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Abstract

Sample selection models deal with the situation in which an outcome of interest is
observed for a restricted non-randomly selected sample of the population. The estimation
of these models is based on a binary equation, which describes the selection process,
and an outcome equation, which is used to examine the substantive question of interest.
Classic sample selection models assume a priori that continuous covariates have a linear
or pre-specified non-linear relationship to the outcome, and that the distribution linking
the two equations is bivariate normal.

We introduce the R package SemiParSampleSel which implements copula regression
spline sample selection models. The proposed implementation can deal with non-random
sample selection, non-linear covariate-response relationships, and non-normal bivariate
distributions between the model equations. We provide details of the model and algorithm
and describe the implementation in SemiParSampleSel. The package is illustrated using
simulated and real data examples.

Keywords: copula, non-random sample selection, penalized regression spline, selection bias,
R.

1. Introduction

The sample selection model was introduced by Gronau (1974), Lewis (1974) and Heckman
(1976) to deal with the situation in which the observations available for statistical analysis
are not from a random sample of the population; the model was discussed by Heckman (1990)
among others. This issue occurs when individuals have selected themselves into (or out of)
the sample based on a combination of observed and unobserved characteristics. Estimates
based on models that ignore such a non-random selection may be biased and inconsistent.

To fix ideas, let us consider the RAND Health Insurance Experiment (RHIE), a study con-
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ducted in the United States between 1974 and 1982 (Newhouse 1999) which will also be ana-
lyzed in Section 5. The aim was to quantify the relationship between several socio-economic
characteristics and annual health expenditures. Non-random selection arises if the sample
consisting of individuals who used health care services differ in important characteristics from
the sample of individuals who did not use them. If the link between the decision to use the
services and health expenditure is through observables, then selection bias can be avoided
by accounting for these variables. However, if the link is through unobservables as well
then inconsistent parameter estimates are obtained when using a classic univariate equation
method. There are two more aspects that may complicate modeling the relationship between
covariates and annual health expenditure. Variables such as age and education are likely to
have a non-linear relationship to both decision to use health services and amount to spend
on them; this is because they embody productivity and life-cycle effects that are likely to
have non-linear effects. Imposing a priori a linear relationship (or non-linear by simply using
quadratic polynomials, for example) could mean failing to capture the true more complex
relationships. Finally, the (often criticized) assumption of bivariate normality (employed in
many sample selection models) between decision to use health services and expenditure may
be too restrictive for applied work and is typically made for mathematical convenience.

The literature on sample selection models is vast and many variants of such models have
been proposed. Chib, Greenberg, and Jeliazkov (2009) and Wiesenfarth and Kneib (2010)
introduced two estimation methods to deal with non-linear covariate effects. Specifically, the
approach of the former authors is based on Markov chain Monte Carlo simulation techniques
and uses a simultaneous equation system that incorporates Bayesian versions of penalized
smoothing splines. The latter further extended this approach by introducing a Bayesian al-
gorithm based on low rank penalized B-splines for non-linear and varying-coefficient effects
and Markov random-field priors for spatial effects. Recently, Marra and Radice (2013) pro-
posed a frequentist counterpart which has the advantage of being computationally fast and
can especially appeal to practitioners already familiar with traditional frequentist techniques.

Under the assumption of bivariate normality Heckman (1979) proposed a two-step estima-
tor. However because the estimator is inconsistent under distributional misspecification var-
ious methods that relax the assumption of normality have been proposed over the years;
these include semiparametric (e.g., Gallant and Nychka 1987; Powell, Stock, and Stoker 1989;
Ahn and Powell 1993; Lee 1994a,b; Powell 1994; Andrews and Schafgans 1998; Newey 2009)
and nonparametric methods (e.g., Das, Newey, and Vella 2003; Lee 2008; Chen and Zhou
2010). Another way to relax the normality assumption is to use non-normal parametric
distributions. Recently, Marchenko and Genton (2012) and Ding (2014) extended the sample
selection model to deal with heavy tailedness by using the bivariate Student-t distribution.
Another parametric method, which includes as a subcase the above mentioned Student-t
approach, is copula modeling. This allows for a great deal of flexibility in specifying the
joint distribution of the selection and outcome equations (e.g., Smith 2003; Prieger 2002;
Hasebe and Vijverberg 2012; Schwiebert 2013).

In summary, the numerous estimation approaches that deal with the assumption of normality
in the sample selection model can be divided into two large groups: semi/non-parametric and
flexible parametric estimators. The first relaxes the assumption of bivariate normality by us-
ing a general bivariate density function, whereas the second offers the possibility of replacing
bivariate normality with an alternative parametric stochastic structure. There are advantages
and disadvantages to both approaches (semi/non-parametric and flexible parametric). The
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strongest point of the semi/non-parametric approach is the property of maintaining consis-
tency of such estimators even disposing, in part or altogether, of distributional assumptions.
In some cases, simplified versions of these methods are easy to implement (e.g., Das et al.
2003). However, these estimators do have shortcomings. Specifically, semi/non-parametric
methods are usually restricted when it comes to including a large set of covariates in the
model and the resulting estimates are inefficient relatively to fully parametrized models (e.g.,
Bhat and Eluru 2009). To date, packages implementing semi/non-parametric procedures are
CPU-intensive and the set of options provided is often quite limited. In addition, convergence
problems are likely to occur when using models which include, for instance, many discrete vari-
ables and interactions. As for the parametric approach, many scholars agree upon its greater
computational feasibility as compared to semi/non-parametric approaches, which allows for
the use of familiar tools such as maximum likelihood without requiring simulation methods
or numerical integration. As pointed out by Smith (2003), maximum likelihood techniques
allow for the simultaneous estimation of all model parameters, and such methods, if the usual
regularity conditions hold and the model is correctly specified, ensure consistent, efficient and
asymptotically normal estimators. In addition, when using copulas the practitioner has the
possibility of a piece-wise model specification. This is because marginal distributions are not
constrained to belong to the same family of the chosen bivariate copula distribution. More-
over, Genius and Strazzera (2008) argue that copula modeling allows for direct estimation
of the dependence structure in the sample selection model while non-parametric methods do
not. However, a crucial point stands on the correct specification of these models; maximum
likelihood estimators are not consistent when the distributional assumption is not correct.
Also, testing the distributional assumption is not straightforward. In the context of Heck-
man’s two-step estimator, Lee (1982, 1984) presented misspecification tests based on bivariate
Edgeworth expansions. Recently, Montes-Rojas (2011) proposed a similar methodology for
testing normality in sample selection models. Specifically, he proposed Lagrange multiplier
and Neyman’s C(α) tests for the marginal normality and linearity of the conditional expecta-
tion of the error terms for the two-step estimator. Although these tests provided encouraging
results, more research is necessary to construct likelihood ratio and Wald tests. As for the
maximum likelihood approach, to date, all that can be done is a posteriori model selection
using, for instance, traditional information criteria. Finally, while a fully parametric copula
approach is less flexible than semi/non-parametric approaches, it is still allows the user to
assess the sensitivity of results to different modeling assumptions.

Some of the methods described above are implemented in popular software packages like SAS

(SAS Institute Inc. 2011), Stata (StataCorp 2011) and R (R Development Core Team 2015).
For example, the conventional Heckman sample selection model can be fitted in SAS us-
ing the proc qlim and in Stata using heckman. The non-parametric method by Lee (2008)
can be employed using the Stata package leebounds and the bivariate Student-t distribu-
tion Heckman model using heckt. In R the sample selection packages are sampleSelection

(Toomet and Henningsen 2008), bayesSampleSelection (Wiesenfarth and Kneib 2010), avail-
able from the first author’s webpage, ssmrob (Zhelonkin, Genton, and Ronchetti 2013) and
SemiParBIVProbit (Marra and Radice 2015). sampleSelection and bayesSampleSelection

make the assumption of bivariate normality between the model equations. sampleSelection

and ssmrob assume a priori that continuous regressors have linear or pre-specified non-linear
relationships to the responses, whereas ssmrob relaxes the assumption of bivariate normality
by providing a robust two-stage estimator of Heckman’s approach. sampleSelection and Semi-
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ParBIVProbit support binary responses for the outcome equation, with the latter allowing for
non-linear covariate effects and non-Gaussian bivariate distributions. It is worth mentioning
the packages censReg (Henningsen 2012) which deals with censored dependent variables, and
intReg (Toomet 2012) which implements interval regression models.

