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AN ANALYSIS OF GALERKIN PROPER ORTHOGONAL DECOMPOSITION

FOR SUBDIFFUSION

Bangti Jin1 and Zhi Zhou2

Abstract. In this work, we develop a novel Galerkin-L1-POD scheme for the subdiffusion model with
a Caputo fractional derivative of order α ∈ (0, 1) in time, which is often used to describe anomalous
diffusion processes in heterogeneous media. The nonlocality of the fractional derivative requires stor-
ing all the solutions from time zero. The proposed scheme is based on continuous piecewise linear
finite elements, L1 time stepping, and proper orthogonal decomposition (POD). By constructing an
effective reduced-order scheme using problem-adapted basis functions, it can significantly reduce the
computational complexity and storage requirement. We shall provide a complete error analysis of the
scheme under realistic regularity assumptions by means of a novel energy argument. Extensive numer-
ical experiments are presented to verify the convergence analysis and the efficiency of the proposed
scheme.
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1. Introduction

In this work, we consider the following model initial-boundary value problem for u(x, t):

∂αt u−∆u = f, in Ω T ≥ t > 0,

u = 0, on ∂Ω T ≥ t > 0, (1.1)

u(0) = v, in Ω,

where Ω is a bounded convex polygonal domain in Rd (d = 1, 2, 3) with a boundary ∂Ω and v is a given function
defined on the domain Ω and T > 0 is a fixed value. Here ∂αt u (0 < α < 1) denotes the left-sided Caputo
fractional derivative of order α with respect to t and it is defined by (see, e.g. [15, pp. 91])

∂αt u(t) =
1

Γ(1− α)

∫ t

0

(t− s)−α d
ds
u(s) ds, (1.2)

where Γ(·) is Euler’s Gamma function defined by Γ(x) =
∫∞

0
sx−1e−sds for x > 0.
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In recent years, the model (1.1) has received much interest in physical modeling, mathematical analysis and
numerical simulation. The main engine that has fueled these developments is its extraordinary capability for
describing anomalously slow diffusion processes, in which the mean square variance of particle displacements
grows sublinearly with time, instead of linear growth for a Gaussian process. At a microscopic level, the particle
motion is more adequately described by continuous time random walk, whose macroscopic counterpart is a
differential equation with a fractional derivative in time [24]. Nowadays the model has been successfully employed
in many applications, e.g., thermal diffusion in fractal domains [26], ion transport in column experiments [6],
and non-Fickian transport in geological formation [2], to name just a few.

Numerically, the presence of the fractional derivative ∂αt u has two important consequences. First, the non-
locality in time incurs huge storage requirement as well as much increased computational efforts along the
evolution of the time. Second, the solution operator has only very limited smoothing property: the problem has
at best order two smoothing in space [31], and the first derivative in time is usually unbounded, cf. Theorem
A.1 in the appendix. These represent the main technical challenges in the development and analysis of robust
numerical schemes for reliably simulating subdiffusion. The challenges are especially severe for “multi-query”
applications, e.g., inverse problems and optimal control, where repeated solutions of “analogous” forward prob-
lems are required, e.g., due to variation in problem parameters or inputs. To reduce the storage requirement, a
number of useful strategies have been proposed, e.g., short-memory principle and panel clustering [4,21,23,28].

In this work, we shall develop an efficient strategy, called the Galerkin-L1-POD scheme, for reliably simulating
the subdiffusion model (1.1) by coupling the Galerkin finite element method (FEM) with proper orthogonal
decomposition (POD) to reduce the computational complexity of repeatedly simulating subdiffusion, which
is important for solving related inverse problems and optimal control. POD is a popular model reduction
technique, and it has achieved great success in reducing the complexity of mathematical models governed by
differential equations; see [1, 3, 17, 18, 29, 33] for a rather incomplete list. It is especially attractive in optimal
control [8, 16, 19, 30] and parameter inversion [10, 25]. To the best of our knowledge, this work represents the
first application of the POD for the subdiffusion model (1.1) with a complete error analysis.

Next we describe the proposed scheme. Let Th be a shape regular quasi-uniform partition of the domain Ω,
and Xh be the associated continuous piecewise linear finite element space. Meanwhile, we discretize the Caputo
fractional derivative ∂αt u(t) by the L1 approximation ∂̄ατ u(tn) (with a time step size τ) [20,35]

∂̄ατ u(tn) =

n−1∑
j=0

bj
u(tn−j)− u(tn−j−1)

ταΓ(2− α)
,

where the weights {bj} are defined by (2.4). With the Galerkin FEM in space and L1 approximation in time,
we arrive at the following fully discrete scheme: find Unh ∈ Xh for n = 1, 2, . . . , N

(∂̄ατ U
n
h , ϕ) + (∇Unh ,∇ϕ) = (f(tn), ϕ) ∀ϕ ∈ Xh,

with U0
h ∈ Xh being an approximation to the initial data v, where (·, ·) denotes the L2(Ω) inner product.

The term ∂̄ατ U
n
h involves all solutions {U ih}

n−1
i=0 preceding the current time step n, indicating the computational

challenge. In this work, we shall adopt the POD methodology to overcome the challenge. Specifically, we take
the fully discrete solutions {Unh }Nn=0 and fractional difference quotients {∂̄ατ Unh }Nn=1 as snapshots to generate an
optimal orthonormal basis {ψj}rj=1. Since these snapshots are sampled from the solution manifold, the POD
basis is automatically adapted to the characteristics of the manifold and is expected to have good approximation
property. Then we employ a Galerkin framework using the POD space Xm

h , m ≤ r, spanned by the first m
POD basis functions, i.e., find Unm ∈ Xm

h , n = 1, 2 . . . , N such that

(∂̄ατ U
n
m, ϕ) + (∇Unm,∇ϕ) = (f(tn), ϕ) ∀ϕ ∈ Xm

h ,

with U0
m ∈ Xm

h being an approximation to U0
h . In the reduced order formulation, the degree of freedom is m,

the number of POD basis functions, which is usually much smaller than that of the full Galerkin formulation.
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Hence, it yields an enormous reduction in computational complexity and storage requirement. We shall provide
a complete a priori convergence analysis of the scheme. Our main theoretical result is given in Theorem 3.6.
For example for the POD approximation {Unm}Nn=1 generated using the H1

0 (Ω)-POD basis, the following error
estimate holds (with `h = | log h|)

1

N

N∑
n=1

‖u(tn)− Unm‖2L2(Ω) ≤ cT
(
τ2α + h4`4h +

r∑
j=m+1

λ̃j
)
,

where {λ̃j}rj=1 are the descendingly ordered eigenvalues of the correlation matrix K̃ (see Section 2.3 for details)
under suitable verifiable regularity conditions on the source term f and the initial data v.

This error estimate consists of three components: spatial error O(h2`2h), temporal error O(τα) and POD

error (
∑r
j=m+1 λ̃j)

1/2. While nearly optimal error estimates due to the spatially semidiscrete Galerkin FEM

is available [11–13], it is not the case for temporal discretization by the L1 time stepping. The L1 scheme
was first analyzed in [20, 35], where the local truncation error was shown to be O(τ2−α) for twice continuously
differentiable (in time) solutions, which is fairly restrictive, cf. Remark A.1. Recently some error bounds that
are expressed directly in terms of data regularity for the homogeneous problem were shown using a generating
function approach [14], however, the analysis does not extend straightforwardly to the inhomogeneous case.

In this work we shall develop a novel energy argument for the L1 time stepping to overcome the technical
challenge in the convergence analysis, which represents the main technical novelty. We shall derive optimal error
estimates under realistic regularity conditions, and the analysis covers both smooth and nonsmooth problem
data, cf. Theorem 3.5. Further, the stability result plays an essential role in deriving error estimates due to the
POD approximation. All the theoretical results are fully confirmed by extensive numerical experiments.

The rest of the paper is organized as follows. In Section 2 we develop an efficient Galerkin-L1-POD scheme,
and in Section 3, provide a complete error analysis of the scheme. In Section 4, extensive numerical experiments
for one- and two-dimensional examples are presented to verify the convergence analysis. Finally, in an appendix,
we briefly discuss the temporal regularity results for problem (1.1). Throughout, the notation c, with or without
a subscript, denotes a generic constant, which may differ at different occurrences, but it is always independent
of the solution u, the mesh size h, time step size τ , and the number m of POD basis functions.

2. An efficient Galerkin-L1-POD scheme

In this section, we develop an efficient numerical scheme, termed as the Galerkin-L1-POD scheme, for problem
(1.1). It is based on the following three components: standard Galerkin method with continuous piecewise linear
finite elements in space, L1 approximation in time and proper orthogonal decomposition in the snapshot space,
which we shall describe separately in the following three subsections.

2.1. Space discretization by the Galerkin FEM

First we describe the spatial discretization based on the Galerkin FEM. Let Th be a shape regular and quasi-
uniform triangulation of the domain Ω into d-simplexes, known as finite elements and denoted by T . Then over
the triangulation Th we define a continuous piecewise linear finite element space Xh by

Xh =
{
vh ∈ H1

0 (Ω) : vh|T is a linear function, ∀T ∈ Th
}
.

