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Abstract

The presence of unpatched, exploitable vulnerabilities in software is a prerequisite for many forms of

cyberattack. Because of the almost inevitable discovery of a vulnerability and creation of an exploit for

all types of software, multiple layers of security are usually used to protect vital systems from com-

promise. Accordingly, attackers seeking to access protected systems must circumvent all of these

layers. Resource- and budget-constrained defenders must choose when to execute actions such as

patching, monitoring and cleaning infected systems in order to best protect their networks. Similarly,

attackers must also decide when to attempt to penetrate a system and which exploit to use when

doing so. We present an approach to modelling computer networks and vulnerabilities that can be

used to find the optimal allocation of time to different system defence tasks. The vulnerabilities, state

of the system and actions by the attacker and defender are used to build partially observable stochas-

tic games. These games capture the uncertainty about the current state of the system and the uncer-

tainty about the future. The solution to these games is a policy, which indicates the optimal actions to

take for a given belief about the current state of the system. We demonstrate this approach using sev-

eral different network configurations and types of player. We consider a trade-off for the system

administrator, where they must allocate their time to performing either security-related tasks or per-

forming other required non-security tasks. The results presented highlight that, with the requirement

for other tasks to be performed, following the optimal policy means spending time on only the most

essential security-related tasks, while the majority of time is spent on non-security tasks.
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Introduction

System administrators or security managers have the challenging

task of maintaining an organization’s defence of its networks against

attack. These networks consist of a number of machines, running

various pieces of software, which provide the organization’s busi-

ness services. Vulnerabilities are almost inevitably discovered for

every piece of software, and these vulnerabilities can be exploited by

attackers to gain access to a system.

To defend against these attacks, system administrators can take

a number of actions, including monitoring the systems and network

for intruders, applying patches to the systems to stop possible ex-

ploits, and restoring systems that have been compromised.

However, each of these actions takes time—a limited resource—and

system administrators often have other tasks to complete in addition

to those related to security. While system administrators must en-

sure the security of their systems, they are unable to neglect these

other tasks, which presents the requirement for them to efficiently

distribute their time between these two kinds of tasks.

In this article, we present an approach to calculating optimal

time allocation policies for network defence. That is, for a given net-

work of systems and a belief about the current state of the network,

what are the optimal actions to spend time on?

Our approach allows us to capture different network configur-

ations and types of attackers and defenders. These are then used to

create a partially observable stochastic game (POSG) which is solved

to find an approximate solution to the optimal policy which indi-

cates the optimal action to take for any given belief about the cur-

rent state. We demonstrate the approach using different scenarios
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which have different network configurations, players, time con-

straints and costs.

The remainder of this article is divided as follows. Section 2 gives

an overview of the aspects of cybersecurity relevant to the rest of the

article, and gives an introduction to our approach. This is followed by

Section 3, which is a discussion of related work. Section 4 contains a

brief introduction to the methods used model problems about calcu-

lating the optimal actions to take, and presents our approach to solv-

ing them. Then, Section 5 describes how we represent the specific

problem of time allocation for network defence and gives details

about the implementation. Section 6 presents the different scenarios

we use to demonstrate this approach and Section 7 presents the results

of these scenarios. Next, Section 8 contains a discussion about our ap-

proach and its applicability, and finally, we conclude with Section 9.

Background

In this section, we present an overview of the aspects of cybersecurity

relevant to the rest of the article and give the foundations for our model.

Underlying the model presented here is the concept of the vulner-

ability lifecycle, which describes the process in which vulnerabilities

are created, discovered, exploited and patched within a piece of soft-

ware. Figure 1 show the various stages of the lifecycle. A vulnerabil-

ity is created in a piece of code due to a mistake during software

development.

What happens next depends on who discovers the vulnerability.

It may be discovered by attackers, who could develop an exploit for

it, or by security researchers or the software company itself, who

might publically disclose the existence of the vulnerability or quickly

release a patch. Exploits can still be developed for vulnerabilities

that have been disclosed or patched. It is also possible that an ex-

ploit discovered by attackers may go undisclosed and unpatched for

a significant amount of time.

Once an exploit is developed, a system running the vulnerable

software can potentially be compromised by attackers until a patch

is created and then applied to the system. In Fig. 1, the grey boxes

indicate states where systems are vulnerable to the exploit.

In this article, we consider a subset of the states of the vulnerabil-

ity lifecyle. These are shown with dotted borders in Fig. 1. We only

model the states where an exploit has been created, before or after

disclosure; we ignore the states where an exploit has not been cre-

ated, or where a patch is released before an exploit is developed.

Systems usually run multiple pieces of software and are typically

connected to other devices. Therefore, we consider a network that

consists of any number of interconnected devices in a hierarchical

structure. The network consists of a single external source, which

may be connected to any number of devices, and is the location

from which each attack is launched. Each different device contains

different information, which can be of differing value to defenders

and attackers. The connections of devices link the external network

to the devices containing data. Attacks occur in the network by ex-

ploiting a vulnerability in a piece of software at one of the connected

nodes in the network, with each newly compromised device giving

the attacker access to data or other network devices.

We can further express the network diagram in terms of a dir-

ected attack graph with vulnerabilities applied. An example of this

can be seen in Fig. 2.

In the example, we can see that while the initial stages of an at-

tack can compromise either Device 1 or 2, the rest of the attack

must compromise both Devices 3 and 4 to succeed. In this case, we

consider a state of vulnerabilities in the network such that Device 5,

has no currently unpatched software vulnerabilities, which means

that while it is connected in the network and the data store is avail-

able to be reached by it, there is no current logical connection in the

attack graph for the external attacker to be able to compromise. If a

vulnerability was to be discovered in a piece of software running on

Device 5, then there would then exists an attack path between

Devices 3 and 5, which would give the attacker a method to gain

access.

Alternatively, if the defender were to patch vulnerability 6 on

Device 4, then the attacker would have no viable attack paths, since

there would be no devices that are connected directly to the data

source that have a vulnerability for the attacker to exploit in order to

perform a successful attack. In this case, an attacker would then have

to wait for a new vulnerability to be found and exploitable on

either Device 3 or 4 for them to be able to launch a fully successful

attack.

Player strategies
The model presented in this work considers the interaction between

two players, a defender and an attacker. The defender is the lead of

a team of system administrators, who have the task of maintaining

the security of the system. The attacker attempts to breach the

defences of the system in order to exfiltrate some critical data.

We consider the attacker to be a well-resourced, determined

player. In this way, we consider that the attacker will not give up

until they have managed to successfully steal the data held on the

system they are attacking.

In this model, we consider that each of the players has some finite

resources to perform actions at each stage of the game. At each stage,

the players must make the best possible move based on the

information they have about the state of the network and the

vulnerabilities.

For the defender, this represents an allocation of time to dedicate

certain members of the system administration team to a number of

different tasks. The defender is constrained by the length of time

that each task takes and the total number of hours available among

all members of the administration team.

Figure 1. States in the vulnerability lifecycle. The grey states are ones where a

system can be compromised by this vulnerability. The states with dashed

borders are the states we model in this article.
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Unlike the defender, who is constrained by the time the system

administrators are available to work, the attacker has no such con-

straint. However, we consider that the attacker is able to perform

only a single action in their turn.

