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The use of short-term indicators for understanding patterns and processes of

biodiversity loss can mask longer-term faunal responses to human pressures.

We use an extensive database of approximately 18 700 mammalian zooarchaeo-

logical records for the last 11 700 years across Europe to reconstruct spatio-

temporal dynamics of Holocene range change for 15 large-bodied mammal

species. European mammals experienced protracted, non-congruent range

losses, with significant declines starting in some species approximately 3000

years ago and continuing to the present, and with the timing, duration and mag-

nitude of declines varying individually between species. Some European

mammals became globally extinct during the Holocene, whereas others experi-

enced limited or no significant range change. These findings demonstrate the

relatively early onset of prehistoric human impacts on postglacial biodiversity,

and mirror species-specific patterns of mammalian extinction during the Late

Pleistocene. Herbivores experienced significantly greater declines than carni-

vores, revealing an important historical extinction filter that informs our

understanding of relative resilience and vulnerability to human pressures for

different taxa. We highlight the importance of large-scale, long-term datasets

for understanding complex protracted extinction processes, although the

dynamic pattern of progressive faunal depletion of European mammal assem-

blages across the Holocene challenges easy identification of ‘static’ past baselines

to inform current-day environmental management and restoration.
1. Introduction
Extinction constitutes a process rather than a single event, with the final disap-

pearance of the last individual of a species merely the endpoint of an often

protracted series of regional population losses which may take decades, centu-

ries or even longer to run their course [1]. A principal aim of conservation

biology is therefore to develop methods to characterize this process, and greater

emphasis is now placed on understanding the spatio-temporal and ecological

dynamics of localized extirpations, population declines and range collapses,

in order to identify general patterns of decline and provide predictive power

for conservation management of threatened species [2–5].

Humans are now a dominant driver of patterns in global biodiversity, and

well-documented ongoing anthropogenic transformation of the biosphere is

responsible for catastrophic recent declines across a broad range of taxa [6,7].

However, human activities have also substantially affected species diversity

and ecosystem structure throughout the historical period and recent prehistory.

Indeed, few (if any) of the nearly 800 documented mammal and bird species-
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level extinctions that have taken place during the relatively

climatically stable Holocene epoch (11 700 years ago–present,

the time interval since the end of the last Ice Age glaciation)

can be interpreted as non-anthropogenically mediated [8].

There is therefore an increasing awareness of the need to inte-

grate long-term datasets into conservation research and

environmental management, to provide novel insights into

population trends, extinction dynamics, and the status of both

species and ecosystems that are not available from short-term

ecological studies [9–12].

However, the use of long-term data in ecology and conser-

vation remains limited, owing to the lack of standardized

scientific monitoring data beyond the recent past. Current indi-

cators for measuring population declines rarely use baselines

older than AD 1500 [13], and ecological monitoring data

used to measure trends in biodiversity typically span only a

few decades [14–16]. Likewise, large amounts of data across

wide spatial and temporal scales are required to characterize

changes in species’ geographical ranges across the entire dur-

ation of population declines, but studies of range dynamics

over time are typically limited to comparisons between pre-

sent-day species distributions and single ‘historical’ maps,

usually representing geographical range estimates no more

than a few hundred years old [2–4,17,18].

Consideration of ecological time-series data from the recent

past alone may be supported by the increasing recognition of

a modern ‘Anthropocene’ epoch, defined by qualitatively

more intensive human pressures on global ecosystems during

the past few decades or centuries [19]. However, using a

recent baseline imposes an explicit ‘extinction filter’ [20] that

excludes particularly vulnerable populations and species that

were lost due to older human impacts, which has major impli-

cations for our insights into extinction ecology [21]. Analyses

based on such reduced subsets of surviving taxa can provide

only an incomplete understanding of patterns of vulnerability

and resilience shown by different species to human impacts

through time. For example, regional mammal faunas from

which the most susceptible species have become extinct now

appear less threatened, and higher-order taxonomic groups con-

taining elevated numbers of recently extinct species now show

only average levels of current extinction risk [22]. Similarly,

although small geographical range size has been proposed as

a key predictor of extinction risk in mammals [23,24], this may

actually represent a circular predictor if historical depletion

has occurred in response to past human impacts [25–27].