On the space Xh, we define the L2(Ω)-orthogonal projection Ph : L2(Ω) → Xh by (Phϕ, χ) = (ϕ, χ) for all
χ ∈ Xh. Then the semidiscrete Galerkin scheme for problem (1.1) reads: find uh(t) ∈ Xh such that

(∂αt uh, χ) + (∇uh,∇χ) = (f, χ) ∀χ ∈ Xh, t > 0, (2.1)
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with uh(0) = vh ∈ Xh. Upon introducing the discrete Laplacian ∆h : Xh → Xh defined by −(∆hϕ, χ) =
(∇ϕ,∇χ) for all ϕ, χ ∈ Xh, the semidiscrete scheme (2.1) can be rewritten into

∂αt uh(t) +Ahuh(t) = fh(t) t > 0, (2.2)

with uh(0) = vh ∈ Xh, fh = Phf and Ah = −∆h.

2.2. Time discretization by L1 scheme

For the time discretization, we divide the interval [0, T ] into N equally spaced subintervals with a time step
size τ = T/N , and tn = nτ , n = 0, . . . , N . Then the L1 scheme [20, 35] approximates the Caputo fractional
derivative ∂αt u(x, tn) by

∂αt u(x, tn) =
1

Γ(1− α)

n−1∑
j=0

∫ tj+1

tj

∂u(x, s)

∂s
(tn − s)−α ds

≈ 1

Γ(1− α)

n−1∑
j=0

u(x, tj+1)− u(x, tj)

τ

∫ tj+1

tj

(tn − s)−αds

=

n−1∑
j=0

bj
u(x, tn−j)− u(x, tn−j−1)

ταΓ(2− α)
=: ∂̄ατ u(tn),

(2.3)

where the weights {bj} are given by

bj = (j + 1)1−α − j1−α, j = 0, 1, . . . , n− 1. (2.4)

Then the fully discrete scheme reads: given U0
h = vh ∈ Xh and Fnh = Phf(tn) ∈ Xh, with cα = Γ(2−α), find

Unh ∈ Xh for n = 1, 2, . . . , N such that

(b0I + cατ
αAh)Unh = bn−1U

0
h +

n−1∑
j=1

(bj−1 − bj)Un−jh + cατ
αFnh . (2.5)

The computational challenge of the fully discrete scheme (2.5) is obvious: To compute the numerical solution
Unh at tn, the solutions {Ukh}

n−1
k=0 at all preceding time instances are required, as a result of the nonlocality of the

Caputo fractional derivative ∂αt u. Hence, the computational complexity and storage requirement grow linearly
as the number n of time steps increases, which poses a significant challenge especially for high-dimensional
problems and multi-query applications. This naturally motivates the development of cheap reduced order
models by the POD methodology so as to reduce the effective degree of freedom.

2.3. Galerkin-L1-POD scheme

Now we develop an efficient Galerkin approximation scheme based on proper orthogonal decomposition
(POD) to circumvent the challenge. We shall first describe the general framework of the POD methodology,
and then discuss its application to the subdiffusion equation.

POD is a powerful model reduction technique for complex models, especially time/parameter dependent
partial differential equations. It resides on the empirical observation that despite the large apparent dimen-
sionality of the solution space (e.g., the degree of freedom of the finite element approximation), the solution
actually lives on an effectively much lower dimensional (possibly highly nonlinear) manifold. POD constructs a
problem adapted basis for efficiently approximating the manifold using samples from the manifold, often known
as “snapshots”, which can be either solutions at different time instances, different parameter values, or samples
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generated using relevant physical experiments. The POD basis functions are then employed within either a
Galerkin or Petrov-Galerkin framework to generate a reduced-order model.

Now we recall the general framework of POD. Let X be a real Hilbert space endowed with an inner product
(·, ·)X and norm ‖ · ‖X . Now for N ∈ N, let {yn}Nn=1 ⊂ X be an ensemble of snapshots and at least one of them
is assumed to be nonzero. Then we set U = span{y1, y2, ..., yN} ⊂ X. Let dim(U) = r and let {ψj}rj=1 be an
orthonormal basis of the snapshot space U. Then any element yn can be written as

yn =

r∑
j=1

(yn, ψj)Xψj , n = 1, 2, ..., N.

POD chooses an orthonormal basis {ψj}mj=1 for 1 ≤ m ≤ r to minimize the following ensemble average:

min
{ψj}mj=1

1

N

N∑
n=1

‖yn −
m∑
j=1

(yn, ψj)Xψj‖2X . (2.6)

A solution of problem (2.6) is called a POD-basis of rank m. This optimization problem is related to the
correlation matrix K ∈ RN×N corresponding to the snapshots {yn}Nn=1, which is defined by

Kij = N−1(yj , yi)X , i, j = 1, . . . , N. (2.7)

By its very construction, the matrix K is symmetric positive semidefinite, and its eigenvectors can be chosen
to be orthonormal (in the inner product (·, ·)X). Further, the number of positive eigenvalues is equal to r, the
dimensionality of the space U spanned by the snapshots (or equivalently the rank of K). The following lemma
gives the formula of the POD-basis and the corresponding approximation error within the ensemble [34].

Lemma 2.1. Let λ1 ≥ λ2 ≥ ... ≥ λr > 0 be the positive eigenvalues of the correlation matrix K and v1, ..., vr ∈
RN be the corresponding orthonormal eigenvectors. Then a POD basis of rank m ≤ r is given by

ψj =
1√
λj

N∑
n=1

(vj)nyn,

where (vj)n denotes the n-th component of the eigenvector vj. Moreover, the error is given by

1

N

N∑
n=1

‖yn −
m∑
j=1

(yn, ψj)Xψj‖2X =

r∑
j=m+1

λj .

Following the abstract framework, for the subdiffusion model (1.1), we choose 2N + 1 snapshots as

yn = Un−1
h , n = 1, 2, ..., N + 1,

and the fractional difference quotients (FDQs)

yn = ∂̄ατ U
n−N−1
h , n = N + 2, ..., 2N + 1.

The inclusion of FDQs {∂̄ατ Unh } into the snapshots U is to improve the error estimate below: it allows directly
bounding the error due to the POD approximation to the fractional derivative term ∂̄ατ U

n
h , cf. Lemma 2.1.

In the absence of these FDQs in the snapshots, the error estimate due to POD approximation would involve
an additional factor τ−2α; see Remark 3.3 for details. The use of difference quotients was first proposed by
Kunisch and Volkwein [17] for the standard parabolic equation, and we refer interested readers to the recent
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work [9] for extensive discussions. In this work, we shall follow the work [17], and employ the FDQs ∂̄ατ U
n
h in

the construction of the POD basis.
In practice, there are several possible choices of the Hilbert space X, and we shall consider two popular ones

in this work. Our first choice for the POD space is X = H1
0 (Ω) with the inner product (u, v)X = (∇u,∇v) for

all u, v ∈ H1
0 (Ω). Then the correlation matrix K̃ is given by

K̃i,j = (2N + 1)−1(∇yj ,∇yi). (2.8)

We denote the corresponding POD basis (called H1
0 (Ω) POD basis) by {ψ̃j}rj=1 and the subspace spanned by

the first m H1
0 (Ω)-POD basis functions by Xm

h , m ≤ r. Then Lemma 2.1 yields the following error estimate for
the POD space Xm

h

1

2N + 1

( N∑
n=0

‖Unh −
m∑
j=1

(∇Unh ,∇ψ̃j)ψ̃j‖2H1
0 (Ω) +

N∑
n=1

‖∂̄ατ Unh −
m∑
j=1

(∇∂̄ατ Unh ,∇ψ̃j)ψ̃j‖2H1
0 (Ω)

)
=

r∑
j=m+1

λ̃j , (2.9)

where {λ̃j}rj=1 are the descendingly ordered eigenvalues of the correlation matrix K̃. The second choice is

X = L2(Ω) with the standard inner product. The correlation matrix K̂ is given by

K̂ij = (2N + 1)−1(yj , yi). (2.10)

Likewise, we denote the corresponding POD basis (called L2(Ω)-POD basis) by {ψ̂}rj=1, and by slightly abusing

the notation, the subspace spanned by the first m L2(Ω) POD basis functions by Xm
h . Then in view of Lemma

2.1, the POD space Xm
h satisfies the following error estimate

1

2N + 1

( N∑
n=0

‖Unh −
m∑
j=1

(Unh , ψ̂j)ψ̂j‖2L2(Ω) +

N∑
n=1

‖∂̄ατ Unh −
m∑
j=1

(∂̄ατ U
n
h , ψ̂j)ψ̂j‖2L2(Ω)

)
=

r∑
j=m+1

λ̂j , (2.11)

where {λ̂j}rj=1 are the descendingly order eigenvalues of the correlation matrix K̂.
Next we define the Ritz projection operator Rmh : Xh → Xm

h by

(∇Rmh χ,∇ϕ) = (∇χ,∇ϕ) ∀ϕ ∈ Xm
h , (2.12)

where χ ∈ Xh ⊂ H1
0 (Ω). The H1(Ω)-stability of the projection operator Rmh on the space Xh is immediate

‖∇Rmh χ‖L2(Ω) ≤ ‖∇χ‖L2(Ω) ∀χ ∈ Xh.