Defender’s actions
A system administrator can be expected on a day to day to basis per-

form one of three tasks related to security, monitor, patch and re-

cover. However, we consider that a system administrator is not just

assigned to security tasks, but have a variety of tasks that must be

performed to maintain the performance of the system. As such, we

factor in an expected level of maintenance that should be performed

on the system or other non-security related tasks.

Monitor

Monitoring is the action the defender uses to discover about the

state of the network. A defender has no intuitive knowledge about

the state of the system, in so far that they are unable to tell if a de-

vice has been compromised. The defender can choose to monitor the

activity of devices to see if there has been any activity that would

cause them to believe that the device has been compromised.

Patch

Should a vulnerability exist in a piece of software, and a patch has

been developed for the vulnerability, then the defender can choose

to take some time to apply the patch. When the defender chooses to

patch the system, the defender removes the option for the attacker

to use an exploit for that vulnerability. This means that should the

attacker attempt to attack via that exploit, they would fail to com-

promise the device.

Recover

Even if a patch has been developed for a vulnerability, if a device

susceptible to that vulnerability has become compromised, then the

attacker is still able to propagate an attack to the next step. In order

for the defender to regain control of the device, they need to recover

the system to a state where they are confident that it is not

compromised.

It should be noted that recovering a device before applying a

patch is not effective as the exploit the attacker used to initially com-

promise the device still exists and is still a viable attack.

Additionally, if there is another vulnerability that can be exploited

on the same device, patching one will not necessarily stop the at-

tacker from compromising the device.

Unrelated tasks

We consider that outside of the security tasks, a system administra-

tor has other tasks related to maintaining the system that need to be

performed. As such, the model defines the concept of an unrelated

task, which stands for any of these other tasks.

Other tasks are specified in this model, to represent that when a

network is under attack, then the resources of the defender are more

likely to be focused on the defence of the network as opposed to

regular tasks. However under normal conditions, allocating all the

available administrator time to security will mean that other tasks

would go unfulfilled, and would constitute a waste of resources.

This is such that we define a cost to the defender for allocating too

few resources to unrelated tasks, such that under normal operation

the defender would not benefit from allocating more administrator

time to defence over system performance and maintenance.

Attacker’s actions
The attacker in this model has only two different actions. They can

do nothing, or they can launch an attack using an available exploit.

Exploit

Once an exploit has been developed, the attacker can act to use the

exploit to advance through the system towards the data that they

aim to steal. In this model, an attacker may only use a single attack

at time, even if there are multiple exploits available.

No action

The attacker can choose to take no action on their turn, which in

turn requires no use of resources by the attacker. This action will

typically be taken by the attacker when they do not want to use an

exploit or have no remaining usable exploits.

Related work

One of the critical components in the model provided in this work is

the vulnerability lifecycle—the representation of the development

exploitation and patching of software vulnerabilities. Schneier [1]

provides an initial look at the ‘window of exposure’ that is central

to the concept of the vulnerability lifecycle. Frei et al. [2] provide a

more formal overview of the vulnerability lifecycle, considering pre-

dominantly the risk and the groups that know specifically of the

risk. They specifically look at risk exposure, looking at the gap be-

tween exposure of the vulnerability and patch availability in more

than 14 000 published vulnerabilities.

Figure 2. A sample attack graph.
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The work by Beres et al. [3] expands on the framework for the

vulnerability lifecycle, considering additional steps for completeness.

While the work presents all of the stages of the lifecycle it focuses on

the ‘risk exposure window’, which is considered the time between

public disclosure of the vulnerability and an organization consider-

ing that the vulnerability is no longer a risk.

Ioannidis et al. [4] develop a model examining the trade-offs pre-

sent in the deployment of software patches. The authors present a

model for finding the optimal frequency for the deployment of

patches, considering the costly nature of implementing patches,

weighed against the security risks of not applying them. This work

lays the foundations for understanding the trade-offs in acting pro-

actively by applying patches against delaying deployment and

increasing the risk of being vulnerable to an attack and having to de-

fend reactively.

Arora et al. [5] discuss the notion of a socially optimal planner,

who acts to optimize the behaviours of vendors developing patches

for vulnerabilities. This acts critically with the vulnerability lifecycle

presented in this work to reduce the probability of transition to a

state where there is a disclosed vulnerability with no available patch,

which is very detrimental to the defender’s ability to effectively de-

fend their system. Further work by Arora identifies other pressures

that may influence their ability and willingness to release patches ef-

ficiently, such as competition [6] and influence of disclosure [7].

Attack graphs are a prominent method of representing the pro-

cess by which attackers attempt to break into a system. A number of

different forms of attack graph have been created focusing on differ-

ent methods to represent the attack. One form of attack graph repre-

sentation is a privilege-based model, such as those presented by

Dacier et al. [8], in which the states of the model represent a set of

privileges that the attacker has gained with the steps of the attack

taken to that point. Ortalo et al. [9] extend the work to consider an

experimental setting consisting of major Unix vulnerabilities.

A more common representation of the atomic states in an attack

graph is to represent each stage as a security property violation. The

fundamentals of security property violation based attack graphs

were outlined by Phillips and Swiler [10], where each stage repre-

sents an event that occurs which is required for the compromise of

the device. This approach stems from the initial Insecurity Flow

Model presented by Moskowitz and Kane [11], where they consider

the spread of an insecurity from an attacker’s initial location to a

store of data to be protected.

Attack graphs are commonly deployed to perform a security ana-

lysis on a network, implementing the structures of networks and at-

tacks in order to better understand weaknesses within the given

space [12–16].

One of the main implementations of Bayesian attack graphs, is to

provide cost-benefit analysis on the adoption of cybersecurity

solutions, as in [17–19]. This has been further expanded to consider

complete risk assessments of systems in order to more accurately repre-

sent the problem of optimal investments in cyber defences [20–22].

In work by Dantu et al. [23], the authors define a model of risk

management using attack graphs with behavioural qualities to cre-

ate risk management strategies. This work considers the difference

in attacker profile and preferences and models the qualities that the

attacker has creating a detailed assessment of the risks associated

with different classes of attacker. The work was extended to predict

attacker type based on certain network actions undertaken by an at-

tacker [24, 25].

A similar approach has also been developed by Wang et al. [26],

where the authors apply the analysis to the problem of intrusion de-

tection systems.

One of the major advancements in reasoning about how to ana-

lyse attack graphs has been the development of Bayesian Attack

Graphs [27], where Bayesian inference is applied to the properties of

the graph. Liu and Man [28] present an overview of how to perform

network vulnerability assessment using Bayesian networks.

Poolsappasit et al. [29] provide an empirical study of a Bayesian net-

work for risk management.

A further approach is to use attack trees [30], where the nodes in

the tree represent the steps of a possible attack. In order to compro-

mise a system, a path from a set of required leaf nodes to the root

node must exist. The set of required nodes is given by conditions be-

tween branches traversing up a tree.

Moore [31] provided a security analysis of a fictitious company

using an attack tree-based system. The Authors create attack trees

from the network and perform an analysis on the resulting trees.