Employing restricted time windows for ecological analysis

could have particularly significant implications for understand-

ing extinction dynamics and vulnerability in geographical

regions with long histories of human occupation, notably con-

tinents such as Europe [28]. This region represents a unique

study system across which to investigate long-term human

impacts on biodiversity, as a wealth of dated occurrence records

spanning the Holocene, comprising subfossil, zooarchaeo-

logical, historical and ecological data, are available for many

European large mammal species. Recent investigation of the

European Holocene zooarchaeological record has demon-

strated that it is possible to use this long-term archive to

reconstruct high-resolution extinction dynamics for specific

large mammal taxa, revealing that some species experienced

spatially complex patterns of staggered population extirpation

across Europe before the recent historical era [29]. This archive

also has the potential to enable assemblage-wide analyses of

extinction, for example, to determine the duration, magnitude
and selectivity of prehistoric human-caused continental extinc-

tion ‘events’. It can also be used to investigate whether co-

occurring species or species groups showed either congruent

responses to past pressures or marked individualistic differ-

ences in timing or magnitude of population losses. However,

it is important to recognize that the zooarchaeological record,

much like the wider fossil record, suffers from both incom-

pleteness and bias, and does not represent a systematic

sample of past species diversity across space or time [30]. This

major concern therefore needs to be accounted for when analys-

ing past faunal data, to avoid misinterpreting past patterns of

population loss and extinction [31].

Faunal research for the Holocene to date has predomi-

nantly consisted of documenting global species-level

extinction ‘events’ [8]. However, while we therefore have

increasing information on taxonomic losses across the Holo-

cene, we lack a robust understanding of the dynamics and

ecology of these extinctions [32]. Studies have tended to

focus on oceanic island faunas that have experienced elevated

levels of species extinction associated with the arrival of

humans and commensal mammal predators [8]. By contrast,

there has been little research into continental mammal losses

during the Holocene, partly due to the reduced number of

global-level continental species extinctions after the Late

Pleistocene and before the recent historical era (the so-called

‘Holocene underkill’ [33]). For example, only one representa-

tive of Europe’s recent continental large mammal fauna,

the aurochs (Bos primigenius), has become globally extinct.

Today this fauna includes many species that are of conserva-

tion concern and the focus of intensive management efforts

[34,35], with particular attention paid to conservation of sur-

viving European populations of large carnivores, considered

to be a particularly vulnerable ecological guild [36–38].

While there have been several well-documented local extirpa-

tions of geographically discrete insular European mammal

populations (e.g. in the British Isles [39,40]), the majority of

previous assessments of Holocene extinctions in this region

have been conducted at coarse species-level resolutions.

Comparative patterns of population change across Europe’s

large mammal fauna during this interval, and even any evi-

dence of human impact on these populations before the

recent historical era, therefore remain largely unknown.

In the absence of a rigorous and standardized assessment of

the Holocene record, it is not possible to determine whether cur-

rent-day continent-wide disruption of large mammal faunal

assemblages [18] represents a recent and rapid phenomenon

or the culmination of a long-term process of progressive popu-

lation attrition. Furthermore, we are unable to assess whether

anthropogenic processes have affected different mammal

species in a qualitatively and quantitatively similar way through

time. As all Holocene mammal losses in Europe can uncontro-

versially be attributed to human activity [8,41], establishing a

strengthened framework for understanding the spatio-temporal

pattern of these losses across an entire fauna is essential in order

to determine the duration, magnitude and selectivity of anthro-

pogenic impacts on biodiversity, and thereby inform effective

current-day management of threatened large mammals. We

therefore used the extensive data on past distributions of large

mammal species available in the Holocene zooarchaeological

record as a proxy for ecological monitoring data to reconstruct

millennial-scale patterns of mammalian extinction across

Europe, within a robust quantitative framework that controlled

for bias inherent in such a dataset.
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Figure 1. Map of Europe (10 417 608 km2 study area shown in grey), show-
ing distribution of 18 670 zooarchaeological localities containing records of
native mammal species. Data from original Holocene zooarchaeological data-
base [41] shown in grey; additional data collected for this study shown in
black.
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2. Material and methods
(a) Data collection
An extensive database of 18 670 mammal zooarchaeologi-

cal records spanning the Holocene of Europe [41], comprising

a 10 417 608 km2 study area including Turkey and the Caucasus

but excluding Iceland and the insular Mediterranean other than

Sicily (figure 1; electronic supplementary material, table S1), was

used as the basis for analysis. Additional data collection

was undertaken to increase geographical sampling consistency,

include more detailed coverage of previously undersampled

regions (e.g. the Balkans, Turkey, the Caucasus) and include

records published up to 2013 [42]. All records are associated

with details of species, location (country, site, region, latitude,

longitude) and date (absolute/relative) (electronic supplemen-

tary material, text S1). Species taxonomy follows Wilson &

Reeder [43].

