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Abstract
The significance of the ubiquitin-proteasome system (UPS) for protein degradation has

been highlighted in the context of neurodegenerative diseases, including retinal dystro-

phies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS

and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2,

are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiqui-

tously expressed, yet its mutations are only known to result in autosomal dominant retinitis

pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA

library in order to identify interacting protein partners of TOPORS from the retina, and thus

begin delineating the putative disease mechanism(s) associated with the retina-specific

phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S pro-

tease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct function-

ing of UPS-mediated proteostasis. The interaction between endogenous TOPORS and

P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts

and further characterised by immunofluorescent co-localisation studies in cell lines and reti-

nal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and

P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse

retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithe-

lium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to

speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in

addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS.

Introduction
The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been
greatly emphasised in neurodegenerative diseases [1–3]. In particular, its importance has been
established in context of retinal dystrophies, highlighting the insufficient capacity of the 26 S
proteasomes to degrade excess misfolded proteins as a major factor in the aetiology of photore-
ceptor degeneration [4–6]. TOPORS (MIM 609507), a topoisomerase I-binding, arginine/
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serine-rich protein, which was initially identified as a binding partner of human topoisomerase
I (hTop1) and p53 in two independent yeast two-hybrid (Y2H) screens [7,8], is a component
of the UPS. It acts as a dual E3 ubiquitin and SUMO1 ligase [9–11], these two ligase activities
being mutually exclusive and dependent on its phosphorylation status [12,13]. Since cross-talk
between the ubiquitination and SUMOylation pathways has been repeatedly demonstrated
[14–17], it could be speculated that both TOPORS ubiquitination as well as SUMOylation
activities affect UPS function.

E3 enzymes are a vast group of proteins mediating the final step of ubiquitination (reviewed
in [18]). They convey specificity in the protein degradation processes by identifying substrates
for the UPS and usually recognize only specific E2 enzyme-substrate combinations. The ubiqui-
tin ligase activity of TOPORS is conveyed by its RING domain [10]. Interestingly, TOPORS has
the capacity to recognise a greater variety of E2 ubiquitin-conjugating enzymes than most other
RING E3 ligases [10,19], suggesting that it may have a more prominent regulatory role in the
UPS than E3 ligases with a narrower spectrum of specificity. Several substrates for both its activi-
ties have been identified for TOPORS. Remarkably, DJ-1 (MIM 602533), implicated in early-
onset Parkinson’s disease (PARK7, MIM #606324), in the aetiology of which the UPS is involved
[20,21], as well as Apolipoprotein B mRNA-editing Enzyme, Catalytic Polypeptide 2 (APOBEC2)
required for zebrafish retina regeneration are among the SUMOylation substrates of TOPORS
[22,23], further supporting the role for the UPS in neuronal and retinal homeostasis.

Our laboratory was the first to link mutations in TOPORSwith inherited autosomal dominant
retinitis pigmentosa (adRP, locus RP31, MIM #609923) [24], later shown to cause approximately
1% of all adRP [25,26]. A mutation in TOPORS leading to an autosomal dominant pericentral
retinal dystrophy (adPRD, MIM 180210) was additionally identified in a large multi-generational
Scandinavian pedigree [27]. These phenotypes are of special interest since TOPORS is a ubiqui-
tously expressed gene, yet its mutations have been known to result only in retinal degeneration
with no other symptoms. Hence, our goal was to identify protein interacting partners of
TOPORS from the human retina by performing a yeast two-hybrid (Y2H) screen.

We identified the 26 S protease regulatory subunit 4 (P26s4, UniProt #P62191), encoded by
the PSMC1 gene (MIM 602706). The 26 S proteasome comprises a barrel-shaped core catalytic
particle (CP) and one or two flanking regulatory particles. The latter consist of at least twenty
protein subunits constituting a base and a cap. The base includes a ring of six ATPases [28], of
which P26s4 is the only one, whose ATPase activity is essential for the peptidase activity of the
CP [29]. The regulatory particles confer dependence on ATP and substrate specificity.

Here we present evidence that the dual E3 ubiquitin and SUMO1 ligase, TOPORS, interacts
with the 26 S protease regulatory subunit 4 (P26s4) in yeast and in mammalian cells.

Materials and Methods

Yeast-Two Hybrid cDNA Library Construction
The human retinal cDNA library was created in yeast using the Make Your Own “Mate &
Plate™” Library System (Clontech, CA, USA) according to the manufacturer’s instructions in
the pGADT7-Rec vector (Clontech, CA, USA). The library was constructed using an oligo-dT
primer (OdT). The resulting preys were fused with GAL4 AD at their amino-terminus.

Yeast Two-Hybrid Vectors
The Y2H bait construct (pBD-TOPORS: GAL4 DNA binding domain (BD) fused with full-
length TOPORS) was generated using the Gateway Cloning System (Life Technologies, CA,
USA) according to the manufacturer’s instructions, using vectors, which had been modified
from the original Stratagene (CA, USA) Y2H vectors to contain the att sequences, allowing for
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compatibility with the Gateway Cloning System. The candidate interacting partner of
TOPORS, P26s4 encoded by the PSMC1 gene, was cloned in frame with the GAL4 activation
domain (AD) using the Gateway Cloning System and the modified Stratagene vectors
(pAD-PSMC1).

In-Fusion1 Advantage PCR Cloning Kit (Clontech, CA, USA) was used to generate
TOPORS deletion constructs, specifically pGBKT7-N-TOPORS (residues 1–380),
pGBKT7-M-TOPORS (residues 373–781)and pGBKT7-C-TOPORS (residues 705–1045), for
interaction characterisation in yeast.

The compatibility of the modified Stratagene and Clontech plasmid constructs was thor-
oughly validated prior to the Y2H screens.

Library Screening
Matchmaker™ Yeast Two-Hybrid (Y2H) System (Clontech, CA, USA) was used following the
manufacturer’s instructions. The Saccharomyces cerevisiae Y2H Gold strain was transformed
with pBD-TOPORS and the GAL4 DNA-BD control plasmids. The S. cerevisiae Y187 strain
was transformed with the human retinal cDNA library fragments and linearised pGADT7-Rec
vector and the GAL4 AD control plasmids according to the manufacturer’s instructions (Yeast-
maker™ Yeast Transformation System 2, Clontech, CA, USA).

