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ABSTRACT

The increasing efficiency of the inorganic-organic hybrid halides has revolutionised photovoltaic research. Despite this rapid

progress, the significant issues of poor stability and toxicity have yet to be suitably overcome. In this article, we use Density

Functional Theory to examine (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), an alternative lead-based hybrid inorganic-organic solar

absorber based on a photoactive organic cation. Our results demonstrate that optical properties suitable for photovoltaic

applications, in addition to spatial electron-hole separation, are possible but efficient charge transport may be a limiting factor.

Introduction

The total energy consumption of the EU is set to double by 2050, and so the necessary expansion of renewable energy resources

has become readily apparent – the demand for photovoltaic cells has increased rapidly over the last two decades.1, 2 Currently,

the photovoltaic market is dominated by crystalline silicon wafer solar cells, but with high energetic and monetary cost for

producing such modules, there is a pressing need to develop materials that can provide equally efficient cells yet a lower

manufacturing cost and pay-back time.3, 4 While thin film materials, such as Cu(InGa)Se2, have seen high power conversion

efficiencies (PCEs) in the laboratory,5 these efforts have been hampered by recombination losses6 and the relatively low

abundance of indium and gallium, leading to their corresponding high costs.1

A promising family of materials in the field of earth abundant thin film solar cells are the methylammonium lead halides,

CH3NH3PbX3 (X = Cl, Br, I), which after being introduced as photoabsorbers in dye-sensitized solar cells (DSSCs) in 2009,7

have seen enormous interest from the scientific community.8–10 With reported PCEs nearing or exceeding 20% (comparable to

records for other thin film cells)5, 11 in cells made using solution-based synthesis methods,12, 13 in addition to other favourable

properties, such as long carrier diffusion lengths14, 15 and defect self-regulation,16 the future development of high efficiency,



a)

b)

Figure 1. (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), with solvent molecules removed for clarity and viewed along: a) a and b) a
single [Pb2I6]2 – nanowire, showing the DPNDI network. Carbon atoms are marked in black, hydrogen in pink, oxygen in red,
nitrogen in blue, iodine in purple and lead in grey

easily processable modules looks promising. There are, however, still significant obstacles to overcome - particularly their

recently revealed fundamental thermodynamic instability17 and the toxicity of lead.9 However, recent work has shown that the

environmental impact of lead leaching from a single broken module may not be high,18 and that, in effect, lead’s ecotoxicity is

in fact lower than that of tin,19 which is the primary target of efforts made to develop stable lead-free cells,20 which have much

lower PCEs than their lead counterparts.

In this work, we intend to move beyond methylammonium and investigate another hybrid lead halide compound, recently

discovered by Liu et al.: (Pb2I6) · (H2DPNDI) · (H2O) · (NMP) (DPNDI: N,N’-di(4-pyridyl)-1,4,5,8-napthalene diimide; NMP:

N-methylpyrrolidin-2-one).21 The structure of the black crystal they produced is based around 1D [Pb2I6]2 – polyanions

surrounded by an interwoven network of protonated DPNDI ligands, as seen in Figure 1, both of which are linked through

hydrogen bonding to each other and the solvent molecules. As [H2DPNDI]2+ is much larger than methylammonium, the

dimensionality of the inorganic framework is reduced from the 3D perovskite structure to 1D lead iodide chains, a result

consistent with the iodobismuthates.22 The effect of bulkier organic cations has been recently examined in alkylammonium

lead halides, with cells showing improved stability, however the lower connectivity of the lead iodide octahedra compared to

CH3NH3PbX3 has lead to larger band gaps and low efficiencies.23, 24 Photoactive organic cations have been less well explored,

with the only paper investigating tropylium lead iodide, and producing a band gap of 1.97eV, which is outside of the range for

high efficiency solar absorption.25

The lowering of dimensionality when compared to the methylammonium lead halides, and corresponding structure,
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is also consistent with a related hybrid lead iodide, MVPb2I6 (MV2+: N,N’-dimethyl-4,4’-bipyridinium, also known as

methylviologen). Both exhibit the same distorted [Pb2I6]2 – unit, hypothesised to be due to the relatively strong dispersion

interactions between the iodine atoms and the π bonding system on the organic linkers.21, 26 Equally, the lead iodide chains are

separated by another layer of organic ligands to maximise the number of nearest neighbour iodine atoms to each π system.