We introduce the R package SemiParSampleSel (Marra, Radice, Wojtyś, and Wyszynski 2015)
to deal simultaneously with non-random sample selection, non-linear covariate effects and
non-normal bivariate distribution between the model equations. The problem of non-random
sample selection is addressed using the conventional system of two equations: a binary selec-
tion equation determining whether a particular statistical unit will be available in the out-
come equation. Covariate-response relationships are flexibly modeled using a spline approach
whereas non-normal distributions are dealt with by using copula functions. The core algorithm
is based on the penalized maximum likelihood framework proposed by Marra and Radice
(2013) for the bivariate normal case. We further extend this by allowing for non-normal
bivariate distributions using copulas. Note that if a normal copula is chosen and linear or
pre-specified covariate effects are assumed then, similarly to sampleSelection, SemiParSample-

Sel fits the classical Heckman sample selection model using a maximum likelihood approach.
We believe that when a practitioner faces a non-normality problem in the sample selection
model, the option offered by the copula approach is worth pursuing whenever the accuracy
of structural parameter estimates is the priority. Well motivated conjectures on the stochas-
tic structure of the phenomenon may lead to specifications better fitting the data than the
traditional sample selection model. Moreover, using different assumptions on the bivariate
distribution, as it happens with copulas, allows the specification of the conditional mean to
remain intact. This is crucial to the interpretability of the model parameters.

The paper is organized as follows. In the next section, we present the model, describe the
algorithm used to estimate the model parameters and discuss inferential and numerical issues.
Section 3 provides details on the implementation of the model in SemiParSampleSel. In
Section 4, we illustrate the usage of the package on various simulated data sets, whereas
Section 5 is devoted to an illustrative real data example.

2. Methodological and algorithmic details

2.1. Model definition

In the sample selection problem, our aim is to fit a regression model when some observations
of the outcome variable are missing not at random. Thus assuming that y∗2i, for i = 1, . . . , n, is
a random variable of our primary interest, we can represent the random sample using a pair of
variables (y1i, y2i), such that yi1 ∈ {0, 1} and y2i = y∗2iy1i. The variable y1i governs whether
or not an observation on the variable of primary interest is generated and the unobserved
values of the variable of interest are coded as 0. In the model statement, a latent continuous
variable y∗1i such that y1i = 1(y∗1i > 0) is used, where 1 is the indicator function. Let Fi

denote the joint cumulative distribution function (cdf) of (y∗1i, y
∗
2i) and let F1i and F2i be the

marginal cdf’s pertaining to y∗1i and y∗2i, respectively. We assume normality of the marginal
distributions whilst the relationship between them is modeled using a copula approach. That
is, y∗1i ∼ N (µ1i, 1) (which yields a probit model for y1i) and y∗2i ∼ N (µ2i, σ), where µ1i, µ2i ∈ R

are linear predictors defined in the next section and σ > 0, the standard deviation, is unknown.
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F1i relates to the selection equation and F2i to the outcome equation. The model is then
defined by using the copula representation

Fi(y
∗
1, y

∗
2) = C(F1i(y

∗
1), F2i(y

∗
2); θ), (1)

for some two-place function C which is unique, where θ is an association parameter mea-
suring the dependence between the two marginal cdf’s. In the package, the families cur-
rently implemented are normal, Clayton, Joe, Frank, Gumbel, Farlie-Gumbel-Morgenstern
(FGM), and Ali-Mikhail-Haq (AMH); these are listed in Table 1. Rotations by 90, 180
and 270 degrees for Clayton, Joe and Gumbel can be obtained using the results reported
in Brechmann and Schepsmeier (2013); these will be available in future releases. As it
can be seen from Table 1, θ may be difficult to interpret in some cases. To this end,
we can use the Kendall’s τ coefficient which is a measure of association that lies in the
customary range [−1, 1]. This is generally defined as τ = P ((y∗11 − y∗12)(y

∗
21 − y∗22) > 0) −

P ((y∗11 − y∗12)(y
∗
21 − y∗22) < 0) for independent pairs (y∗1j , y

∗
2j), j = 1, 2, that are copies of

(y∗1, y
∗
2). Testing the null hypothesis of absence of selection bias is an important issue as if

the null hypothesis cannot be rejected then joint estimation of the two model equations can
be avoided and consistent estimates for the parameters of the equation of interest can be
obtained using a univariate equation model. In the context of the copula regression spline
sample selection model, the absence of sample selection bias is equivalent to the condition
that the Kendall’s τ coefficient equals 0. Thus the null hypothesis can, for instance, be tested
by checking whether the confidence interval for the Kendall’s τ includes 0. The problem of
testing for sample selection bias is further addressed in Section 4.3. For a comprehensive in-
troduction to the theory of copulas and their properties see the monographs of Nelsen (2006)
and Joe (1997).

Copula likelihood

The log-likelihood function for the sample selection model can be expressed as a sum over
two disjoint subsets of the sample: one for the observations with a missing value of the
response of interest and the other for the remaining observations. In the first case, the
likelihood for the ith observation takes the simple form of P(y1i = 0), which is equivalent
to F1i(0). In the second case, the joint likelihood can be expressed, using the multiplica-
tion rule, as P(y∗1i > 0)f2|1,i(y2i|y∗1i > 0), where f2|1,i denotes the probability density func-
tion of y∗2i given y∗1i > 0. After substituting the conditional density f2|1,i(y2i|y∗1i > 0) by

1
P (y∗

1i>0)
∂

∂y2
(F2i(y2) − Fi(0, y2))

∣

∣

y2→y2i
, we obtain the log-likelihood

ℓ =
n
∑

i=1

{

(1 − y1i) logF1i(0) + y1i log

(

f2i(y2i) −
∂

∂y2
Fi(0, y2)

∣

∣

y2→y2i

)}

.

Using (1), we then have

ℓ =

n
∑

i=1

{(1 − y1i) logF1i(0) + y1i log (f2i(y2i) (1 − zi))} , (2)

where zi = ∂
∂vC(F1i(0), v; θ)

∣

∣

v→F2i(y2i)
. The normality of margins implies that F1i(0) =

Φ(−µ1i) and f2i(y2i) = σ−1φ
(

(y2i − µ2i)σ
−1
)

, where Φ and φ are used throughout to denote
the standard normal distribution and density functions, respectively.
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Copula C(u, v; θ) Parameter space

Normal Φ2

(

Φ−1(u),Φ−1(v); θ
)

θ ∈ [−1, 1]

Clayton
(

u−θ + v−θ − 1
)

−1/θ
θ ∈ (0,∞)

Joe 1−
[

(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ
]1/θ

θ ∈ (1,∞)

Frank −θ−1 log
[

1 + (e−θu − 1)(e−θv − 1)/(e−θ − 1)
]

θ ∈ R\ {0}

Gumbel exp
{

−
[

(− log u)θ + (− log v)θ
]1/θ

}

θ ∈ [1,∞)

FGM uv [1 + θ(1− u)(1− v)] θ ∈ [−1, 1]
AMH uv/ [1− θ(1− u)(1− v)] θ ∈ [−1, 1]

Table 1: Families of copulas implemented in SemiParSampleSel, with corresponding param-
eter range of the association parameter θ. Φ2(·, ·; θ) denotes the cumulative distribution
function of a standard bivariate normal distribution with correlation coefficient θ.

Linear predictor specification

We assume that the expected values µ1i and µ2i of variables y∗1i and y∗2i, respectively, are
linked with the predictors, i.e., µ1i = η1i and µ2i = η2i, where the linear predictor of the
selection equation can be written as

η1i = uT

1iα1 +

K1
∑

k1=1

s1k1(z1k1i), i = 1, . . . n, (3)

and that of the outcome equation as

η2i = uT

2iα2 +

K2
∑

k2=1

s2k2(z2k2i), i ∈ {j : y1j = 1}, (4)

where vector uT

1i = (1, u12i, . . . , u1P1i) is the ith row of U1 = (u11, . . . ,u1n)T, the n×P1 model
matrix containing P1 parametric model components (e.g., intercept, dummy and categorical
variables), α1 is a parameter vector, and the s1k1 are unknown smooth functions of the K1

continuous covariates z1k1i. Similarly, uT

2i = (1, u22i, . . . , u2P2i) is the ith row vector of the

ns × P2 model matrix U2 = (u21, . . . ,u2ns)
T, where ns is the size of the selected sample,

α2 is a parameter vector, and the s2k2 are unknown smooth terms of the K2 continuous
regressors z2k2i. The smooth functions are subject to the centering (identifiability) constraint
∑

i svkv(zvkvi) = 0 for v = 1, 2, kv = 1, . . . ,Kv (Wood 2006).