The Y2H screen was performed by mating the Y2H Gold strain, expressing pBD-TOPORS,
with the Y187 strain, expressing the cDNA library clones. A two-tier protein-protein interaction
(PPI) selection process was used. Initially, two reporter genes,Mel1 and Aur1-C, were used to
detect interactions.Mel1 encodes X-α-galactosidase, which allows for utilisation of X-α-galactose
from the medium as a nutrient source.Mel1 expression is triggered by a PPI, which is indicated
by colonies excreting a blue pigment, a product of X-α-galactose utilisation. Aur1-C is the domi-
nant mutant version of the Aur1 gene, encoding an enzyme, which breaks down the highly toxic
anti-fungal Aureobasidin A (AbA) drug present in the growth medium. Medium selecting for X-
α-galactose utilisation and AbA resistance is referred to in the results sections as ‘MediumD.’
Positive clones were picked and re-patched on higher stringency media, referred to in the results
sections as ‘MediumQ’, selecting for activation of auxotrophic markersHis3 and Ade2 in addi-
tion to the initialMel1 and Aur1-C reporter genes (the higher stringency medium lacked histi-
dine and adenine in addition to containing X-α-galactose and AbA).

After the second selection library plasmids were isolated from the positive clones, using the
Easy Yeast Plasmid Isolation Kit (Clontech, CA, USA) and sequenced, using the The BigDyeTM

Terminator v3.1 Cycle Sequencing Kit and the ABI PRISM1 3730 DNA Analyser (Applied
Biosystems, UK). The UCSC BLAT search engine was employed to identify the inserts. The
Human Genome Assembly Dec. 2013 (GRCh38/hg38) was searched, using the 'BLAT's guess'
query type and the output sorting option of 'query, score'. The BLAT Search Result with the
highest score was selected.

In order to confirm and characterise the interactions pAD-PSMC1 was re-transformed into
yeast. PPIs between full-length TOPORS (pBD-TOPORS) or its fragments/deletion constructs
(pGBKT7-N-TOPORS, pGBKT7-M-TOPORS and pGBKT7-C-TOPORS), and full-length
P26s4 (pAD-PSMC1) were tested in separate experiments according to the two-tier selection
processes described above. Positive (pAD-SV40 T Ag x pBD-p53) and negative (pAD-SV40 T
Ag x pBD-Lamin C) interaction controls- were used throughout.

In Silico Identification of Ciliary-Targeting Sequences
Several ciliary-targeting sequences (CTS) were previously described, including VxPx, RVxP,
KVHPSST, AxEGG and Ax(S/A)xQ [30,31]. The PRALINE multiple sequence alignment tool
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(The Centre for Integrative Bioinformatics VU (IBIVU), University of Amsterdam, Nether-
lands) [32] was used to determine the conservation of P26s4 and TOPORS peptide sequences.
Once the alignment files had been generated, the results were saved as.pdf files and the
sequence was annotated manually. In silico identification of CTS in TOPORS (empirically con-
firmed to localise to centrosomes [33]) was performed as a control.

Antibodies
Mouse monoclonal anti-TOPORS antibody (H00010210-M01) was obtained from Abnova
(Taiwan); used at 1:100 for immunofluorescence (IF) and at 1:250 for Western blotting (WB).
Rabbit polyclonal anti-PSMC1 (P26s4) antibody (HPA000872) was purchased from Sigma-
Aldrich (MO, USA), used at 1:250 for IF and at 1:1000 for WB. Mouse (F3165) anti-FLAG
antibody was purchased from Sigma-Aldrich (MO, USA) and used at 1:500. Goat polyclonal
antibody against peri-centriolar material 1 (PCM1) protein (sc-50164, used at 1:250 for IF) and
goat anti-V5 antibody (sc-83849, used at 1:2500) were obtained from Santa Cruz Biotechnol-
ogy (TX, USA). Goat polyclonal anti-polo-like kinase 4 (PLK4) antibody (Ab2642, used at
1:150 for IF), rabbit polyclonal anti-pericentrin antibody (Ab4448, used at 1:1000) and mouse
monoclonal alpha-tubulin antibody (Ab7291, used at 1:5000) were purchased from Abcam
(UK). Alexa Fluor1 488-conjugated goat anti-mouse (A11001, used at 1:400) and anti-rabbit
(A11008, used at 1:400) antibodies, Alexa Fluor1 594-conjugated goat anti-mouse (A11005,
used at 1:400) and anti-rabbit (A11034, used at 1:400) antibodies, and donkey anti-goat anti-
bodies conjugated with Alexa Fluor1 488 (A11055, used at 1:400) and with Alexa Fluor1
A594 (A11058, used at 1:400), were purchased from Life Technologies (CA, USA). FITC-con-
jugated donkey anti-mouse, anti-rabbit and anti-goat IgG (1:300) and Cy ™3-conjugated don-
key anti-mouse, anti-rabbit and anti-goat IgG (1:300); and horseradish peroxidase-conjugated
goat anti-rabbit and anti-mouse IgG (1:10000) were purchased from Jackson Immuno
Research Laboratories, Inc. (PA, USA).

Mammalian Cell Culture
The murine 661W cone photoreceptor cell line was maintained in in Dulbecco's modified
Eagle's medium (DMEM) (Life Technologies, CA, USA) supplemented with 10% FCS and pen-
icillin–streptomycin (1000 μg/ml). Human (h)TERT-RPE1 retinal pigment epithelial and
SK-N-SH neuroblastoma cell lines were maintained in Dulbecco's modified Eagle's medium
(DMEM)/F-12+GlutaMAX (Life Technologies, CA, USA) supplemented with 10% FCS and
penicillin–streptomycin (1000 μg/ml). All cells were grown in 6-well plates at 1.2 x106 cells per
well at 37°C in an atmosphere of 5% CO2.