Given the POD basis, one can exploit it for model reduction in several different ways. One natural choice
is to use a Galerkin approach, which yields the following reduced-order formulation: with U0

m = Rmh vh ∈ Xm
h ,

find Unm ∈ Xm
h , n = 1, 2, ..., N such that

(∂̄ατ U
n
m, ϕm) + (∇Unm,∇ϕm) = (f(tn), ϕm) ∀ϕm ∈ Xm

h , (2.13)

or equivalently with cα = Γ(2− α),

b0(Unm, ϕm) + cατ
α(∇Unm,∇ϕm) = bn−1(U0

m, ϕm) +

n−1∑
j=1

(bj−1 − bj)(Un−jm , ϕm) + cατ
α(f(tn), ϕm) ∀ϕm ∈ Xm

h .

The existence and uniqueness of the POD approximation {Unm}Nn=1 follows directly by an energy argument (see
Section 3 below). In the Galerkin framework, the stiffness matrix of the reduced-order formulation (2.13) is the
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projection of that of the global one (2.5) into the POD space Xm
h . It is worth mentioning that the degree of

freedom of the reduced system (2.13) is m, i.e., the number of POD basis functions in Xm
h , which is usually much

smaller than that of (2.5), i.e., the number of finite element basis functions. This shows clearly the enormous
gain in the computational complexity and storage requirement of the proposed scheme.

3. Error analysis

In this part, we provide a complete error analysis of the proposed scheme (2.13). The discretization error
consists of three sources: the spatial discretization, temporal discretization and POD approximation. It is
known that the semidiscrete solution uh satisfies the following nearly optimal error estimate [12,13], where the
operator A is the negative Laplacian operator −∆ with a zero Dirichlet boundary condition. The log factor `2h
in the error estimate is due to the limited smoothing property of the solution operator for subdiffusion, and the
prefactor t−α(1−σ), for t→ 0, reflects the corresponding solution singularity.

Theorem 3.1. Let u be the solution of problem (1.1) with Aσv ∈ L2(Ω), 0 < σ ≤ 1, and f ∈ L∞(0, T ;L2(Ω)),
and uh be the solution of problem (2.2) with vh = Phv and fh = Phf . Then there holds with `h = | log h|

‖u(t)− uh(t)‖L2(Ω) ≤ ch2`2h

(
t−α(1−σ)‖Aσv‖L2(Ω) + ‖f‖L∞(0,T ;L2(Ω))

)
.

Below we derive the errors due to the temporal approximation and the POD approximation that are expressed
in terms of the data regularity directly. The main novel ingredient in the convergence analysis is to establish
a suitable stability result for the L1 time stepping under realistic assumptions on the data regularity. To this
end, we shall develop a novel energy argument, based on the monotonicity of a suitable quadrature rule.

3.1. Error analysis of the L1 scheme

Now we develop a novel energy argument for analyzing the L1 approximation. We begin with a weighted
inequality for the weights {bj}, which is crucial for establishing the monotonicity of the quadrature below.

Lemma 3.1. Let {bj} be defined by (2.4). Then for j = 2, . . . , n− 1, there holds

(j − 1)nα−2bj−1 + (n− j)nα−2bj ≤ (n+ 1)α−1bj .

Proof. Using the definition of the weights bj , the assertion is equivalent to: for all j = 2, . . . , n− 1:∫ 1

0

(j − 1 + t)−α(j − 1)−
(
n
(
1 + n−1

)α−1 − n+ j
)

(j + t)−αdt ≤ 0,

that is, ∫ 1

0

g(t)

(j − 1 + t)α(j + t)α
dt ≤ 0,

where the function g : [0, 1]→ R is defined by g(t) = (j − 1)(j + t)α− (j − 1 + t)α(n(1 +n−1)α−1−n+ j), with
its g′(t) given by

g′(t) = α

[
j − 1

(j + t)1−α −
n(1 + n−1)α−1 − n+ j

(j − 1 + t)1−α

]
.

For α ∈ (0, 1), there holds n(1 + n−1)α−1 − n + j ≥ n2(n + 1)−1 − n + j = j − n(n + 1)−1 > j − 1. Hence we
deduce g′(t) < 0 on the interval [0, 1]. It suffices to show that g(0) ≤ 0. Obviously,

g(0) = (j − 1)α((j − 1)1−αjα − j + n
(
1− (1 + n−1)α−1

)︸ ︷︷ ︸
I

).
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The term I in the bracket can be rewritten as

I = j
(
(1− j−1)1−α − 1

)
+ n

(
1− (1 + n−1)α−1

)
.

We claim that the function g̃(j) = j
(
1− (1− j−1)1−α) is monotonically decreasing in j. To see this, let

h(t) : (0, 1)→ R, with h(t) = t−1(1− (1− t)1−α). Then h′(t) = −t−2 (1− (1− t)−α(1− αt)) . Next consider the

function h̃(t) : (0, 1)→ R, with h̃(t) = (1− t)α. Then h̃′(t) = −α(1− t)α−1 and h̃′′(t) = (α− 1)α(1− t)α−2 < 0,

namely, the function h̃ is concave. Then the concavity implies h̃(t) ≤ h̃(0)+ h̃′(0)t, which gives (1−t)α ≤ 1−αt.
Consequently, h′(t) ≥ −t−2(1 − (1 − αt)−1(1 − αt)) ≥ 0, and hence h is monotonically increasing, and the
monotonicity of the function g̃(j) follows. Hence, by the trivial inequality (n− 1)/n < n/(n+ 1), we have

I < n((1− n−1)1−α − 1) + n(1− (1 + n−1)α−1)

= n
(
(1− n−1)1−α − (1− (n+ 1)−1)1−α) < 0,

which concludes the proof of the lemma. �

Now we give an important monotonicity relation of a weighted rectangular quadrature approximation.

Theorem 3.2. Let the function f : [0, 1] → R be convex and nonnegative with f(0) = 0, and α ∈ (0, 1). For

any n ∈ N, let xj = j
n , j = 0, . . . , n, and yj = j

n+1 , j = 0, . . . , n+ 1. Then there holds

nα−1
n−1∑
j=0

bjf(xj) ≤ (n+ 1)α−1
n∑
j=0

bjf(yj).

Proof. First we observe the trivial inequalities j
n+1 <

j
n <

j+1
n+1 , i.e., yj < xj < yj+1, for j = 1, . . . , n− 1. There

also holds the trivial identity

xj :=
j

n
=
n− j
n

j

n+ 1
+
j

n

j + 1

n+ 1
=:

n− j
n

yj +
j

n
yj+1.

Now by the convexity of the function f , we deduce

f(xj) = f

(
n− j
n

yj +
j

n
yj+1

)
≤ n− j

n
f(yj) +

j

n
f(yj+1), j = 1, . . . , n.

With the assumption f(0) = 0, it suffices to consider j ≥ 1 in the sum. Hence

nα−1
n−1∑
j=1

bjf(xj) ≤ nα−1
n−1∑
j=1

bj

(
n− j
n

f(yj) +
j

n
f(yj+1)

)

= nα−1

b1n− 1

n
f(y1) +

n−1∑
j=2

(
bj−1

j − 1

n
+
n− j
n

bj

)
f(yj) + bn−1

n− 1

n
f(yn)

 .

To show the desired assertion, we consider the following three cases separately, first, last and middle terms. For
the first term, in view of the nonnegativity of the function f , it suffices to show nα−1 n−1

n b1 ≤ (n + 1)α−1b1,
which however follows from α ∈ (0, 1) and

(n+ 1)1−αnα−1n− 1

n
=

(
n+ 1

n

)1−α
n− 1

n
=

(
n2 − 1

n2

)1−α(
n− 1

n

)α
< 1.
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For the last term, we have

nα−1n− 1

n
bn−1 = nα−1(n1−α − (n− 1)1−α)

n− 1

n
= 1− 1

n
−
(
n− 1

n

)2−α

,

and meanwhile

(n+ 1)α−1bn = (n+ 1)α−1((n+ 1)1−α − n1−α) = 1−
(

n

n+ 1

)1−α

.

Hence, it suffices to show n−1 + (1 − n−1)2−α − (1 − (n + 1)−1)1−α > 0 for n > 1. Let g : [0, 1] → R by
g(t) = t+ (1− t)2−α− (1 + t)α−1. Then g(0) = 0, and g′(t) = 1− (2−α)(1− t)1−α− (α− 1)(1 + t)α−2. Clearly
g′(0) = 0 and further g′′(t) = (2− α)(1− α)((1− t)−α − (1 + t)α−3) > 0, which in particular implies g′(t) ≥ 0
on the interval [0, 1]. To conclude the proof, it suffices to show the inequality for the middle terms, i.e., for
j = 2, . . . , n− 1

nα−1 j − 1

n
bj−1 + nα−1n− j

n
bj ≤ (n+ 1)α−1bj ,

which however is already shown in Lemma 3.1. �

The following result is a direct corollary from Theorem 3.2, and it will play a crucial role in establishing the
stability result in Theorem 3.3 below.