Within the field of games and cybersecurity, one of the key

works was undertaken by Lye and Wing [32]. The authors represent

the interactions between an attacker and a defender as a general-

sum stochastic game. The work presents an example case study of

how the decision-making process, as represented by stochastic

games, can be applied to cybersecurity. However, the model does

not capture one of the key operations of system administrators in a

cybersecurity scenario, which is to maintain defensive properties of

a network in advance of an attack.

Work by Fielder et al. [33] presents a model for assigning system

administrator time to security-related tasks using a game-theoretic

approach. The approach weights the value of the data available

from each device in a network, where the allocation of a limited

number of administrators are assigned to ensure that the most at

risk or valuable targets were given more attention.

Calculating optimal policy

The goal of this work is to figure out the best way to allocate time

between different defensive tasks. The optimal allocation at any

given moment depends on the state of the system: if a computer has

been compromised, it is probably better to spend time fixing it than

doing something else. Markov Decision Processes (MDPs) describe

situations where the future is uncertain and an agent wishes to maxi-

mize its future reward (or minimize future loss). Solving a MDP

gives a policy, which describes the optimal action to take for any

given state.

However, it is often impossible to know the exact state of the

system so the best action to take is unclear. These situations can be

described by Partially Observable Markov Decision Processes

(POMDPs), which extend MDPs to account for uncertainty about

state. Solving these gives a policy that describes the optimal action

to take for a given belief about the current state: if it is unlikely that

the machine has been compromised, it is better to do something else.

However, we want to know what the best action to take is when

there is also an attacker making decisions about what to do. Both

MDPs and POMDPs have game-theoretic counterparts that allow

for multiple players: stochastic games and POSGs respectively. It is

the latter of these that we use in our approach.

In this section we give a brief overview of MDPs, stochastic

games, POMDPs and POSGs. We then introduce a version of

POSGs where all players share the same observations and describe

how we implemented a solver for this class of problem.

MDPs
A MDP is a tuple ðS;A;P:ð�; �Þ;R:ð�; �Þ; cÞ where
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• S is a finite set of states.
• A is a finite set of actions, As are the actions available from

state s.
• Paðs; s0Þ ¼ Prðstþ1 ¼ s0jst ¼ s; at ¼ aÞ is the transition probability

of moving to state s0 from state s with action a.
• Raðs; s0Þ is the immediate reward (or cost) received after a transi-

tion from s to s0.
• c 2 ½0; 1� is the discount factor.

The goal is to find a policy, in the form of a function pðsÞ that

specifies the action that should be taken in state s. The policy should

maximize the discounted rewards over an infinite horizon:

X1
t¼0

ctRat
ðst; stþ1Þwhere at ¼ pðstÞ: (1)

We can define the value of each state, V(s) recursively:

Vnþ1ðsÞ ¼ max
a

X
s0

Paðs; s0Þ Raðs; s0Þ þ cVnðs0Þð Þ
" #

: (2)

This equation, which separates the current reward from future

rewards, is known as the Bellman equation. The optimal value func-

tion, V� can now be calculated: starting with an initial (arbitrary)

set of values V0, iterate and compute Vnþ1 for all states until conver-

gence, where Vnþ1 ¼ Vn.

The policy is then calculated by finding the maximizing action

for each state:

pðsÞ ¼ arg max
a

X
s0

Paðs; s0Þ Raðs; s0Þ þ cVðs0Þð Þ
" #

: (3)

The optimal policy, p�, is the policy for the optimal value func-

tion, V�, and specifies the action that maximizes the discounted re-

ward over all future states.

If the reward (or cost) is independent of the new state, these can

be re-written as

Vnþ1ðsÞ ¼ max
a

Rðs; aÞ þ c
X

s0
Paðs; s0ÞVnðs0Þ

" #
(4)

and

pðsÞ ¼ arg max
a

Rðs; aÞ þ c
X

s0
Paðs; s0ÞVðs0Þ

" #
; (5)

where R(s, a) is now the reward (or cost) for performing action a in

state s.

Stochastic games
The method for solving stochastic games is similar and was first

given by Shapley [34]. For games of more than one player, the ac-

tions of the other players must be taken into account. Instead of sim-

ply updating the values as the transition-probability weighted

averages of the next states, as in MDPs, the values of the next states

are used to construct a simple matrix game GsðVÞ, and the value of

V is updated by solving this matrix game for each state.

Naturally, V now gives values for each of the players in the

game, and each player has their own actions: a represents the com-

bined actions of all the players.

Instead of selecting the action that maximizes the future value,

the actions of the other players must be taken into account. For each

state s 2 S, construct the matrix game

GsðVnÞ ¼ ga2As
: Rðs; aÞ þ c

X
s0

Paðs; s0ÞVnðs0Þ
" #

: (6)

Then update the value of V by solving the matrix game:

Vnþ1ðsÞ ¼ NE½GsðVnÞ�; (7)

where NE is the expected value of playing the matrix game’s Nash

equilibrium strategy. By iteratively updating V until convergence, as

with a MDP, the optimal value functions and actions for each player

can be calculated.

POMDPs
POMDPs are an extension of MDPs that allow for uncertainty

about the current state. Like normal MDPs, there can be uncertainty

about which state will follow an action, but in POMDPs, the subse-

quent state is not directly known. Instead, it must be inferred from

observations.

A POMDP extends a MDP with a set of observations, X, and a

set of observation probabilities O. As in a MDP, after every action

a 2 A, the state switches from s 2 S to a new state s0 2 S, according

to the transition probabilities Paðs; s0Þ, and the agent receives a re-

ward Raðs; s0Þ. Then, the agent receives an observation o 2 X which

gives information about the new state s0 according to the observa-

tion probabilities: Oðojs; aÞ.
POMDPs can be converted into belief-MDPs, where the state be-

comes a probability distribution b over the states S in the original

POMDP and the probability of being in state s is given by b(s). This

is now a fully observable MDP because the state (the probability dis-

tribution over states) is always known.

After making an action a and getting an observation o, the belief

about the new state is updated using Bayes’s rule:

ba
oðs0Þ ¼

Oðojs0; aÞ
Prðoja;bÞ

X
s2S

Paðs; s0ÞbðsÞ (8)

normalized by Prðoja; bÞ ¼
P

s02S Oðojs0; aÞ
P

s 2 SPaðs; s0ÞbðsÞ.
The Bellman equation for POMDPs is:

Vnþ1ðbÞ ¼ max
a2A

X
s2S

Rðs; aÞbðsÞ þ c
X
o2X

Prðoja;bÞVnðbo
aÞ

" #
; (9)

where the optimal value function, V�, is found when Vnþ1 ¼ Vn for

all belief points.

A policy for POMDPs is now a function pðbÞ over the continu-

ous set of probability distributions over S. The optimal policy func-

tion p� specifies the optimal action to take for each belief b.

Approximate solutions to POMDPs
The value functions of POMDPs can be approximated by iteration,

similar to normal MDPs. Here we give a brief explanation of how

POMDPs can be approximated, and of the PERSEUS algorithm [35]

for computing approximate solutions. A much more detailed de-

scription of POMDPs and of the algorithm is available in [35].

The value function for a POMDP is piecewise linear and convex

(PWLC) for finite horizon problems [36] and a PWLC function can

approximate the value function of an infinite horizon problem arbi-

trarily well.