Of particular interest, however, was the observation of a photocurrent enabled by charge transfer between the organic and

inorganic networks, allowed by the relative energies offset between the valence band of [Pb2I6]2 – and the methylviologen

LUMO and confirmed by experiment and Density Functional Theory (DFT) calculations.27, 28 The resulting optical absorption

band was observed between 2.0 and 2.6eV, which is above the optimal absorption of 1.1 - 1.6eV for an efficient solar

cell.1 With the protonated DPNDI ligand expected to have a lower energy LUMO than methylviologen, however, and the

(Pb2I6) · (H2DPNDI) · (H2O) · (NMP) crystal observed to absorb across the entire visible spectrum,21 the photovoltaic possibility

of such an absorber is strongly worth investigating further. In this work, we will use ab initio DFT calculations to investigate

this system and critically assess its suitability as a solar absorber.

Methods

All calculations were performed using periodic DFT using the Vienna ab initio Simulation Package (VASP).29–32 Three different

functionals were used to examine this system: PBEsol,33 which revises the Generalised Gradient Approximation (GGA) PBE34

functional for solids; PBE0,35 a hybrid density functional which encompasses 25% exact Hartree-Fock (HF) exchange, together

with 75% exchange and the correlation energies from PBE34 and HSE06,36 a screened modification to PBE0, which uses HF

exchange only at short ranges. PBEsol has been shown to provide accurate lattice parameters for solid state systems, particularly

hybrid halide perovskites,37–39 while HSE06 gives both accurate lattice parameters and band energies in comparison with

experiment.40–42 The interactions between core and valence electrons in the system were described with the scalar relativistic

projector-augmented wave (PAW) method.43, 44 In all examples, a cutoff energy of 450eV and, with a unit cell containing 146

atoms and 11.361 × 13.250 × 15.572Å in size, a Γ-centered 2×2×2 k-mesh were found to be sufficient. Calculations were

converged once forces on each atom did not exceed 0.01eVÅ−1. For the pseudopotential treatment of Pb, 6s, 6p and 5d orbitals

were considered valence.

In addition, while electrostatic forces hold the [H2DPNDI]2+ and [Pb2I6]2 – frameworks together, the solvent molecules

in the crystal are bound solely by intramolecular dispersion forces and hydrogen bonding, which most GGA functionals are

unable to correctly describe. To account for this, the D3 van der Waals correction method produced by Grimme et al.45 was

used, and the results (denoted +VdW) compared with the uncorrected calculations. Finally, as Pb and I are both heavy atoms,

the contribution of spin-orbit coupling to the electronic structure is significant, and, indeed, it has been shown that accounting

for spin-orbit coupling is crucial to attain accurate energy values for hybrid halide perovskites.46 As such, PBEsol calculations

with a spin-orbit perturbation included were performed to assess the strength of this interaction in this system (denoted +SOC).
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Table 1. Calculated lattice parameters of (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), with experimental error in brackets

a/Å b/Å c/Å α/◦ β /◦ γ/◦ Volume Å3

PBEsol 11.370 13.260 15.619 66.91 78.72 75.15 2085.60
PBEsol+VdW 11.054 12.728 15.325 68.43 77.26 75.27 1937.28
PBEsol+SOC 11.370 13.236 15.596 66.97 78.84 75.86 2082.05
PBEsol+VdW+SOC 11.090 12.795 15.360 68.19 77.35 75.15 1919.92
PBE+VdW 11.269 13.077 15.585 67.69 77.83 75.83 2037.92
Experiment21 11.361(2) 13.250(3) 15.572(3) 66.81(3) 78.10(3) 74.92(3) 2066.24

Results and Discussion

Table 1 shows a comparison of the lattice parameters obtained from each of the relaxation calculations performed. Despite the

lack of connectivity, PBEsol gives lattice parameters with the best correlation to experimental values given by Liu et al.:21