Co-Immuno-Precipitation andWestern Blot Analysis
Cellular lysates were prepared from human (h)TERT-RPE1 cells and from murine 661W cells
in RIPA buffer. Lysates from cellular fractions of hTERT-RPE1 cells were prepared using the
ProteoExtract1 Subcellular Proteome Extraction Kit (Merck Group, Germany). Prior to
immuno-precipitation and SDS-PAGE/WB analysis protein concentrations were determined
using the BCA Protein Assay Kit (Merck Group, Germany) and/or the Non-Interfering Protein
Assay™ Kit (Merck Group, Germany).

Prior to immunoprecipitation (IP) studies SureBeads Protein G-conjugated magnetic beads
(BioRad, CA, USA) were washed thoroughly and used for co-immuno-precipitation (coIP)
according to the manufacturer’s instructions. Four micrograms of the mouse monoclonal anti-
TOPORS antibody (Abnova) were incubated with 100 μl of beads for ten min at room temper-
ature with rotation. The antibody-bound beads were then washed and, subsequently, incubated
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with 100 μl of cellular lysate (containing 0.8–1.2 mg/ml of protein) for one hour at room tem-
perature with rotation. All concentrations and volumes are given per coIP sample. The precipi-
tated complexes were then denatured in 1X Laemmli Sample Buffer at 75°C for ten min and
loaded onto polyacrylamide gels for SDS-PAGE analysis (40 μg of cellular lysate were used per
each input lane, followed by Western blotting (WB) with rabbit anti-PSMC1 (P26s4) antibody.
Gradient gels (4%–20%) and PVDF membranes were used (BioRad, CA, USA). Membranes
were blocked in 5% non-fat dried milk with 0.1% Tween20 in TBS. Primary and secondary
antibodies were diluted as described above. ECL solution (BioRad, CA, USA) was used for
visualization.

Mammalian Expression Vectors
For characterisation in human cell lines the Gateway Cloning System (Life Technologies, CA,
USA) was used to generate V5-TOPORS deletion constructs, specifically p-nV5-N-TOPORS
(residues 1–380), p-nV5-M-TOPORS (residues 373–781)and p-nV5-C-TOPORS (residues 705–
1045) tagged at the amino terminus. Primers, designed to generate N-, M- and C-TOPORS with
att tails, compatible with the Gateway Cloning System, were ordered from Sigma-Aldrich (MO,
USA). Full-length TOPORS, cloned into pCATCH vector tagged at the amino-terminus with
FLAG, was a gift from Professor StefanWeger (Free University of Berlin, Germany).

Immunocytochemistry
Prior to immunofluorescence (IF) studies cells were seeded in 24-well plates on glass coverslips
at 5.0 x 104 cells per well and incubated for 24 h. The cells were then subjected to fixation for
20 min in 4% PFA in PBS at room temperature. They were subsequently incubated in the per-
meabilisation solution (4% Triton-X100 with 0.3% BSA in PBS) for five min at room tempera-
ture. The cells were washed twice in immunocytochemistry (ICC) blocking buffer (0.5% bovine
serum albumin (BSA) and 20 mM glycine in PBS), followed by incubation in the blocking
buffer for 15 min before staining. Cells on cover slips were incubated with the primary antibod-
ies at room temperature overnight. Cells were washed in ICC blocking solution and incubated
with secondary antibodies for 45 min at room temperature in the dark. Cells were again washed
in ICC blocking solution and mounted using DAKO Fluorescence Mounting Medium (Agilent
Technologies, CA, USA). Primary and secondary antibodies were diluted in concentrations
described above. Nuclei were stained using 4’,6-diamidino-2-phenylindole (DAPI).

Transfections were performed in confluent hTERT-RPE1 cells using the Lipfectamine1 2000
Transfection Reagent (Thermo Fisher Scientific, MA, USA), according to the manufacturer’s
instructions. The cells were fixed 24 h post transfection prior to IF staining, as described above.

Immunohistochemistry
Eyes of C57 BLACK 6 mice were obtained from the UCL Institute of Ophthalmology Biological
Resource(s) Unit (BRU) in accordance with the regulations of the Association for Research in
Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and
Vision Research. The work was approved by the UCL Institute of Ophthalmology Institutional
Animal Care and Use Committee (IACUC # 70/2710).

Adult mice (6 months of age, used for all retinal studies described herein) were kept under
standard housing conditions (12 hour light/dark cycle). The animals were euthanised under
light conditions two to three hours after the onset of light by exposure to an increasing concen-
tration of carbon dioxide (CO2) gas. Death was ensured by subsequent dislocation of the neck.

The eyes were enucleated and fixed in 4% PFA in PBS for 24 h at 4°C. Sucrose gradient infil-
tration was performed using: 20% sucrose for 5 h at 4°C, followed by 30% sucrose at 4°C
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overnight, and a solution of 15% sucrose and 50% Optical Cutting Temperature (OCT) (VWR
International Ltd, UK) medium for 2 h at room temperature. The eyes were then embedded in
OCT and cryo-sectioned at 10 μm. For immuno-staining retinal sections were permeabilised
(0.3% Triton X-100 in PBS for ten min at room temperature) and then pre-treated with immu-
nohistochemistry (IHC) blocking solution (5% normal goat serum (NGS) and 0.1% Triton X-
100 in PBS) for 1 hour at room temperature, followed by incubation with primary antibodies.
The sections were washed in 0.1% Triton X-100 in PBS and treated with appropriate secondary
antibodies. Cell nuclei were stained with DAPI. Filamentous actin (F-actin) was stained with
A594 conjugated-phalloidin, used at 1:400 (A12381; Life Technologies, CA, USA). Primary
and secondary antibodies were diluted in concentrations described above.

Fluorescent Microscopy Imaging
Immunostained cells and tissue cryo-sections were imaged using a ZEISS Axiovert S100 fluo-
rescent inverted microscope and ZEISS LSM 700 laser scanning confocal microscope (Carl
Zeiss, Germany). Images were processed using ZEN (blue edition) Image Browser and Adobe
Photoshop CS5 (Adobe Systems, WA, USA). Deconvolution of indicated cell photomicro-
graphs was achieved by imaging the cell in the focal plane of the centrosomal/centriolar marker
first and imaging the P26s4 signal in the same plane, using the ZEISS Axiovert S100 fluorescent
inverted microscope. The nucleus was then imaged in its focal plane and the three individual
channels were combined manually using Adobe Photoshop CS5. This resulted is 'losing' the
additional staining throughout the cell.