This means that we can divide the belief space into regions, parti-

tioned by a set of vectors. For iteration n, the value function Vn is

composed of a set of vectors fai
ng; i ¼ 1; . . . ; jVnj. The value of a be-

lief point b is determined by the vector that maximizes that region of

the belief space:
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VnðbÞ ¼ max
fai

ngi

b � ai
n: (10)

Each vector has an associated action, which is the action that

maximizes the discounted future reward. To decide which action to

take a certain belief point, find the maximizing vector for that point,

and then take the associated action.

To perform an iteration, the vectors for each belief point are

updated using the backup operator, ab
nþ1 ¼ backupðbÞ, which calcu-

lates the vector from the next iteration that maximizes b:

backupðbÞ ¼ arg max
fgh

aga2A

b � gb
a ; where (11)

gb
a ¼ ra þ c

X
o

arg max
fgi

a;ogi
b � gi

a;o; and (12)

gi
a;oðsÞ ¼

X
s0

Oðojs0; aÞPrðs0js; aÞai
nðs0Þ: (13)

The challenge of POMDPs is finding the smallest set of belief

points that are needed to calculate each of the vectors in the value

function. Exact solutions must find all of these vectors, and for com-

plicated problems the required number of belief points makes com-

puting a solution intractable. Algorithms for approximate solutions

attempt to limit the number of belief points, making computating a

solution more feasible.

The PERSEUS algorithm [35] is one such algorithm, which uses

a fixed set of (randomly sampled) belief points, and attempts to min-

imize the number of vectors used to approximate the value function.

Initially, a set B of belief points is sampled by randomly taking

actions and exploring the belief space of the problem. Then, the ini-

tial value function V0 is set to a single vector. For each iteration, the

algorithm improves the value function using the backup stage listed

in Fig. 3. This randomly selects belief points and calculates the new

vector for that point; if the vector also increases the value of other

belief points those points are then excluded from this iteration.

Then, if there are any remaining belief points, one of those is se-

lected and the process repeats. This means that the value of all of the

belief points will increase, but the number of vectors tends to remain

smaller.

The number of vectors used to approximate the value function

increases over time, as the approximation becomes more accurate.

As the number of vectors increases, so does the time it takes to com-

pute each iteration. The iteration continues until some arbitrary con-

dition, such as a rate of convergence or the time taken, is met.

Approximate solutions to POSGs
POSGs are an extension of stochastic games that allow, similar to

POMDPs, uncertainty about state. However, because POSGs have

multiple players, they are much more complicated. In the standard

formulation, each player can have different rewards, actions and

observations. It is this last item that brings a lot of the complexity:

because each player receives different observations, each player po-

tentially has different beliefs about the state. In order to account for

this, each player must therefore also maintain beliefs about the other

players.

POSGs are an active area of research, and presently, it is possible

only to solve finite-horizon problems to a limited depth. Finding op-

timal allocations of time to network defence tasks can potentially be

a much more complicated task in terms of the number of states, ac-

tions and observations than those currently studied for POSGs. In

order to make it computationally tractable, and to allow us to com-

pute approximate solutions for infinite-horizon games, we use a sim-

plified version of the POSG. In this class of POSGs, both players

receive the same observations and so share the same belief about the

state of the world. This has some implications for the results, which

will be discussed later in Section 8, but the simplification allows the

problems to be solved in a manner similar to POMDPs.

To do this, we implemented the PERSEUS algorithm in the Julia

programming language [37], and then modified it to find approxi-

mate solutions to this class of POSGs.

The changes add separate rewards and actions for each player.

While each player has their own actions, the transition probabilities

are based on the joint actions of all players. A value function VpðbÞ
is estimated for each player p 2 P. For each iteration, the value of

Vp;nþ1 is calculated for each player using the same randomized,

point-based strategy as in the PERSEUS algorithm.

The major difference is in the backup stage: a ¼ backupðbÞ no

longer selects the a vector that maximizes the value of b, but, similar

to the approach for normal stochastic games described in Section

4.2, returns the vector corresponding to the Nash equilibrium value.

If the equilibrium is a pure-strategy equilibrium then the vector

returned corresponds to the joint equilibrium action of the players.

If the equilibrium is a mixed-strategy equilibrium, then the vector is

the average of all of the vectors corresponding to the joint actions

that make up the equilibrium, weighted by their probability of being

played.

In PERSEUS, each vector has an associated action. Here, the

equilibrium probabilities of playing each action are used instead.

Thus, a policy ppðbÞ for player p at belief point b specifies the proba-

bilities with which to perform each action.

Experimental setup

To find a policy for time allocation, it is first necessary to create a

POSG that describes the network, vulnerabilities, players and costs.

Each game is described using matrices that represent the transition

probabilities from state to state for each action, matrices that repre-

sent the probabilities of seeing each different observation from each

state after each action and matrices containing the reward values

players receive when moving to each state after each given action.

Figure 3. The backup stage of the PERSEUS algorithm (from [35]).

42 Journal of Cybersecurity, 2015, Vol. 1, No. 1

 by guest on M
arch 3, 2016

http://cybersecurity.oxfordjournals.org/
D

ow
nloaded from

 

(10)
s
s
s
(11)
(12)
(13)
s
4.5 
partially observable stochastic game
Partially Observable Stochastic Game
,
s
,
j
e
s
s
c
5 
partially observable stochastic game
,
,
http://cybersecurity.oxfordjournals.org/


We want to be able to find policies over a wide range of possible

configurations and parameters, so we implemented code that takes a

description of the network, vulnerabilities, and players and auto-

matically creates the matrices required for the POSG solver.

States
The network is composed of a number of nodes, which represent de-

vices on the network. Each node has the following properties:

• Whether or not it is externally attackable.
• The other nodes from which it can be attacked.
• The vulnerability lifecycles that affect the node.
• The cost to the defender if the node is compromised.
• The reward to the attacker if the node is compromised.
• The cost to recover the node.
• The probability of an attack on the node being successful.
• The probability of discovering the node is compromised by an

unknown exploit when monitoring.

The vulnerabilities represent the lifecycle of vulnerabilities for a

particular piece of software. Each vulnerability also has several

properties:

• Exploits developed per year.
• Mean time to disclosure.
• Mean time to patch availability.
• Probability of a new exploit being undisclosed.

The number of states in a POMDP or POSG has an impact on

the length of time it takes to compute a policy; with too many states,

the computation can become intractable. We therefore want to ex-

press the essential parts of the vulnerability lifecycle and the state of

the system (whether or not it is compromised) using as few states as

possible. Figure 4 shows the states used to represent each vulnerabil-

ity for a node. This shows the transitions that occur as a result of the

vulnerability lifecycle (the dotted lines in the figure), and the transi-

tions that are caused by an action by the players (the solid lines).

The states from the vulnerability lifecycle used here are those shown

with dotted borders in Fig. 1; this is not the whole lifecycle, but cap-

tures the most important parts: known and unknown (undisclosed)

exploits, as well as patching.