0.30% or less difference from experiment for each of the lattice parameters, and 0.80% or less for the cell angles - leading to a

overestimation in cell volume of less than 1%. As such, the addition of the van der Waals correction (PBEsol+VdW) means

that the lattice parameters were underestimated by 1 – 4%, as the networks are held closer together than expected. It appears

that PBEsol accounts for some of the effects of dispersion forces on the structure, as shown by the improvement in cell volume

(from 6.2% underestimation with PBEsol+VdW to 1.4%) on using PBE as the base functional (PBE+VdW), however even

then the cell parameters still show greater variance from experiment than with PBEsol alone. Adding spin orbit coupling to

PBEsol (PBEsol+SOC) results in negligible change in cell lengths compared to experiment (less than ±0.16%), and a small

improvement in cell volume, but distortions of close to 1% in cell angles, while including both spin orbit coupling and the van

der Waals correction results in a universal, but also negligble (no more than ±0.56%), improvement on PBEsol+VdW, and an

even smaller cell volume. From this, the relaxed PBEsol unit cell was found to be suitable as the starting point for the HSE06

electronic calculations, as in the absence of thermal effects present in the experimental structure, some deviation is expected.

Figure 2 displays the calculated Density of States (DOS) diagrams, decomposed into total and partial density of states, for

the PBEsol and PBEsol+SOC relaxations. Most significantly, both show that the top of the valence band is dominated by the

inorganic [Pb2I6]2 – network (lead s states and iodine p), while the conduction band is wholly situated on the organic ligands -

predominantly carbon, oxygen and nitrogen p states. This suggests that this compound exhibits spatial charge separation on

photoirraditation: in a direct transition, electrons will transfer onto the organic network, while the holes remain on the lead

iodide nanowires. This observation is supported by plotting the partial charge density maps for the valence band maximum

(VBM) and conduction band minimum (CBM) seen in Figure 3, which show that the valence band is distinctly comprised of

the lead s and iodine p orbitals, while the conduction band sits firmly on the organic ligand. A partial charge calculation on

a 30Å×30Å×30Åbox containing a single DPNDI molecule confirmed that the conduction band minimum shown matches

the LUMO of DPNDI, as predicted by Liu et al.21 In addition, charge separation of electrons onto the organic DPNDI ligand

correlates with the observed electron spin resonance pattern of a DPNDI radical. Otherwise, there is little qualitative difference

between PBEsol and PBEsol+SOC and the spin-orbit effect on the relative energy levels, including the Pb and I p states, is
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Figure 2. Total and Partial Density of States diagrams, using a) PBEsol and b) PBEsol+SOC; individual partial DoS are
labelled in legends, Energy = 0eV is set to valence band maximum and gaussian smearing of 0.2eV was used

small. The VdW corrected calculations showed very similar DOS plots to the corresponding uncorrected calculation in Figure

2 and are shown in Supplementary Figures S1 – S3.

To further assess this compound’s capability as an absorber, the electronic band structure was calculated with each of

the PBEsol-based methods, and in addition using hybrid functionals PBE0 and HSE06, using the relaxed PBEsol structure.

The resulting diagrams are shown in Figure 4. The D3 correction was observed to have little energetic effect on the band

structures and so those diagrams are shown in Supplementary Figures S4 – S6. Again, there is little qualitative difference

between the diagrams other than the doubled number of bands in the non-collinear spin-orbit coupled calculation, indicating a

consistent description of the electronic structure. In all diagrams, the organic-based conduction band shows only very small

dispersion, indicating a high electron effective mass; these were calculated using the band curvatures from the HSE06 result as