The smooth functions are represented using regression splines, where, in the one-dimensional
case, a generic sk(zki) is approximated by a linear combination of known spline basis func-
tions, bkj(zki), and regression parameters, βkj , i.e., sk(zki) =

∑Jk
j=1 βkjbkj(zki) = βT

kBk(zki),

where Jk is the number of spline bases used to represent sk, Bk(zki) is the ith vector of di-
mension Jk containing the basis functions evaluated at the observation zki, i.e., Bk(zki) =
{bk1(zki), bk2(zki), . . . , bkJk(zki)}T, and βk is the corresponding parameter vector. The sub-
script indicating which equation each smooth component belongs to has been suppressed for
simplicity. Calculating Bk(zki) for each i yields Jk curves (encompassing different degrees of
complexity) which multiplied by some real valued parameter vector βk and then summed will
give a (linear or non-linear) estimate for sk(zk) (see, for instance, Marra and Radice (2010) for
a more detailed overview). Basis functions should be chosen to have convenient mathematical
and numerical properties. B-splines, cubic regression and low rank thin plate regression splines
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are supported in our implementation (see Wood (2006) for full details on these spline bases).
Our implementation also supports varying coefficients’ models, obtained by multiplying one
or more smooth terms by some predictor(s), smooth functions of two or more (e.g., spatial) co-
variates, random effect and Markov random field smooth functions, to name but a few (Wood
2006). These cases follow a similar construction as described above. For instance, in the case
of a smooth of two variables z1i and z2i we would have s12(z1i, z2i) =

∑J12
j=1 β12jb12j(z1i, z2i),

where the specification of the basis functions depends again on the kind of spline chosen
(Wood 2006). Linear predictors (3) and (4) can, therefore, be written as ηvi = uT

viαv +BT

viβv,
where BT

vi =
{

Bv1(zv1i)
T, . . . ,BvKv(zvKvi)

T
}

and βT
v = (βT

v1, . . . ,β
T

vKv
), for v = 1, 2. In

principle, the parameters of the sample selection model are identified even if the same regres-
sors appear in both linear predictors (e.g., Wiesenfarth and Kneib 2010). However, better
estimation results are generally obtained when the set of regressors in the selection equation
contains at least one or more regressors (usually known as exclusion restrictions) that are not
included in the outcome equation (e.g., Marra and Radice 2013).

2.2. Estimation approach

Denote the log-likelihood function as ℓ(δ), where δT = (δT1 , δ
T

2 , σ, θ) and δTv = (αT
v ,β

T
v ), for

v = 1, 2. Given the flexible structure of the linear predictors considered here, unpenalized
estimation can result in smooth term estimates that are too rough to produce practically useful
results. This issue is dealt with by using the penalty term

∑2
v=1

∑Kv
kv=1 λvkv

∫

s′′vkv(zvkv)2dzvkv
which measures the (typically, second-order) roughness of the smooth terms in the model. For
a smooth of two variables generically written as s12(z1, z2) and represented using thin plate

regression splines the integral would look like
∫ ∫

(

∂2s12
∂z2

1

)2
+ 2

(

∂2s12
∂z1∂z2

)2
+
(

∂2s12
∂z2

2

)2
dz1dz2,

where the subscripts have been dropped to avoid clutter. The λvkv are smoothing parameters
controlling the trade-off between fit and smoothness. Since regression splines are linear in
their model parameters, the overall penalty can be written as βTSλβ where βT = (βT

1 ,β
T

2 ),
Sλ =

∑2
v=1

∑Kv
kv=1 λvkvSvkv and the Svkv are positive semi-definite known square matrices

expanded with zeros everywhere except for the elements which correspond to the coefficients
of the vkthv smooth term. Because of the restrictions on the values that θ can take, we use a
proper transformation of it, θ∗, in order to avoid the use of a constraint when estimating this
parameter (see Table 2 for the list of transformations used). Similarly, since σ can only take
positive real values, we use σ∗ = log(σ). So, in optimization, we use δT∗ = (δT1 , δ

T

2 , σ
∗, θ∗) ∈ R

p,
where p is the total number of parameters. Therefore, the function to maximize is

ℓp(δ∗) = ℓ(δ∗) −
1

2
βTSλβ. (5)

Given a parameter vector value for λ̂T = (λ̂1k1 , . . . , λ̂1K1
, λ̂2k2 , . . . , λ̂2K2

), we seek to maximize
(5). The issues with this maximization problem are that ℓp(δ∗) is not globally concave and the
penalized Hessian may be non-positive definite on some occasions (Toomet and Henningsen
2008; Marra and Radice 2013). To this end, we use a trust region approach which is typically
believed to be more stable than its line-search counterparts, particularly for functions that are,
for example, non-concave and/or exhibit regions that are close to flat (Nocedal and Wright
2006, Chapter 4). Let a be an iteration index. Intuitively speaking, line search methods
choose a direction to move from, say, ma to ma+1 and find the distance along that direction
which gives the best improvement in the objective function. If the function is, for instance,
non-convex or has long plateaus, the optimizer may search far away from ma but choose an
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ma+1 that is close to ma and that offers marginal improvement in the objective function.
In some cases, the function will be evaluated so far away from ma that it will not be finite
and the algorithm will fail. Trust region methods choose a maximum distance for the move
from ma to ma+1, defining a “trust region” around ma that has a radius of that maximum
distance, and then let a candidate for ma+1 be the minimum of a quadratic approximation
of the objective function. Since points outside of the trust region are not considered, the
algorithm never runs too far and/or too fast from the current iteration. The trust region is
shrunken if the proposed point in the region is worse/not better than the current point. The
new problem with smaller region is then solved. If a point close to the boundary of the trust
region is accepted and it gives a large enough improvement in the function then the region for
the next iteration is expanded. If a point along a search path causes the objective function to
be undefined or indeterminate, most implementations of line search methods will fail and user
intervention is required. In the trust region approach, the search for ma+1 is always a solution
to the trust region problem; if the function at the proposed ma+1 is not finite or not better
than the value at ma, then the proposal is rejected and the trust region shrunken. Finally, a
line search approach requires repeated estimation of the objective function, while trust region
methods evaluate the objective function only after solving the trust region problem. Hence,
trust region methods can be considerably faster when the objective function is expensive to
compute. Full details can be found in (Nocedal and Wright 2006, Chapter 4).

In practice, we adopt a trust region Newton method (Nocedal and Wright 2006, Chapter 4)
which, in our case, solves the problem

min
p

ℓ̆p(δ
[a]
∗ )

def
= −

{

ℓp(δ∗
[a]) + pT(g[a] − S∗

λ̂
δ̂[a]) +

1

2
pT(H[a] − S∗

λ̂
)p

}

so that ‖p‖ ≤ r[a],

δ∗
[a+1] = arg min

p

ℓ̆p(δ
[a]
∗ ) + δ

[a]
∗ ,

where ‖ · ‖ denotes the Euclidean norm and r[a] represents the radius of the trust region. S∗
λ̂

is the overall block-diagonal penalty matrix which is made up of λ̂vkvSvkv and 0 components.
After dropping the iteration index, the score vector g is defined by two subvectors g1 =
∂ℓ(δ∗)/∂δ1 and g2 = ∂ℓ(δ∗)/∂δ2 and two scalars g3 = ∂ℓ(δ∗)/∂σ

∗ and g4 = ∂ℓ(δ∗)/∂θ
∗,

while the Hessian matrix has a 4 × 4 matrix block structure with (r, h)th element Hr,h =
∂2ℓ(δ∗)/∂δr∂δ

T

h , r, h = 1, . . . , 4, where δ3 = σ∗ and δ4 = θ∗. The expressions of g and H for
all copulas are given in Appendix A; these have been derived analytically and verified using
numerical derivatives.

At each iteration of the algorithm, ℓ̆p(δ
[a]
∗ ) is minimized subject to the constraint that the

solution falls within a trust region with radius r[a]. The proposed solution is then accepted or
rejected and the trust region expanded or shrunken based on the ratio between the improve-
ment in the objective function when going from δ∗

[a] to δ∗
[a+1] and that predicted by the

quadratic approximation. Note that, near the solution, the trust region Newton algorithm
typically behaves as a Newton algorithm.