The transition probabilities for the vulnerability lifecycle are deter-

mined by the properties of the vulnerability: the number of exploits

per year, the mean time before disclosure and patches, and the prob-

ability of an exploit being undisclosed (unknown). The transition

probabilities for actions are determined by properties of the node: the

probability of a successful attack, and the probability of monitoring.

Naturally, these depend on the current state, too; for example, attack-

ing when there is no vulnerability has zero probability of success.

The states also capture whether or not the system has been com-

promised. These are the shaded states in Fig. 4. The attacker’s attack

action can move to a compromised state, and the defenders recover

action can restore the system to an uncompromised state. The de-

fender’s monitor action changes the state from unknown and com-

promised to disclosed and compromised. The patch action changes

the state from patch available to done, if the system is not compro-

mised, and to patched if the system is compromised.

When a vulnerability has been patched, and the system is not

compromised by that vulnerability, the state transitions back from

Done to Inactive, allowing a new exploit to be developed. To model

multiple possible exploits at the same time, multiple vulnerabilities

must be used for each piece of software modelled.

Each vulnerability represented in the game requires each of the

states in the figure. To create a model with multiple nodes and multiple

vulnerabilities, the transition matrices for each vulnerability are created

and are then combined together using the Kronecker product. This re-

sults in large matrices that represent the transition probabilities for all

the different combinations of states from all of the vulnerabilities.

Actions and observations
For each problem below, the system administrators have a set

amount of time which they can allocate to tasks. There are three de-

fensive tasks, monitor, patch, and recover, and another task that

represents spending time doing other things. The three defensive

tasks are actually per node: you can monitor node 1, or patch node

2, for example.

Each of these actions has a time requirement. For the experi-

ments below, monitoring takes one hour, and patching and recover-

ing take two. In terms of the POSG, an action is actually any

combination of these per-node actions (and of doing other tasks)

that adds up to the total number of hours available. For example,

one action is to spend all of the time doing other tasks. Another ac-

tion, assuming there are four total hours available, is to monitor

two-nodes and patch a third. However, each node can only be in an

Figure 4. States, actions and transitions for a vulnerability. Solid lines show transitions that are caused by an action by either the attacker or the defender. Dotted

lines show transitions that occur automatically, as part of the vulnerability lifecycle. States where the system has been compromised are shown filled in.
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action once: it is invalid to monitor and patch the same node in a

single action. This constraint makes it possible to calculate the tran-

sition probabilities.

The actions for the attacker are simpler: they can do nothing, or

attack one of the nodes using a specific vulnerability. The attacker

can only perform one action each turn.

After each action, the players receive an observation. There are

seven basic observations:

1. Disclosed.

2. Patch Available.

3. Disclosed—Bad.

4. Patch Available—Bad.

5. Patched—Bad.

6. Done.

7. Nothing.

The probabilities with which the players receive the observations de-

pends on the state and the action taken. With this information, they

update their beliefs about the current state of the environment.

The Bad observations are only received when the defender

uses the monitor action. The other observations occur with prob-

ability 1, when in the corresponding state. The observations are per-

vulnerability. When more than one node or vulnerability is used, the

full set of observations reflect all possible combinations of observa-

tions from the individual vulnerabilities.

There are no observations for the inactive and unknown states,

because there is supposed to be uncertainty about whether or not an

unknown exploit exists.

Because the attacker and defender share observations in the

reduced version of POSGs that we use, there are no observations in-

forming the attacker about the success of attacks as this would also

inform the defender.

Implementation details
The matrices describing the problem can be extremely large, requir-

ing a lot of memory. As the number of vectors grows, the amount of

memory and CPU time required to compute the new vectors for the

next iteration grow considerably. Larger problems (using 4 nodes)

consumed more than 32 GB of RAM after a small number of

iterations.

The solution we found to this was to parallelize the computation

of the backup across a number of nodes in a cluster. Since the algo-

rithm is written in Julia [37], this was relatively easy to implement.

The backup calculations and values are spread across the worker

nodes, meaning the per-node memory requirements are reasonable.

The main node controls the others and computes the Nash equilibi-

ria using the values returned from the worker nodes. We wrote a

wrapper around the equilibria solver described in [38], allowing it

to be called directly and quickly from the Julia code.

For the three-node problems described below, this distributed

approach made computation feasible. However, calculating a rea-

sonable number of iterations still took several days, using 20–25

worker nodes. The initial iterations, with a low number of vectors,

were relatively quick. Later iterations took upwards of one hour

each to compute. Figure 5 shows the number of vectors used to rep-

resent the value functions for the attacker and defender in the two-

node problem, averaged over 20 runs. The three-node problems

have similar growth, although the number of vectors for the de-

fender’s value function tends to stay lower for longer.

Examples

In this section, we present a study of a number of different scenarios

to highlight certain aspects of the model. First, we present a two-

node model to identify how the optimal strategy is developed.

We then compare a number of configurations of three-node

networks, where we are looking at how the difference in certain

parameters affects the generation and execution of the optimal

strategies.

Two-node model
The initial case presents a simple network layout where we represent

an outward facing server and main internal server of an organ-

ization. The outward facing device does not contain sensitive infor-

mation, whereas the main internal server contains data that are

considered to be sensitive in nature and valuable to a determined

attacker.

We consider that the cost of compromise for the defender at the

external node and internal node to be 100 and 100 000, respectively.

For the purposes of this simulation, the determined attacker we con-

sider is only interested in the data held on the internal server, giving

values of 0 and 100 for successfully compromising the two devices.

For the purposes of all the simulations presented in this article,

we consider that the defender has a time cost of 2 units to perform

the actions of Patching and Recovery, and a cost of 1 unit for moni-

toring. The attacker has a uniform cost of 1 unit to perform any

action. Additionally, we consider that the act of recovery for the

Figure 5. Number of vectors approximating the value functions of the attacker and defender at each iteration. Average over 20 runs, with 5–95% confidence

intervals.
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defender has some financial cost, which in our configuration is given

a value of 40.

The results in all of the tables and graphs are obtained by simu-

lating the policy that was calculated for that scenario. A policy is

simulated by selecting an initial starting state and belief over the

states, and then performing the action indicated by the policy. There

is a policy for both the attacker and the defender, and their joint

actions are used to determine the transitions from state to state of

the underlying system. Table 7 shows the average profit and average

allocation of hours to tasks for 10 000 simulation runs starting from

random initial states. Each simulation lasts for 365 steps, represent-

ing the policy’s performance over a year. Table 8 shows the same

figures, but always from the same starting state, where the system is

initially uncompromised. The first table gives an idea of the

performance of the policy over all states, while the second gives a

perhaps more realistic estimate of the expected loss: it is likely

that the system is uncompromised when you start following the

policy.

We have tested the simulation on this simple two-node configur-

ation, in order to clearly identify the behaviour of the defender. We

can see in Fig. 6 that the schedule generated reduces the expected

loss of the organization to a minimum in more than 25% of cases.

There is then a fairly even distribution of loss with a spike in cases at

the highest levels of loss. This seems to indicate that the schedule is

either highly effective in the scenario or provides little to no defence

at all.

The details of the schedule, presented in Table 7, indicate that

frequently the defender chooses to perform unrelated task, and this

indicates that the defender believes that the system is in a secure

state and that there is no reason to act to protect the network.

