt and Bt. As usual, the jump distribution J is set to be independent of

every other variable. Denoting by σt the positive-definite matrix square root of Σt, we can define

the risk-neutral dynamics of the log-price process Yt = log(St/S0) as:

dYt = (r − Σ1,1
t /2− Σ2,2

t κ)dt+ σ1,1
t dW 1

t + σ1,2
t dW 2

t + JdNt, Y0 = 0 (3.80)

where κ equals φJ(−i) − 1. The process St can be seen to be a local martingale of the form

(3.14) by assuming the time changes in proposition 3.2.3 to be like those in equations (3.9) and

(3.10) and letting θ0 = (−i,−i) and

dXc
t =

σ1,1
t√
Σ1,1
t

dW 1
t +

σ1,2
t√
Σ1,1
t

dW 2
t , Xd

t =
∑Mt

i=0 J, vt = Σ1,1
t , ut = Σ2,2

t . (3.81)

In the above, Mt is a Poisson process of intensity 1.Let now wjt be the scalar Brownian motion
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driving Σj,j
t : it can be proved that

d〈w1, w2〉t =
Σ1,2
t (Q1,1Q1,2 +Q2,1Q2,2)√

Σ1,1
t ((Q1,1)2 + (Q2,1)2)

√
Σ2,2
t ((Q1,2)2 + (Q2,2)2)

dt. (3.82)

Observe that this correlation is stochastic. The correlation between Yt and its instantaneous

variance Σ1,1
t is instead determined by the interplay between ρ and Q; we have:

d〈w1, Xc〉t =
ρQ1,1√

(Q1,1)2 + (Q2,1)2
dt. (3.83)

By applying the Girsanov’s transformation, we see that the Q(z, w)-dynamics of (3.79) are given

by the complex-valued Wishart process:

dΣz
t =

√
Σz
t dBtQ+QTdBT

t

√
Σz
t + (M zΣz

t + Σz
t (M

z)T + cQQT )dt (3.84)

where

M z = M + izQTR, R =

(
ρ 0

0 0

)
, (3.85)

whence:

Φt0(z, w) =Lz∆T,∆U (z2/2 + iz/2− iw, izκ− φJ,J2(z, w) + 1). (3.86)

Notably, the Laplace transform L∆T,∆U (·) for vt and ut as in (3.81) can be derived in

closed form (see the appendix), since it is a particular case of some well-studied transforms of

the Wishart process.

It is therefore possible to price, and find price sensitivities of, joint price/volatility contin-

gent claims on an asset whose log-price process follows Yt. The model just presented is a par-

ticular DTC jump diffusion featuring not only the usual leverage effect between the underlying

jump diffusion and the continuous/jump market activity, given by (3.83), but also a correlation

structure between the rates of activities themselves, as shown by equation (3.82). In the spirit of

the previous section, we remark that when all the Wishart matrices are diagonal an application of

the Lévy theorem shows that this model can be embedded in an SVJSJ representation for some

appropriate parameter choice.

This asset pricing model provides an example of how non-trivial DTC modeling (i.e.

achieved by using dependent time changes) may work in practice. As a general approach, one

could start from a multivariate stochastic process whose integrated marginals have a known joint

Laplace transform, and use these as time changes for the continuous and discontinuous parts of

some given Lévy process. The underlying Lévy triplet will only appear as an argument of such

a transform, and the characteristic function of the process is then completely determined up to

a measure change. If the underlying time changes are drawn from an analytically tractable joint

distribution, the analyticity of the model will be preserved. This and similar models are currently

the subject of further research; some advances are illustrated in the next chapter.
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3.7 Numerical testing and final remarks
3.7.1 Implementation of the pricing formula
For validation purposes, we numerically implemented equation (3.24) in MATHEMATICA R©

for various models and payoffs, and compared the analytical prices so obtained to a MATLAB R©

simulation following an Euler scheme. The results confirm the consistence of the pricing formula

with the risk-neutral valuation theory.

We analyzed three different contingent claims: one on St, one on TVt, and one joint deriva-

tive on St and TVt. Namely, we accounted for three different kinds of options: a vanilla call

option, a call option on the realized volatility, and a call TVO.

For a plain call option of maturity t and strike K, the function F and its Fourier transform

F̂ to be used in (3.24) are:

F (z) = (ez −K)+, F̂ (z) =
K1+iz

(iz − z2)
; (3.87)

the function F̂ exists and is analytic for Im(z) > 1.

A possible volatility investment is to write a call option using as an underlying the total

realized volatility
√
TVt of an asset, or to buy a call option directly on a volatility index such as

the VIX. Hence, we would like to price the contingent claim paying (
√
TVt −Q)+ at time t for

some strike realized volatility level Q. In our equation we would then need to take:

F (w) = (
√
w −Q)+, F̂ (w) =

√
π Erfc(Q

√
−iw)

2(−iw)3/2
; (3.88)

the Fourier transform here is well-defined and holomorphic in Im(w) > 0.

The target volatility option mentioned in the introduction is a natural candidate for testing

mixed-claim structures, being an instance of a currently traded joint asset/volatility derivative.

The payoff function F and the Fourier transform for a call TVO of strike H , maturing at t with

target volatility σ are:

F (z, w) = σ

√
t

w
(ez −H)+, F̂ (z, w) = σ(1 + i)

√
πt

2w

H1+iz

(iz − z2)
. (3.89)

Observe that, unlike the previous contracts, the payoff F of a TVO shows explicit dependence

on the expiry t. The domain of holomorphy of F̂ is the strip ΣF = {(z, w) ∈ C2, Im(z) >

1, Im(w) > 0}.

We numerically tested these derivatives using five different stochastic models for the under-

lying asset processes: namely, the Black-Scholes, Heston, Merton, Bates and Fang models. All

the prices have been produced with a single implementation of (3.24) with Φt0 given by (3.67).

All we had to do is changing/voiding the relevant parameters, and replacing the module for F̂

whenever switching payoff. The parameter estimates have been taken from Fang’s [37] fitting of

the S&P 500 index, and are illustrated in table 1. Tables 2 to 6 summarize the result obtained

for five different sets of observable market conditions (r, t0, St0 , TVt0) and contract parameters

t,K,Q,H, σ. For each given t0, the maturity t > t0 is the same for all the three options consid-
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ered; a TVO is always compared to a vanilla call having same strike, and the target volatility is

set to be constant across all the data sets.

A number of 100.000 paths of step size (t − t0)/1000 have been simulated. The figures

show a good overall match between the analytical value (AV) and the Monte Carlo value (MC);

the relative error |AV−MC|/MC is shown in parentheses. For the call option on the volatility

in some cases we almost attain four-digit precision. On the other hand, for some models and

data sets the integrands for the TVO valuation remain highly oscillatory around the maximum

integration range; when this occurs, a certain loss of accuracy is observed.

Parameters Black-Scholes Heston Merton Bates Fang
σt0 0.14 0.15 0.12 0.15 0.14
α 4.57 8.93 6.5
θ 0.0306 0.0167 0.0104
η 0.48 0.22 0.2
ρ -0.82 -0.58 -0.48
λ0 1.42 0.39 0.41
δ 0.0894 0.1049 0.2168
κ -0.075 -0.11 -0.21
αλ 5.06
θλ 0.13
ηλ 1.069

Table 3.1: parameters from the S&P estimations of Fang [37], section 4.

Model Vanilla Call Volatility Call TVO Call
AV MC AV MC AV MC

Black-Scholes 24.7627 24.7775(0.05%) 0.0847 0.0848(0.12%) 17.5441 17.6982(0.87%)
Heston 25.3893 25.3710(0.07%) 0.1088 0.1084(0.37%) 17.2248 17.6044(2.16%)
Merton 25.3243 25.2290(0.38%) 0.1192 0.1194(0.17%) 17.7529 17.7922(0.22%)
Bates 25.1166 25.0889(0.11%) 0.1002 0.1005(0.30%) 18.5980 18.7480(0.80%)
Fang 25.5686 25.6508(0.32%) 0.0907 0.0892(1.68%) 24.0494 24.0764(0.11%)

Table 3.2: Prices, parameter set 1: St0 = 100, K = H = 80, Q = 0.05, t0 = 0, t = 1, r = 0.06,
σ = 0.1, TVt0 = 0.

Model Vanilla Call Volatility Call TVO Call
AV MC AV MC AV MC

Black-Scholes 8.4801 8.4784(0.02%) 0.1672 0.1695(1.36%) 5.7622 5.6957(1.17%)
Heston 10.3063 10.3023(0.04%) 0.2167 0.2172(0.23%) 6.3815 6.7080(4.87%)
Merton 11.5845 11.5713(0.11%) 0.2357 0.2356(0.04%) 7.4564 7.4239(0.44%)
Bates 9.8607 9.8371(0.24%) 0.2002 0.2001(0.05%) 6.8180 6.9085(1.31%)
Fang 8.8630 8.8737(0.12%) 0.1827 0.1828(0.05%) 7.4173 7.5046(1.16%)

Table 3.3: Prices, parameter set 2: St0 = 100, K = H = 120, Q = 0.1, t0 = 0.5, t = 4, r = 0.039,
σ = 0.1, TVt0 = 0.018.
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Model Vanilla Call Volatility Call TVO Call
AV MC AV MC AV MC

Black-Scholes 3.7627 3.7346(1.02%) 0.2300 0.2305(0.22%) 0.9771 0.9437(3.54%)
Heston 4.1390 4.1304(0.21%) 0.2318 0.2320(0.09%) 1.0480 1.0451(0.28%)
Merton 4.4169 4.4435(0.60%) 0.2348 0.2343(0.21%) 1.1254 1.1235(0.17%)
Bates 4.1842 4.1687(0.37%) 0.2327 0.2328(0.04%) 1.0593 1.0544(0.46%)
Fang 4.3219 4.3420(0.46%) 0.2362 0.2362(0.00%) 1.0919 1.0987(0.62%)

Table 3.4: Prices, parameter set 3: St0 = 100,K = H = 100,Q = 0.25, t0 = 1.25, t = 1.5, r = 0.072,
σ = 0.1, TVt0 = 0.23.