Smoothing parameter estimation

Multiple smoothing parameter estimation by direct grid search optimization of, for instance, a
prediction error criterion can be computationally expensive, especially if the model has more
than one smooth term per equation. This section briefly describes the automatic approach
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Copula θ∗

Normal tanh−1(θ)
Clayton log(θ − ǫ)
Frank θ − ǫ
Joe log(θ − 1 − ǫ)
Gumbel log(θ − 1)

FGM tanh−1(θ)

AMH tanh−1(θ)

Table 2: Transformations, θ∗, of the dependence parameter, θ, used in optimization. Quantity
ǫ is set to the machine smallest positive floating-point number multiplied by 106 and is used
to ensure that the dependence parameters lie in the ranges reported in Table 1.

employed by Marra and Radice (2013) to estimate λ. Note that joint estimation of δ∗ and
λ via maximization of (5) would clearly lead to overfitting since the highest value for ℓp(δ∗)

would be obtained when λ = 0. Parameter vector λ̂ is the solution to the problem

minimize
1

n∗
‖z−Aλz‖2 − 1 +

2

n∗
tr(Aλ) w.r.t. λ, (6)

where
√
W is a weight non-diagonal matrix square root, zi is the 4-dimensional vector

zi = Xiδ
[a]
∗ +W−1

i di, di = {∂ℓ(δ∗)i/∂η1i, ∂ℓ(δ∗)i/∂η2i, ∂ℓ(δ∗)i/∂η3i, ∂ℓ(δ∗)i/∂η4i}T, η3i = σ∗,
η4i = θ∗, Wi is a 4 × 4 matrix with (r, h)th element (Wi)rh = −∂2ℓ(δ∗)i/∂ηri∂ηhi, r, h =
1, . . . , 4, Xi = diag

{(

uT

1i,B
T

1i

)

,
(

uT

2i,B
T

2i

)

, 1, 1
}

, n∗ = 4n, Aλ = X(XTWX + S∗
λ)−1XTW is

the hat matrix, and tr(Aλ) the estimated degrees of freedom (edf) of the penalized model.
The iteration index has been dropped to avoid clutter. Note that the working linear model
quantities are constructed for a given estimate of δ∗. Iteration (6) will produce an updated
estimate for λ which will then be used to obtain a new parameter vector estimate for δ∗. The
two steps, one for δ∗ and the other for λ, are iterated until convergence.

2.3. Confidence intervals, variable selection and model selection

Inferential theory for penalized estimators is complicated by the presence of smoothing penal-
ties which undermines the usefulness of classic frequentist results for practical modeling.

As shown in Marra and Radice (2013), reliable pointwise confidence intervals for the terms
of a regression spline sample selection model can be constructed using

δ∗|y∽̇N (δ̂∗,Vδ∗), (7)

where y refers to the response vectors, δ̂∗ is an estimate of δ∗ and Vδ∗ = (−H + S∗
λ̂

)−1.
The structure of Vδ∗ is such that it includes both a bias and variance component in a fre-
quentist sense, which is why such intervals exhibit close to nominal coverage probabilities
(Marra and Wood 2012). Given (7), confidence intervals for linear and non-linear functions
of the model parameters can be easily obtained. For instance, for a generic ŝk(zki) these can
be obtained using

ŝk(zki)∽̇N (sk(zki),Bk(zki)
TVδ

∗k
Bk(zki)), (8)

where Vδ
∗k

is the submatrix of Vδ∗ corresponding to the regression spline parameters associ-
ated with kth function. Intervals for non-linear functions of the estimated model coefficients
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(i.e., σ, θ) can be conveniently obtained by simulation from the posterior distribution of δ∗.
As for the parametric model components, using (7) is equivalent to using classic likelihood
results because such terms are not penalized.

Result (8) can be used to find intervals for sk(zki) for each k and i but cannot be used to test
whether smooth terms are equal to zero (e.g., Ruppert, Wand, and Carroll 2003, Chapter
6). For this purpose, p-values or shrinkage methods may be employed. To test smooth
components for equality to zero we use the results by Wood (2013). Define ŝk = Bk(zk)β̂k,
where Bk(zk) denotes a full column rank matrix and zk = (zk1, zk2, . . . , zkn)T, and Vsk

=
Bk(zk)Vδ

∗k
Bk(zk)T. It is then possible to obtain approximate p-values for testing smooth

components for equality to zero based on

Trk = ŝTkV
rk−
sk

ŝk∽̇χ2
rk
,

where V
rk−
sk is the rank rk Moore-Penrose pseudoinverse of Vsk

. Parameter rk is selected
using the established notion of edf used in (6). Because edf is not an integer, it can be
rounded as follows (Wood 2013)

rk =

{

floor(edfk) if edfk < floor(edfk) + 0.05

floor(edfk) + 1 otherwise
,

which proved effective in semiparametric bivariate probit models (Marra 2013).

As an alternative, the shrinkage single penalty approach presented in Marra and Wood (2011)
can be adopted. Specifically, the generic second-order smoothing penalty matrix Sk can be
decomposed as UkΛkU

T

k , where Uk is an eigenvector matrix associated with the kth smooth
function, and ΛK the corresponding diagonal eigenvalue matrix. Because a part of the spline
basis deals with the penalty null space, Λk contains zero eigenvalues. So even if λk goes to
infinity the smooth term of a nuisance variable may still be estimated as non-zero, because
the function component in the null space (i.e., the linear term) is unpenalized. This can be
fixed by replacing Λk with Λ̃k, where the latter is the same as the former except that the
zero eigenvalues are set to a small proportion, typically 0.1, of the smallest strictly positive
eigenvalue of Sk. This forces the eigenvalues of the new penalty matrix, S̃k, associated with
the penalty null space to be different from zero. Hence a smooth component can in principle
be removed from the model altogether.

Copula models with a single dependence parameter can be thought of as non-nested models.
As suggested by Zimmer and Trivedi (2006) among others, one approach for choosing between
copula models is to use either the Akaike or (Schwarz) Bayesian information criterion (AIC
and BIC, respectively). In our case, AIC = −2ℓ(δ̂∗) + 2edf and BIC = −2ℓ(δ̂∗) + log(n)edf ,
where the log-likelihood is evaluated at the penalized parameter estimates and edf = tr(Â

λ̂
).

2.4. Numerical considerations

As explained in Section 2.2, a trust region Newton algorithm is a more reliable choice to
estimate the model parameters. As for the initial values, they are provided by using an
extension of the Heckman (1979) procedure detailed in Appendix B of Marra and Radice
(2013). The adopted approach proved to be fast and reliable in most cases, with occasional
convergence failure for small values of n and ns.
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As the analytical expressions for g and H of the copula log-likelihood functions are very
complicated, numerical issues may be encountered in some cases when certain quantities
take values which lie nearby their boundaries. Firstly, this may occur when the dependence
between the margins is very strong or very weak, i.e., when θ takes extreme values (for
example, association tending to 1 implies θ → ∞ for a number of copulas). This leads to
expressions which are equal to Inf during the numerical evaluations, especially the Frank
copula where the exponential transformation of θ appears in the expressions for the gradient
and Hessian. Secondly, data points which lie in the tails of F1i and F2i will lead to their values
equal to 0 or 1. Also, the value of zi appearing in log-likelihood (2) may be approximately
equal to 1, hence producing -Inf. These numerical problems are dealt with by truncating
the values of F1i, F2i, f2i and zi to the interval (ε, 1 − ε) with ε = 10−10. Moreover, the
ratio φ(x)/Φ(x) appearing in the expressions for g and H is defined using the approximation
φ(x)/Φ(x) ∼ −x for x < −35 in order to avoid NaN.

If a given model cannot be fitted due to numerical issues then the user receives the message
Ill-conditioned task. It is worth noting that numerical problems that arise when fitting
a model may be also a hint that the chosen model is not appropriate to fit the data at hand.

3. Overview of the package

The SemiParSampleSel package is available from the Comprehensive R Archive Network
(CRAN) at http://cran.r-project.org/web/packages/SemiParSampleSel/index.html.
The package depends on copula (Yan 2007), mgcv (Wood 2006), mvtnorm (Genz and Bretz
2009) and imports functions from packages magic (Hankin 2005), trust (Geyer 2013), VGAM

(Yee 2014) and Matrix (Bates and Maechler 2014). The main function in SemiParSample-

Sel is SemiParSampleSel(), which fits copula regression spline sample selection models as
described in the previous section. The function can be called using the following syntax:

SemiParSampleSel(list(formula.eq1, formula.eq2), data = list(), BivD = "N",

margins = c("N", "N"), infl.fac = 1, ...)

The first argument is a list of formula.eq1 and formula.eq2 which are the formulas for
the selection and outcome equations, respectively. These are glm like formulas except that
smooth terms can be included in the equations as for gam in mgcv. For instance, the selection
equation may look like:

y.sel ~ as.factor(x1) + s(x2, bs = "cr", k = 10, m = 2) + s(x3, x4) + ...,

where y.sel represents the binary selection variable, x1 is a categorical predictor, and the
s terms are used to specify smooth functions of the continuous predictors x2, x3 and x4.
Argument bs specifies the spline basis; possible choices include cr (cubic regression spline),
cs (shrinkage version of cr), tp (thin plate regression spline) and ts (shrinkage version of tp).
Bivariate smoothing, e.g., s(x3, x4), is achieved using bs = "tp". k is the basis dimension
(default is 10) and m the order of the penalty (default is 2). More details and options on
smooth term specification can be found in the documentation of mgcv. SemiParSampleSel

does not currently support the use of tensor product smooths.