Second to this, the defender recovers both nodes 1 and 2, with more

emphasis placed on node 1, since all viable attacks must first com-

promise that node, and this is why we see some monitoring on that

node, although the frequency of this action is very low.

Three-node model
An advancement of the two-node network, introduces an interim

firewall that is placed between the outward facing server and the

main internal server. This is depicted in Fig. 7.

In this case, we consider a defender that is concerned primarily

with securing the data that is held on the main internal server similar

to the two-node case presented before. However with the inclusion

of the firewall, the defender has some loss associated with the fire-

wall becoming compromised.

In this case, we represent what we term a data driven attacker,

whose primary interest lies in the data held on the defender’s main

internal server. As such the attacker gets no reward from compro-

mising either of the external two devices and only gets a reward for

a successful compromise of the main internal server. The payoffs for

this general case are given in Table 1.

Number of administrators

One of the key comparisons that we want to make is how the num-

ber of hours available to the defender. In this scenario, we are inter-

ested in how the strategies for the defender change if we increase the

number of hours available to the defender.

If we consider that the allocation defined in the initial three-node

case is representative of the actions available to two system adminis-

trators across a day, then we are first interested in what an increase

in personnel looks like in terms of the optimal strategies. In this

case, we consider the organization to have an additional system ad-

ministrator, increasing the available allocation for the system ad-

ministrators time from 4 to 6 units.

Alternative players

In addition to the number of hours, we need to consider that there

might be different kinds of requirements that impact the require-

ments of the players. In our model, this is represented by a change in

the payoffs for the players.

The first alternative player we consider is a defender who is in a

highly regulated industry, where even a small breach of defence is

met with heavy fines from regulators or representing the risk of po-

tential legal action. This increases the loss for the defender across

the whole of the system.

In this first case, we consider that the attacker is the same data-

driven attacker that was represented in the previous cases. The

payoffs for this case are shown in Table 2.

We considered earlier defenders that are heavily invested in the

value of the data that is held on their internal systems, and we now

want to consider a smaller SME type entity. We consider that while

the defender in this case has a reason to defend their data, the value

Figure 6. Histogram of profit from 10 000 simulations of the two-node policy.

Table 1. Payoffs for a three-node case for a general use case

Player Node 1 Node 2 Node 3

General Case Defender 10 100 100 000

Data-Driven Attacker 0 0 100
Figure 7. Three-node network diagram.
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of lost data from the internal servers is not as severe as for the

previous defender. The payoffs are given in Table 3.

As with the Highly-Regulated Defender, the attacker in the SME

case is considered to be a data-driven attacker that we have been

comparing against to this point.

So far we have only considered a single kind of attacker, one

who is interested only in the data that the defender has on their in-

ternal servers. In this case, we consider an attacker that is interested

in their reputation, as such the attacker gets a large reward for com-

promising the outward facing server. However, the attacker gets a

diminished reward for compromising the internal network, because

the data held have little value to the attacker. The payoffs for this

case are shown in Table 4.

In this case, we consider the defender to be the defender that we

initially considered of the three-node model.

Alternative network configurations

So far we have considered only a simply connected network; how-

ever, most networks are highly interconnected. The final cases we

present in this work represent potential sub net configurations of a

larger network.

In the first alternative network configuration, we consider a set-

up with two outer nodes both connected to a single internal node. In

this configuration, we identify that one of the outer devices is more

prone to software vulnerabilities, increasing the likelihood that a

new vulnerability will be discovered in that node. This configura-

tion is shown in Fig. 8.

In this case, we consider that the defender should put more em-

phasis on protecting the more vulnerable external node, while mini-

mizing the risk that the internal node is compromised by other

means. These payoffs are given in Table 5.

The second network configuration we consider a single outer

node that connects to two inner nodes. Both of the internal nodes in

this case are more valuable than the outer node, but one of the in-

ternal nodes is worth considerably more than the other. This is

shown in Fig. 9.

It is likely that the attacker will focus on the highly valuable

node, so we expect that the defender will put a much higher

emphasis on ensuring that the more valuable target is not compro-

mised. The payoffs are shown in Table 6.

Results

The following section details the results obtained from the experiments

above, first comparing the results of various similar three-node net-

works along with a look at the behaviour of alternative network lay-

outs. To do this, we first need to analyse the results for the three-node

case. The results presented are based on 10 000 runs from a randomized

initial network vulnerability state. The strategy space for each of the

Table 3. Payoffs for a three-node case with an SME like entity

Player Node 1 Node 2 Node 3

Highly-Regulated Defender 10 100 10 000

Data Driven Attacker 0 0 100

Table 4. Payoffs for a three-node case with a reputation-driven

attacker

Player Node 1 Node 2 Node 3

General Case Defender 10 100 100 000

Data-Driven Attacker 80 10 50

Table 5. Payoffs for a three-node case with a single highly vulner-

able node

Player Node 1 Node 2 Node 3

General Case Defender 10 10 100 000

Data-Driven Attacker 0 0 100

Figure 8. Diagram of the three-node network for the simulation with a single

more vulnerable node.

Figure 9. Diagram of the three-node network for the simulation with a single

more valuable node.

Table 6. Payoffs for a three-node case with a single highly valuable

node

Player Node 1 Node 2 Node 3

General Case Defender 10 1000 100 000

Data-Driven Attacker 0 20 100

Table 2. Payoffs for a three-node case with a Highly-Regulated

Defender

Player Node 1 Node 2 Node 3

Highly-Regulated Defender 20 000 20 000 100 000

Data-Driven Attacker 0 0 100
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different experiments can be seen in Table 7, with all the graphs pre-

sented relating to these solutions. We present the results generated

when the strategies are played from a clean system state in Table 8.

These tables and graphs represent the performance of the policy

for each scenario, but do not actually describe what the policy is.

They give an indication of which actions the policy suggests, and

how well it prevents loss, but the actual policy itself is hard to ex-

press. The policy associates actions with regions of belief-space; the

results here naturally depend on which regions of belief space are

reached during the simulations. However, by simulating each policy

a large number of times, it is likely that the results give a fairly ac-

curate depiction of the performance of a policy.

One of the first things we can see in comparison to the two-node

model is how much lower the expected damage is in the three-node

model. The addition of an extra layer of security between the at-

tacker’s initial position and the data, makes it more difficult for the

attacker to succeed in breaching the system to steal the data. While

the attacker does get an interim payoff for breaching the second

layer, this is not in line with the payoff the attacker gets for a two-

stage breach in the two-node model.

From Fig. 10, we can see in general that the majority of test cases

give an expected loss of close to 0. In each of the cases, we can attribute

these initial low values with strategies where the attacker has not been

successful in breaching the defences of the system beyond the outermost

layer and that much of the loss is associated with penalty for not per-

forming other related tasks. These low level results account for more

than 45% of cases sampled, where the remaining 55% is spread with

among the remaining cases with nearly 20% of the samples in cases

where there are only minor breaches to the system.

We can see from Table 7 that the defender places a higher em-

phasis on node 1 than any of the other nodes. This is to be expected,

since we know that there is a single attack path that must pass

through this node, therefore if this node is kept in a stable state then

the defender has to be concerned less about the more valuable com-

ponents becoming compromised. This is particularly noticeable in

terms of recovery, and the defender significantly reduces the

amount of actions taken in recovering the node further into the

system.