Results

TOPORS and P26s4 Interact in Yeast and Mammalian Cell Lines
The goal of this study was to identify candidate interacting partners of TOPORS from human
retina in order to delineate the mechanism of retinal degeneration associated with mutations in
this ubiquitously expressed gene. Over 107 clones were screened (Table 1) in a two-tier selec-
tion process, utilising the Aur1-C PPI reporter gene at both stringency levels. Its expression
results in inhibition of Aureobasidin A (AbA), which is toxic to yeast, thus reducing back-
ground growth. Firstly, the yeast culture was spread on medium supplemented with AbA and
X-alpha-galactose (reporter genes Aur1-C andMel1, respectively), resulting in growth of 24
colonies representing candidate interacting partners of TOPORS. Each observed colony was
patched on more stringent media, which led to a successful isolation of 21 positive clones (PPIs
indicated by expression of four reporter genes: Aur1-C andMel1 as well as auxotrophic His3
and Ade2).

DNA was extracted from the resulting yeast patches and primers, specific to the cDNA
library-vector (pGADT7-Rec), were used for amplification of cDNA inserts encoding the

Table 1. A two-tier selection process led to identification of 21 putative interacting partners of
TOPORS after the second selection level.

Number of cDNA library clones

Total clones screened 3.29 x 107

First selection level: AUR1-C and MEL1 1 24

Second selection level: AUR1-C, MEL1, HIS3 and ADE2 1 21

1 Reporter genes expressed as a result of protein-protein interactions in the Y2H screen: AUR1-C, selects

for resistance to AbA; MEL1, α-galactosidase synthesis (blue-white marker); HIS3, histidine synthesis

(auxotrophic marker); ADE2, adenine synthesis (auxotrophic marker).

doi:10.1371/journal.pone.0148678.t001
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putative interacting proteins. The resulting PCR products were purified, sequenced and the
UCSC BLAT search engine was employed to identify the inserts. One of the inserts (clone 2)
was confirmed as exons 1–6 of PSMC1 encoding the amino-terminal half of the 26 S protease
regulatory subunit 4 (P26s4) (Fig 1A). These exons encode a fragment of the protein compris-
ing an N-myristoylation site as well as an NADH-binding site, but they do not encode regions
involved in ATP binding and hydrolysis.

The TOPORS-P26s4 interaction was subsequently validated by co-immuno-precipitation
(coIP) of both endogenous proteins from human retinal pigment epithelial cells
(hTERT-RPE1) and from murine 661W cone photoreceptor cell line (Fig 1B and S1 Fig). Cell
extracts were precipitated using anti-TOPORS antibody, followed by Western blotting for
P26s4, which generated a band of approximately 60 kDa in both cell types. In the hTERT-RPE1
cell line TOPORS also interacted with a larger P26s4 species migrating at approximately 75
kDa, which could reflect a covalent modification of P26s4, such as SUMOylation. Immunoblot
analyses, performed on protein extracts from specific cellular fractions revealed that the 75
kDa is present in all cellular fractions, yet it appears most abundant in the cytosol and the
nucleus. Another band unique to the fraction of membranes and organelles was additionally
observed migrating approximately half-way between the 60 kDa and 75 kDa band.

Fig 1. P26s4 interacts with TOPORS in yeast andmammalian cells. A) A PSMC1 fragment from the human retinal library encoding P26s4 was identified
as a novel interacting partner of TOPORS in the Y2H screen. The sequence alignment was generated using the UCSCGenome Browser (http://genome.
ucsc.edu) on the Human Feb. 2009 (GRCh37/hg19) Assembly [34,35]. B) P26s4 is detected in endogenous complexes precipitated from human
TERT-RPE1 and murine 661W cell lysates with an anti-TOPORS antibody. A band migrating at approximately 60 kDa was detected in total lysates and
positive coIP lanes in both cell lines, indicating positive coIP of TOPORS and P26s4. An additional band migrating at approximately 75 kDa was observed in
total cell lysates in both cell lines and in the coIP lane in the hTERT-RPE1 cell line. Western blotting on lysates extracted from specific cellular fractions:
cytosol, membranes and organelles (Memb./Organ.), nucleus and cytoskeleton of hTERT-RPE1 cells demonstrated that the larger band is present in all
tested fractions, yet is most prominent in the cytosol and the nucleus. Stripping of both membranes and re-probing for TOPORS demonstrated the protein is
present in complexes precipitated from both cell lines. Re-probing to detect TOPORS in cellular fractions indicated species of different sizes are present
reflecting the results from the coIP blot.

doi:10.1371/journal.pone.0148678.g001
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P26s4 Localises to the Centrosome
The close relationship between the 26S proteasome and the centrosome has been demonstrated
in dividing HEK293 and HeLa cells [36], in granular neurons [37], and in ciliated HEK293
cells [38], as well as in the fast-growing HEK293-FT cells, in zebrafish embryos and in cilia-
rich tissues, such as murine testis, kidney and retina [39]. In fact, we identified two ciliary-tar-
geting sequences (CTS) within the peptide sequence of P26s4 (Table 2). The rhodopsin-type
CTS motif (VxPx) [31] of P26s4 is located proximally to its amino-terminus. The second CTS
of this protein resembles the CTS motifs found in G-protein-coupled receptors [30]; it is
located approximately in the middle of the P26s4 peptide sequence. The whole protein, includ-
ing its both CTS motifs, is strongly conserved among vertebrates, according to conservation
scoring performed using PRALINE (The Centre for Integrative Bioinformatics VU (IBIVU),
University of Amsterdam, Netherlands) [32] (data not shown). TOPORS, which is associated
with the centrosome throughout the cell cycle and localises to basal body of primary cilium
[33], possess two CTS motifs of the VxPx type itself, of which one (172-VTPD-175) is con-
served among apes and monkeys, and the other one among vertebrates overall (484-VKPL-
487), according to conservation scoring performed using PRALINE IBIVU, University of
Amsterdam, Netherlands) [32] (data not shown).