Optional arguments of the function SemiParSampleSel include data which is a data frame,
list or environment containing the variables in the model, and infl.fac which is an inflation

http://cran.r-project.org/web/packages/SemiParSampleSel/index.html
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factor for the model degrees of freedom used in the smoothing step. Smoother models can be
obtained setting this parameter to a value greater than 1; infl.fac = 1.4 typically achieves
this and was found by Kim and Gu (2004) in a different context. The type of bivariate copula
linking the two model equations can be specified through BivD. Possible choices are "N", "C0",
"J0", "FGM", "F", "AMH" and "G0" which stand for bivariate normal, Clayton, Joe, Farlie-
Gumbel-Morgenstern, Frank, Ali-Mikhail-Haq and Gumbel. The argument margins specifies
the marginal distributions of the selection and outcome equations, given in the form of a
two-dimensional vector which is equal to c("N","N") for normal margins. Details on all the
other arguments, including starting value and control options, and the fitted-object list that
the function returns can be found in (Marra et al. 2015).

Other available functions are:

• plot(x, eq, pages = 0, scale = -1, shade = FALSE, seWithMean = FALSE,...).
This function takes a fitted object x as produced by SemiParSampleSel() and plots the
component smooth functions that make it up on the scale of the linear predictor. eq

denotes the equation from which smooth terms should be considered for printing, pages
is the number of pages over which to produce the plots (e.g., if pages = 1 then all terms
will be plotted on one page), and scale is the y-axis scale to use for each plot (scale =

0 gives a different axis for each plot). If shade is set to TRUE then shaded regions as con-
fidence bands for smooth terms are produced. Of interest is the argument seWithMean
which indicates whether the component smooth should be shown with confidence in-
tervals that include the uncertainty about the overall mean. Marra and Wood (2012)
showed that seWithMean = TRUE results in intervals with better nominal frequentist
coverage probabilities. This function is based on plot.gam() in mgcv to which the
reader is referred for full details.

• predict(object, eq, ...). This function takes a fitted SemiParSampleSel object
and produces predictions for a new set of values of the model covariates or the original
values used for the model fit. Standard errors of predictions can be produced. These
are based on the posterior distribution of the model coefficients. This function is based
on predict.gam() in mgcv.

• summary(object, n.sim = 1000, s.meth = "svd", prob.lev = 0.05, ...). This
function produces some summaries of a fitted SemiParSampleSel object. n.sim indi-
cates the number of simulated coefficient vectors from the posterior distribution of the
estimated model parameters, which are used to calculate ‘confidence’ intervals for σ
and θ, for instance. s.meth is the matrix decomposition used to determine the matrix
root of the covariance matrix (see the documentation of mvtnorm for further details).
prob.lev is the probability of the left and right tails of the posterior distribution used
for interval calculations. The object list returned includes, for instance, summary tables
for the selection and outcome equations for the parametric and nonparametric compo-
nents, and the estimated standard deviation and association coefficient.

• ss.checks(x) which produces some diagnostic information about the fitting procedure
for a SemiParSampleSel object.

These functions will be illustrated in Section 5.
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4. Simulations

In this section, we conduct a Monte Carlo simulation study to evaluate the empirical effec-
tiveness of the copula regression spline sample selection models implemented in the package.
The simulation study was performed using version 1.1 of the package SemiParSampleSel. For
convenience, all the tables and figures of results are given in Appendix B.

As in Marra and Radice (2013), the sampling experiments were based on the equations

η1i = α11 + α12ui + s11(z1i) + s12(z2i)

η2i = α21 + α22ui + s21(z1i)
, (9)

where y1i and y2i were determined as described in Section 2.1. The test functions are displayed
in Figure 1 and are defined as s11(z1i) = −0.7

{

4z1i + 2.5z21i + 0.7 sin(5z1i) + cos(7.5z1i)
}

,
s12(z2i) = −0.4 {−0.3 − 1.6z2i + sin(5z2i)}, and s21(z1i) = 0.6 {exp(z1i) + sin(2.9z1i)}. Pa-
rameter vector (α12, α21, α22) and σ were set to (2.5,−0.68,−1.5) and 1. Binary values for y1i
were generated so that approximately 50% of the total number of observations were selected
to fit the outcome equation; this was achieved by setting α11 to 0.58. Regressors ui, z1i and
z2i were generated as three uniform covariates on (0, 1) with correlation approximately equal
to 0.5. This was achieved using rmvnorm() in mvtnorm, generating standardized multivariate
random draws with correlation 0.5 and then applying pnorm() (e.g., Marra and Radice 2013).
Regressor ui was eventually dichotomized using round(). As joint distribution of (y∗1i, y2i)

n
i=1

the following copulas were considered: normal, Clayton, Joe, FGM, AMH, Frank and Gum-
bel, each with normal margins. The sample size n was set to 1000. For each copula, different
values of the association parameter were considered:

• normal copula: θ = 0.16 (τ = 0.1), θ = 0.71 (τ = 0.5), θ = 0.89 (τ = 0.7),

• Clayton copula: θ = 0.22 (τ = 0.1), θ = 2 (τ = 0.5), θ = 57 (τ = 0.7),

• Joe copula: θ = 1.31 (τ = 0.15), θ = 2.86 (τ = 0.5), θ = 6.78 (τ = 0.75),

• FGM copula: θ = −0.9 (τ = −0.2), θ = 0.68 (τ = 0.15),

• AMH copula: θ = −0.62 (τ = −0.12), θ = 0.4 (τ = 0.1), θ = 0.9 (τ = 0.28),

• Frank copula: θ = 1.86 (τ = 0.2), θ = 5.74 (τ = 0.5), θ = 11.41 (τ = 0.7),

• Gumbel copula: θ = 1.25 (τ = 0.2), θ = 2 (τ = 0.5), θ = 5 (τ = 0.8).

In Tables 4 - 10 the association parameter used to generate the data is expressed in terms of
Kendall’s τ coefficient. For each combination of parameter settings, the number of simulated
datasets was set to 250. We also explored the performance of the models in the absence of
an exclusion restriction as detailed in Section 4.2.

4.1. Main results

Since the selection equation is not in principle affected by non-random sample selection bias,
we focus on the estimation results for the outcome equation only. Tables 4 - 10 report the
percentage relative bias and root mean squared error (RMSE) calculated for the estimators of
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Figure 1: The test functions used in the simulation studies.

α21, α22, σ, τ , and the RMSE for that of s21(z1), calculated as
√

1
200

∑200
b=1 {ŝ(z1b) − s(z1b)}2,

based on the estimates for 200 fixed covariate values. The tables also report the percentage
frequency at which each copula model was selected by AIC and BIC.

The results presented in the tables show overall that the model employing the true copula
achieves the lowest bias and/or RMSE of the estimators of all considered parameters in most
cases. We can particularly observe this for data generated using the Clayton copula (see
Table 5), where the estimators of α21, α22, σ, τ and s22 obtained from the Clayton model
outperform in terms of bias and RMSE those yielded by the other copula models. Using
the right model is particularly important for estimating τ when its true value falls outside
the dependence range covered by a given copula, as some of them allow only for a restricted
interval of dependence (here, this is the case for AMH and FGM). The results also show
that, for data generated using the Frank or normal copulas, both models yield comparably
good results, hence reflecting the similarity between these two copulas (see Tables 4 and 9 for
τ = 0.7). We observe a similar effect for data generated using the Joe and Gumbel copulas.
The findings also suggest that in some cases for small values of τ the choice of the correct
copula model does not seem to play an important role in estimation (see Table 4 for τ = 0.1,
Table 7 and Table 8), and often the Clayton and Gumbel models yield estimators with a
relatively low bias and RMSE for such data regardless of the true copula.

As for copula model selection, the two criteria work overall well. The case of very weak depen-
dence is the most difficult one as the underlying distribution converges to the normal product
distribution when τ → 0. Thus in this situation all copulas entail very similar distributions.
As an example, Figure 2 presents contour plots of FGM, Clayton and Joe copulas with nor-
mal margins for small values of the dependence parameter. For those distributions the choice
of the correct copula based on an empirical sample is extremely difficult and the selection
criteria appear to select an arbitrary model as can be seen in Table 7. At the same time,
the finite sample performance of the estimators is unaffected by the wrong choice of a copula
in those border cases as, again, all copulas tend to the same (normal product) distribution.
Even in this difficult situation, AIC seems to be successful for some copulas (see Tables 5, 6
and 9). For medium and large values of τ , the true copula model is the most frequent choice
with all model selection criteria, with AIC performing much better than BIC and achieving
a hit rate of more than 90% in some cases (see Table 5). It is also worth noting that in
general, the accuracy of the choice of the copula improves with the sample size as can be seen
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in Tables 1 and 2 of supplementary materials where the experiment was repeated for samples
of size n = 3000 and n = 5000 pertaining to bivariate normal distribution. There we can also
observe consistency of the estimators when the right copula is chosen. In the case of a wrong
copula the estimators are inconsistent.