Number of administrators
When we increase the number of administrators, we see that as ex-

pected we get a reduction in the expected damage across the system.

We see that there is an increase in monitoring and recovery at node

3 and a reduction in recovery at nodes 1 and 2 and monitoring at

Figure 10. Histogram of profit from 10 000 simulations of the basic three-node policy.

Table 7. The profit and hours allocated to each task over a whole year, averaged over 10 000 simulations using random start states

Name Avg Profit Monitor 1 Monitor 2 Monitor 3 Patch 1 Patch 2 Patch 3 Recover 1 Recover 2 Recover 3 Other % Other

Two-Node �661.14 4.33 0.28 — 0.52 1.51 — 314.02 205.23 — 934.11 63

Three-Node �79.56 18.18 5.33 5.48 4.72 1.13 1.33 170.02 86.54 28.99 1138.28 78

More Time �50.63 17.94 0.00 17.42 0.00 1.79 0.63 60.15 34.15 38.93 2018.99 92

Regulated �136.83 1.14 0.98 0.00 0.78 1.80 3.23 92.26 57.25 18.13 1284.44 88

SME �1.49 31.04 1.54 1.97 0.22 7.71 1.59 65.77 53.06 19.57 1277.52 87

Reputation �19.86 24.41 29.75 26.53 0.29 2.09 0.00 161.48 114.01 4.61 1096.82 75

High-Vuln �537.99 0.25 0.00 0.25 1.32 1.76 1.89 157.99 14.23 145.56 1136.76 77

High-Value �559.50 4.87 0.09 4.83 0.94 0.00 0.09 161.43 132.28 152.92 1002.57 69

The final column gives the percentage of time allocated to non-security tasks.

Table 8. The profit and hours allocated to each task over a whole year, averaged over 10 000 simulations, starting from an initially-

uncompromised state

Name Avg Profit Monitor 1 Monitor 2 Monitor 3 Patch 1 Patch 2 Patch 3 Recover 1 Recover 2 Recover 3 Other % Other

Two-Node �312.52 8.92 0.39 — 0.51 1.30 — 193.53 76.34 — 1179.01 81

Three-Node �39.66 4.58 0.00 0.01 3.59 0.56 0.84 109.52 46.00 10.07 1284.82 88

More Time �18.11 18.38 0.00 18.17 0.00 1.06 0.65 24.94 12.01 10.61 2104.18 95

Regulated �65.71 0.57 0.48 0.00 0.28 0.90 1.86 43.30 28.16 6.37 1378.07 94

SME �0.56 12.27 0.11 0.29 0.06 2.31 0.88 29.69 23.11 4.58 1386.70 95

Reputation �3.84 7.61 30.15 9.04 0.06 1.06 0.00 108.53 39.43 0.54 1263.58 87

High-Vuln �453.88 0.19 0.00 0.19 0.54 1.09 0.99 192.03 7.83 110.72 1146.42 78

High-Value �381.89 7.17 0.24 3.53 0.65 0.00 0.24 160.34 85.41 100.16 1102.25 75

The final column gives the percentage of time allocated to non-security tasks.
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node 2. It should be noted that many of the additional hours avail-

able are spent performing other non-security related tasks, with al-

most double the number of hours being spent on this over the 4 unit

model. This shows that there is some inefficiency to having too

many administrators or that in general there are not enough effective

security tasks to warrant the loss from not performing the required

daily tasks.

In terms of distribution of loss, we can see in Fig. 11 that in com-

parison to the 4 unit model, the 3 unit model has a much larger dis-

tribution in the lowest damage bracket, with more than 65% of

simulations causing a loss in this range. We can also see that there is

a far smaller spread of the loss.

Alternative players
In each of the first two cases below, we are interested more in the

change in strategy generated by the defender in relation to the above

case, since many of the scenarios the structure of the payoffs for the

defender makes the expected loss much less important in the

comparison.

In the case of the Highly-Regulated Defender, we naturally see

the expected loss to be much higher than that of the initial defender,

since they lose a large amount even from a minor breach.

In terms of distribution of damages, we see in Fig. 12 that there

is a smoother gradient to the distribution. We see a relatively

smooth gradient from the lowest damage levels down to the ex-

tremely high values of damage. The gradient is likely to be more

exaggerated than for the original defender, based on the increase in

damage from minor breaches.

Of all cases tested, this is the defender that places the most em-

phasis on patching Node 3. However, it seems uncharacteristic of

the defender to also place a high emphasis on non-security related

activities when the ratio of loss from a failure to perform unrelated

activities to a breach is so much higher. This is in contrast to the

SME Defender, where a similar amount of emphasis is placed on

performing unrelated tasks. Both of these cases put considerably

more effort into these unrelated security tasks than the original

defender.

For the SME Defender, we see that their average expected

loss is much lower than that of the original defender, which

again is to be expected given their lower losses from being

breached.

We see a very similar trend in Fig. 13 for the SME defender as

we did for the Highly-Regulated Defender; however, we see the

trend because the value ranges presented are smaller than those asso-

ciated with the Highly Regulated Defender. This likely gives a more

accurate description of results at the low damage end, where we will

still see that while the majority of these cases still see no breach,

there are still minor breaches that occur that have next to no impact

on the organization.

Figure 11. Histogram of profit from 10 000 simulations of the three-node policy, with additional time available to allocate.

Figure 12. Histogram of profit from 10 000 simulations of the policy from the highly-regulated scenario.

Figure 13. Histogram of profit from 10 000 simulations of the policy from the SME scenario.
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The final alternative player we considered was the Reputation

Driven attacker. In this case, we can more directly compare the pay-

offs of the defender since in this case only the payoff of the attacker

have changed from the initial three node case.

We can clearly see in Fig. 14 that with a different attacker, the

defender is able to minimize the damage of more than 90% of attacks.

This is achieved, because the defender is placing a heavy emphasis on

recovering the state of the first two-nodes, noting that the attacker is

not gaining as much by attacking deeper. This recovery ensures that

the key data storage of the company is rarely at risk of attack.

It should be noted that while the defender is seen as generally

secure in this case, we can expect a number of minor breaches that

while not impactful to the defender will yield the attacker a high

reward.

Alternative network configurations
For the different network designs, we need to take their behaviour in

isolation, since the results are not directly comparable to the initial

three-node network. This is given that we know that the defence for

the most valuable node is weaker.

We can see that for a single highly vulnerable node in Table 7

that in comparison to the other nodes almost no consideration is

given by the defender to monitoring and recovery of the less vulner-

able outer node. This is in line with the prediction, where the

defender has to focus attention on the most vulnerable or valuable

parts of the network. Although the results show that an equal em-

phasis is placed on patching across all nodes.

For the more valuable node, we see that the defender chooses to re-

cover all of the nodes with a high frequency. However, monitoring is

only performed on the outer node and the more valuable node. The

solution for this scenario features almost no patching at all, and this is

possibly due to the ineffectual nature of patching once an attack is in

progress and the relative short chain of attack. This indicates that the

defender is more concerned about protecting the valuable node and

while will recover the less valuable inner node, they are not willing to

invest more resources in protecting it as along with the prediction the

attacker is less willing to attack that node.