Immunofluorescence staining of hTERT-RPE1 cells (Fig 2) demonstrated diffuse, granular
P26s4 signal throughout the cell, which is in agreement with the house-keeping functions of
the 26 S proteasome, of which P26s4 forms a crucial component. Co-localisation with
TOPORS signal occurs at several P26s4-reactive granules, which could be the centrosomes
(indicated with arrows in Fig 2). Deconvoluted images showing co-staining with centrosomal
markers confirmed the centrosomal-targeting of P26s4. Interestingly, it also showed that in the
hTERT-RPE1 cell line this protein localises to only one centriole of the centrosome. P26s4 was
not observed at the ciliary basal body in the hTERT-RPE1 cells (S2 Fig). The localisation of
P26s4 was then investigated in the murine cone photoreceptor 661W cell line. The experiments
revealed that P26s4 co-localised with both: TOPORS and centriolar markers in dividing (Fig
3), but not in ciliated cells (S2 Fig).

P26s4 Associates with the C-Terminal Region of TOPORS
TOPORS is a multifunctional protein, its roles being conveyed by distinct domains located
within different regions of its peptide sequence. In an attempt to separate the domains, and
hence major functions, full-length TOPORS protein was divided into three portions (N-, M-
and C-TOPORS; Fig 2A) to investigate, which of these domains could be responsible for medi-
ating the interactions between TOPORS and P26s4.

N-TOPORS comprised the RING finger domain conveying the E3 ubiquitin ligase activity
and phosphoserine 98 involved in up-regulation of TOPORS ubiquitination activity [12].
M-TOPORS contained an SR/RS dipeptide region, which includes a region required for

Table 2. Ciliary-targeting sequences identified in P26s4 in silico.

CTS sub-
type

CTS region in
P26s4

Other proteins with this CTS sub-type 2

VxPx 52-VTPH-54 (VxPx) Rhodopsin (P08100), polycystin-1 (P98161), polycystin-2 (Q13563)

Ax(S/A)xQ 238-AVANQ-242 G-protein-coupled receptors: Sstr3 (P32745), Htr6 (P50406), and
Mchr1 (Q99705)

2 Reviewed in reference 31.

doi:10.1371/journal.pone.0148678.t002
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interaction with SUMO1 as well as a SUMO1 acceptor site at lysine 560 [40]. Serine 718 was
also included; its phosphorylation leads to up-regulation of the ubiquitin ligase activity whilst
down-regulating the SUMO1 ligase activity of TOPORS [13]. C-TOPORS included the RP31
mutational hotspot region [24–26] and fragments required for interaction with SUMO1 as well
as its E2 conjugating enzyme, UBC9. Phosphoserine 718 was also included within C-TOPORS
[40].

The deletion constructs (Fig 2A) were tested directly in yeast for interactions with full-
length P26s4. The findings demonstrated that P26s4 readily interacted with constructs M and
C (Table in Fig 4B), which are associated with the E3 SUMO1 ligase activity of TOPORS. The
interaction between M-TOPORS and P26s4 resulted in activation of two reporter genes in five
out of six experiments at the lower stringency, and all four reporter genes were activated in five
out of six experiments at the higher stringency. C-TOPORS interacted with P26s4 in four out

Fig 2. P26s4 co-localises with TOPORS and centrosomal markers in hTERT-RPE1 cells, but only at
one centriole of the centrosome. P26s4 localised throughout the cell in a diffuse speckled pattern; the
signal included distinct points co-localising with TOPORS staining (arrows). P26s4 co-localised with both
PCM1 and PLK4 at one of the two centrioles; P26s4 signal is also observed at the linker molecules holding
the two centrioles together. Scale bar: 10 μm; insets show a magnification of signals enclosed in the dashed
squares. Fluorescent microscope images were taken using Zeiss Axiovert S100 inverted microscope.
Images in the middle and bottom panel were deconvoluted, as described in Materials and Methods.
Secondary antibody control images were collected using the same settings and generated no signals in the
red and green channels.

doi:10.1371/journal.pone.0148678.g002
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of six experiments at both stringency levels. The association between N-TOPORS and P26s4
was weaker in comparison, resulting in consistent activation of two reporter genes only,
whereas growth on medium selecting for activation of all four interaction reporter genes was
observed only in one experiment. These findings indicate that P26s4 may be a SUMOylation
substrate for TOPORS.

Fig 3. P26s4 co-localises with TOPORS and centrosomal markers in murine cone photoreceptor
661W cell line. P26s4 localised diffusely throughout the cells; the signal included distinct points co-localising
with TOPORS (magnified inset), centriolar markers PCM1 and PLK4, and alpha-tubulin, where some P26s4
signal was observed at the microtubule-organising centres (centrosomes). Scale bar: 10 μm; insets show a
magnification of signals enclosed in the dashed squares. Confocal microscope images were taken using
Zeiss LSM 700 scanning confocal microscope. Secondary antibody control images were collected using the
same settings and generated no signals in the red and green channels.

doi:10.1371/journal.pone.0148678.g003
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We subsequently investigated the localisation of the artificial TOPORS fragments in
hTERT-RPE1 cells. Following transfection with the V5-tagged deletion constructs and co-stain-
ing with P26s4 we found that each one of the TOPORS fragments co-localised with P26s4 within
different regions of the cells (Fig 4C), which is in agreement with the ubiquitous nature of both
proteins. Co-transfection with the FLAG-tagged full-length TOPORS and co-staining with
TOPORS and pericentrin additionally revealed that the N-TOPORS construct was observed in
the nucleus and at the centrosome (S3 Fig), the M-TOPORS construct only in the nucleus (S4
Fig), whereas the C-TOPORS was present in both the nucleus and cytoplasm (S5 Fig).

In summary, findings from experiments using TOPORS deletion constructs revealed that
P26s4 associates strongly with the M- and C-TOPORS fragments (Fig 4B), which are associated
with the SUMOylation activities of TOPORS. When expressed in hTERT-RPE1 cells, the M-
and C-TOPORS fragments localise to the nucleus (S4 Fig), as well as nucleus and cytoplasm
(S5 Fig), respectively. This is in agreement with our findings from immunoblotting experi-
ments on cellular fractions (Fig 1B) demonstrating that the larger (approximately 75 kDa) spe-
cies of P26s4, which could be covalently modified, e.g. by SUMO1, is present predominantly in
the cytosol and the nucleus.