Lemma 3.2. For any α ∈ (0, 1), let bj be defined in (2.4). Then for any n ∈ N, there holds

n∑
j=1

(bj−1 − bj)(n+ 1− j)α−1 ≤ (n+ 1)α−1.

Proof. Consider the function f(x) = (1 − x)α−1 − 1. Then it satisfies f(x) ≥ 0, f(0) = 0, and also f ′′(x) > 0,
i.e., convex. Hence, by Theorem 3.2, we have

nα−1
n−1∑
j=0

bj
(
(1− jn−1)α−1 − 1

)
≤ (n+ 1)α−1

n∑
j=1

bj
(
(1− j(n+ 1)−1)α−1 − 1

)
. (3.1)

Meanwhile, it can be verified directly that for all n ∈ N+, nα−1
∑n−1
j=0 bj = (1 − α)

∫ 1

0
x−α dx = 1, i.e.,

nα−1
∑n−1
j=0 bj = (n+ 1)α−1

∑n
j=0 bj . Plugging the preceding identity into (3.1) yields

nα−1
n−1∑
j=0

bj
(
1− jn−1

)α−1 ≤ (n+ 1)α−1
n∑
j=0

bj
(
1− j(n+ 1)−1

)α−1
.

which upon rearranging terms gives the desired assertion. �

Next we give an important L2(Ω) stability result. The stability estimate puts more weights on the source
term F kh as the index k gets close to the current time step n, in a manner analogous to the continuous problem.

Theorem 3.3. Let Unh , n = 1, 2, . . . , N , be the solution of the fully discrete scheme (2.5). Then with cα =
Γ(2− α), for n = 1, 2, . . . , N , we have the following stability estimate

‖Unh ‖L2(Ω) ≤ ‖vh‖L2(Ω) + cατ
α
n−1∑
k=0

(n− k)α−1‖F k+1
h ‖L2(Ω). (3.2)
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Proof. We show the assertion by mathematical induction. First we consider the case n = 1. Multiplying both
sides of (2.5) by U1

h and integrating over the domain Ω yield

‖U1
h‖2L2(Ω) + cατ

α‖∇U1
h‖2L2(Ω) = (U0

h , U
1
h) + cατ

α(F 1
h , U

1
h).

Then the Cauchy-Schwartz inequality and Young’s inequality give

‖U1
h‖L2(Ω) ≤ ‖U0

h‖L2(Ω) + cατ
α‖F 1

h‖L2(Ω).

Now assume the estimate holds up to some n ≥ 1. A similar argument yields

‖Un+1
h ‖L2(Ω) ≤ bn‖U0

h‖L2(Ω) +

n∑
j=1

(bj−1 − bj)‖Un+1−j‖L2(Ω) + cατ
α‖Fn+1‖L2(Ω)

≤ bn‖U0
h‖L2(Ω) +

n∑
j=1

(bj−1 − bj)
(
‖U0

h‖L2(Ω) + cατ
α‖Fn+1‖L2(Ω)

+ cατ
α

n−j∑
k=0

(n+ 1− j − k)α−1‖F k+1
h ‖L2(Ω)

)

= ‖U0
h‖L2(Ω) + cατ

α
n∑
j=1

(bj−1 − bj)
n−j∑
k=0

(n+ 1− j − k)α−1‖F k+1
h ‖L2(Ω) + cατ

α‖Fn+1‖L2(Ω).

Then by changing the order of summation and applying Lemma 3.2 we have

n∑
j=1

(bj−1 − bj)
n−j∑
k=0

(n+ 1− j − k)α−1‖F k+1
h ‖L2(Ω) =

n−1∑
k=0

‖F k+1
h ‖L2(Ω)

n−k∑
j=1

(bj−1 − bj)(n+ 1− j − k)α−1

≤
n−1∑
k=0

‖F k+1
h ‖L2(Ω)(n+ 1− k)α−1,

and consequently

‖Un+1
h ‖L2(Ω) ≤ ‖U0

h‖L2(Ω) + cατ
α
n−1∑
k=0

(n+ 1− k)α−1‖F k+1
h ‖L2(Ω) + cατ

α‖Fn+1‖L2(Ω)

= ‖U0
h‖L2(Ω) + cατ

α
n∑
k=0

(n+ 1− k)α−1‖F k+1
h ‖L2(Ω),

which completes the induction step and the desired assertion follows. �

The next lemma gives one useful estimate for bounding the local truncation error.

Lemma 3.3. For any δ ∈ (0, α], there exists a constant c > 0, independent of n, such that for all n ≥ 2

n−1∑
k=1

(
(n− k)1−α − (n− k − 1)1−α) kδ−2 ≤ c(n− 1)−α.
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Proof. The case n = 2 is trivial, and we consider only n ≥ 3. Let dk = ((n−k)1−α− (n−k−1)1−α)kδ−2. First,
we observe that for k = 1

d1 = (n− 1)1−α − (n− 2)1−α = (1− α)

∫ 2

1

(n− s)−α ds

≤c(n− 2)−α ≤ c((n− 1)/3)−α ≤ c(n− 1)−α.

The sum of the remaining terms can be bounded directly by

n−1∑
k=2

dk =

n−1∑
k=2

(1− α)kδ−2

∫ k+1

k

(n− s)−α ds ≤ c
n−1∑
k=2

∫ k+1

k

(n− s)−α(s− 1)δ−2 ds

= c

∫ n

2

(n− s)−α(s− 1)δ−2 ds = c

∫ n−1

1

(n− s− 1)−αsδ−2 ds

= c

∫ n−1
2

1

(n− s− 1)−αsδ−2ds+ c

∫ n−1

n−1
2

(n− s− 1)−αsδ−2 ds := I + II.

Then the desired result follows from

I ≤ c
∫ n−1

2

1

(n− s− 1)−αsδ−2 ds ≤ c(n− 1)−α
∫ n−1

2

1

sδ−2 ds ≤ c(n− 1)−α

and

II ≤ c(n− 1)δ−2

∫ n−1

n−1
2

(n− s− 1)−α ds ≤ c(n− 1)δ−α−1 ≤ c(n− 1)−α.

�

Next we derive an error bound on the local truncation error rn defined by

rn = ‖∂αt uh(tn)− ∂̄ατ uh(tn)‖L2(Ω), n = 1, 2, ..., N. (3.3)

In view of Theorems A.1 and A.2 in the appendix, we make the following temporal regularity assumption.

Assumption 3.1. The solution u satisfies the following smoothing properties

‖u(t)‖L2(Ω) ≤ c and ‖∂mt u(t)‖L2(Ω) ≤ ctδ−m,

where δ > 0 and the integer m ≥ 1.

Remark 3.1. By Theorems A.1 and A.2, the regularity condition in Assumption 3.1 holds with δ = σα,
σ ∈ (0, 1], for initial data v ∈ D(Aσ) and source term f ∈ W 2,∞(0, T ;L2(Ω)). Under these conditions,
Assumption 3.1 holds also for the semidiscrete Galerkin approximation uh, with a constant c independent of h.

Lemma 3.4. Let Assumption 3.1 hold, and rn be the local truncation error defined by (3.3). Then

rn ≤

{
cτ δ−α if n = 1,

c(n− 1)−ατ δ−α if n ≥ 2.
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Proof. Using Assumption 3.1, for n = 1, we have the following estimate (with c′α = 1/Γ(2− α))

r1 ≤ c′ατ−1

∣∣∣∣∣∣∣∣ ∫ τ

0

(τ − s)−α
∫ τ

0

(u′h(s)− u′h(y)) dy ds

∣∣∣∣∣∣∣∣
L2(Ω)

≤ c′ατ−1

∫ τ

0

(τ − s)−α
∫ τ

0

‖u′h(s)‖L2(Ω) + ‖u′h(y)‖L2(Ω) dy ds

≤ c′ατ−1

∫ τ

0

(τ − s)−α
∫ τ

0

(sδ−1 + yδ−1) dy ds ≤ cτ δ−α.

(3.4)

Now we consider the case n ≥ 2. Then

rn = c′α‖
n−1∑
k=0

∫ tk+1

tk

(tn − s)−α
(
u′h(s)− uh(tk+1)− uh(k)

τ

)
ds‖L2(Ω)

≤ c
n−1∑
k=0

‖
∫ tk+1

tk

(tn − s)−α
(
u′h(s)− uh(tk+1)− uh(k)

τ

)
ds‖L2(Ω) := c

n−1∑
k=0

rn,k.