Model Vanilla Call Volatility Call TVO Call
AV MC AV MC AV MC

Black-Scholes 42.6506 42.6452(0.01%) 0.2670 0.2665(0.19%) 19.7252 19.9181(0.96%)
Heston 42.9595 43.0010(0.10%) 0.2859 0.2858(0.03%) 19.8454 19.6512(0.99%)
Merton 42.8984 42.8580(0.09%) 0.2955 0.2954(0.03%) 19.4192 19.3975(0.11%)
Bates 42.7768 42.7928(0.04%) 0.2804 0.2802(0.07%) 19.8042 19.8318(0.14%)
Fang 43.0039 43.0252(0.05%) 0.2793 0.2791(0.07%) 20.5992 20.5998(0.01%)

Table 3.5: Prices, parameter set 4: St0 = 100, K = H = 60, Q = 0.2, t0 = 3, t = 5, r = 0.0225,
σ = 0.1, TVt0 = 0.19.

3.7.2 Conclusions
In this chapter we suggested a theoretical pricing framework that can easily be made to represent

popular settings, but whose full model and payoff generalities were not possible by using the

previous theory. We achieved this by introducing the concept of decoupled time change and by

considering payoffs on an asset and its accrued volatility as the default claims to be priced.

DTC processes provide a common time-changed representation for many models from the

current literature, and helps to explain possible dependence relationships between the continuous

and the jump market activities. We obtained martingale relations for stochastic exponentials of

DTC Lévy processes, based on which we defined an asset price’s dynamics. We then linked

the joint characteristic function of the log-price dynamics and the quadratic variation to the joint

Laplace transform of the time changes. As a by-product, we extended the measure change tech-

nique of Carr and Wu [15] to the class of DTC Lévy processes. In the DTC setup, we rigorously

posed and solved the valuation problem of a derivative paying off on an asset St and its real-

Model Vanilla Call Volatility Call TVO Call
AV MC AV MC AV MC

Black-Scholes 2.3393 2.3080(1.36%) 0.1590 0.1588(0.13%) 1.9535 1.8622(4.90%)
Heston 2.5098 2.5071(0.11%) 0.1852 0.1862(0.54%) 2.2190 2.1317(4.10%)
Merton 3.7078 3.6843(0.64%) 0.1983 0.1981(0.10%) 3.0330 3.0165(0.55%)
Bates 2.7416 2.7380(0.13%) 0.1767 0.1769(0.11%) 2.3727 2.3798(0.30%)
Fang 1.9814 1.9410(2.08%) 0.1664 0.1668(0.24%) 1.9453 1.9167(1.49%)

Table 3.6: Prices, parameter set 5: St0 = 100, K = H = 130, Q = 0.015, t0 = 1, t = 2.5, r = 0.087,
σ = 0.1, TVt0 = 0.009.
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ized volatility, by means of an inverse-Fourier integral relation that extends previously known

formulae.

Several stochastic models and contingent claims have been analyzed. In all the accounted

cases we outlined the underlying DTC structure and found the leverage-neutral characteristic

function. Furthermore, we have introduced a novel DTC Lévy theoretical model which illustrates

how equity modeling could benefit from the idea of decoupled time changes.

For numerical comparison and validation purposes, we focused on specific instances from

the three payoff classes allowed by our equation: plain vanilla claims, volatility claims, and joint

asset/volatility claims. The results confirm the validity of our method. From a computational

standpoint, a single software implementation can output prices for several different combinations

of models and payoffs.

Appendix: proofs
We begin by recalling some basic definitions from the semimartingale representation theory; in

particular, we refer to Jacod and Shiryaev [67], chapters 2 and 3, and Jacod [65], chapitre X.

We define the Doléans-Dade exponential of an n-dimensional semimartingale Xt starting

at 0 as:

E(Xt) = eXt−〈X
c〉t/2

∏
s≤t

(1 + ∆Xs)e
−∆Xs (3.90)

where Xc
t denotes the continuous part of Xt and the infinite product converges uniformly. This

is known to be the solution of the SDE dYt = Yt−dXt, Y0 = 1.

Let ε(x) be a truncation function and (αt, βt, ρ(dt×dx)) be a triplet of predictable processes

that are well-behaved in the sense of Jacod and Shiryaev [67], chapter 2, equations (2.12)-(2.14).

For θ ∈ Cn, associate with (αt, βt, ρ(dt× dx)) the following complex-valued functional:

Ψt(θ) = iθTαt − θTβtθ/2 +

∫ t

0

∫
Rn

(eiθ
T x − 1− iθTxε(x))ρ(ds× dx). (3.91)

This functional is well-defined on:

D =

{
θ ∈ Cn such that

∫ t

0

∫
Rn
eiθ

T xε(x)ρ(ds× dx) < +∞ almost surely
}

(3.92)

and because of the assumptions made it is also predictable and of finite variation.

Let Xt be an n-dimensional semimartingale. The local characteristics of Xt are the

unique predictable processes (αt, βt, ν(dt × dx)) as above, such that E(Ψt(θ)) 6= 0 and

exp(iθTXt)/E(Ψt(θ)) is a local martingale for all θ ∈ D. The process ΨX
t (θ) in (3.91) arising

from the local characteristics of Xt is called the cumulant process of Xt, and it is independent

of the choice of ε(x). It is clear that the local characteristics of a Lévy process Xt of Lévy triplet

(µ,Σ, ν) are (µt,Σt, νdt).

If B is a Borel space, the time change of a random measure ρ(dt × dx) on the product
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measure space Ω× B(R+ × Rn) according to some time change Tt, is the random measure:

ρ(dTt × dx)(ω, [0, t)×B) = ρ(dt× dx)(ω, [0, Tt(ω))×B) (3.93)

for ω ∈ Ω, t ≥ 0 and all sets B ∈ B(Rn). A random measure ρ(dt × dx) is Tt-adapted if for

all t, ω and B holds ρ(dt × dx)((Tt− , Tt], ω,B) = 0. This is equivalent to say that for each

measurable random function W , the integral of W with respect to ρ is Tt-continuous (see [65],

chapitre X); conversely, if Xt is a pure jump process that is Tt-continuous, then its associated

jump measure ρ(dt× dx) is Tt-adapted (Kallsen and Shiryaev [70], proof of lemma 2.7).

A semimartingale Xt is said to be quasi-left-continuous if its local characteristic ν is such

that ν(dt × dx)(ω, {t} × B) = 0 for all t ≥ 0, Borel sets B in Rn, and ω ∈ Ω. Essentially,

quasi-left-continuity means that the discontinuities of the process cannot occur at fixed times.

The following theorem clarifies the importance of continuity/adaptedness under time chang-

ing, i.e. that stochastic integration and integration with respect to a random measure “commute”

with the time changing operation.

Theorem A. Let Tt be a time change with respect to some filtration Ft.

(i) Let Xt be a Tt-continuous semimartingale. For all Ft-predictable integrands Ht, we have

that HTt is FTt-predictable, and:∫ Tt

0
HsdXs =

∫ t

0
HTs−

dXTs ; (3.94)

(ii) Let ρ(dt×dx) be a Tt-adapted random measure on Ω×B(R+×Rn). For all measurable

random functions W (t, ω, x) and ω ∈ Ω it is:∫ Tt

0

∫
Rn
W (s, ω, x)ρ(ds× dx)(ω) =

∫ t

0

∫
Rn
W (Ts−(ω), ω, x)ρ(dTs× dx)(ω). (3.95)

Proof. See Jacod [65], théorème 10.19, (a), for part (i), and théorème 10.27, (a), for part (ii).

In particular, from part (ii) of theorem A follows that if Xt is a pure jump process with

associated jump measure ρ(dt × dx) adapted to some time change Tt, then the time-changed

process XTt has associated jump measure ρ(dTt × dx).

It is essentially a consequence of theorem A that under the assumption of continuity with

respect to Tt, the local characteristics of a time-changed semimartingale are well-behaved, in the

sense of the next theorem.

Theorem B. Let Xt be a semimartingale having local characteristics (αt, βt, ρ(dx × dt))

and cumulant process ΨX
t (θ) with domain D, and let Tt be a time change such that Xt is

Tt-continuous. Then the time-changed semimartingale Yt = XTt has local characteristics

(αTt , βTt , ρ(dTt × dx)) and the cumulant process ΨY
t (θ) equals ΨX

Tt
(θ), for all θ ∈ D.

Proof. Kallsen and Shiryaev [70], lemma 2.7.
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We shall also need a result on linear transformation of a semimartingale and the correspond-

ing change in the local characteristics.

Theorem C. Let Xt be an n-dimensional semimartingale having local characteristics

(αt, βt, ρ(dx× dt)) and let M be a linear transformation from Rn to Rm. Then Yt = MXt is an

m-dimensional semimartingale whose local characteristics (αYt , β
Y
t , ρ

Y (dx× dt)) are given by:

αYt = Mαt +

∫ t

0

∫
Rn
Mx(1I|Mx|<1 − 1I|x|<1)ρ(dx× ds)

βYt = MβtM
T

ρY (B × [0, t]) = ρ({x ∈ Rn|Mx ∈ B} × [0, t]), ∀B ∈ B(Rm).

(3.96)

Proof. Kallsen and Shiryaev, [70], lemma 2.5.