P26s4 Co-Localises with TOPORS at Distal Outer Segments and the
RPE
Although studies in yeast and mammalian cells can provide some degree of confirmation
towards the interaction in question, to begin evaluating the biological significance and rele-
vance of the identified interactions to the original research question, it is important to deter-
mine where the proteins localise in the retina.

Immunostaining of the adult mouse retina revealed a P26s4 signal very specifically localised
at the interface between the photoreceptor outer segment (OS) and the RPE layer (Fig 5 and S6
Fig) in light-adapted retinal sections obtained from animals sacrificed 2 to 3 h after the onset of
light. TOPORS signal co-localises with P26s4 in this retinal region (Fig 5 and S7 Fig) in addi-
tion to localising at the photoreceptor connecting cilium as previously demonstrated [33]. It
was previously shown that OS phagocytosis by the RPE peaks at 2 h after light onset [41,42], as
well as that P26s4 is involved in protein degradation processes not associated with its regula-
tory role within the 26 S proteasome complex [43]. Thus, the co-localisation of P26s4 and
TOPORS at the tips of the OS and/or the RPE could indicate that, given their known roles in
proteostasis, these two proteins may be involved in recycling of the tips of the OS.

The findings indicate that P26s4 could be involved in OS phagocytosis by the RPE, since the
protein’s signal localises specifically to the OS-RPE interface at the peak of RPE phagocytic
activity.

Discussion
PSMC1 is a ubiquitously expressed gene, encoding an essential 26 S protease regulatory subunit
4 (P26s4). It appears to have no explicit link to the retina, according to literature published to
date. However, it is often purposefully knocked down in a conditional manner to induce neuro-
degeneration in mouse models [2,44,45] and in humans it has been linked to spinocerebellar
ataxia type 7 (MIM 602706 and MIM #164500). Our findings, which demonstrate a protein-
protein interaction (PPI) between P26s4 and TOPORS (Fig 1 and S1 Fig), implicated in retini-
tis pigmentosa, support the involvement of P26s4 in maintenance of the retina with a potential
role in retinal degeneration.

The PPIs between full-length TOPORS and P26s4, demonstrated in mammalian cell lines,
indicated that at least two P26s4 species migrating on SDS-PAGE gels at approximately 60 kDa
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and 75 kDa are expressed at the protein level. Both species co-precipitated with TOPORS from
hTERT-RPE1 cells, whereas only the smaller species was detected in protein complexes precip-
itated with TOPORS from the 661W cells. Further analysis on cellular fractionation extracts
revealed that the two species are differentially expressed between cellular fractions (Fig 1B).
Subsequently, experiments were performed to delineate the domains of TOPORS, which medi-
ate its interactions with this newly-identified protein partner. Findings showed that P26s4
interacted most strongly with M-TOPORS and C-TOPORS constructs (Fig 4B). Both of these
TOPORS constructs comprise regions involved in its SUMOylation activities and, additionally,
C-TOPORS also includes the RP31mutational hotspot. These results suggest that TOPORS
may be important for SUMOylation of P26s4, which could in turn regulate the protein degra-
dation processes. The resulting impairments in proteostasis could help to explain the pheno-
type associated with RP31mutations, as photoreceptors are much more vulnerable to
perturbations than less specialised cell types. In silico analysis indicates that at least one
SUMO-interacting motif (SIM:CKxE, whereC is a hydrophobic amino acid, and x is any
amino acid [46]) is found within human P26s4 sequence, at residues 63LKLE66. It is possible
that residues 174MKVE177 could act as another SIM, however, methionine is only weakly
hydrophobic, making this region less likely to be involved in SUMO binding. Both motifs are
located within the amino-terminal half of P26s4 protein, which was pulled out from the Y2H
screen, as an interacting partner of TOPORS (Fig 1A).

TOPORS is associated with the centrosome throughout the cell cycle, localising to mitotic
centrioles and to basal bodies of primary cilia, including connecting cilia of photoreceptor cells
[33]. The involvement of P26s4/PSMC1 in cell cycle defects has been documented in mouse
embryonic fibroblasts [47]. Hence, we were interested in evaluating whether the interaction
between TOPORS and P26s4 could occur at the centrosome and/or the basal body of photorecep-
tor connecting cilium. Initial immunostaining experiments of hTERT-RPE1 (Fig 2) and 661W
(Fig 3) cells revealed that P26s4 does indeed co-localise with one centriole in dividing hTERT-
RPE1 cells and both centrioles in dividing 661W cells. However, no localisation at ciliary basal
body was observed in either hTERT-RPE1 cells (S2 Fig), or the 661W cells (data not shown).

Immunoblotting for P26s4 in protein extracts isolated from different fractions of non-syn-
chronised hTERT-RPE1 cells revealed that the protein is abundant in both the nuclear and
cytosolic fractions (Fig 1B). The P26s4 protein contains a consensus N-myristoylation
sequence (residues 1–6), conserved in humans, Saccharomyces cerevisiae (yeast), Drosophila
melanogaster (fruit-fly), and in Arabidopsis thaliana (mouse-ear cress) [48,49]. N-myristoyla-
tion of P26s4 is required for localisation of the proteasomal complex to the nucleus, potentially
by anchoring it within the nuclear envelope. Mutations of glycine 2, otherwise modified by the