One thing we can see about both of these cases, is that unlike the

initial three node network, where emphasis was placed primarily at

the external node, in both these cases a higher level of emphasis is

placed on the inner most node. These results are more consistent

with a two-node model, where there is less layers of security protect-

ing the most valuable data. It should be noted that both alternative

network designs performed better than the tested two-node network

case under the same conditions, where the added component is

enough to cause some change in attacker strategy from a simple

two-node network, which then causes less damage to the organ-

ization as the attack effort is spread over more targets, some of

which are easier to protect and others that are less valuable.

In both Figs 15 and 16, we see that the distribution of expected

loss is more closely associated with a two node network. In these

Figure 15. Histogram of profit from 10 000 simulations of the policy from the highly-vulnerable node scenario.

Figure 16. Histogram of profit from 10 000 simulations of the policy from the high-value node scenario.

Figure 14. Histogram of profit from 10 000 simulations of the policy from the reputation-driven attacker scenario.
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cases, we see that after the initial spike of completely defended scen-

arios a fairly even distribution of scenarios representing a fairly even

distribution of attacks. In both cases, only a little more than 30% of

cases successfully repel all serious attacks.

Discussion

Across all of the different configurations, we find that there is an

emphasis placed on performing non-security related tasks, where

many of the solutions propose spending between 75% and 90% of

time on these tasks. In the case where there is more time available

for tasks because of the inclusion of an additional system adminis-

trator, the percentage of time spent on non-security related tasks ex-

ceeds 90%. There are two considerations for why non-security

related tasks dominate the distribution of system administrator

time: the cost of ignoring non-security tasks and the lack of available

effective security tasks.

We see throughout all of the results that outside of non-security

related tasks, the most amount of time taken by the system adminis-

trators is spent on recovery. A large part of this is due to the fact

that there is no action that allows the system managers to mitigate

against an exploit. If there is an exploit without a patch, recovering

a system removes the attacker, but does not prevent immediate re-

compromise. Thus, the manager is forced to recover multiple times

before a patch arrives. Given that the current simulated environment

does not allow for workarounds for the lack of official patch, recov-

ery on compromise provides the most efficient method for reducing

the amount of damage, since it means that the system will be re-

turned to a normal state, requiring the attacker to spend resources

attacking again. Future work will consider the possibility of alterna-

tives to official patches, which should reduce the emphasis on re-

peated recovery as the most effective defence prior to the release of

an official patch.

In this work, we placed a large emphasis on performing tasks

that are not related to security, penalizing the defender for spending

time on security. While, for some organizations, this high emphasis

on non-security related tasks may be critical, there are others that

would not be impacted so greatly. With this in mind, we consider

that this is something that we would like to further address, identify-

ing scenarios for lower importance system tasks. Part of this is that

here we consider that each of the administrators is hired as a general

system administrator rather than a specified security administrator.

It could be the case that a dedicated security manager would not be

penalized in the same way, opting to perform security related tasks

over un-related tasks.

While a reduction in emphasis on non-security related tasks

through lower penalties may reduce the necessity for them to be per-

formed, it does not reduce the amount of time that there is a viable

security related activity to be performed. While patches can only be

applied on creation, both monitoring and recovery can be performed

at any time. However, recovery is only a viable option in the case

that there is belief about a compromise, since it makes little sense to

spend limited resources on recovery of a system that is not believed

to be compromised. So provided the option to patch is taken as soon

as it is available, and that recovery is performed when considered

necessary, which would provide the most optimal reduction in ex-

pected damage, the trade-off then exists between choosing either

monitoring or unrelated tasks. More generically, the trade-off is be-

tween possible every day security activities and non-security related

tasks.

It is here that the magnitude of the penalty for not performing

other tasks becomes most relevant. With a penalty that is greater

than the benefit of every day security tasks, the optimal policy will

always favour the loss minimizing strategy, which is to generally

perform non-security related tasks unless a key action such as recov-

ery and patching is available.

Looking at the results, following the policy results in minimal

loss to the organization in most cases. In the cases where the loss is

greater, the vulnerability lifecycle has produced a series of vulner-

abilities that cause the system to be weak to attack, which persists

because patches for those vulnerabilities take a long time to arrive.

The issue with patch prominence is also reflected in the low val-

ues that are seen for patching across all the results in Table 7, since

there are potentially too few patches being generated on average to

consider patching as a high priority. We aim to expand on our work

to consider this in the future, such that we can consider a custom fix

or workaround for the vulnerability. This custom fix would elimin-

ate the vulnerability at a high cost to the organization; however

since it would not come from the software vendors, there is a prob-

ability that it would be unsuccessful. In addition to this, we also

want to consider things like enforced regulations and policies

derived from the management of an organization.

It is also interesting to note in many of the network configur-

ations the greater amount of time spent on monitoring the node that

is externally attackable. The emphasis on monitoring Node 1 relates

to the most simple way for a system to be able to verify if they can

be attacked. This is due predominantly to the design of the test net-

work. In the case of the simple three node network that is connected

in a linear manner, the attacker must launch an attack from Node 1,

so in order for any attack to be successful, it must pass through that

location. This is being used as an effective shortcut for the defender

to understand the potential state of the network without investing

additional resources. Additionally, we see that in the High

Vulnerability case, where there are two nodes that can be attacked

from an external source, the prevalence of monitoring on the outer-

most nodes is reduced to near zero levels. In this case, the informa-

tion gained from monitoring the external nodes is not as useful to

the defender. As a result, the High Vulnerability case more fre-

quently recovers both the highly vulnerable external node and the

valuable internal node.

The use of shared observations between the attacker and the de-

fender is a limitation of this approach. In reality, an attacker would

likely have more knowledge than the defender about undisclosed ex-

ploits and about whether or not a device on the network is currently

compromised. However, including such knowledge into the model

would have changed the type of structure required to represent the

problem and made the computation intractable. The actual impact of

this on the results is likely to be small: the attacker would probably

be more likely to launch some attacks when the defender still assigns

a very low probability to the existence of an unknown exploit, and

the defender would probably monitor slightly more to compensate.

Conclusions and future work

We have presented a new model for thinking about network defence

that captures the decisions network administrators need to make

about how to allocate their time.

We represent the problem as a POSG, which can be solved to

give a policy that describes the optimal action to take for any par-

ticular belief about the current state of the system. We used a num-

ber of examples to illustrate the approach, and showed how

different types of attacker or defender and different network config-

urations result in different policies.
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There is a trade-off between the security and non-security activ-

ities of system administrators, and we have shown that it is important

to optimize the time to perform security tasks only when they are

required. Further work will look at the impact that the cost of

ignoring non-security tasks has on the decision to perform other tasks

over security related tasks, including a study of the effect of frequency

of patch availability on the optimality of security decision making.

We have looked at a relatively simple network model, consisting

of only two or three nodes, an advancement of this work would be

to consider a larger model. This approach is successful for problems

of this size, but larger problems have exponentially higher computa-

tional and memory requirements. In order to do this we will need to

look at improving the efficiency of the approaches we have used, by

using newer techniques for solving POMDPs or finding more com-

pact ways to represent the problem.
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