Proof of proposition 3.2.3. Let (µ,Σ, 0) and (0, 0, ν) be the Lévy triplets of X1
t and X2

t . Be-

cause of the T 1
t and T 2

t -continuity assumption, we can apply theorem B and we immediately see

that the local characteristics of X1
T 1
t

and X2
T 2
t

are respectively (T 1
t µ, T

1
t Σ, 0) and (0, 0, dT 2

t ν).

By the application of theorem C with M taken as the juxtaposition of two n× n identity blocks,

and Xt = (X1
T 1
t
X2
T 2
t
)T , we have that XTt has local characteristics8 (T 1

t µ, T
1
t Σ, dT 2

t ν)

Let Ψt(θ) be the cumulant process of XTt ; by definition the exponential E(Ψt(θ)) is well-

defined if and only if θ ∈ Θ. But now the fact that T 1
t and T 2

t are continuous implies that XTt is

quasi-left-continuous ([67], chapter 2, proposition 2.9), that in turn is sufficient for Ψt(θ) to be

continuous ([67], chapter 3, theorem 7.4). Therefore, since Ψt is of finite variation, we have that

E(Ψt(θ)) = exp(Ψt(θ)); in particular, this means that E(Ψt(θ)) never vanishes. By definition

of the local characteristics, we then have that Mt(θ,Xt, Tt) is a local martingale for all θ ∈ Θ,

and thus it is a martingale if and only if θ ∈ Θ0.

Proof of proposition 3.3.1. An immediate consequence of theorem B is that, under the present

assumptions, the class of continuous and pure jump martingales are closed under time changing,

so that orthogonality follows. Therefore:

〈XT,U 〉t = 〈Xc
T 〉t + 〈Xd

U 〉t. (3.97)

The equation 〈Xc
T 〉t = ΣTt = 〈Xc〉Tt can be established by the application of Dubins and

Schwarz theorem. Regarding the discontinuous part, we notice that if ρ(dt × dx) is the jump

measure associated toXd
t we have that ρ is Ut-adapted becauseXd

t is Ut-continuous. Hence, the

application of theorem A, part (ii), yields:

〈Xd〉Ut =
∑
t<Ut

(∆Xt)
2 =

∫ Ut

0
x2ρ(ds× dx) =

∫ t

0
x2ρ(dUs × dx) = 〈Xd

U 〉t. (3.98)

8The process XTt is a particular instance of an Ito semimartingale: see Jacod and Protter [66].
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Counterexample to propositions 3.2.3 and 3.3.1. Let Xc
t be a standard Brownian motion, and

let Tt be an inverse Gaussian subordinator with parameters α > 0 and 1, independent of Xc
t .

The process Xc
Tt

is called a normal inverse Gaussian process of parameters (α, 0, 0, 1) and it

is a pure jump process (Barndorff-Nielsen, [5]). Therefore by letting Xd
t = Xc

Tt
and Ut = t

we have Xc
Tt

= Xd
Ut

so that orthogonality does not hold and it can be readily checked that

(3.12) is not a martingale; moreover 〈XT,U 〉t = 2〈Xd〉t while the left hand side of (3.15) equals

〈T 〉t + 〈Xd〉t.

Proof of proposition 3.3.2. Since Tt and Ut are of finite variation, the total realized variance of

an asset as in (3.14) satisfies TVt = −θ2
0〈XT,U 〉t, so that by proposition 3.3.1 we have:

TVt = −θ2
0(σ2Tt + 〈Xd〉Ut). (3.99)

An application of proposition 3.2.3 guarantees that Ct+Dt is a martingale for all z, w ∈ C such

that (izθ0, iwθ0) ∈ Θ0. By using relation (3.99) and operating the change of measure entailed

by (3.17) we have:

Φt0(z, w) = Et0 [exp(iz log(S̃t/St0) + iw (TVt − TVt0)]

=Et0 [exp(iz(iθ0(∆Xc
Tt + ∆Xd

Ut)−∆Ttψ
c
X(θ0)−∆Utψ

d
X(θ0))− iwθ2

0(σ2∆Tt + ∆〈Xd〉Ut))]

=Et0 [exp(i(izθ0, iwθ0) · (∆CTt + ∆DUt)−∆Tt(izψ
c
X(θ0) + iwθ2

0σ
2)−∆Utizψ

d
X(θ0))]

=EQ
t0

[exp(−∆Tt(θ0µ(z − iz)− θ2
0σ

2(z2 + iz − 2iw)/2)−∆Ut(izψ
d
X(θ0)− ψD(izθ0, iwθ0)))].

To fully characterize Φt0 all that is left is expressing ψD in terms of ν. Since

ψD(z, w) = logE

[
exp

(∑
s<t

iz∆Xd
s + iw(∆Xd

s )2

)]
, (3.100)

we have that:

ψD(z, w) =

∫
R

(eizx+iwx2 − 1− i(zx+ wx2)1I|x|≤1)ν(dx) (3.101)

which completes the proof.

Proof of proposition 3.4.1. We follow the proof of Lewis [76], theorem 3.2, lemma 3.3 and the-

orem 3.4. By writing the expectation as an inverse-Fourier integral (which can be done by the

assumptions on F and because Φt0 is a characteristic function) and passing the expectation under
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the integration sign we have:

Et0 [e−r(t−t0)F (Yt, 〈Y 〉t)] = Et0

[
e−r(t−t0)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
S−izt e−iw〈Y 〉tF̂ (z, w)dzdw

]

=
e−r(t−t0)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
e−iw〈Y 〉t0S−izt0

e−r(t−t0)izΦt0(−z,−w)F̂ (z, w)dzdw.

(3.102)

All that remains to be proven is that Fubini’s theorem application is justified. Let Nt =

log(Mt(θ0, Xt, (Tt, Ut))) be the discounted, normalized log-price; define the probability transi-

tion densities pt(x, y) = P(Nt < x, 〈N〉t < y| t0, Nt0 , 〈N〉t0)1I{x∈R,y≥〈N〉t0}, and let p̂t(z, w)

be their characteristic functions. For all (z, w) ∈ Lk1,k2 we have:∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞

∣∣∣e−iw〈Y 〉t0S−izt0
e−r(t−t0)izΦt0(−z,−w)

∣∣∣F̂ (z, w)dzdw

=

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
p̂t(−z,−w)F̂ (z, w)dzdw

=

∫
R2

p̂t(−z + ik1,−w + ik2)F̂ (z + ik1, w + ik2)dzdw. (3.103)

For x ∈ R, y ≥ 0, set f(x, y) = e−k1x−k2yF (x, y) g(x, y) = ek1x+k2ypt(x, y). We see that

the integrand in the right-hand side of (3.103) equals ĝ∗(z, w)f̂(z, w). But now f is L1(dx×dy)

because F is Fourier-integrable in ΣF (for (z, w) ∈ ΣF take Re(z) = Re(w) = 0); similarly, ĝ∗

is L1(dz × dw) because of the L1 assumption on Φt0 . Therefore, the application of Parseval’s

formula yields:∫ +∞

−∞

∫ +∞

−∞
p̂t(−z + ik1,−w + ik2)F̂ (z + ik1, w + ik2)dzdw

= 4π2

∫ +∞

−∞

∫ +∞

−∞
pt(x, y)F (x, y)dxdy = 4π2Et0 [F (Nt, 〈N〉t)] < +∞, (3.104)

since F ∈ L1
t0(Nt, 〈N〉t). This proof straightforwardly adapts to forward-starting payoffs, be-

cause

Vt0,t∗ =
e−r(T−t0)

4π2
Et0
[∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
e−izr(T−t0)e−iz(ỸT−Ỹt∗ )−iw(〈Y 〉t−〈Y 〉t∗ )F̂ (z, w)dzdw

]
=
e−r(T−t0)

4π2

∫ ik1+∞

ik1−∞

∫ ik2+∞

ik2−∞
e−izr(T−t0)Φt0,t∗(−z,−w)F̂ dzdw. (3.105)

Since the integrability conditions of the transition probability functions are not altered when

changing to their forward-starting counterparts, the application of Fubini’s theorem can be justi-

fied as above.

Proof of the equations of section 3.6. We can endow Yt with a correlation structure as follows.
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Let Zt be a two-dimensional matrix Brownian motion independent of Wt. The matrix process:

Bt =

(
ρW 1

t +
√

1− ρ2Z1,1
t Z1,2

t

ρW 2
t +

√
1− ρ2Z2,1

t Z2,2
t

)
(3.106)

is also a matrix Brownian motion enjoying the property that 〈W j , Bj,1〉t = ρt and Wt is in-

dependent of Bj,2
t for j = 1, 2. Since Σi,i

t = (σi,it )2 + (σ1,2
t )2, we have that Xc

t is indeed a

Brownian motion and the activity rates are connected through the element σ1,2
t .

To verify equations (3.82) and (3.83), observe that for some bounded variation processes

Sjt , j = 1, 2 we have that

dΣj,j
t = Sjt dt+ 2σ1,j

t (Q1,jdB1,1
t +Q2,jdB1,2

t ) + 2σj,2t (Q1,jdB2,1
t +Q2,jdB2,2

t ), (3.107)

from which:

dwjt :=
dΣj,j

t − S
j
t dt

2

√
Σj,j
t ((Q1,j)2 + (Q2,j)2)

=
σ1,j
t (Q1,jdB1,1

t +Q2,jdB1,2
t ) + σj,2t (Q1,jdB2,1

t +Q2,jdB2,2
t )√

Σj,j
t ((Q1,j)2 + (Q2,j)2)

. (3.108)

By taking the quadratic variation of the right-hand side we see thatwjt are two Brownian motions

such that dΣj,j
t = Sjt dt + 2

√
Σj,j
t ((Q1,j)2 + (Q2,j)2)dwjt . Equations (3.82) and (3.83) then

follow from a direct computation.