The first term rn,0 can be bounded using Assumption 3.1 and the argument for (3.4) as

rn,0 ≤ c
∫ t1

0

(tn − s)−α‖u′h(s)‖L2(Ω) ds+ cτ−1

∫ t1

0

(tn − s)−α
∫ t1

0

‖u′h(y)‖L2(Ω) dy ds

≤ c(tn − t1)−α
∫ t1

0

sδ−1 ds+ cτ δ−1

∫ t1

0

(tn − s)−α ds ≤ c(n− 1)−ατ δ−α.

(3.5)

Next we derive estimates for rn,k, k = 1, 2, ..., n− 1. To this end, we use the identity

u′h(s)− uh(tk+1)− uh(k)

τ
=

1

τ

∫ tk+1

tk

u′h(s)− u′h(y) dy =
1

τ

∫ tk+1

tk

∫ s

y

u′′h(z) dz dy

and apply Assumption 3.1 such that ‖u′′h(z)‖L2(Ω) ≤ ctδ−2
k with c independent of t and h to deduce

∣∣∣∣∣∣∣∣u′h(s)− uh(tk+1)− uh(k)

τ

∣∣∣∣∣∣∣∣
L2(Ω)

≤ 1

τ

∫ tk+1

tk

∫ max(s,y)

min(s,y)

‖u′′h(z)‖L2(Ω) dz dy ≤ cτtδ−2
k .

Thus we obtain

rn,k ≤ cτtδ−2
k

∫ tk+1

tk

(tn − s)−α ds = cτ2−αtδ−2
k

(
(n− k)1−α − (n− k − 1)1−α)

= cτ δ−αkδ−2
(
(n− k)1−α − (n− k − 1)1−α) .

Then by Lemma 3.3 we deduce

n−1∑
k=1

rn,k ≤ cτ δ−α
n−1∑
k=1

kδ−2
(
(n− k)1−α − (n− k − 1)1−α) ≤ cτ δ−α(n− 1)−α.

This together with (3.5) yields the desired estimate and hence completes the proof. �
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Next we derive the error estimate enh = uh(tn) − Unh , n = 1, 2, ..., N . First, we observe that the nodal error
enh satisfies e0

h = 0 and the following error equation

∂̄αt e
n
h +Ahe

n
h = ∂̄αt uh(tn)− ∂αt uh(tn).

The next theorem gives an optimal (uniform in time t) error estimate for the fully discrete scheme (2.5).

Theorem 3.4. Assume f ∈W 2,∞(0, T ;L2(Ω)) and v ∈ D(Aσ), with 0 < σ ≤ 1. Let uh and Unh be the solutions
of problems (2.2) and (2.5), respectively. Then there holds

‖uh(tn)− Unh ‖L2(Ω) ≤ cτσα
(
‖Aσv‖L2(Ω) + ‖f‖W 2,∞(0,T ;L2(Ω))

)
.

Proof. By Theorem 3.3 and Lemma 3.4, with δ = σα, we have

‖uh(tn)− Unh ‖L2(Ω) ≤ cτα
n−1∑
k=0

(n− k)α−1‖∂̄ατ uh(tk+1)− ∂αt uh(tk+1)‖L2(Ω)

≤ cτσα
(
‖Aσv‖L2(Ω) + ‖f‖W 2,∞(0,T ;L2(Ω))

)(
1 +

n−1∑
k=1

(n− k)α−1k−α
)
.

Then the following uniform bound

n−1∑
k=1

(n− k)α−1k−α =
1

n

n−1∑
k=1

(
1− k

n

)α−1(
k

n

)−α
≤
∫ 1

0

(1− x)α−1x−αdx ≤ c

yields the desired estimate. �

Last, we can state an error estimate on the fully discrete approximation Unh , which follows from Theorems
3.1 and 3.4 by the triangle inequality.

Theorem 3.5. Assume f ∈W 2,∞(0, T ;L2(Ω)) and v ∈ D(Aσ), with 0 < σ ≤ 1. Let u and Unh be the solutions
of problems (1.1) and (2.5), respectively. Then with `h = | log h|, there holds

‖u(tn)− Unh ‖L2(Ω) ≤ c(h2`ht
−α(1−σ) + τσα)‖Aσv‖L2(Ω) + c(h2`2h + τσα)‖f‖W 2,∞(0,T ;L2(Ω)).

3.2. Error analysis of the POD approximation

Next we derive the error estimates for the POD approximation Unm. First we recall an approximation property
of the Ritz projection operator Rmh defined in (2.12) within the ensemble [17, Lemma 3 and Corrolary 3].

Lemma 3.5. For every m = 1, ..., r, the Ritz projection operator Rmh satisfies

1

N

N∑
n=1

(
‖∇(Unh −Rmh Unh )‖2L2(Ω) + ‖∇(∂̄ατ U

n
h − ∂̄ατ Rmh Unh )‖2L2(Ω)

)
≤ c

r∑
j=m+1

λ̃j

and

1

N

N∑
n=1

(
‖∇(Unh −Rmh Unh )‖2L2(Ω) + ‖∇(∂̄ατ U

n
h − ∂̄ατ Rmh Unh )‖2L2(Ω)

)
≤ ch−2

r∑
j=m+1

λ̂j

where {λ̃j}rj=1 and {λ̂j}rj=1 denote the eigenvalues of K̃ and K̂ defined in (2.8) and (2.10), respectively.
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Now we can give the error estimate for the POD approximation Unm for smooth problem data. The result
indicates that the error incurred by using the POD basis in place of the full Galerkin FEM basis is determined
by the eigenvalues corresponding to the eigenfunctions that are not included in constructing the POD approxi-
mation. In particular, if the eigenvalues of the correlation matrix decay rapidly, then a small number of POD
basis functions in the Galerkin POD scheme (2.13) suffice the desired accuracy.

Theorem 3.6. Let u and Unm be the solutions of (1.1) and (2.13), respectively, and suppose that v ∈ D(A),
and f ∈W 2,∞(0, T ;L2(Ω)). Then there holds

1

N

N∑
n=1

‖u(tn)− Unm‖2L2(Ω) ≤ cT
(
τ2α + h4`4h +

r∑
j=m+1

λ̃j

)
(3.6)

and

1

N

N∑
n=1

‖u(tn)− Unm‖2L2(Ω) ≤ cT
(
τ2α + h4`4h + h−2

r∑
j=m+1

λ̂j

)
, (3.7)

where {λ̃j}rj=1 and {λ̂j}rj=1 denote the eigenvalues of K̃ and K̂ defined in (2.8) and (2.10), respectively.

Proof. We split the error enm = u(tn)− Unm into

enm = (u(tn)− Unh ) + (Unh − Unm) ,

and the first term can be bounded using Theorem 3.5, i.e.,

1

N

N∑
n=1

‖u(tn)− Unh ‖2L2(Ω) ≤ c
(
τ2α + h4`4h

)
.

Hence it suffices to establish a bound for the second term Unh − Unm. Now we consider the splitting

Unh − Unm = (Unh −Rmh Unh ) + (Rmh U
n
h − Unm) := ρn + θn.

Then Lemma 3.5 yields the following bound on ρn as

1

N

N∑
n=1

‖ρn‖2L2(Ω) ≤ c
r∑

j=m+1

λ̃j and
1

N

N∑
n=1

‖ρn‖2L2(Ω) ≤ ch
−2

r∑
j=m+1

λ̂j , (3.8)

for the H1
0 (Ω)- and L2(Ω)-POD basis, respectively. Next we derive an estimate on the component θn. Using

(2.13), the definition of the Ritz projection operator Rmh , and the fact that ϕm ∈ Xm
h ⊂ Xh, we have

(∂̄ατ θ
n, ϕm) + (∇θn,∇ϕm) = (∂̄ατ R

m
h U

n
h , ϕm) + (∇Rmh Unh ,∇ϕm)− (∂̄ατ U

n
m, ϕm)− (∇Unm,∇ϕm)

= (∂̄ατ R
m
h U

n
h , ϕm) + (∇Unh ,∇ϕm)− (f(tn), ϕm)

= (∂̄ατ (Rmh U
n
h − Unh ), ϕm) = −(∂̄ατ ρ

n, ϕm)

and θ0 = 0. The stability result in Theorem 3.3 yields

‖θn‖L2(Ω) ≤ cτα
n−1∑
k=0

(n− k)α−1‖∂̄ατ ρk+1‖L2(Ω).
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Appealing to Young’s inequality for the Laplace type discrete convolution [7, Theorem 20.18], i.e.,

N∑
n=0

(
n∑
k=0

an−kbk

)2

≤

(
N∑
n=0

an

)2 N∑
n=0

b2n, (3.9)

we deduce

N∑
n=1

( n−1∑
k=0

(n− k)α−1‖∂̄ατ ρk+1‖L2(Ω)

)2

≤
( N∑
n=1

nα−1

)2 N∑
n=1

‖∂̄ατ ρn‖2L2(Ω) ≤ cN
2α

N∑
n=1

‖∂̄ατ ρn‖2L2(Ω).

Then by Lemma 3.5, we have

1

N

N∑
n=1

‖θn‖2L2(Ω) ≤
cτ2αN2α

N

N∑
n=1

‖∂̄ατ ρn‖2L2(Ω) =
cT 2α

N

N∑
n=1

‖∂̄ατ ρn‖2L2(Ω) ≤ cT
r∑

j=m+1

λ̃j .