(b) Data analysis
Methods for reconstructing ranges have been widely discussed

[44,45], but with no common consensus on an absolute method

that is appropriate across all types of data or analysis. Differences

exist in the spatial patterning and quantity of data available

for different species due to both pre- and post-excavation

biases; variation in zooarchaeological species distribution records

reflects complex variation in factors such as past settlement pat-

terns and faunal exploitation by prehistoric communities, and

also more recent archaeological search effort, in addition to

underlying ecological variation in species distributions [46]. We

therefore sought to avoid methods such as area of occupancy

that rely heavily on the actual number and distribution of indi-

vidual data points [13,45]. Such methods can also make

assumptions about species ecology and habitat use when recon-

structing past ranges, which may be confounded by uncertainty

over whether distribution records represent optimal habitat or

marginal refugia [47,48]. By contrast, while range extent can

overestimate area of occupancy, it allows for reasonable compari-

son of relative changes in distribution between species and time

periods for the same geographical area despite underlying

unevenness in distribution of data points, especially when

there is no evidence to suggest that some species distributions

may be more subject to range-edge fluctuations than others.

We therefore used the observed extent of occurrence, a measure

of range extent calculated as the area within a convex hull poly-

gon that encloses all the points with no internal angle measuring
more than 1808 [13]; this metric has previously been used to

reconstruct species distributions using both Quaternary and

older fossil data, which constitute presence-only data in contrast

to many modern ecological datasets [49,50]. Species ranges were

reconstructed and measured using the spatial mapping software

ARCGIS v. 9.3 [51].

Data were analysed across seven well-established Holocene

archaeological periods, which represent important shifts in

human subsistence and/or technological change and which are

broadly contemporaneous across Europe: Mesolithic (9500–

5500 BC), Neolithic (5500–3000 BC), Bronze Age (3000–1000 BC),

Iron Age (1000 BC–AD 0), Roman Age (AD 0–500), Early Medie-

val (AD 500–1000) and Late Medieval (AD 1000–1500). The

recent historical era (AD 1500–present) was excluded from analy-

sis, as there are few zooarchaeological records for this time period

(faunal distributions are better represented by historical and

modern ecological data), making direct comparison with older

bone-based records difficult, and trends in species status are

already assessed for this period [52].

We also checked for further possible spatial biases in our

dataset arising from our measure of range extent, and found

that number of zooarchaeological records and corresponding

range size were positively correlated across all time periods

and species (Pearson’s r ¼ 0.915, d.f. ¼ 38, p , 0.05; electronic

supplementary material, figure S1), probably reflecting the

well-described positive abundance–occupancy relationship in

ecology [53]. However, as a result of spatial, temporal and taxo-

nomic variation in archaeological sampling [46], it was difficult

to separate the relative influence of number of records versus

genuine change in species range in driving observed variation

in range size estimates through time. In order to deal with the

potentially confounding influence of sample size, we used boot-

strapping to establish null models of range size expectations for

each archaeological period based on given sample sizes. For each

species, all records across its Holocene range were randomly

resampled 1000 times, with sample size constituting the

number of records for any one time period, and range size was

calculated for each run. This approach provided a measure of

potential sampling variability of range size and extent based on

the number of points available for each species and time period

combination. Upper and lower 95% confidence intervals and

mean range from the 1000 runs were then calculated and plotted

together with the observed range extent. If the observed range

fell outside these confidence intervals, this was interpreted as

representing a genuine, statistically significant deviation from the

expected range size for the species. We also combined the data

into discrete categories for body mass (above and below 100 kg)

and trophic level (herbivore/carnivore) to test for differences in

patterns of range decline across these ecological groupings.
3. Results
Overall spatial coverage of zooarchaeological data remained

relatively constant across periods, varying between 90.4 and

98.1% of the maximum Holocene range based on all records

(table 1). Sufficient data (greater than or equal to 3 records

per period) were available to reconstruct former spatial distri-

butions using range extent across all seven archaeological

periods for 15 large-bodied European mammal species

which had native Holocene ranges that occupied more than

5% of the study area (table 1 and figure 2; electronic

supplementary material, figure S2).