Since Xd
t is orthogonal to all the entries of Bt, the change in the dynamics of Σt under

Q(z, w) is only due to the correlation between Xc
t and Bt. Hence, for (z, w) ∈ Θ, the Radon-

Nikodym derivative Mt to be considered in (3.17) reduces to

Mt = E
(
iz

∫ t

0

√
Σ1,1
s dXc

s

)
. (3.109)

Furthermore, for j = 1, 2 we have:

d

〈∫ ·
0

√
Σ1,1
s dXc

s , B
j,1

〉
t

= ρσ1,j
t dt (3.110)

d

〈∫ ·
0

√
Σ1,1
s dXc

s , B
j,2

〉
t

= 0 (3.111)

so that application of Girsanov’s theorem tells us that

dB̃t = dBt − izρ

(
σ1,1
t dt 0

σ1,2
t dt 0

)
(3.112)

is a Q(z, w)-matrix Brownian motion. Solving the above for Bt and substituting in (3.79) yields

(3.84). Equation (3.86) then follows from (3.18).
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Finally, we give the formula for LTt,Ut(·). For τ > 0 and n > 1 consider the transform:

φΣ(z) = E

exp

−∫ τ

0

n∑
j=1

zjΣ
j,j
s ds

 (3.113)

for every vector of complex numbers z = (z1, . . . , zn) such that the above expectation is finite.

The function φΣ(z) is exponentially-affine of the form

φΣ(z) = exp(−a(τ)− Tr(A(τ)Σ0)), (3.114)

since it is a particular case of the transforms studied in e.g. Grasselli and Tebaldi [55] or

Gouriéroux [51]. The ODEs for A(τ), a(τ) are given by:

A′(τ) = A(τ)M +MTA(τ)− 2A(τ)QTQA(τ) +D, A(0) = 0 (3.115)

a′(τ) = Tr(cQTQA(τ)), a(0) = 0. (3.116)

Here D is the diagonal matrix having the values z1, . . . , zn on the diagonal. The solution of

(3.115)-(3.116) is obtainable through a linearization procedure that entails doubling the dimen-

sion of the problem, which yields:

A(τ) = (A2,2(τ))−1A2,1(τ) (3.117)

a(τ) =
c

2
Tr(log

(
A2,2(τ)

)
+MT τ) (3.118)(

A1,1(τ) A1,2(τ)

A2,1(τ) A2,2(τ)

)
= exp

(
τ

(
M 2QTQ

D −MT

))
(3.119)

see for example [55], section 3.4.2, or [51], proposition 7. The formula for L∆T,∆U follows

from (3.117)-(3.119) when we choose n = 2, (z1, z2) = (z, w) in (3.113), and set τ = t − t0,

Σ0 = Σt0 in (3.114).



Chapter 4

A multifactor DTC jump model with
dependence between the stochastic volatility
and the jump rate

In this last chapter we attempt at introducing an asset pricing model that combines several of

the mathematical and financial elements treated in this thesis: joint volatility/asset derivatives,

time changes, jumps, martingale theory, stochastic volatility and stochastic jump arrival rate,

and so on. The model is inspired by the one sketched in section 3.6, to which it reduces for a

certain parameter choice, and makes use of a Wishart process to specify the stochastic activity

rates of a certain underlying jump diffusion. The rates of activity, the instantaneous variance

and the stochastic jump rate, shall be given by two different positive linear combinations of

the entries of some given Wishart process. This allows to model dependence between three

factors: the two activity rates and the Brownian component of the log-returns. At the same

time, the Fourier/Laplace transforms from the model are known in closed form, implying that an

analytical pricing theory based on integral inversions of such transforms is at hand. Consistently

with the rest of the thesis, the approach of considering contracts written on an asset and its

realized volatility has been maintained.

The added value of the modeling approach adopted in this chapter improving on that of

section 3.6, is that by considering projections from a state space of an arbitrary dimension we

can describe each of the two activity rates by means of several stochastic factors. This is what

is known as a multifactor specification of the state variables. Recent empirical analyses (e.g.

[9, 20, 26]) suggest that a multifactor model specification allows to generate a term structure

in the volatility surface with varying levels and slopes, as opposed to single factor models that

can only reproduce a certain slope for any given volatility level. The ability of the model to

generate realistic forward smiles is essential to correctly price certain forward-starting derivative

products. On the other hand, calibrating pure diffusive asset models typically leads to parameter

estimations inconsistent with the observed volatility time series (Bates, [7]). Adding jump com-

ponents to the log-returns is a popular way to correct this, as this generally relaxes the diffusion

parameters. A number of models dealing with one or both of these issues have been suggested

(see e.g. [6, 7, 20, 81]). Retaining both a multifactor structure and a jump component, our model

is able of capturing both of these stylized facts. Also, the hypothesis of a mutual influence be-

tween the diffusive volatility and the jump arrival rate (see the introductory part of chapter 3)

105
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can be accommodated by our model. To our knowledge, a focus on this particular relationship

has not been suggested in the previous literature, and its economic implications have never been

explored before. What we argue here is that this property has possible positive implications for

the management of the the volatility surface. Indeed, it is now well understood that the standard

setup where jumps are independent from the driving Brownian motions does reduce the overall

control of the correlation coefficient on the surface. That is, in models with independent continu-

ous and jump parts, steepness in the short term slope is achieved at the cost of a loss of sensitivity

of the surface with respect to the diffusion parameters, in particular with regards to correlation

(for a full discussion see [26]). This is an apparent drawback of jump models: the correlation

in a diffusive model is a variable with a clear economic meaning, i.e. the quantity of leverage

a firm relies on, whereas the jump parameters lack tangible financial significance. Still, jumps

might be needed to model steep short term smiles in the volatility surface. In this respect, the

model presented here potentially reconnects the long and short part of the surface, meaning that

both of these should actively respond to a leverage variation. The time changes we operate are

obtained by a transformation of a common Wishart component; therefore, changes in any of the

Wishart parameters will simultaneously affect the jump and the diffusive activities. In particular,

the stochastic volatility/returns correlation also establishes an implicit dependence between the

jumps and the Brownian motion of the returns, since the jumps and the stochastic volatility are

themselves correlated. Ultimately, this means that a leverage variation should impact the short as

well as the long term sections of the volatility surface. In section 4.5 we provide some numerical

evidence supporting these ideas.

From a valuation perspective, we envisage that the model analyzed is best suited for the

pricing of joint volatility and asset derivatives, in particular forward-starting ones, for the same

reasons as those expressed by Grasselli and Marabel Romo in [54]. A constant correlation co-

efficient between volatility and price, as generally assumed in pricing models, is too much of

a rigid feature for the pricing of such products. As a first shortcoming, models with a con-

stant correlation are unable to produce forward starting smiles, necessary for the valuation of

forward-starting payoffs. Secondly, the volatility/asset relation when the correlation is constant

may induce a valuation bias. For example, in the case of a TVO in a model with constant corre-

lation, a price decrease has a magnified impact on the derivative value, because a drop in prices

would then necessarily imply a volatility soaring, pushing further down the derivative value. A

varying correlation as assumed here removes this undesirable monotonic relationship, and it is

less binding on the value fluctuation of variance-linked derivatives like the TVO.

Models with non-stationary jumps and stochastic volatility have been analyzed before in

the works of Fang [37] and Huang and Wu [63]. In the former the two SDEs driving the activity

rates are assumed to be independent. In the second work, although the asset pricing model is

first stated in a general way, thus in principle allowing for a correlated pair of activity rates, the

assumption of independence is later on introduced. A similar model is that of Santa Clara and

Yan [88]; however, in their work the dynamics of the volatility are chosen as a displaced Gaussian

process, making it to fall outside the exponentially-affine class. Furthermore, the algebra of the

model is extremely complex, and the ODEs for the affine parts does not seem to be analytically

solvable.
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The intrinsic problem with these approaches is that there is no obvious way of obtaining

an exponentially-affine closed formula for the Riccati system of ODEs when the SDEs for the

activity rates are linearly correlated. As we shall see, by means of the Wishart process -which

is not a standard multidimensional Ito diffusion- it is possible to reintroduce closed formulae in

models with dependent jumps and stochastic volatility.

Prominent multifactor models are those of Christoffersen et. al [20], who study a continuous

version of the model by Bates [7] focusing on the stochastic correlation between returns and

volatility, and the Multi-Heston model, by da Fonseca et al. [28], using an n-dimensional Wishart

process to model the stochastic variance. Also, a less recognized fact is that the model by Bates

[7], further to retaining a bi-factor volatility specification, is characterized by a jump factor with

intensity given by a linear functional of the stochastic volatility. This means that even if the Bates

[7] model is one with a stochastic jump rate, it cannot generate nontrivial correlation with the

diffusive activity.

On a more general level, a systematic study of multifactor jump diffusions of affine type is

that of Leippold and Trojani [74]. Effectively, the model we present falls under the class they

investigate, which essentially consists of a multivariate/multifactor version of the classic jump

diffusion framework of Duffie et al. [31]. However, the authors do not focus on the issue of the

correlation between stochastic variance and jump intensity, which is central to our discussion.

Furthermore, they are unable to identify a full analytical solution for the model transforms when

the jump arrival intensity is stochastic. By using the DTC machinery of chapter 3 we make

transparent how these solutions can be derived.

The point of this short literature review is that the extant research presents models charac-

terized by either analytical tractability or dependence between the activity rates in a multifactor

specification, but not both. Our work bridges this gap by proposing an asset pricing model pre-

senting both of these features.

The material is organized as follows. In the next section we give the dynamics of the asset

in both its multifactor and DTC forms; in section 4.2 we compute the stochastic correlation and

covariances between the various driving factors; in sections 4.3 and 4.4 we offer a transform

analysis by using respectively the DTC and the Feynman/Kac approach. Section 4.5 consists of

a series of numerical tests supporting the model, and section 4.6 is a brief recapitulation of the

work done. As usual, proofs are placed in the appendix.