FGM copula, θ=0.15 (τ=0.033)
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Clayton copula, θ=0.07 (τ=0.034)
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Joe copula, θ=1.04 (τ=0.026)

 0.02 

 0.04 

 0.06 

 0.08 
 0.1 

 0.12 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2: Contour plots of FGM, Clayton and Joe copulas with normal margins for small
values of the dependence parameter.

4.2. Absence of an exclusion restriction

Sometimes the same regressors have to be used in both selection and outcome equations as
an exclusion restriction is not available. To investigate the performance of the copula sample
selection models in this situation, the simulation study described above was repeated for the
case in which system (9) did not include s12(z2i). The sampling experiments were based on

η1i = α11 + α12ui + s11(z1i)

η2i = α21 + α22ui + s21(z1i)
, (10)

where functions s11 and s21 and parameters α11, α12, α21, α22 were the same as in Section 4
and the predictors ui and z1i were generated in the same way.

Following a reviewer’s suggestion we also considered the harder scenario in which the same
functional form of the effect of variable z1 was present in both model equations. Thus the
simulated data were based on the equations

η1i = α11 + α12ui + s21(z1i)

η2i = α21 + α22ui + s21(z1i)
. (11)

Figures 5 and 6 demonstrate the influence of the lack of exclusion restriction on the estimators
of the model parameters in terms of their mean squared error and bias, for a choice of copulas:
normal, Clayton, Joe and FGM. The solid lines correspond to root mean squared errors of
the estimators α̂21, α̂22, σ̂, τ̂ and the smooth function ŝ21 (upper panels) and absolute values
of percentage bias of estimators α̂21, α̂22, σ̂ and τ̂ (lower panels) for model (10) without the
exclusion restriction. The corresponding lines for model (9) in which the selection equation
contains an additional term s12(z2) are added for comparison as dotted lines. Analogically,
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Figures 7 and 8 demonstrate the influence of the lack of exclusion restriction on the estimators
for model (11) in comparison to model (9).

We observe that the quality of the estimator σ̂ is practically unaffected by the lack of exclusion
restriction for both scenarios considered in terms of root mean squared error and bias. For the
remaining parameters, we observe that removing s12(z2) from the selection equation increases
the bias and RMSE of the estimators in most of the cases considered. We also observe a larger
variance and more cases of lack of convergence when the exclusion restriction is not available.
The lack of exclusion restriction leads to particularly unstable estimators of the Kendall’s τ
in terms of the relative bias in cases where this parameter is close to zero, as can be seen in
Figures 5 a) and 6 b) where the relative percentage bias exceeds 160% and 110%, respectively,
while the RMSEs of τ̂ in those cases do not indicate any particularly bad performance. The
above values of relative bias imply however that the average estimated values of τ equal
approximately −0.06 and −0.018, respectively, which in turn has a major importance while
testing the absence of sample selection bias as it affects the size and power of the test. This
issue is further discussed in section 4.3. However, for scenario (10) the influence of the lack of
exclusion restriction is usually much less significant than for the more difficult scenario (11).
Moreover, in some cases the differences between the RMSEs of the model parameters for the
cases with and without the exclusion restriction are rather negligible (see Figure 5 b) and
Figure 6 a)).

4.3. Testing the absence of sample selection bias

The key issue while fitting a sample selection model is testing the null hypothesis of absence
of selection bias. If the variables y∗1i and y∗2i are associated then sample selection bias occurs
and it is necessary to consider both outcome equation and selection equation together with
the dependence structure between the two of them while estimating the model. Otherwise,
the model can be much simplified by dropping the selection equation (and consequently the
copula function) from the analysis.

In general, the approach to testing for sample selection bias relies on the specific sample
selection model assumed. In the Heckman’s two step procedure (Heckman (1979)) sample
selection bias is tested using the t-test related with the significance of the omitted variable.
Dubin and Rivers (1989) considered likelihood ratio, Wald and Lagrange multiplier tests in
the context of a censored probit model. Moreover, Vella (1992) proposed a conditional moment
test.

In the context of copula regression spline sample selection models, testing for sample selection
bias can be based on the dependence parameter θ as absence of sample selection bias is
equivalent to the condition θ = 0 for normal, Frank, FGM and AMH copulas and θ = 1 for
Gumbel copula (note that Clayton and Joe copulas do not allow independence). Because of
the restrictions on the values of the copula association parameters, the use of classic testing
approaches may yield unreliable results in some copula cases. As a practical alternative, the
Kendall’s τ coefficient can be employed. Hence the null hypothesis can be tested by checking
whether the confidence interval for τ includes 0. In this section, results of a Monte-Carlo
study of the finite-sample performance of such approach are presented.

For data sets generated using the equations (9), the null rejection probabilities of the test
for absence of selectivity bias have been calculated based on 99%, 95% and 90% confidence
intervals for the parameter τ . As before, for every data set different copulas were considered
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while fitting the spline sample selection models (normal, FGM, AMH, Frank and Gumbel).
The Clayton and Joe copulas are not considered in the study as they allow only strictly
positive dependence implying that the test would always reject the null hypothesis in these
cases. For the case of a lack of the sample selection bias (τ = 0 ), the results of the Monte Carlo
simulations based on 250 repetitions and sample sizes n = 1000, 3000, 5000 are presented in
Table 11 a). For n = 1000 the test using Frank, normal and Gumbel copulas suffers from
high rejection frequency, whereas that using FGM has low rejection frequency. The rejection
probabilities for the test using AMH copula are close to the nominal values. As n increases the
null rejection probabilities converge to the nominal values; AMH and Frank copulas perform
the best achieving probabilities of the test that are very close to the theoretical value for
n = 5000. The poorest performance occurs in the case of Gumbel copula for which the
rejection probabilities converge to the theoretical values at a much slower rate, as the sample
size increases. Note, however, that the null hypothesis τ = 0 involves the boundary value of
τ allowed under the Gumbel copula which implies that the testing is a difficult issue in this
case.

Tables 11 b) and c) present the null rejection probabilities for the sample selection bias test for
data without exclusion restriction, generated using the equations (10) and (11), respectively.
In both cases, a negative influence of lack of the exclusion restriction can be observed as
the values of probabilities are larger than those presented in Table 11 a) where the exclusion
restriction is used. Moreover, the effect of lack of exclusion restriction is more severe for
data generated using equations (11) where the variable z1 enters both, the selection and
the outcome equations, in the same functional form. However, in Tables 11 b) and 11 c)
the same tendency regarding the comparison between different copulas can be observed with
FGM, AMH and Frank having rejection probabilities close to the nominal values and Gumbel
copula displaying the worst performance.

A study of power of the test for sample selection bias has also been conducted for the copulas
where the null rejection probabilities were reasonable (FGM, AMH and Frank). Results
are reported in Tables 12. Using Frank copula leads to the most powerful tests. A poor
performance can be observed when using the FGM and AMH copulas with FGM copula
performing the worst. Those are the copulas allowing very limited scope for τ (τ ∈ [−2/9, 2/9]
for FGM and τ ∈ [−0.1817, 1/3] for AMH) which makes them perform poorly when a strong
dependence holds.

Tables 13 and 14 present powers of the test for sample selection bias in the absence of an
exclusion restriction. Overall, the powers of the test are smaller than when the exclusion
restriction is present with the best performance observed, as before, when using the Frank
copula and the worst when using the FGM copula.

5. Real data example

The copula regression spline sample selection models presented in this paper are illustrated
using data from the RAND Health Insurance Experiment (RHIE) which was a comprehensive
study of health care cost, utilization and outcome conducted in the United States between
1974 and 1982 (Newhouse 1999). As explained in the introductory section, the aim was to
quantify the relationship between various covariates and annual health expenditures in the
population as a whole.
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Variable Definition

lnmeddol log of the medical expenses of the individual (outcome variable)
binexp binary variable indicating whether the medical expenses are positive (selection variable)
logc log of the coinsurance rate (coins) plus 1
idp binary variable for individual deductible plans
pi participation incentive payment
fmde is 0 if idp=1, and log [max {1,maximum expenditure offer/(0.01 ∗ coins)}] otherwise
physlm physical limitations
disea number of chronic diseases
hlthg binary variable for good self-rated health (the baseline is excellent self-rated health)
hlthf binary variable for fair self-rated health
hlthp binary variable for poor self-rated health
inc family income
fam family size
educdec education of household head in years
xage age of the individual in years
female binary variable for female individuals
child binary variable for individuals younger than 18 years
fchild binary variable for female individuals younger than 18 years
black binary variable for black household heads

Table 3: Description of the outcome and selection variables, and of the regressors.