Although the raw range extent data show decreases in

recorded spatial distribution for almost all of the 15 large-

bodied mammal species in our dataset across the Holocene

(table 1), these changes in distribution are associated with

http://rspb.royalsocietypublishing.org/
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Figure 2. Geographical range estimates for aurochs from the Mesolithic to the Late Medieval, with range extent based on distribution of zooarchaeological records in
each time period (black points).
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Figure 3. Log range extent from the Mesolithic to the Late Medieval for (a) aurochs, (b) European bison, (c) Eurasian elk, (d ) red deer, (e) brown bear, ( f ) wild
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variation in the number of available zooarchaeological records

between different time periods. As a conservative measure

of range decline, we therefore contrasted expected range

(accounting for sample size per archaeological period) against

observed decline. Only eight species underwent statistically

significant declines in geographical range by the Late Medieval

as measured by their observed range falling below the 95%

confidence intervals of the expected range controlling for

sample size (figure 3). These significant declines started at

different time periods across the Holocene for different species:

aurochs experienced a statistically significant decline from the

Iron Age; European bison (Bison bonasus), Eurasian elk (Alces
alces) and brown bear (Ursus arctos) experienced significant

declines from the Roman Age; Eurasian beaver (Castor fiber)
experienced a significant decline from the Early Medieval;

and wild boar (Sus scrofa), pine marten (Martes martes) and

polecat (Mustela putorius) experienced significant declines in

the Late Medieval. Aurochs subsequently became completely

extinct across Europe during the recent historical era, while

European bison became extinct in the wild. By contrast, the
remaining seven species in our dataset—red deer (Cervus
elaphus), roe deer (Capreolus capreolus), Eurasian lynx (Lynx
lynx), European wildcat (Felis silvestris), wolf (Canis lupus),
red fox (Vulpes vulpes) and beech marten (Martes foina)—

broadly maintained their geographical ranges across Europe

throughout the pre-modern Holocene. Although several of

these species (e.g. lynx, wolf, wildcat) have since suffered sub-

stantial range declines from their maximum Holocene ranges

[34], our data indicate that such losses probably only occurred

within the last 500 years. Some ‘pseudo-declines’ early in the

Holocene were generally due to a temporary absence of zooarch-

aeological records from outlying regions (e.g. lynx appear to

decline in the Neolithic due to a lack of Neolithic–Bronze Age

records in Britain, but the species reappears in Britain from the

Roman Age–Early Medieval). This is unlikely to represent a

genuine extinction and re-colonization event, but rather reflects

the rarity of lynx in the zooarchaeological record, with only

five reliable postglacial records known from Britain.

Across the European large-bodied mammalian assemblage

as a whole, species with a body mass over 100 kg experienced a

http://rspb.royalsocietypublishing.org/
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cumulative significant decline in geographical range by the

Roman Age, whereas species under 100 kg experienced no

cumulative significant range decline (figure 4a,b). Similarly,

herbivores overall experienced declines by the Roman Age,

whereas carnivores showed no significant decline by the Late

Medieval (figure 4c,d).

4. Discussion
Our analysis of an extensive, approximately 11 700-year,

continental-scale zooarchaeological dataset reveals that the

European large mammal fauna experienced a protracted

depletion of species ranges across the later part of the Holocene,

with significant declines starting in some species approximately

3000 years ago and continuing into the recent historical era. This

new model of continental Holocene mammalian biodiversity

loss reveals that not only the globally extinct aurochs, but

also over half of Europe’s widely distributed large mammal

fauna, underwent statistically detectable postglacial popula-

tion declines before the recent historical era, with accurate

identification of these losses requiring a framework of quantitat-

ive analysis that controlled for error and bias in baseline

zooarchaeological data. Holocene range declines in European

large mammals were non-congruent in time and space

rather than representing a single easily diagnosable ‘event’,

with the starting point, duration and magnitude of declines

varying individually between species; some taxa became glob-

ally extinct during the Holocene, whereas others experienced

limited or no significant range change over this interval.