4.1 The Wishart process and the asset model

We begin by recalling the definition of a Wishart process (Bru, [12]). On a filtered probability

space (Ω,F ,Ft,P), let Bt be a matrix Brownian motion of order n, i.e. an n× n matrix whose

entries are independent Brownian motions under P. Let Q belong to the set of the real invertible

matrices and M be a matrix of order n with all negative eigenvalues. For c > n + 1, a Wishart

process is the only strong solution of the matrix SDE:

dΣt = (cQTQ+MΣt + ΣtM
T )dt+

√
ΣtdBtQ+QT (dBt)

T
√

Σt. (4.1)
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The condition c > n + 1 (the Gindkin condition) also ensures that no eigenvalue of Σt ever

vanishes in finite time; further properties of the Wishart process are explored in e.g. [12, 49, 51]

among the others.

Let now Wt be another matrix Brownian motion of order n: a correlation relationship be-

tween and Wt and Bt can be established in the following way. Let R be a matrix such that

〈W k,i, Bl,j〉t = δklRi,jt for all i, j, k, l = 1, . . . , n. It is proved in the appendix that Wt can be

written as

Wt = BtR
T + Zt

√
1I−RRT , (4.2)

where Zt is any Brownian motion independent of Bt. Clearly, for (4.2) to be real-valued, con-

straints must be imposed onR. Further limitations are present if one wants to grant the analytical

tractability (i.e. affinity) of the model: see [28] for a full characterization.

Starting from the Wishart process in (4.1) it is possible to naturally generate a pair of inter-

dependent instantaneous activity processes as follow. Let C = ci,j and D = di,j be two sym-

metric positive-semidefinite matrices. Then

vt = Tr[ΣtC] = Tr[CΣt] =

n∑
i,j=1

ci,jΣ
j,i
t (4.3)

and

ut = Tr[ΣtD] = Tr[DΣt] =
n∑

i,j=1

di,jΣ
j,i
t (4.4)

are positive continuous processes. Therefore the pathwise integrals

Tt =

∫ t

0
vsds =

n∑
i,j=1

ci,j

∫ t

0
Σj,i
s ds, (4.5)

Ut =

∫ t

0
usds =

n∑
i,j=1

di,j

∫ t

0
Σj,i
s ds (4.6)

are valid time changes. In substance, by combining a linear operator and the trace operator, the

activity rates are defined as two different projections of a common generating Wishart process on

the space of the real-valued positive processes. In the following, we build a finite activity jump

diffusion model of DTC-type based on such activity rates specifications.

Let Xt be a finite activity Lévy process. According to the theory of chapter 3, we can write

Xt = Xc
t +Xd

t whereXc
t is a driftless Brownian motion andXd

t is a compound Poisson process

of intensity 1. Consider the decoupled time change

XT,U = Xc
Tt +Xd

Ut . (4.7)

Now, by Dambis and Schwarz’s theorem we have thatXc
Tt

=
√
Tr[CΣt]dX

c
t ; on the other hand,

by Lévy’s theorem one could take Xc
t as the Brownian motion:

dXc
t =

Tr[
√
CΣtdWt]√
Tr[CΣt]

(4.8)
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so that

Xc
Tt = Tr[

√
CΣtdWt], (4.9)

where equalities hold in law. Equation (4.9) provides a link between a multifactor volatility

specification, achieved through the matrix Brownian motion Wt, and a time-changed specifica-

tion that makes use of the scalar Brownian motion Xc
t . Note that the principal matrix square

roots above exist, being all the matrices involved positive semi-definite.

Regarding the jump parts, the time-changed compound Poisson process Xd
Ut

can be written

as:

Xd
Ut =

PUt∑
i=0

Ji. (4.10)

The Jis are i.i.d random variables with density fJ(x) and Pt is a Poisson process of parameter 1.

This means that, conditionally on Ut, the arrival of a jump has a Poisson distribution of parameter

Ut. Alternatively,Xd
Ut

can be characterized as the driftless pure jump process with discontinuous

local characteristic fJ(x)utdxdt (see the appendix of chapter 3 and references therein).

Assume now that the market trades a riskless security earning a constant interest rate r. A

price process St can be now introduced by setting Yt = logSt to be the process whose risk-

neutral dynamics are given by

dYt = (r − Tr[CΣt]/2− Tr[DΣt]κ)dt+
√
Tr[CΣt]dX

c
t + dXd

Ut . (4.11)

By (4.9) this is equivalent, in terms of the matrix Wt, to:

dYt = (r − Tr[CΣt]/2− Tr[DΣt]κ)dt+ Tr[
√
CΣtdWt] + dXd

Ut . (4.12)

The constant κ is the Lévy compensator for the jumps J , i.e. κ = φJ(−i) − 1, where φJ is

the characteristic function of J . By applying the results of the previous chapter, we have the

following fundamental result:

Proposition 4.1.1. The discounted price process St = S0 exp(Yt − rt) is a local martingale;

thus, under the usual mild integrability conditions, St is an asset model consistent with the no-

arbitrage pricing theory.

We refer to equations (4.11) and (4.12) respectively as the DTC representation and the

multifactor representation of Yt.

4.2 Correlations in the model
The log-asset price process defined in (4.11) and (4.12) carries a very rich dependence structure

between its components. It is possible, and of interest, to identify the correlations between

several of the underlying drivers, namely:

• the correlation between the Brownian motionXc
t and the scalar Brownian motions driving

vt;

• the correlation between the activity rates vt and ut;
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• the covariances between the log-price process Yt and each of the components of Σt.

The fundamental feature of these correlations is that they are stochastic. Ultimately, a

stochastic correlation means that the model is able to satisfactorily fit a whole term structure of

the volatility surface, rather than a single cross-section (see [20, 28]). The three points above are

addressed by the following proposition:

Proposition 4.2.1. Let wct and wdt be the scalar Brownian motions driving respectively vt and

ut. A stochastic process as in (4.11) and (4.12) is such that:

d〈Xc, wc〉t =
Tr[CΣt

√
CRQ]√

Tr[CΣt]
√
Tr[CΣtCQTQ]

dt; (a)

d〈wc, wd〉t =
Tr[CΣtDQ

TQ]√
Tr[CΣtCQTQ]

√
Tr[DΣtDQTQ]

dt; (b)

d〈Σi,j , Y 〉t = 2(Σt

√
CRQ)i,jdt. (c)

The correlation in (a) retains the usual interpretation of the leverage effect between the

asset returns and the stochastic volatility, and involves the matrix R. As it generally happens

in multifactor models, this quantity is itself stochastic. The expression in (b) provides instead a

measurement of the interaction between the drivers of the activity rates in terms of the Wishart

matrix Q and of the projection matrices C and D. The covariation calculated in (c) will be of

use in the analytical follow-up of the next sections.

4.3 Computing the characteristic function using the DTC approach
According to equation (4.11) the log-dynamics Yt retain a DTC structure; therefore, all of the

theory developed in chapter 3 applies to the present situation. In particular, the Fourier semi-

closed pricing equation of theorem 3.4.1 for derivative pricing can be used in the model under

scrutiny. In this section we give the explicit expression of the leverage-neutral characteristic

function Φt0(z, w) introduced in section 3.3 in the case of an asset whose discounted log-price

follows Ỹt = Yt − rt, thus allowing for the valuation of full joint asset/volatility payoffs under

this model.

Recall that the leverage-neutral characteristic function of (Yt, 〈Y 〉t) is given by

Φt0(z, w) = Et0 [eiz(Ỹt−Ỹt0 )+iw(〈Y 〉t−〈Y 〉t0 )] (4.13)

for some z, w in the domain of definitionD ⊂ C2. According to the results of the previous chap-

ter, Φt0(z, w) can be written as a Laplace transform of Tt and Ut under an equivalent measure

Q(z, w) that reflects the leverage. This produces an exponentially-affine representation for Φt0

that can be calculated according to the following proposition.

Proposition 4.3.1. Let Yt be the log-price process in the equivalent equations (4.11) and (4.12).

The leverage-neutral characteristic function Φt0(z, w) is given by

Φt0(z, w) = exp(−a(t− t0)− Tr[A(t− t0)Σt0 ]), (4.14)
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where, for τ > 0

A(τ) = A2,2(τ)−1A2,1(τ) (4.15)

a(τ) =
c

2
Tr(log

(
A2,2(τ)

)
+ (MT + iz

√
CRQ)τ) (4.16)

with(
A1,1(τ) A1,2(τ)

A2,1(τ) A2,2(τ)

)
= exp

(
τ

(
M + izQTRT

√
C 2QTQ

L(z, w) −(MT + iz
√
CRQ)

))
, (4.17)

L(z, w) = α(z, w)C + β(z, w)D (4.18)

α(z, w) = iw − (z2 + iz)/2 (4.19)

β(z, w) = φJ,J2(z, w)− izκ− 1, (4.20)

the quantity φJ,J2(z, w) being the joint characteristic function of J and J2.

As already remarked, this explicit construction would have been effectively unfeasible if

the activity rates followed a standard Ito diffusion. Indeed, in one such framework it would not

have been possible to recover an analytical solution for the joint characteristic function when the

equations are correlated, because no closed formula for the associated system of Riccati equa-

tions is available in that case. This is a fundamental result by Grasselli and Tebaldi, [55]. In other

words, in a multivariate setting where the jump rate and the stochastic volatility follow separate

SDEs, introducing a constant correlation constraint breaks down the analytical tractability of the

model. In contrast, the Wishart process is a system of connected SDEs showing a more sophis-

ticated interaction, whose characteristic function is nevertheless exponentially-affine and admits

a closed formula for the affine coefficients.

In the next section we provide an alternative derivation of the joint conditional asset/realized

volatility transform in the classic PDE framework, and link it back to the leverage-neutral char-

acteristic function.