In this context, non-random sample selection arises because the sample consisting of indi-
viduals who used health care services differ in important characteristics from the sample of
individuals who did not use them. Because some characteristics cannot be observed, tradi-
tional regression modeling is likely to deliver inconsistent estimates, hence the need to correct
parameter estimates for non-random sample selection. We use the same subsample as in
Cameron and Trivedi (2005, p. 553), and model annual health expenditures. The sample
size and number of selected observations are 5574 and 4281. The variables are defined in
Table 3. Additional information can be found in Cameron and Trivedi (2005, Table 20.4) and
Newhouse (1999).

Following Cameron and Trivedi (2005) the outcome and the selection equations include the
same set of regressors. As in Marra and Radice (2013) the two equations include logc, idp,
fmde, physlm, disea, hlthg, hlthf, hlthp, female, child, fchild and black as parametric
components, and smooth functions of pi, inc, fam, educdec and xage, represented using
thin plate regression splines with basis dimensions equal to 10 and penalties based on second-
order derivatives (which are the default options in the package). Specifically, after reading
the dataset, called ND, we load the package and specify the selection and outcome equations.

R> library("SemiParSampleSel")

R> SE <- binexp ~ logc + idp + fmde + physlm + disea + hlthg + hlthf + hlthp

+ + female + child + fchild + black + s(pi) + s(inc) + s(fam) + s(educdec)

+ + s(xage)

R> OE <- lnmeddol ~ logc + idp + fmde + physlm + disea + hlthg + hlthf +

+ hlthp + female + child + fchild + black + s(pi) + s(inc) + s(fam) +

+ s(educdec) + s(xage)

We then estimate the copula regression spline sample selection models by penalized likelihood,
as described in Section 2.2, setting infl.fac = 1.4 to obtain smoother models.
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R> out_N <- SemiParSampleSel(list(SE, OE), data = ND, infl.fac = 1.4)

R> out_C <- SemiParSampleSel(list(SE, OE), data = ND, BivD = "C0",

+ infl.fac = 1.4)

R> out_J <- SemiParSampleSel(list(SE, OE), data = ND, BivD = "J0",

+ infl.fac = 1.4)

R> out_FGM <- SemiParSampleSel(list(SE, OE), data = ND, BivD = "FGM",

+ infl.fac = 1.4)

R> out_F <- SemiParSampleSel(list(SE, OE), data = ND, BivD = "F",

+ infl.fac = 1.4)

R> out_AMH <- SemiParSampleSel(list(SE, OE), data = ND, BivD = "AMH",

+ infl.fac = 1.4)

R> out_G <- SemiParSampleSel(list(SE, OE), data = ND, BivD = "G0",

+ infl.fac = 1.4)

Given the superior performance of AIC on BIC shown in the simulation study, we use the
AIC to select a model.

R> AIC_N <- AIC(out_N)

R> AIC_C <- AIC(out_C)

R> AIC_J <- AIC(out_J)

R> AIC_FGM <- AIC(out_FGM)

R> AIC_F <- AIC(out_F)

R> AIC_AMH <- AIC(out_AMH)

R> AIC_G <- AIC(out_G)

R> AIC_N

[1] 20294.87

R> AIC_C

[1] 20293.91

R> AIC_J

[1] 20336.21

R> AIC_FGM

[1] 20288.66

R> AIC_F

[1] 20280.62

R> AIC_AMH
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[1] 20280.12

R> AIC_G

[1] 20293.86

We choose the AMH copula model as the Frank and the AMH copulas appear to be the two
preferable models. Before looking at the results, we check that the algorithm has found a
solution.

R> ss.checks(out_AMH)

Largest absolute gradient value: 1.583363e-10

Observed information matrix is positive definite

Eigenvalue range: [0.5487841,1035141]

Trust region iterations before smoothing parameter estimation: 5

Loops for smoothing parameter estimation: 9

Trust region iterations within smoothing loops: 19

We can now look at the results.

R> set.seed(1)

R> summary(out_AMH)

Family: AMH Copula with normal margins

SELECTION EQ.: binexp ~ logc + idp + fmde + physlm + disea + hlthg + hlthf +

hlthp + female + child + fchild + black + s(pi) + s(inc) +

s(fam) + s(educdec) + s(xage)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.647749 0.083648 7.744 9.65e-15 ***

logc -0.091062 0.028586 -3.186 0.001445 **

idp -0.155417 0.055458 -2.802 0.005072 **

fmde -0.005796 0.017902 -0.324 0.746115

physlm 0.266886 0.074524 3.581 0.000342 ***

disea 0.020976 0.003731 5.622 1.88e-08 ***

hlthg 0.093914 0.044434 2.114 0.034554 *

hlthf 0.233172 0.084317 2.765 0.005685 **

hlthp 0.767821 0.217573 3.529 0.000417 ***

female 0.432467 0.054523 7.932 2.16e-15 ***

child 0.263177 0.149627 1.759 0.078597 .

fchild -0.422033 0.080338 -5.253 1.49e-07 ***

black -0.593539 0.054514 -10.888 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Smooth components' approximate significance:

edf Est.rank Chi.sq p-value

s(pi) 7.038 7 36.272 6.44e-06 ***

s(inc) 2.330 3 28.802 2.46e-06 ***

s(fam) 4.699 5 7.816 0.166680

s(educdec) 1.821 2 16.019 0.000332 ***

s(xage) 7.258 8 49.596 4.89e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

OUTCOME EQ.: lnmeddol ~ logc + idp + fmde + physlm + disea + hlthg + hlthf +

hlthp + female + child + fchild + black + s(pi) + s(inc) +

s(fam) + s(educdec) + s(xage)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.394538 0.092205 36.815 < 2e-16 ***

logc -0.049046 0.032498 -1.509 0.131253

idp -0.142146 0.062644 -2.269 0.023263 *

fmde -0.025045 0.019453 -1.287 0.197939

physlm 0.303793 0.071523 4.247 2.16e-05 ***

disea 0.025533 0.003653 6.990 2.75e-12 ***

hlthg 0.186160 0.049426 3.766 0.000166 ***

hlthf 0.429723 0.090264 4.761 1.93e-06 ***

hlthp 0.873586 0.178302 4.899 9.61e-07 ***

female 0.467060 0.058727 7.953 1.82e-15 ***

child 0.153816 0.177986 0.864 0.387477

fchild -0.481647 0.090792 -5.305 1.13e-07 ***

black -0.379393 0.067857 -5.591 2.26e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth components' approximate significance:

edf Est.rank Chi.sq p-value

s(pi) 1.524 2 1.232 0.54011

s(inc) 2.838 3 23.250 3.58e-05 ***

s(fam) 1.073 2 10.737 0.00466 **

s(educdec) 1.041 1 0.582 0.44533

s(xage) 7.727 8 63.765 8.46e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

n = 5574 n.sel = 4281 sigma = 1.511(1.472,1.553)

theta = 0.96(0.904,0.982) total edf = 65.349

Notice that we set a seed before summary(). This allows us to recover the same results for
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the confidence intervals of the quantities reported at the bottom of the summary output;
recall that intervals for such components are calculated using Bayesian posterior simulation
as mentioned in Section 2.3.

As for the selection equation, the results show that all variables, which enter the model
parametrically, are statistically significant at the 10% level, except for fmde. The p-values
for the smooth terms, calculated as discussed in Section 2.3, indicate that fam does not have
an impact on the response. Regarding the outcome equation, health status variables (such
as physlm and disea) have an effect on annual health expenses, whereas health insurance
variable logc seem not to determine the medical expenses. The p-values for the estimated
smooths indicate that inc, fam and xage are significantly different from zero. The estimate for
σ is 1.51 and is significantly different from zero. The estimate for θ is positive and statistically
different from zero. This indicates that the unobserved factors which affect the use of health
services also affect medical expenses. The estimated degrees of freedom (total edf) of the
penalized model, calculated as described in Section 2.2, is 65.349.

Using plot(), we produce the smooth function estimates for the outcome equation obtained
from the AMH copula model; these are displayed in Figure 3.