8.33m0 and 1.96m0 for the conduction and valence band respectively. These values are much higher than the equivalents for

methylammonium lead iodide obtained using DFT (0.23m0 and 0.29m0 respectively),47 the difference likely due to the lower

connectivity of [Pb2I6]2 – compared to the lead iodide perovskite, which is enforced by the larger organic cation hindering the

orbital overlap. However, the charge separation from the lead and iodide-based valence band may strongly reduce potential

recombination losses expected from low conductivity.48 Additionally, it is clear that there are significant differences in the

predicted indirect band gap energies between the methods used, also displayed in Table 2. PBEsol gives a small fundamental
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a)
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Figure 3. Plots of partial charge density at band edges: a) Valence band; b) Conduction band; viewed along a, with electron
density marked in yellow
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Figure 4. Band structure diagrams, using a) PBEsol, b) PBEsol+SOC, c) HSE06, and d) PBE0; valence band marked in blue,
conduction band marked in orange, Energy = 0eV is set to valence band maximum

band gap of 0.60eV, which is reduced further on introduction of spin-orbit effects to 0.44eV. These values would suggest a band

gap too low for effective use in a photovoltaic cell, yet GGA DFT methods are known to underestimate band gaps, sometimes

severely.49 Moving to the hybrid functionals opens up the band gaps to within the ideal 1.0 – 1.6 eV range: HSE06 gives an

indirect fundamental band gap of 1.26eV while PBE0 gives 1.94eV. The large difference between these two functionals is

likely due to the significant effect of the screening on the orbital energies – and, as mentioned above, HSE06 has been shown to

give more accurate results for solid semiconductors.40–42 We would expect a similarly small spin-orbit effect with these two

hybrid functionals as with PBEsol, and a decrease in band gap of 0.16eV would maintain a hypothetical HSE06+SOC band gap

within the target range.

To further investigate the optical behaviour of this system, the optical absorption was calculated; however, due to the large

size of the system, such a calculation was only possible at the PBEsol level. The resulting plot of the attenuation coefficient

α against energy is shown in Supplementary Figure S7. From this, it is predicted that the compound should demonstrate

moderately strong absorption (∼104 cm−1) just above the fundamental band gap, which, in comparison to the HSE06 result,
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would mean absorption within the optimal 1.0 – 1.5eV range. This supports the experimental absorption measurements by Liu

et al. that demonstrated that the compound does absorb within the visible electromagnetic range.21

In addition, the thermodynamic stability of the compound was assessed in comparison to the MAPI’s decomposition

pathway. As noted above, theoretical study by Zhang et al.17 and Ganose et al.50 has shown that MAPI is expected to be

thermodynamically unstable, with a reaction enthalpy of –0.09eV, compared to CH3NH3I and PbI2, the commonly observed

byproducts of MAPI degradation. As such, we have probed the thermodynamics of the analogous reaction for this compound:

(Pb2I6) ·(H2DPNDI) ·(H2O) ·(NMP)−−→ (H2DPNDI)I2 ·H2O+PbI2 +NMP (1)

Utilising structures from the literature,21, 51, 52 and relaxing them with the PBEsol functional, the enthalpy of reaction 1 was

found to be endothermic, with ∆rH =+2.03eV, indicating that this compound does not have a similar intrinsic instability, and

should be more resistant to decomposition than MAPI.

The structure-property relationships of similar dense hybrid inorganic-organic materials are still relatively unexplored, but

it is evident from the study of this compound, and those on MVPb2I6, that further exploration of photoactive organic cations in

hybrid photovoltaic materials could lead to very useful device properties like efficient charge separation and suitable electronic

band gaps, together with improved stability.

Table 2. Calculated band gap values

Functional Indirect band gap/eV Direct band gap at VBM/eV
PBEsol 0.60 0.62
PBEsol+SOC 0.44 0.47
HSE06 1.26 1.27
PBE0 1.94 1.95

Conclusion

The crystal and electronic structures of the hybrid inorganic-organic lead iodide (Pb2I6) · (H2DPNDI) · (H2O) · (NMP) have been

examined using a variety of DFT methods, with a focus on assessing its capability as a photovoltaic material. The compound

was shown to have an indirect band gap of 1.26eV with the hybrid HSE06 functional, and spatial valence band and conduction

band separation due to the inclusion of a photoactive organic cation, which may lead to the reduction of recombination losses.

This comes at the cost of the large size of the cation leading to lower [Pb2I6]2 – connectivity and corresponding high effective

carrier masses. It is clear that photoactive organic cations, like DPNDI, can allow suitable band gaps for photovoltaic devices,

hence further effort into producing such hybrid materials without sacrificing connectivity, and resultant mobility, is highly

recommended.
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