Fig 4. P26s4 interacts with TOPORS in yeast and in human cell lines. A) TOPORS protein domain diagram. Black ovals denote known phosphorylation
sites at serines 98 and 718 required for regulation of E3 ligase activities of TOPORS; dark red box (residues 103–141) indicates the RING domain; dark
cross-hatched box (residues 530–777) represents the arginine- and serine-rich (SR/RS) domain; a SUMO1 acceptor site at Lys 560 with a covalently bound
SUMO1modification (perpendicular black box) is indicated within the SR/RS domain; blue boxes (residues 415–737 and 854–1045) indicate regions
required for interaction with SUMO1; black box (residues 437–574) represents a fragment required for SUMOylation of TOPORS at Lys 560; the green
box (aa: 871–917) represents a region required for minimal interaction with UBC9. The pink asterisk represents the RP31mutational hotspot. The horizontal
red, blue and green bars represent TOPORS deletion constructs used in experiments presented in panel B. Diagram not to scale.B)Direct PPI between
TOPORS, its deletion constructs and P26s4 tested by Y2H. Each experiment was performed six times; interactions recorded in a minimum of four out of the
six experiments were interpreted as an overall positive result. The figure panel depicts a representative raw result from one of the six experiments. The
bottom table includes a summary of results from all six experiments; total number of positive PPI results at a lower (D), or higher (Q) stringency level, are
indicated for each tested PPI pair. Key: FL, full-length TOPORS (residues 1–1045); N, N-TOPORS; M, M-TOPORS; C, C-TOPORS. Positive PPI control (‘+’):
AD-SV40 T Ag x BD-p53. Negative PPI control (‘–‘): AD-SV40 T Ag x BD-Lamin C; BD, GAL4 DNA Binding Domain; AD, GAL4 Activation Domain. D,
medium selecting for X-α-galactose utilisation (blue colonies) and AbA resistance, i.e. activation of two PPI reporter genes; Q, medium selecting for X-α-
galactose utilisation (blue colonies), AbA resistance, histidine synthesis and adenine synthesis, i.e. activation of four PPI reporter genes.C) P26s4 co-
localised with all V5-tagged artificial TOPORS fragments at nuclei of hTERT-RPE1 cells, and it additionally co-localised with the V5-tagged C-TOPORS
fragment in the cytoplasm of hTERT-RPE1 cells transfected with V5-tagged TOPORS deletion constructs, and co-stained for V5 and P26s4.

doi:10.1371/journal.pone.0148678.g004

TOPORS Interacts with Regulatory Subunit 4 of the 26 S Proteasome

PLOSONE | DOI:10.1371/journal.pone.0148678 February 12, 2016 13 / 20



myristoyl attachment, trigger re-location of the proteasome from the nucleus to the cytoplasm
[48]. Furthermore, the M-TOPORS and C-TOPORS constructs, which associated most
strongly with P26s4 in yeast (Fig 4B), localise to the nucleus (M-TOPORS, S4 Fig), and the
nucleus and cytoplasm (C-TOPORS, S5 Fig). The N-TOPORS fragment, which localised to the
nucleus and centrioles (S4 Fig), associated less strongly with P26s4 (Fig 4B). Therefore, collec-
tively these results indicate the centrosome is probably not a major site of interaction between
TOPORS and P26s4.

Alternatively, TOPORS SUMOylation of P26s4 may modulate its localisation, or it may act
as a pre-requisite for other post-translational modifications of P26s4. It was previously shown
in zebrafish that SUMOylation of APOBEC2, with the involvement of TOPORS E3 SUMO1

Fig 5. P26s4 localises to distal photoreceptor outer segments (OS) and retinal pigment epithelium (RPE) in murine retina sections. P26s4 localises
diffusely throughout the tissue with distinct signal observed at the distal OS regions of photoreceptor cells, whereas TOPORS localises predominantly to the
connecting cilia (top panel: scale bar 40 μm). The strongest P26s4 signal is observed at the RPE-OS interface and the RPE (bottom panel: scale bar 20 μm).
RPE, retinal pigment epithelium; OS, rod photoreceptor outer segment; CC, connecting cilium; IS, rod photoreceptor inner segment; ONL, outer nuclear
layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; -ve ctrl, negative control, a retinal cryo-section
immunostained only with DAPI and secondary antibodies. Nuclei stained using DAPI. Confocal microscope images were taken using the Zeiss LSM 700.
Secondary antibody control images were collected using the same settings and generated no signals in the red and green channels.

doi:10.1371/journal.pone.0148678.g005
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ligase activity, was required for determining its subcellular localisation [23]. Furthermore,
SUMOylation of DJ1/PARK7, another substrate of TOPORS E3 SUMO1 ligase activity, is also
required for its translocation from cytoplasm to the nucleus [50]. Thus, TOPORS could simi-
larly be involved in SUMOylation of P26s4 to mediate its translocation between the two sub-
cellular regions. This role would be especially important in non-dividing cells, such as neurons,
including photoreceptor cells. At the molecular level neurodegeneration is often characterised
by neuronal inclusions of protein aggregates, e.g. the neuronal intranuclear inclusion disease
(NIID; MIM 603472) [51]. It should be highlighted that, whereas in dividing cells nuclear pro-
tein aggregates can often be cleared out by autophagy, when the nuclear envelope dissociates
during cell division, terminally differentiated neurons can only rely on intranuclear UPS since
their nuclear membrane never dissociates.

A similar homeostasis mechanism could apply to the primary cilium, which is commonly
referred to as a ‘privileged membrane domain,’ protected from the surrounding cytosolic con-
tents by the transition zone, forming a ciliary diffusion barrier, or the ciliary necklace [52].
This barrier comprises nuclear pore-like structures within the ciliary necklace restricting access
to the intraciliary compartment [53,54]. It is possible that the intraciliary space is subject to
similar stresses (protein misfolding and aggregation) as the intranuclear space, and cilia-tar-
geted proteins may similarly rely on SUMOylation, or another covalent modification, in addi-
tion to CTS motifs, for their translocation into the cilium. Future work should address these
important points in context of photoreceptor outer segments (OS), which are highly specialised
sensory primary cilia. Whereas typical primary cilia which serve as cellular antennae detecting
chemical or mechanical stimuli, photoreceptor OS are highly specialised primary cilia, which
detect photons of light [55]. As with neuronal nuclei, the OS never dissociate. Therefore,
although they are regularly turned over by RPE phagocytosis at their distant ends, their proxi-
mal regions may as well need to rely on the UPS for homeostasis.