4.4 The infinitesimal generator and the characteristic function
The standard route to derivative pricing for stochastic model is finding the solution of the associ-

ated PDE, which can be in turn obtained through the derivation of the infinitesimal generator of

the associated jump diffusion. In this section we compute the infinitesimal generator associated

of the triplet (Yt,Σt, It), which leads to the pricing PDE for a payoff of the form F (YT , IT ),

where It is the quadratic variation of Yt.

In the following, for i, j = 1 . . . n, let

δi,j =
∂

∂xi,j
. (4.21)

We indicate δ the matrix whose entries are δi,j . The operator ∂/∂y stands for the derivative with

respect to the log-price coordinate and ∂/∂I is that taken with respect to the quadratic variation

coordinate. We have the following result:
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Proposition 4.4.1. Let f(x) : Rn2+2 → R be a twice differentiable function with continuous

second derivatives. The infinitesimal generator A of (Yt,Σt, It) is given by

Af =

(
r − 1

2
Tr[CΣt]− Tr[DΣt]κ

)
∂f

∂y
+ Tr[CΣt]

∂f

∂I
+

1

2
Tr[CΣt]

∂2f

∂2y

+ Tr[(MΣt + ΣtM
T + cQTQ)δ + 2ΣtδQ

TQδ]f + 2Tr[Σt

√
CRQδ]

∂f

∂y

+ Tr[DΣt]

∫
R

(f(Yt− + x,Σt, It− + x2)− f(Yt− ,Σt, It−))fJ(x)dx. (4.22)

Therefore the value function f(Yt,Σt, It, t) of a sufficiently regular contingent claim F

maturing at time T is a solution of the free boundary problem on [0, T ]× Rn2+1

Af =
∂f

∂t
(4.23)

with terminal condition f(YT ,ΣT , IT , T ) = F (YT , IT ).

As clarified in chapter 2, a solution of the Dirichlet problem (4.23) can be used to determine

the characteristic function of the model. Ultimately, this provides an approach to the Fourier-

inversion valuation theory alternative to to that of section 4.3. For example, a fast way to calculate

the conditional characteristic function φt0(z) of Yt is to make the exponential ansatz

φt0(z) = Et0 [eizYt+iwIt ] = exp(c(t) + b(t)Yt0 + Tr[A(t)Σt0 ] + d(t)It0); (4.24)

substituting f = φt0(z, w) in equation (4.23) yields the differential relation

0 =− d′(t)It0 − Tr[A′(t)Σt0 ]− b′(t)Yt0 − c′(t) + (r − Tr[CΣt0 ]/2− Tr[DΣt0 ]κ)b(t)

+
1

2
Tr[CΣt0 ]b2(t) + Tr[(MΣt0 + Σt0M

T + cQTQ)A(t) + 2Σt0A(t)QTQA(t)]

+2Tr[Σt0

√
CRQ]A(t)b(t) + d′(t)Tr[CΣt0 ] + Tr[DΣt0 ]

∫
R

(exb(t)+x
2d(t) − 1)fJ(x)dx

(4.25)

with initial conditions A(t0) = 0, b(t0) = iz, c(t0) = 0 and d(t0) = iw. Matching the

coefficients of Yt0 and It0 yields b(t) = iz and d(t) = iw. By equating those of Σt0 , we then

have

A′(t) =A(t)M + (MT + 2iz
√
CRQ)A(t)− 2A(t)QTQA(t)− (z2 + iz − 2iw)

2
C+

(φJ,J2(z, w)− 1− izκ)D. (4.26)

Finally, from the linear terms we obtain:

c′(t) = Tr[cQTQA(t)] + izr. (4.27)

A straightforward check shows that equation (4.26) is equivalent to (4.55) in the appendix, and

that (4.57) is the discounted version of (4.27) when Yt0 = It0 = 0, as expected.
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By comparing the formal arguments given in this and the previous section, as well as the

corresponding proofs in the appendix, it is apparent that the DTC “probabilistic” approach re-

quires less analytical work than the usual “PDE/Feynman Kac” approach.

4.5 Model specifications and testing
In this section we instantiate our equations and test them against known models. In first place,

we conduct a leverage sensitivity analysis showing that the proposed model performs better than

the standard existing ones in terms of response of the volatility surface to a leverage variation.

Secondly, we consider a true multifactor specification and compare some associated volatility

skews to those derived by other jump and multifactor asset price evolutions.

4.5.1 Leverage sensitivity

As stated at the beginning of this chapter, the philosophy behind the presented model with cor-

related stochastic volatility and jump activity (CSVJA) is to be able to reproduce variations in

the skew of the volatility surface by employing a global parameter affecting the short as well as

the long term parts of the volatility surface. This is typically not feasible through models with

independent jumps and stochastic volatility, where the jumps dominate the short term part and

the stochastic volatility the long term one. We denote by ρ the usual correlation parameter be-

tween the log-returns and the Brownian activity of the stochastic variance. In the following we

compare the variation of the volatility skew with respect to ρ in some existing models with that

of the one presented: we expect to find a greater variation in the latter.

Examples of models featuring a stochastic jump rate are the one by Fang [37] and that by

Huang and Wu [63]. Both of these can be embedded in the following representation:

dSt = rSt−dt+
√
vtSt−dW

1
t + St−(exp(J)− 1)dNt − κλtSt−dt;

dvt = α(θ − vt)dt+ η
√
vtdW

2
t ; (4.28)

dλt = αλ(θλ − λt)dt+ ηλ
√
λtdW

3
t .

where κ and r and retain the usual meaning, J is normally distributedN (log(1 + κ)− δ2/2, δ),

Nt is a jump process like those from equations (4.12)-(4.11), and we have that 〈W 1,W 2〉t = ρt.

Fang assumed W 3
t to be independent of the two other Brownian motions, whereas Huang and

Wu also take 〈W 1,W 3〉t = tρJ , but leave arbitrary the jump distribution. The Bates model can

also be recovered from the above by just voiding the third equation.

Next, we observe that our CSVJA model can be instantiated to both the Bates and Fang

model by an appropriate matrix specification. We choose a pair of jump parameters κ, δ in the

Normal distribution, and set the following matrix parametrization for the CSVJA model:

M =

(
M1 0

0 M2

)
, Σ0 =

(
Σ1 0

0 Σ2.

)
R =

(
R1 0

0 0

)

Q =

(
Q1 Q0

Q0 Q2

)
, C =

(
1 0

0 0

)
, D =

(
0 0

0 1

)
. (4.29)
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The choice of the matrices C and D ensures that Σ1,1
t and Σ2,2

t play the roles of vt and λt

respectively. If Q0 = Q2 = M2 = 0 one has that the CSVJA model is equivalent to a Bates

model of parameters

α = −2M1, θ = −bQ
2
11

2M1
, ρ = R1, η = 2Q11, v0 = Σ1, λ = Σ2. (4.30)

Similarly, specifications of the Fang model can be obtained by the parametrization (4.29) after

having set Q0 = 0, when:

α = −2M1, θ = −bQ
2
11

2M1
, η = 2Q11, v0 = Σ1,

αλ = −2M2, θλ = −bQ
2
22

2M2
, ηλ = 2Q22, λ0 = Σ2, ρ = R1.

Also, it is easy to see that for the choice (4.29), the price process exactly coincides with the

model introduced in section 3.6. Its activity and stochastic variance marginals are of pure CIR

type, while their joint distribution is determined by the correlation process (3.82), also obtainable

by substituting the values of C and D above in equation (b). Furthermore, the usual correlation

between the Brownian motions of the activity rates and that driving the log-returns is in place, as

given by equation (a) reducing to (3.83) under the current choice for the projection matrices.

In order to assess the effects of introducing a stochastic correlation between the activity

rates on the leverage sensitivity of the short-term skew, we perform the following test. We select

the entries in (4.29) as:

M1 = M2 = −0.33, Q11 = Q22 = 0.25, Q0 = 0.3, Σ1 = Σ2 = 0.01, b = 3,

κ = −0.2, δ = 0.3.
(4.31)

In figures 4.1 to 4.3 we provide the 3-month volatility smiles extracted from the analytical

call option prices for the Bates, Fang and CSVJA models specifications above. The values of ρ

analyzed are 0 and −0.6. By equation (a), in order to work back this value of ρ for the CSVJA

model, we have to take R1 = −0.7. As well-expected, for both the Bates and the Fang the

leverage variation has little impact on the volatility skew, especially for deep in-the-money call

options. However, for the CSVJA model, a wider gap is shown. Since the marginal distributions

of the activity rates for the CSVJA model are the same of the Fang model, the only possible

reason explaining the additional skewness of the CSVJA model is the presence of the stochastic

correlation (b)-(3.82) introduced by means of the extra volatility term Q0 6= 0. The effect of

this “second” correlation on the skew can be intuitively explained as follows. Because of the

leverage effect, as prices go down the volatility spikes up, generating negative skewness in the

returns distribution. But now the volatility is correlated with the jump activity through the mean-

reverting process Σ1,2
t which has positive mean reversion level. Therefore, when the volatility

increases, the jump intensity is likely to increase as well, and hence so does the probability of

observing a (negative on average) jump. The latter contributes to the negative skewness of the

asset returns and thus reinforces the negative skew of the volatility smile.
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Figure 4.1: Comparison of the 3-month volatility skew in the Bates model for two different values of ρ.
There is only a small difference in the skew of the two curves.
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Figure 4.2: Comparison of the 3-month volatility skew in the Fang model for two different values of ρ.
The situation is very similar to that of figure 4.1.
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Figure 4.3: Comparison of the 3-month volatility skew in the CSVJA model for two different values of
ρ. The negative skew increases much more than in the other two models.