Likewise, for the L2(Ω)-POD basis, we deduce

1

N

N∑
n=1

‖θn‖2L2(Ω) ≤
cT 2α

N

N∑
n=1

‖∂̄ατ ρn‖2L2(Ω) ≤ cTh
−2

r∑
j=m+1

λ̂j .

This completes the proof of the theorem. �

The error estimate in Theorem 3.6 covers only smooth initial data v ∈ D(A). In the case of nonsmooth
initial data v ∈ D(Aσ), 0 < σ < 1, one can derive an analogous error estimate; see the following remark.
We note that the regularity of problem data (or solution) does not enter the error estimate due to the POD
approximation directly. Hence, in principle, the approach is capable of handling nonsmooth problem data, if
the solution singularity is built-in in the ensemble of snapshots and thus captured by the POD basis directly.

Remark 3.2. We comment on nonsmooth problem data. Consider the H1
0 (Ω) POD for f ∈W 2,∞(0, T ;L2(Ω))

and nonsmooth initial data v ∈ D(Aσ), 0 < σ < 1. Then in view of Theorem 3.5, we have

1

N

N∑
n=1

‖u(tn)− Unh ‖2L2(Ω) ≤ c
(
τ2σα + h4`4h

1

N

N∑
n=1

t−2α(1−σ)
n

)
.

Meanwhile, the summation can be bounded as

1

N

N∑
n=1

t−2α(1−σ)
n =

τ−2α(1−σ)

N

N∑
n=1

n−2α(1−σ) ≤ τ−2α(1−σ)

N

∫ N

1

s−2α(1−σ)ds ≤ cT `α,σ,τ ,

where the constant `α,σ,τ is given by

`α,σ,τ =


τ1−2α(1−σ), α(1− σ) > 1/2,

log T
τ , α(1− σ) = 1/2,

1, α(1− σ) < 1/2.



16 TITLE WILL BE SET BY THE PUBLISHER

Consequently, by repeating the arguments in Theorem 3.6, we obtain the following error estimate for the POD
approximation {Unm} (with the H1

0 (Ω) POD basis)

1

N

N∑
n=1

‖u(tn)− Unm‖2L2(Ω) ≤ cT
(
τ2σα + h4`4h`α,σ,τ +

r∑
j=m+1

λ̃j

)
,

and a similar error estimate holds for the L2(Ω) POD basis. Interestingly, for the case α(1 − σ) < 1/2, the
error estimate in the space remains uniform with respect to the time step size τ .

Last we briefly comment on the case when the FDQs are not included in the snapshots.

Remark 3.3. In our construction of the POD basis, we have included the FDQs in the snapshots. When the
FDQs ∂̄ατ U

n
h , n = 1, 2, ..., N , are not contained in the snapshot set, the error formula (2.9) for H1

0 (Ω) POD
basis becomes

1

N + 1

N∑
n=0

‖Unh −
m∑
j=1

(∇Unh ,∇ψ̃j)ψ̃j‖2H1
0 (Ω) =

r∑
j=m+1

λ̃j .

Further for the FDQs we have

1

N

N∑
n=1

‖∂̄ατ Unh −
m∑
j=1

(∇∂̄ατ Unh ,∇ψ̃j)ψ̃j‖2H1
0 (Ω) =

1

N

N∑
n=1

‖∂̄ατ
(
Unh −

m∑
j=1

(∇Unh ,∇ψ̃j)ψ̃j
)
‖2H1

0 (Ω)

Let U
n

h = Unh −
∑m
j=1(∇Unh ,∇ψ̃j)ψ̃j. By the monotonicity of the weights {bj}, we have

∥∥∥∂̄ατ Unh∥∥∥2

H1
0 (Ω)
≤ cατ−2α

(
b0‖U

n

h‖H1
0 (Ω) + bn−1‖U

0

h‖H1
0 (Ω) +

n−1∑
j=1

(bj−1 − bj)‖U
n−j
h ‖H1

0 (Ω)

)2

≤ cατ−2αb2n‖U
0

h‖2H1
0 (Ω) + cατ

−2α

( n∑
j=0

gj‖U
n−j
h ‖H1

0 (Ω)

)2

,

with gj = bj−1 − bj and b−1 = 2. Then by Young’s inequality for discrete convolution, cf. (3.9), we arrive at

1

N

N∑
n=1

( n∑
j=0

gj‖U
n−j
h ‖H1

0 (Ω)

)2

≤ 1

N

( N∑
n=0

gj

)2 N∑
n=0

‖Un−jh ‖2H1
0 (Ω) ≤

c

N + 1

N∑
n=0

‖Unh‖2H1
0 (Ω).

Meanwhile, by the Cauchy-Schwarz inequality, we have

N∑
n=1

b2n = (1− α)−2
N∑
n=1

(∫ n+1

n

s−α ds

)2

≤ c
∫ N+1

1

s−2α ds ≤


cN1−2α, if α < 1/2,

c logN, if α = 1/2,

c, if α > 1/2.

Consequently, there holds

1

N

N∑
n=1

‖∂̄ατ Unh −
m∑
j=1

(∇∂̄ατ Unh ,∇ψ̃j)ψ̃j‖2H1
0 (Ω) ≤ cT

(
`α,τ‖U

0

h‖2H1
0 (Ω) + τ−2α

r∑
j=m+1

λ̃j
)
,
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where the constant `α,τ is given by

`α,τ =


1 if α < 1/2,

log T
τ if α = 1/2,

τ−2α+1 if α > 1/2.

For α ≤ 1/2, the term involving the initial data U0
h is of higher order in comparison with the last term. Hence

the error for H1
0 (Ω) Galerkin POD (2.13) (without FDQs in the snapshots) can be bounded by

1

N

N∑
n=1

‖u(tn)− Unm‖2L2(Ω) ≤ cT
(
τ2α + h4`4h + `α,τ‖U0

h −
m∑
j=1

(∇U0
h ,∇ψ̃j)ψ̃j‖2H1

0 (Ω) + τ−2α
r∑

j=m+1

λ̃j

)
.

In comparison with the error estimate (3.6) with FDQs from Theorem 3.6, this estimate contains an extra factor
τ−2α and an approximation error of the initial data vh (within the POD basis Xm

h ). For the fractional order
α→ 1, the factor recovers that for the classical diffusion equation [17].

4. Numerical results

Now we present numerical results to verify the convergence theory in Section 3 and the efficiency of the
proposed Galerkin-L1-POD scheme.

4.1. Numerical results for one-dimensional examples

First we present numerical results for one-dimensional examples to verify the convergence analysis in Section
3. We consider the subdiffusion model in the following two cases:

(a) Ω = (0, 1), v = x(1− x) ∈ D(A), and f(x, t) = et cos(2πx) ∈W 2,∞(0, T ;L2(Ω));
(b) Ω = (0, 1), v = χ(0,1/2)(x) ∈ D(A1/4−ε) for ε ∈ (0, 1/4), and f(x, t) = et cos(2πx) ∈W 2,∞(0, T ;L2(Ω)).

In the computations, we divide the unit interval Ω into M equally spaced subintervals with a mesh size h = 1/M .
Likewise, we fix the time step size τ at τ = T/N .

First we examine the temporal convergence by setting T = 0.1 (the spatial convergence was already examined
in [12,13]). We take a small mesh size h = 10−3, so that the spatial discretization error is negligible. The exact
solution can be expressed in terms of the Mittag-Leffler function Eα,β(z), cf. (A.1), which can be evaluated
efficiently by an algorithm developed in [32]. The numerical results by the fully discrete scheme (2.5) are given
in Table 1. In the table, rate refers to the empirical rate when the time step size τ halves, and the numbers
in the bracket denote the theoretical predictions from Theorem 3.5. For cases (a) and (b), the empirical rate
is O(τα) and O(τα/4), respectively, which agree well with the theoretical ones. The convergence rate of the L1
scheme improves with the smoothness of the initial data v (while keeping the smooth right hand side f fixed)
and the increase of the fractional order α, since the solution regularity improves accordingly.

Table 1. The maximum error emax = max1≤n≤N ‖Unh − u(tn)‖L2(Ω) for initial data (a) and

(b) with T = 0.1, h = 10−3, τ = T/N .