This species-specific pattern of vulnerability and resilience

demonstrates that although large mammals are increasingly

vulnerable to human pressures compared with other taxa

[54], extinction risk represents an interaction between both

extrinsic and intrinsic factors; extinction dynamics vary across

species with different life histories, ecologies and geographies

even if they are facing the same external threat processes [54].

Our analysis demonstrates the onset of human impacts on

postglacial biodiversity long before the recent historical era,
with population-level attrition of the large mammal assemblage

already detectable by the Iron Age. Models of prehistoric defor-

estation suggested that forest loss increased across Europe from

around this time (approx. 1000 BC [55]); widespread habitat

loss and degradation may therefore have been a primary

driver of mammal declines, at least for large herbivores such

as aurochs, bison and elk, either on its own or in combination

with the increased landscape access for hunting also associated

with deforestation. Spatially, the earliest range losses occurred

in Britain and southern Scandinavia, almost certainly reflecting

the increased vulnerability of relatively small isolated mammal

populations on islands [56]. Several species (such as aurochs,

bison and wildcat) only colonized the southern part of

Sweden, reflecting their northern latitudinal limit, which

coincides closely with the distribution of deciduous woodland

in Europe; when sea levels rose in the Early Holocene, these

populations were isolated on ‘habitat islands’ and became simi-

larly vulnerable to extinction. However, our results also

demonstrate the lengthy time periods over which population

declines took place in specific large mammal taxa at a continen-

tal scale. Total extinction of wild populations of aurochs and

bison across Europe took approximately 3000 years and

2000 years, respectively, to run its course from the first evidence

of spatial population decline, and millennial- or century-scale

population attrition of several other species led to identifiable

range reductions but continued persistence in other parts of

their European ranges.

The extinction dynamics of Europe’s large mammal fauna

during the Holocene were characterized by temporally

‘staggered’ population extirpations, which show protracted

trajectories of continental-level loss following first detectable

onset of decline. This pattern provides an interesting perspec-

tive on the earlier global extinction ‘event’ of more than 90

large-bodied mammal genera during the Late Pleistocene,

for which both human activity and climatic change are impli-

cated as potential driving factors [57,58]. Radiometric and

genetic data for extinct Eurasian megafaunal taxa adapted

to cooler, more open environments that characterized the

http://rspb.royalsocietypublishing.org/
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previous glacial period have revealed similar individual, species-

specific population losses staggered across space and time,

through the Late Pleistocene and in some cases into the Holocene

as restricted relict populations of ‘Pleistocene survivors’

[29,59–62]. Our Holocene data demonstrate that extinctions in

co-occurring large mammal faunas have therefore taken place

across varying time scales for different species throughout the

Late Quaternary and up to the present in Europe. The protracted

trajectory of continental-level extinction seen in the Holocene

record is also comparable in duration to current estimates of

the extinction period for ‘naive’ regional megafaunas during

the Late Pleistocene, with the human–megafauna overlap

period estimated at approximately 3900 years in Australia [63]

and approximately 1570 years across North and South America

[64]. Our study therefore provides further evidence that conti-

nental-scale losses of large mammal populations during the

Late Quaternary took place over millennial-scale time periods

in response to pre-modern anthropogenic environmental press-

ures and technologies. However, whereas some remnant

European populations of ‘Pleistocene survivors’ (e.g. Megalo-
ceros) disappeared relatively early on in the Holocene [60], we

demonstrate the long-term stability of Europe’s Holocene large

mammal fauna, with populations persisting across the continent

for at least 7000 years prior to any discernible impact of

prehistoric human activities on their continental-level distri-

butions. In particular, these species resisted the impact of

major anthropogenic transitions from nomadic hunter–gatherer

to more sedentary agricultural lifestyles in Europe, in marked

contrast to the onset of population responses shown by Ameri-

can and Australian Late Pleistocene mammalian megafaunas

to regional human arrival.