4.5.2 Multifactor analysis

Even though the CSVJA model makes use of a multivariate process to model the driving factors,

in its simplest form of the previous subsection it is not a true multifactor model. Effectively, we

are using the individual one-dimensional factors Σ1,1
t and Σ2,2

t to model the diffusive and jump

activities, and the off-diagonal term Σ1,2
t only impacts the correlation between them. In this

section we instead analyze a true multifactor specification, by assuming that the dynamics of Yt
are driven by a 3-dimensional Wishart process. Two of the diagonal factors, say Σ1,1

t and Σ2,2
t ,

are taken to model the multifactor structure: one will impact the short term part and the other one

the long term part of the volatility surface. The factor Σ3,3
t will instead dictate the jump intensity

of the process. We refer to this model as a multifactor jump model with correlated stochastic

volatility and jump activity (MCSVJA).

We shall choose the matrices as follows:

M =

M1 0 0

0 M2 0

0 0 M3

 , Σ0 =

Σ1 0 0

0 Σ2 0

0 0 Σ3

 , R =

R1 0 0

0 R1 0

0 0 0

 ,

Q =

Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33

 , C =

1 0 0

0 1 0

0 0 0

 , D =

0 0 0

0 0 0

0 0 b

 . (4.32)

The jump size distribution parameters are the same as in the previous section. We see that

Σ1,1
t + Σ2,2

t drives the stochastic variance and bΣ3,3
t the stochastic jump rate. Under the current

choice of C, the possible different values of M1 and M2 imply that the process Tr[CΣt] driving

the stochastic volatility comprises of a short-term factor Σ1,1
t and a long-term one Σ2,2

t , each
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responsible for generating the corresponding parts of the surface. Further, we can explicitly

compute the correlations (a) and (b) as:

d〈wc, Xc〉t = R1
Σ1,1
t Q11 + Σ1,2

t (Q12 +Q21) + Σ2,2
t Q22√

Σ1,1
t + Σ2,2

t

√
Σ1,1
t Q11 + Σ1,2

t (Q12 +Q21) + Σ2,2
t Q22

dt. (4.33)

and

d〈wc, wd〉t =
Σ1,3
t q13 + Σ2,3

t q23√
Σ1,1
t q11 + 2Σ1,2

t q12 + Σ2,2
t q22

√
bΣ3,3

t q33

dt. (4.34)

where

q11 = Q2
11 +Q2

21 +Q2
31

q12 = Q11Q12 +Q21Q22 +Q31Q32

q22 = Q2
12 +Q2

22 +Q2
32

q13 = Q11Q13 +Q21Q23 +Q31Q33

q23 = Q12Q13 +Q22Q23 +Q32Q33

q33 = Q2
13 +Q2

23 +Q2
33. (4.35)

From the above we deduce that the elements Qi,j , i, j = 1, 2 affect the correlation between

the Brownian components of the log-returns and that of the underlying Wishart factors, whereas

Q13, Q23, Q31 and Q32 act on the relationship between the activity rates only.

What we want to do is to visually compare the volatility skews arising from a multifactor

diffusive model and a single factor jump model with our MCSVJA model. It is well-known that

jump models show a strong convexity in the short term smile and a flat term structure in the long

term part of the surface; on the other hand, a diffusive multifactor jump model should have a

less steep short term skew but the convexity of the smile persists for longer time-to-maturities.

In principle, the MCSVJA should feature both of these properties. We expect the short term part

of volatility surface from this model to behave like a jump model and the long term part like a

multifactor one.

The pure diffusive model in the literature closest to ours is the multifactor Heston model

(MH) of da Fonseca et al. [28], which is obtainable by simply setting b = 0 in (4.32); instead, a

full MCSVJA parametrization is given when b = 1. A specification of the Bates mode can also

embedded in (4.32) by letting again b = 1 and specifying as the only non-vanishing elements in

the matrices M and Q to be respectively M1 and Q11. The full parametrization is taken as:

M =

−3 0 0

0 −0.33 0

0 0 −0.33

 , Σ0 =

0.01 0 0

0 0.01 0

0 0 0.01

 ,
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Figure 4.4: Comparison of the 3-months volatility skew from the Bates, MH and MCSVJA models
instantiated by (4.36). The skew of the MCSVJA model is similar to that of the Bates model, a typical
shape of a skew generated by a jump diffusion model.

R =

−0.7 0 0

0 −0.7 0

0 0 0

 , Q =

0.25 0 0

0 0.25 0

0 0 0.25

 . (4.36)

Hence, by assuming Q to be diagonal we are for the purposes of this test reverting to the case

of independent rates. The mean reversion parameter M1 affects the short term section of the

volatility surface, and M2 the long term one.

In figures 4.4 and 4.5 are shown respectively the 3 and 18-month volatility skews extracted

from the analytical call option prices from the Bates, MH and MCSVJA parametrizations. We

notice that the skew of the 3-month volatility smile of the MCSVJA model is sensibly more

pronounced than that of the MH model, and resembles to that of the Bates model, up to a level

shift. However, as time-to-maturity progresses, the shape of the long term smile departs from that

of the Bates model and becomes instead similar to that of the MH model, which is more skewed

for this maturity range (figure 4.5). The reason of this happening is that, as commonly reported,

the jumps have little effect on the surface for longer maturities, where the volatility surface is

instead more deeply influenced by the mean reversion of the long term diffusive component.

Thus, in some sense, up to a shift of the surface level, the MCSVJA “interpolates” between the

short term skew of the Bates model and the long term one of the MH model.

4.6 Conclusions and further work
To summarize the discussion so far, in this final chapter we have proposed and carried out an

analysis of a potential financial asset pricing model featuring many desirable characteristics. In

particular, the following properties of the model are widely documented to be able to capture

certain stylized facts:

• stochastic volatility;
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Figure 4.5: Comparison of the 18-months volatility skew from the Bates, MH and MCSVJA models
instantiated by (4.36). The MCSVJA skew looks like that of the MH model, since both retain the same
diffusive specification and the jump component in the MCSVJA does not have a strong impact on implied
volatilities here. The volatility skew of the Bates model has been shifted 15% upwards.

• jumps;

• a multivariate specification of the stochastic volatility;

• stochastic correlation between the log-returns and the stochastic volatility (leverage effect).

In addition, the model retains a stochastic correlation dependency between the Brownian

motion driving the stochastic volatility and that driving the stochastic jump rate: to our knowl-

edge this is a novel feature, and it may be worth further research. Despite its apparent complexity,

the model is not only analytically tractable, but also financially significant. Indeed, it combines

the ability of different models to reproduce many features of the market data, such as the short

term steepness of the smile for short maturities, the non-stationarity of the returns and the term

structure of the volatility surface. Moreover, numerical tests confirm the intuition that we can

shape the (M)CSVJA model in such a way as to generate skews that are more sensitive to a lever-

age change compared to those from jump models with independent activities. This is an effect

of having introduced a correlated pair of activity rates indirectly connecting the jump arrival rate

with the log-returns. Finally, when multifactoriality of the driving factors is modeled, the pro-

posed asset evolution can capture both a steep short term volatility skew and a forward volatility

smile, thus combining features of both jump and multifactor models.

Overall, the discussion so far supports the view that the model presented is a good candidate

to overcome some of the rigidities in the volatility surface management presented by the existing

models. However, much more testing has to be done in order to fully understand the effects of

an interaction between the activity rates, including a proper empirical study based on real market

data.
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Appendix: proofs
Proof that Wt is a matrix Brownian motion. By using the characterization of a matrix Brownian

motion (see e.g. Gouriéroux [51])

E[(Wtα)(Wtβ)T ] = tαTβ1I, (4.37)

for all α, β ∈ Rn, we have:

E [Wtα,Wtβ] =E[(BtR
Tα)(BtR

Tβ)T ] + E[(Zt
√

1I−RRTα)(Zt
√

1I−RRTβ)T ]

=tαTRRTβ1I + tαT (1I−RRT )β1I = tαTβ1I. (4.38)

and thus Wt is a matrix Brownian motion. Furthermore, for all i, j, k, l = 1, . . . , n:

〈W k,i, Bl,j〉t = 〈
n∑
h=1

Bk,hRi,h, Bl,j〉t = δklRi,jt. (4.39)

Proof of proposition 4.1.1. Apply proposition 3.2.3 to equation (4.11).

In some of the proofs that follow, the lemma below will be useful:

Lemma 4.6.1. For any A,B ∈Mn(R) and a matrix Brownian motion Zt we have

〈Tr[AdZ], T r[BdZ]〉t = Tr[ABT ]dt. (4.40)

Proof. We have

〈Tr[AdZ], T r[BdZ]〉t =

〈∑
i,k

ai,kdW
k,i,
∑
i,h

bi,hdW
h,i

〉
t

=
∑
i,k

ai,kbi,kdt = Tr[ABT ]dt.

(4.41)

Proof of proposition 4.2.1. For (a) notice that

dTr[CΣt] = Ftdt+ 2
√
Tr[CΣtCQTQ]dwct (4.42)

where, by the Lévy characterization theorem

dwct =
Tr[C

√
ΣtdBtQ]√

Tr[CΣtCQTQ]
, (4.43)

is the Brownian motion driving Tr[CΣt]. Setting K = (
√
Tr[CΣtCQTQ]

√
Tr[CΣt])

−1, we

then have that the equality

d〈Xc, wc〉t = K〈Tr[C
√

ΣdBQ], T r[
√
CΣdBRT ]〉t = KTr[CΣt

√
CRQ]dt (4.44)
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easily follows from lemma 4.6.1 and the elementary properties of the trace operator.