α N 1000 2000 4000 8000 16000 32000 rate
0.35 (a) 2.67e-3 2.27e-3 1.90e-3 1.58e-3 1.29e-3 1.05e-3 ≈ 0.29 (0.35)

(b) 2.48e-2 2.41e-2 2.29e-2 2.15e-2 1.99e-2 1.82e-2 ≈ 0.10 (0.09)
0.5 (a) 9.26e-4 6.73e-4 4.86e-4 3.50e-4 2.51e-4 1.80e-4 ≈ 0.48 (0.50)

(b) 2.03e-2 1.81e-2 1.64e-2 1.50e-2 1.37e-2 1.26e-2 ≈ 0.13 (0.13)
0.75 (a) 1.82e-4 1.09e-4 6.43e-5 3.77e-5 2.17e-5 1.25e-5 ≈ 0.76 (0.75)

(b) 2.52e-2 2.20e-2 1.91e-2 1.64e-2 1.39e-2 1.15e-2 ≈ 0.21 (0.19)
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Next we illustrate the proposed Galerkin-L1-POD scheme, and the numerical results are given in Table 2 for
the choice T = 1 and N = 200. Here the average error e and the POD approximation error em are defined by

e =
1

N

N∑
n=1

‖Unh − u(tn)‖2L2(Ω) and em =
1

N

N∑
n=1

‖Unh − Unm‖2L2(Ω),

respectively. Like before, we use the notation ˜ and ̂ over em to denote H1
0 (Ω)- and L2(Ω)-POD basis,

respectively, and the subscript w to indicate that the snapshots do not contain FDQs. For example, ẽm and ẽmw
denote the error between the full Galerkin solution Unh and the solution of the Galerkin POD formulation with
m H1

0 (Ω) POD basis functions, with and without FDQs, respectively. For both cases (a) and (b), with three or
four POD basis functions, the POD approximation error falls below the error due to temporal discretization,
and the convergence is relatively independent of the fractional order α. The fast convergence of the Galerkin
POD scheme is also expected from the exponential decay of the eigenvalues of the correlation matrix, cf. Fig. 1.
Further, the inclusion of FDQs does not affect much the POD approximation error, with their errors within a
factor of ten, even though their presence improves the apparent theoretical convergence rates, cf. Theorem 3.6
and Remark 3.3. The effect seems to be compensated by the smaller eigenvalues, cf. Fig. 1. These observations
show the efficiency of the Galerkin POD scheme, which has only a degree of freedom of three or four at each
time level, compared with one thousand for the standard Galerkin FEM.

For case (b), the Galerkin POD scheme requires slightly more POD basis functions in order to reach the
same level of the accuracy. This is expected, since for nonsmooth data v, it can only be accurately described by
more Fourier modes, and all these modes persist in the dynamics due to the “slow” decay of subdiffusion. Hence
the solution manifold may exhibit richer structure than case (a), and consequently, more POD basis functions
are needed to accurately capture the dynamics. However, the eigenvalues in the nonsmooth case decays also
exponentially, cf. Fig. 1. Hence, the proposed scheme also works well with low regularity data.

The efficiency of the proposed scheme relies crucially on constructing “good” POD basis. To this end, we
present the first five POD basis functions for case (b) in Fig. 2. The H1

0 (Ω)- and L2(Ω) POD basis take
very different shapes: for the H1

0 (Ω) POD, the first basis function captures the singularity (caused by the
discontinuous initial data), whereas the higher POD modes are very smooth. In contrast, for the L2(Ω) POD,
all the first five POD basis functions contain singularities (in the middle of the interval as well as oscillations
around the end points). Namely, the H1

0 (Ω) POD seems to better aggregate the solution singularity (actually
into one single POD basis). Nonetheless, the L2(Ω) and H1

0 (Ω) POD-basis exhibit quite similar approximation
property, and thus can provide equally good approximations of the solution manifold, cf. Table 2.

Table 2. The numerical results of the Galerkin POD for cases (a) and (b) with T = 1,
h = 10−3, N = 200, and with m POD basis functions.

α case m e ẽm ẽmw êm êmw
(a) 3 1.82e-7 9.34e-12 3.03e-12 9.45e-12 3.02e-12

4 1.82e-7 4.72e-13 3.71e-14 4.83e-13 3.19e-14
0.3 (b) 3 3.83e-6 4.65e-6 3.59e-6 4.36e-6 3.60e-6

4 3.83e-6 2.73e-9 2.41e-9 2.73e-9 2.41e-9
(a) 3 4.46e-7 1.01e-10 6.25e-12 1.11e-10 6.22e-12

4 4.46e-7 5.33e-13 8.87e-14 5.41e-13 8.28e-14
0.5 (b) 3 1.70e-5 1.81e-5 6.70e-6 1.59e-5 7.08e-6

4 1.70e-5 3.67e-8 6.70e-9 3.43e-8 6.69e-9
(a) 3 2.89e-7 4.70e-10 1.35e-11 4.98e-10 1.34e-11

4 2.89e-7 1.33e-12 1.85e-13 1.29e-12 1.81e-13
0.7 (b) 4 2.80e-5 2.51e-5 1.83e-7 1.45e-5 1.78e-7

5 2.80e-5 2.49e-8 5.00e-9 2.42e-8 4.99e-9
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(c) case (a), α = 0.7
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(f) case (b), α = 0.7

Figure 1. The decay of eigenvalues of the correlation matrix in the 1D problem with α = 0.3,

0.5 and 0.7. Here, λ̃n, λ̃wn , λ̂n, and λ̂wn denote eigenvalues of correlation matrix for H1
0 (Ω) POD

basis with or without FDQs and L2(Ω) POD basis with or without FDQs, respectively.
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(b) α = 0.5, H1
0 (Ω) basis

x
0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

ψ1

ψ2

ψ3

ψ4

ψ5

(c) α = 0.7, H1
0 (Ω) basis
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(d) α = 0.3, L2(Ω) basis
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(e) α = 0.5, L2(Ω) basis
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(f) α = 0.7, L2(Ω) basis

Figure 2. The first five POD basis functions, in the H1
0 (Ω) and L2(Ω) norms for case (b),

with FDQs included in the basis construction.
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4.2. Numerical results for one two-dimensional example

Now we present numerical results for the following two-dimensional example:

(c) Ω = (−1, 1)2\([0, 1]×[−1, 0]), v(x1, x2) = x1(1+x1)(1−x1) sin(2πx2), f(x1, x2, t) = et cos(2πx1) sin(πx2) ∈
W 2,∞(0, T ;L2(Ω)), and T = 1.

In the computations, we divide the L-shaped domain Ω into a triangulation with a degree of freedom 104, and
fix the time step size τ at τ = T/200. A reentrant corner with an angle ω ∈ (π, 2π) induces a singularity
associated with the corresponding stationary Poisson’s problem [5]. In example (c), the angle ω = 3π/2, and
the reentrant corner gives rise to a singularity near the origin with a leading term of the form r2/3 sin(2θ/3) in
polar coordinates. Hence, we refine the mesh adaptively using the bisection rule [27, Section 4.1]. We compute
the reference solution on a more refined mesh with 2× 104 and τ = 1/1000.

The numerical results are shown in Table 3. The POD scheme exhibits a fast convergence, and the error
decreases steadily with the increase of the number m of POD basis functions. In particular, five or six POD
basis functions suffice to resolve the solution manifold to an accuracy O(10−9), which clearly shows the efficiency
of the Galerkin POD scheme, when compared with the standard Galerkin FEM. The fast convergence follows
also from the exponential decay of the eigenvalues of the correlation matrix, cf. Fig. 3. The decay rate of
the spectrum is almost identical for the L2(Ω) and H1(Ω) POD basis, and independent of the presence of the
FDQs. Hence, the presence of geometrical singularities in the domain does not influence the efficiency of the
Galerkin-L1-POD scheme. Interestingly, we observe that with the increase of the fractional order α, the error
increases slightly, which awaits further theoretical justification.

Table 3. The numerical results of the Galerkin POD for case (c), with T = 1, N = 200 and
with m POD basis functions.

α m e ẽm ẽmw êm êmw
0.3 5 7.67e-7 5.36e-10 3.33e-10 5.17e-10 3.32e-10

6 7.67e-7 6.40e-12 5.49e-12 6.39e-12 5.48e-12
0.5 5 4.75e-6 2.08e-8 8.23e-9 1.96e-8 8.18e-9

6 4.75e-6 1.62e-10 4.82e-11 1.44e-10 4.79e-11
0.7 6 1.01e-5 2.05e-8 1.36e-9 1.38e-8 1.27e-9

7 1.01e-5 9.11e-10 1.17e-10 6.09e-10 1.11e-10
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(c) α = 0.7

Figure 3. The decay of the eigenvalues of the correlation matrix for case (c) (2D problem on

an L-shaped domain), with α = 0.3, 0.5 and 0.7. Here λ̃n, λ̃wn , λ̂n, and λ̂wn denote eigenvalues
of correlation matrix for H1

0 (Ω) POD basis with or without FDQs and L2(Ω) POD basis with
or without FDQs, respectively.
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4.3. Numerical results for a perturbed problem

Last, we illustrate the proposed Galerkin POD scheme with a perturbed problem, where the snapshots are
generated using a problem setting different from the one of interest, as typically occurs in optimal control and
inverse problems. Let δn(x) = n(2 cosh2(nx))−1 be an approximate Dirac delta function.

(d) On the domain Ω is Ω = (0, 1)2, we consider the following problem:

∂αt u−∆u+ qu = f in Ω

with q(x1, x2) = 1 + cos(πx1) sin(2πx2), f(x1, x2, t) = δ2(x1 − 1
2 )δ2(x2 − 1

2 )ecos(t) and v(x1, x2) =
x1(1 − x1) sin(2πx2) and T = 1. However, the snapshots are generated using a perturbed source term

f̃(x1, x2, t) = δ10(x1 − 1
2 )δ10(x2 − 1

2 ).