When considered at the guild level, herbivores and larger-

bodied (more than 100 kg) species in the European mammal

assemblage experienced significant range declines during the

Holocene, whereas carnivores and smaller-bodied species did

not display significant declines before the recent historical

era. These biological traits are conflated, with herbivores repre-

senting the largest-bodied mammal species in this assemblage

(including brown bear, the regionally largest member of

the Carnivora, but defined here as a functional herbivore for

analysis), and carnivores representing the smallest-bodied

species. Conversely, persecution of carnivores has intensi-

fied in recent centuries [34,36], and large carnivores are today

considered to be highly vulnerable to human pressures

[36–38]. It has rarely been recognized that carnivores have

displayed greater historical resilience than herbivores, demon-

strating an important extinction filter in our understanding of

faunal vulnerability and resilience. Indeed, the loss of large

herbivores before large carnivores in human-dominated land-

scapes may not be a phenomenon unique to Europe. Large

herbivores such as short-horned buffalo (Bubalus mephistopheles),
Père David’s deer (Elaphurus davidianus), Sumatran rhino

(Dicerorhinus sumatrensis), Javan rhino (Rhinoceros sondaicus)
and Asian elephant (Elephas maximus) disappeared from much

or all of China during the Holocene before the recent historical

era [65–67], while large carnivores such as wolf, tiger (Panthera
tigris) and leopard (P. pardus) survived across much of this

large region until very recently or even into the present [68,69].

Similar patterns of differential trophic loss have also been wit-

nessed in the large mammal faunas of other geographical

regions, such as the Near East and Egypt [70–72].

Relative decreases in prey abundance have been found to

result in proportionally greater declines of large carnivores
[73], such that evidence for herbivore declines preceding car-

nivore declines during the Holocene by centuries or even

millennia appears counterintuitive. However, whereas some

European carnivores are specialist predators with a narrow

prey range (e.g. Iberian lynx Lynx pardinus [74]), the domes-

tication of pigs, sheep and cattle across Europe during the

Early Holocene, and introduction of species such as fallow

deer (Dama dama), rabbit (Oryctolagus cuniculus) and Euro-

pean hare (Lepus europaeus) as far north as the UK and

Scandinavia [39,40,75,76], would have provided a new

prey-base for non-specialist carnivores in the absence of an

abundant wild prey-base [36]. Carnivores also have higher

maximum natal dispersal distances than herbivores [77],

making them better able to exploit landscapes across wide

geographical ranges in the face of anthropogenic changes to

their environment. Their reliance on secondary productivity

enables them to survive in relatively degraded landscapes as

long as sufficient prey or other resources are present [78,79],

and this trophic ecology is also associated with broader eleva-

tional tolerance; many large carnivores can persist at both

low and high elevations, and indeed are now largely restric-

ted to mountainous areas in Europe [34]. By contrast, the

European herbivore fauna shows elevational niche differen-

tiation, comprising low-elevation species with formerly wide

Holocene distributions and high-elevation specialists such as

ibex (Capra spp.) and chamois (Rupicapra spp.).

Our findings emphasize the crucial importance of using

large-scale, long-term environmental archives to understand

the spatio-temporal dynamics of protracted, potentially com-

plex extinction processes [58], and we encourage further use

of quantitative frameworks in accurate interpretation of

zooarchaeological and other Quaternary data for understand-

ing past patterns of faunal change. Rather than simply

documenting regional and global last-occurrence dates for

species, palaeobiologists can instead begin to investigate new

extinction paradigms, exploring the timing, duration and mag-

nitude of losses, both for individual species and across

assemblages through time, in addition to the driving forces

behind these trends. Our evidence for large mammal range

loss beginning as early as 3000 years ago in Europe provides

a note of caution against underestimating the effects of even

relatively low levels of human activity on mammalian popu-

lation persistence, or the potential impact of such pressures

prior to the recent historical era. These findings have important

implications for reinterpreting the current population status

and conservation prioritization of European large mammal

species, from ungulates to mustelids to beavers and bears,

which experienced previously unrecognized pre-modern

population declines. However, the dynamic pattern of pro-

gressive faunal depletion and changing composition of

European regional mammal assemblages observed across

much of the Holocene also challenges easy identification of

‘static’ past baselines to inform current-day environmental

management and restoration [80]. Conservation scientists

therefore need to strengthen links in perspectives on ‘past’

and ‘present’ to understand the full scope of anthropogenic

effects on biodiversity in regions with long histories of

human presence.
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