The most distinct P26s4 immuno-reactivity signal in murine retinae was observed at the
OS-RPE interface, in retinal sections from mice euthanised 2 h after light onset, which corre-
lates with the greatest RPE phagocytosis activity [41,42]. A previously unreported, weak
TOPORS signal was also detected in this region (Fig 5 and S7 Fig), which is the site of OS
phagocytosis by the RPE. Furthermore, diffuse P26s4 signal was additionally detected through-
out the inner retina (Fig 5) in much the same diffuse appearance as observed in cell lines (Figs
2, 3 and 4C). Unlike TOPORS, P26s4 was not observed at the centriolar basal bodies of photo-
receptor connecting cilia (Fig 5). This was not unexpected based on findings from cellular loca-
lisation studies, which demonstrated that P26s4 was associated with the centriole in dividing
(Figs 2 and 3), but not ciliated (S2 Fig) cells. On the contrary, TOPORS is associated with the
centrioles throughout all cell cycle phases [33], including the phase of quiescence (G0), during
which cells do not divide and become ciliated, and the mother centriole forms the ciliary basal
body [56]. Thus, the localisation of P26s4 and TOPORS in photoreceptors (Fig 5), which are
quiescent cells, reflects our findings from the cellular studies.

We propose that P26s4 is important for photoreceptor homeostasis by participating in both
RPE phagocytosis as well as protein degradation by the UPS. This could explain the co-localisa-
tion of TOPORS and P26s4 at the interface between the photoreceptor OS and the RPE (Fig 5
and S6 and S7 Figs). Yet, even though the OS are regularly turned over by RPE phagocytosis at
their distal ends, the region proximal to the connecting cilium must rely on another protein
degradation pathway to maintain correct functioning of this highly active cellular system, such
as the UPS. If this latter mechanism is impaired, this may lead to intraciliary stress in photore-
ceptor cells due to protein misfolding, analogous to that observed in NIID, and, subsequently,
photoreceptor cell death. Our findings support such a role for P26s4 and/or the UPS in retinal
maintenance and degeneration.
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Supporting Information
S1 Fig. P26s4 interacts with TOPORS in mammalian cells. Full-sized images of blots shown
in Fig 1 are presented. P26s4 is detected in endogenous complexes precipitated from human
TERT-RPE1 and murine 661W cell lysates with an anti-TOPORS antibody. A band migrating
at approximately 60 kDa was detected in total lysates and positive coIP lanes in both cell lines,
indicating positive coIP of TOPORS and P26s4. An additional band migrating at approxi-
mately 75 kDa was observed in total cell lysates in both cell lines and in the coIP lane in the
hTERT-RPE1 cell line. Western blotting on lysates extracted from specific cellular fractions:
cytosol, membranes and organelles (Memb./Organ.), nucleus and cytoskeleton of
hTERT-RPE1 cells demonstrated that the larger band is present in all tested fractions, but is
most prominent in the cytosol and the nucleus. Stripping of both membranes and re-probing
for TOPORS demonstrated the protein is present in complexes precipitated from both cell
lines. Re-probing to detect TOPORS in cellular fractions indicated species of different sizes are
present reflecting the results from the coIP blot.
(TIF)

S2 Fig. P26s4 did not co-localise with primary cilia (marked with α-tubulin, inset) in cili-
ated hTERT-RPE1 cells; however, it co-localised with α-tubulin at a punctate localization,
where no primary cilium was observed (indicated by arrow, upper panel), likely represent-
ing the centrosome. Scale bar: 10 μm. Deconvoluted images from ZEISS Axiovert S100 fluo-
rescent inverted microscope.
(TIF)

S3 Fig. N-TOPORS localises to the nucleus and centrioles.Human (h)TERT-RPE1 cells
were either co-transfected with V5-tagged N-TOPORS and FLAG-tagged full-length TOPORS
(top panel), or with V5-tagged N-TOPORS only (middle and bottom panels). The V5-tagged
artificial N-TOPORS fragment co-localised with FLAG-tagged full-length TOPORS (top
panel) and endogenous TOPORS (middle panel) at nuclei of hTERT-RPE1 cells and it co-
localised with pericentrin at the centrioles.
(TIF)

S4 Fig. M-TOPORS localises to the nucleus.Human (h)TERT-RPE1 cells were either co-
transfected with V5-tagged M-TOPORS and FLAG-tagged full-length TOPORS (top panel), or
with V5-tagged M-TOPORS only (middle and bottom panels). The V5-tagged artificial
M-TOPORS fragment co-localised with FLAG-tagged full-length TOPORS (top panel) and
endogenous TOPORS (middle panel) at nuclei of hTERT-RPE1 cells, but it did not co-localise
with pericentrin.
(TIF)

S5 Fig. C-TOPORS localises to the nucleus and cytoplasm. Human (h)TERT-RPE1 cells
were either co-transfected with V5-tagged C-TOPORS and FLAG-tagged full-length TOPORS
(top panel), or with V5-tagged C-TOPORS only (middle and bottom panels). The V5-tagged
artificial C-TOPORS fragment co-localised with FLAG-tagged full-length TOPORS (top
panel) at nuclei of hTERT-RPE1 cells and it co-localised with endogenous TOPORS at the
nucleus (middle panel), however it did not co-localise with pericentrin.
(TIF)

S6 Fig. P26s4 localises to distal photoreceptor outer segments (OS) and retinal pigment
epithelium (RPE) in murine retina sections. P26s4 localises diffusely throughout the photore-
ceptor OS with distinct P26s4 signal being observed at the RPE-OS interface and the RPE
(both panels). Phalloidin staining for filamentous actin was used as a marker delineating OS
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structure (bottom panel). RPE, retinal pigment epithelium; OS, rod photoreceptor outer seg-
ment; IS, rod photoreceptor inner segment. Nuclei stained using DAPI. Scale bar 20 μm. Con-
focal microscope images were taken using the Zeiss LSM 700. Secondary antibody control
images were collected using the same settings and generated no signals in the red and green
channels.
(TIF)

S7 Fig. TOPORS localises throughout the retina with the strongest signal observed at the
photoreceptor connecting cilium, and also a distinct signal at the distal region of the outer
segments (OS).OS, photoreceptor outer segment; CC, connecting cilium; IS, photoreceptor
inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;
IPL, inner plexiform layer. Nuclei stained using DAPI. Scale bar 20 μm. Confocal microscope
images were taken using the Zeiss LSM 700. Secondary antibody control images were collected
using the same settings and generated no signals in the red and green channels.
(TIF)
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