In our computation, we divide the sides of the domain Ω into 100 equal subintervals, each of length 10−2, thus
dividing Ω into 104 small squares, and obtain a uniform triangulation by connecting parallel diagonals of each
small square. The time step size τ is fixed as τ = T/200.

Table 4. The numerical results of the Galerkin POD for case (d), with T = 1, N = 200 and
with m POD basis functions.

α m ẽm ẽmw êm êmw
0.3 4 4.63e-7 4.64e-7 4.63e-7 4.64e-7

5 3.32e-7 4.50e-7 3.21e-7 3.34e-7
0.5 4 4.47e-7 4.52e-7 4.47e-7 4.53e-7

5 3.50e-7 3.46e-7 3.50e-8 3.45e-7
0.4 4 4.12e-7 4.32e-7 4.12e-7 4.32e-7

5 3.81e-7 3.71e-7 3.80e-7 3.71e-7

Since the snapshots are generated from a perturbed problem, the error estimates in Theorem 3.6 do not apply
directly. Nonetheless, one can still observe a fast decay of the POD approximation error, and with four to five
POD basis functions, the error is already much smaller than the L1 time stepping, cf. Table 4, for both L2(Ω)-
and H1

0 (Ω)-POD basis and with/without FDQs. The high efficiency of the proposed scheme is attributed to the
intrinsic low-dimensionality of the solution manifold, which is fully captured by the snapshots generated from
the perturbed problem. This is also expected from the fast decay of the eigenvalues of the correlation matrix
(from the perturbed problem) in Fig. 4. The solution profiles and corresponding errors are shown in Fig. 5.
This example shows clearly the potential of the proposed approach for solving related inverse problems and
optimal control, where many analogous forward problems have to be solved.

5. Concluding remarks

In this work, we have developed an efficient Galerkin-L1-POD scheme for solving the subdiffusion problem,
by coupling the Galerkin finite element method, L1 time stepping and proper orthogonal decomposition. It
realizes the computational efficiency by constructing an effective reduced-order model using POD, often with a
very small degree of freedom. We provided a complete error analysis of the scheme, and derived optimal error
estimates due to spatial discretization, temporal discretization and POD approximation. This is achieved by
developing a novel energy argument for L1 time stepping. The extensive numerical experiments fully confirmed
the convergence analysis and the efficiency and robustness of the scheme.

The work represents only a first step towards effective model reduction strategies for fractional differential
equations. The choice of the three components in the proposed scheme is not unique. Alternatively, one may
employ finite difference methods or spectral methods instead of the finite element method, and convolution
quadrature type schemes instead of the L1 time scheme. The overall framework extends straightforwardly to
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(c) α = 0.7

Figure 4. The decay of the eigenvalues of the correlation matrix for case (d) with α = 0.3,

0.5 and 0.7. Here λ̃n, λ̃wn , λ̂n, and λ̂wn denote eigenvalues of correlation matrix for H1
0 (Ω) POD

basis with or without FDQs and L2(Ω) POD basis with or without FDQs, respectively.

(a) exact solution, α = 0.3 (b) POD solution, α = 0.3 (c) error, α = 0.3

(d) exact solution, α = 0.5 (e) POD solution, α = 0.5 (f) error, α = 0.5

(g) exact solution, α = 0.7 (h) POD solution, α = 0.7 (i) error, α = 0.7

Figure 5. Exact and numerical solutions at T = 1 for case (d), where the POD solutions are
obtained using H1

0 (Ω) POD basis with the FDQs.
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these alternative choices, even though the convergence analysis will differ. Further, it is of much interest to
extend the proposed scheme to more complex models, e.g., the multi-term model and the diffusion-wave model.
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Appendix A. Regularity theory for problem (1.1)

Now we describe temporal regularity results of problem (1.1) which plays an important role in the convergence
analysis. Let {(λj , ϕj)}∞j=1 be the eigenvalue pairs of the negative Laplacian A = −∆ with a homogeneous

Dirichlet boundary condition, where the set {ϕj}∞j=1 forms an orthonormal basis in L2(Ω). Then by the
standard separation of variable technique, we deduce that the solution u can be represented by

u(t) = E(t)v +

∫ t

0

Ē(t− s)f(s)ds,

where the solution operators E(t) and Ē(t) are given by

E(t)ψ =

∞∑
j=1

Eα,1(−λjtα)(ψ,ϕj)ϕj and Ē(t)ψ =

∞∑
j=1

tα−1Eα,α(−λjtα)(ψ,ϕj)ϕj , (A.1)

respectively. Here the Mittag-Leffler function Eα,β(z), α > 0, β ∈ R, is defined by [15, pp. 42] Eα,β(z) =∑∞
k=0

zk

Γ(kα+β) . The following relations hold (see [31, Lemma 3.2] and [15, pp. 43, eq. (1.8.28)] for proofs).

Lemma A.1. Let α ∈ (0, 1), and β ∈ R. The Mittag-Leffler function Eα,β(z) satisfies for m ≥ 1

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α+1−m(−λtα) t > 0,

and the following uniform bound on the negative real axis R− holds

Eα,β(z) ≤ c(1 + |z|)−1 ∀z ∈ R−.

Now we can state the temporal regularity for the homogeneous problem.

Theorem A.1. If v ∈ D(Aσ) and f ≡ 0, then

‖∂mt u‖L2(Ω) ≤ ctσα−m‖Aσv‖L2(Ω), (A.2)

where if σ ∈ (0, 1], m ≥ 1, and if σ = 0, 0 ≤ m ≤ 2.

Proof. The case σ = 0 has been shown [31, Corollary 2.6]. For σ ∈ (0, 1], by Lemma A.1, we have

‖∂mt u‖2L2(Ω) = ‖
∞∑
j=1

dm

dtm
Eα,1(−λjtα)(v, ϕj)ϕj‖2L2(Ω) =

∞∑
j=1

λ2
j t

2α−2mEα,α−m+1(−λjtα)2(v, ϕj)
2

=

∞∑
j=1

(λjt
α)2−2σt2σα−2mEα,α−m+1(−λjtα)2(v, ϕj)

2λ2σ
j

≤ ct2σα−2m sup
j

(λjt
α)2−2σ

(1 + λjtα)2

∞∑
j=1

(v, ϕj)
2λ2σ
j ≤ ct2σα−2m‖Aσv‖2L2(Ω),
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where the last inequality follows from the inequality supj (λjt
α)2−2σ/(1 + λjt

α)2 ≤ c. �

Next we consider the inhomogeneous problem. We shall need the following estimate on Ē(t)

Lemma A.2. For any t > 0, we have for χ ∈ L2(Ω) and m ≥ 0

‖∂mt Ē(t)χ‖L2(Ω) ≤ ctα−m−1‖χ‖L2(Ω).

Proof. The definition of the operator Ē in (A.1) and Lemma A.1 yield

‖∂mt Ē(t)χ‖2L2(Ω) =

∞∑
j=1

|tα−m−1Eα,α−m(−λjtα)|2|(χ, ϕj)|2

≤ ct2α−2m−2
∞∑
j=1

|(χ, ϕj)|2 = ct2α−2m−2‖χ‖2L2(Ω),

which completes the proof of the lemma. �

Now we can state the temporal regularity result for the inhomogeneous problem.

Theorem A.2. If v ≡ 0 and f ∈Wm,∞(0, T ;L2(Ω)) with some m ∈ [0, 2], then there holds

‖∂mt u‖L2(Ω) ≤ cT tα−m‖f‖Wm,∞(0,T ;L2(Ω)), 0 ≤ m ≤ 2. (A.3)

Proof. Using the following convolution relation [22, Lemma 5.2]

t(f ∗ g)′ = f ∗ g + (tf ′) ∗ g + f ∗ (tg′)

and Lemma A.2, we deduce that for t ∈ (0, T ]

tm‖∂mt u‖L2(Ω) ≤ c
∑

p+q≤m

∫ t

0

‖(t− s)p∂pt Ē(t− s)(sqf (m)(s))‖L2(Ω) ds

≤ c
∑

p+q≤m

∫ t

0

(t− s)α−1sq‖f (m)(s))‖L2(Ω) ds ≤ c‖f‖Wm,∞(0,T ;L2(Ω))

∑
p+q≤m

tα+q.

Since for t ∈ (0, T ], we have
∑
p+q≤m t

α+q−m ≤ cT tα−m, the desired assertion follows. �

Remark A.1. Theorems A.1 and A.2 show the limited smoothing property of the subdiffusion model (1.1):
for the homogeneous problem with v ∈ D(A), the first order derivative in time t of the solution u exhibits a
singularity of the form tα−1; and for the inhomogeneous problem with f ∈ W 2,∞(0, T ;L2(Ω)), the first-order
derivative exhibits a similar singularity, despite the smoothness of f in time.
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