Regarding (b) we have that

wdt =
Tr[D

√
ΣtdBtQ]√

Tr[DΣtDQTQ]
(4.45)

is the planar Brownian motion driving Tr[DΣt]. Therefore, after letting

H =

(√
Tr[CΣtCQTQ]

√
Tr[DΣtDQTQ]

)−1

(4.46)

lemma 4.6.1 produces

d〈wc, wd〉t =H
〈
Tr[D

√
ΣdBQ], T r[C

√
ΣdBQ]

〉
t

=
Tr[CΣDQTQ]√

Tr[CΣtCQTQ]
√
Tr[DΣtDQTQ]

dt. (4.47)

Finally, for (c), let ei,j be the matrix having 1 as the (i, j)-th element and 0 everywhere else.

With the help of a final application of lemma 4.6.1, we calculate:

d〈Σi,j
t , Y 〉t = 〈dTr[ej,iΣ], T r[

√
CΣdW ]〉t

= 〈Tr[ej,idΣ], T r[
√
CΣdW ]〉t

= 2〈Tr[ej,i
√

ΣdBQ], T r[
√
CΣdBRT ]〉t

= 2Tr[Qej,iΣt

√
CR]dt

= 2(Σt

√
CRQ)i,jdt. (4.48)

Proof of proposition 4.3.1. Proposition 3.3.2 implies that we can write:

Φt0(z, w) =EQ(z,w)
t0

[exp (α(z, w)(Tt − Tt0) + β(z, w)(Ut − Ut0))]

=EQ(z,w)
t0

[
exp

(
α(z, w)

∫ t

t0

Tr[CΣs]ds+ β(z, w)

∫ t

t0

Tr[DΣs]ds

)]
=EQ(z,w)

t0

[
exp

(
Tr

[∫ t

t0

(α(z, w)C + β(z, w)D)Σsds

])]
(4.49)

We must now apply the Girsanov theorem to find the change of parameters in the distribu-

tions needed push back the change to the measure Q(z, w) to the original risk-neutral measure.

Since the Wishart process is a continuous process, the measure change can be reduced to one with

respect to a measure Q(z) depending only on z. This is because when changing to the leverage-

neutral measure, the jump parameters in the measure change martingale induce no change in the

activity rates distribution when applying Girsanov’s theorem, being continuous processes by def-

inition uncorrelated with every jump process. As a consequence, the relevant Radon-Nikodym

derivative in proposition 3.3.2 is
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dQ(z)

dP
= E

(
iz

∫ t

0

√
Tr[CΣs]dX

c
s

)
. (4.50)

E being the usual stochastic exponential. Using lemma 4.6.1, for all i, j = 1, . . . , n gives the

correlations:

d

〈
Bi,j ,

∫ ·
0

√
Tr[CΣs]dX

c
s ,

〉
t

= d

〈
Bi,j ,

∫ ·
0
Tr[
√
CΣsdWs]

〉
t

=〈Tr[ej,idB], T r[
√
CΣdW ]〉t = 〈Tr[ej,idB], T r[

√
CΣdBRT ]〉t

=Tr[ej,i
√

ΣtCR]dt = (
√

ΣtCR)i,jdt. (4.51)

Therefore, Girsanov’s theorem applied to the Brownian motion matrix Bt guarantees that

under the measure Q(z) the process

dBz
t := dBt − iz

√
ΣtCRdt (4.52)

is a matrix Brownian motion. By solving forBt in the equation for the Wishart process we obtain

that the Q(z)-dynamics of Σz
t are those of a Wishart process of matrices Qz = Q and

M z = M + izQTRT
√
C. (4.53)

The transform in (4.13) therefore equals

Φt0(z, w) = Et0
[
exp

(
Tr

(∫ t

t0

(α(z, w)C + β(z, w)D)Σz
sds

))]
(4.54)

which is analytically computable for any given z, w ∈ D: see for example [28, 49, 51]. In

particular, the function Φt0(z, w) is exponentially-affine of the form (4.14) with A(τ) and a(τ)

satisfying, for τ > 0:

A′(τ) = A(τ)M z + (M z)TA(τ)− 2A(τ)QTQA(τ) + L(z, w) =

A(τ)(M + izQTRT
√
C) +A(τ)(MT + iz

√
CRQ)− 2A(τ)QTQA(τ) + L(z, w), (4.55)

A(0) = 0, (4.56)

a′(τ) = Tr[cQTQA(τ)], a(0) = 0. (4.57)

Applying e.g. [49], proposition 9, finally yields equations (4.15)-(4.17).

Proof of proposition 4.4. The Ito differential of the realized volatility It of Yt is given by

dIt = Tr[CΣt]dt+ ∆Y 2
t . (4.58)

Therefore, the linear term of the infinitesimal generator due to the quadratic variation equals

Tr[CΣt]; for convenience we set Xt = (Yt,Σt, It) so that by the above ∆Xt = (∆Yt, 0,∆Y
2
t ).

The quadratic term corresponding to the process Σt is, according to the calculation in Bru
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[12]:

Tr[(MΣt + ΣtM
T + cQTQ)δ + 2ΣtδQ

TQδ]f(x). (4.59)

The coefficient of the quadratic cross-term due to ∂y and δ follows from proposition 4.2.1 (c),

and equals

2Tr[Σt

√
CRQδ]

∂

∂y
. (4.60)

All of the remaining terms are trivial. By using the definition of infinitesimal generator we then

have

Af = lim
h→0

Et[f(Xt+h)|Xt = x]− f
h

= (r − 1

2
Tr[CΣt]− Tr[DΣt]κ)

∂f

∂y
+

+ Tr[DΣt]
∂f

∂I
+

1

2
Tr[CΣt]

∂2f

∂2y
+ Tr[(MΣt + ΣtM

T + cQTQ)δ + 2ΣtδQ
TQδ]f

+ 2Tr[Σt

√
CRQδ]

∂f

∂y
+ lim
h→0

1

h
Et

t+h∑
t≤s

f(Xs− + ∆Xs)− f(Xs−)

 . (4.61)

Regarding the jump part, we can write the incremental process above as a random integral with

respect to some jump measure ρ(ds× dz) in the following way:

t+h∑
t≤s

f(Xs− + ∆Xs)− f(Xs−) =

∫ t+h

t

∫
R

(f(Ys− + z,Σs, Is− + z2)− f(Xs−))ρ(ds× dz).

(4.62)

By definition the compensating measure of ρ is the unique predictable random measure µ such

that ∫ t

0

∫
R

(f(Ys− + z,Σs, Is− + z2)− f(Xs−))(ρ− µ)(ds× dz) (4.63)

is a local martingale. By Kallsen and Shiryaev [70], lemma 2.6 (and as explained in the appendix

of chapter 3), in the present situation we have that µ(dt × dz) = dTtν(dz). Here ν(dz) is the

Lévy measure associated with a compound Poisson process of intensity 1 and jump distribution

J , and therefore µ(dt× dz) = Tr[DΣt]fJ(z)dtdz. Thus, by an application of Fubini’s theorem

we obtain:

lim
h→0

1

h

∫
R
Et
[∫ t+h

t
(f(Ys− + z,Σs, Is− + z2)− f(Xs−)ρ(ds× dz)

]
=

∫
R

lim
h→0

1

h
Et
[∫ t+h

t
Tr[DΣs](f(Ys− + z,Σs, Is− + z2)− f(Xs−))ds

]
fJ(z)dz

=Tr[DΣt]

∫
R

(f(Yt− + z,Σt, It− + z2)− f(Xt−))fJ(z)dz. (4.64)

Under the usual exponential decay condition on fJ and by choosing f as growing slow enough,

the last term is finite, so that the interchange between the integral and the expectation is justified.





Conclusion

This PhD thesis revolves around the interactions between price and volatility, from both a val-

uation and asset modeling viewpoints. The single topics we dealt with in form of separate

projects/journal papers eventually combined to provide the background material for the stochas-

tic model of chapter 4. These are, in our view, the main contributions of our studies.

We begun by reporting the first comprehensive mathematical study of the target volatility

option, a financial derivative that serves as a model for certain type of investments aiming at

controlling the investment risk by using the realized volatility as a correction factor.

As a second step, we rigorously tackled the problem of pricing an arbitrary joint asset and

volatility contingent claim. The corresponding PDE turned out to be analytically solvable in

terms of the characteristic function, so long as the underlying stochastic model for the asset price

is. In doing so, we extended the well-known Fourier inversion pricing equations to joint asset

and volatility derivatives.

In the attempt of extending this strain of research to Lévy models, we focused on time-

changed processes. We contributed to this theory by showing that it is possible to separately

apply time changes to the Brownian and jump part of a Lévy random evolution and still obtain

processes suitable for equity modeling: we christened these DTC Lévy processes. This has been

achieved by providing a line of analysis relying on the martingale representation theory, which

we believe to be the correct theoretical framework corroborating the consistency of time-changed

models with the risk-neutral pricing theory. Furthermore, we extended the existing transform

analysis techniques for standard time-changed-based exponentials to DTC ones.

This modeling idea broke the ground for the introduction of a new class of models with

semi-closed pricing formulae, those with coupling between the jump and diffusive activity. We

took into account one instance of such models, found analytical pricing equations based on it, and

performed some preliminary numerical testing suggesting that this model retains some desirable

properties for the financial practice.

The topics we have dealt with in this work represent in our view a relatively unexplored

and potentially large area of research. More financial and mathematical insight is necessary

for the TVO, in particular with regards to hedging. It would also be interesting to deepen the

understanding of certain mixed equity and volatility payoffs, for example those introduced in

chapter 2, and see if there is any demand for such products in the financial markets. Moreover,

the target volatility strategy/asset allocations, nowadays a rather popular investment solution,

require more accurate statistical and mathematical analysis.

In terms of asset modeling the decoupled time-changed approach is a promising method-
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ology for the introduction of new models. The model in chapter 4 certainly needs a great more

deal of empirical analysis, part of which is currently under way. Furthermore, it is envisaged

that decoupled time changing could also be helpful in designing a realistic multi-asset market

framework. We hope to answer some of these points in future research.
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