R> plot(out_AMH, eq = 2, pages = 1, scale = 0, shade = TRUE,

+ seWithMean = TRUE, cex.axis = 1.6, cex.lab = 1.6)

The shaded regions represent 95% confidence bands calculated from the posterior distribution,
as described in Section 2.3. The ‘rug plot’, at the bottom of each graph, shows the covariate
values. The numbers shown on the y-axis in each plot indicate the estimated degrees of free-
dom (edf). Due to the identifiability constraints, the estimated curves are centered around
zero. The results for xage and fam are consistent with the interpretation that health expen-
diture increases non-linearly as people become older, and that individual health expenditure
decreases as family size increases.

We re-fit the AMH copula regression model by using the shrinkage option bs = "ts" in s().

R> SE_s <- binexp ~ logc + idp + fmde + physlm + disea + hlthg + hlthf +

+ hlthp + female + child + fchild + black + s(pi, bs = "ts") +

+ s(inc, bs = "ts") + s(fam, bs = "ts") + s(educdec, bs = "ts") +

+ s(xage, bs = "ts")

R> OE_s <- lnmeddol~ logc + idp + fmde + physlm + disea + hlthg + hlthf +

+ hlthp + female + child + fchild + black + s(pi, bs = "ts") +

+ s(inc, bs = "ts") + s(fam, bs = "ts") + s(educdec, bs = "ts") +

+ s(xage, bs = "ts")

R> out_AMH_s <- SemiParSampleSel(list(SE_s,OE_s), data=ND, BivD="AMH",

+ infl.fac=1.4)

R> plot(out_AMH_s, eq = 2, pages = 1, scale = 0, shade = TRUE,

+ seWithMean = TRUE, cex.axis = 1.6, cex.lab = 1.6)

We obtain the fitted smooth functions depicted in Figure 4; regressor educdec has been
suppressed, whereas the other covariate effects exhibit patterns similar to those reported in
Figure 3.

Finally, we use est.aver() to calculate the overall estimated average from the fitted copula
sample selection, with corresponding confidence interval obtained using the delta method.
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Figure 3: Smooth function estimates and 95% confidence bands obtained applying the AMH
copula regression spline sample selection model on the RAND RHIE dataset described in
Section 4.
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Figure 4: Smooth function estimates and 95% confidence bands obtained applying the AMH
copula model with shrinkage option on the RAND RHIE dataset.
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R> est.aver(out_AMH, sig.lev = 0.05)

Estimated average with 95% confidence interval:

3.72 (3.53,3.90)

6. Discussion

We introduced flexible continuous response sample selection models and discussed the R pack-
age SemiParSampleSel which implements them. The package can be used to fit models where
the linear predictors are flexibly specified using parametric and non-parametric components,
and the dependence between the selection and outcome equations is modeled through the use
of copulas. The developments and implementation proposed here extend and complement
previous R implementations of sample selection models. Allowing for non-normal bivariate
distributions between the model equations is important since the assumption of bivariate
normality is often criticized.

A large number of copulas have been proposed in the literature and our selection aims to
reflect the most commonly used bivariate copulas in empirical applications as well as different
types of dependence in the data. Copulas such as normal and Frank allow for equal degrees
of positive and negative dependence and are comprehensive. On the other hand, copulas
such as Clayton, Joe and Gumbel only account for positive dependence but capture a type of
structure which is not reflected by Frank or normal. Specifically, the Clayton copula exhibits
a strong left tail dependence and a relatively weak right tail dependence, and vice versa for
Gumbel and Joe.

In order to address the issue of testing for the absence of sample selection bias, an approach
based on a confidence interval for the Kendall’s τ association coefficient has been explored.
The empirical study has indicated that this approach performs well when using the Frank
copula. However, for other copulas a significantly poorer small sample performance of the test
has been observed. As every copula function has different characteristics and poses different
issues while testing, each of them requires a separate study. It is also unclear weather a unique
test that performs equally well for a wide range of copulas can be designed. Thus a further
detailed study of the problem of testing for the sample selection bias in such a general context
will be another direction of future research.

The reader is cautioned that the class of models presented here is not intended to be exhaus-
tive; as with the majority of methods, under model misspecification the proposed approach
does not provide consistent estimates. For example, if the marginals are non-normal (e.g.,
they exhibit a heavy-tailed behavior or should be modeled using skewed, contaminated and
mixture distributions), biased estimates should be expected. The extent of the bias cannot
be predicted a priori and it depends on the application at hand. In light of this, possible
generalizations of the methods implemented in SemiParSampleSel are to extend the scope of
the marginal distribution for the outcome equation, using for instance the gamma and Poisson
distributions, and that of the available copulas in the package, using for example the Plackett
and rotated copulas. Future research will also concern the development of model checking
tools. Finally, a next release of the package will allow the user to model σ and θ as func-
tions of linear predictors like those defined in Section 2.1; the theoretical and computational
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framework remains essentially unchanged. Note, however, that it would not make much sense
to specify θ as function of covariates since, in the context of non-random sample selection,
the dependence parameter models the association between the unobserved confounders in the
two equations.
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Appendix A - Analytical expressions for g and H
In this section, we present expressions for the gradient vector and Hessian matrix of sample
selection log-likelihood function (2) for the Clayton, Joe, FGM, AMH, Frank and Gum-
bel copulas, with normal margins. The expressions for the normal case can be found in
Marra and Radice (2013). We use the notation F1 = Φ(−η1i), F2 = Φ(ẽ2i) and f2 =
σ−1φ(ẽ2i), where ηvi = Xviδv, Xvi =

(

uT

vi,B
T

vi

)

, for v = 1, 2, ẽ2i = σ−1(y2i − η2i), and Φ
and φ are the standard normal distribution and density functions, respectively.

The elements of the gradient can be expressed as

∂ℓ(δ∗)

∂δ1
=

n
∑

i=1

{

(y1i − 1)F−1
1 + y1ipi

}

φ(−η1i)X1i,

∂ℓ(δ∗)

∂δ2
=

n
∑

i=1

y1i
(

hi + σ−1ẽ2i
)

X2i,

∂ℓ(δ∗)

∂σ∗
=

n
∑

i=1

y1i
(

hiσẽ2i + ẽ22i − 1
)

,

∂ℓ(δ∗)

∂θ∗
=

n
∑

i=1

y1ibi,

whereas those of the Hessian as

∂2ℓ(δ∗)

∂δ1∂δ
T
1

=
n
∑

i=1

{

(y1i − 1)F−1
1 (F−1

1 φ(−η1i) − η1i) + y1iPi

}

φ(−η1i)X
T
1iX1i,

∂2ℓ(δ∗)

∂δ1∂δ
T
2

=
n
∑

i=1

yi1Aiφ(−η1i)X
T
1iX2i,

∂2ℓ(δ∗)

∂δ1∂σ∗
=

n
∑

i=1

y1iσAiφ(−η1i)ẽ2iX1i,

∂2ℓ(δ∗)

∂δ1∂θ∗
=

n
∑

i=1

y1ih14φ(−η1i)X1i,

∂2ℓ(δ∗)

∂δ2∂δ
T
2

=
n
∑

i=1

y1i(hiEi − σ−2)XT
2iX2i,

∂2ℓ(δ∗)

∂δ2∂σ∗
=

n
∑

i=1

y1iσ
[

hi(Eiẽ2i − σ−1) − 2σ−2ẽ2i
]

X2i,

∂2ℓ(δ∗)

∂δ2∂θ∗
=

n
∑

i=1

y1iBiX2i,

∂2ℓ(δ∗)

∂σ∗2
=

n
∑

i=1

y1iσ
2ẽ2i

[

hi
(

Eiẽ2i − σ−1
)

− 2σ−2ẽ2i
]

,

∂2ℓ(δ∗)

∂σ∗∂θ∗
=

n
∑

i=1

y1iσBiẽ2i,
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∂2ℓ(δ∗)

∂θ∗2
=

n
∑

i=1

y1ih44,

where pi, hi, bi, Ai, Bi, Ei, h14 and h44 are defined below for each copula.

For Clayton,

σ = exp(σ∗),

θ = exp(θ∗) + ǫ,

ui = F−θ
1 + F−θ

2 − 1,

zi = F−θ−1
2 u−

1+θ
θ ,

pi = (θ + 1)
z

1 − z
F−θ−1
1 u−1,

hi = (θ + 1)
z

1 − z
f2F

−θ−1
2 (u−1 − F θ

2 ),

Ci = F−θ
1 logF1 + F−θ

2 logF2,

C̃i = F−θ
1 (logF1)

2 + F−θ
2 (logF2)

2,

bi =
z

1 − z

(

θ logF2 −
log ui
θ

− (1 + θ)
Ci

ui

)

,

Ai = −pi

(

hi
zi

+
θ

u
f2F

−θ−1
2

)

,

Bi = hi

[

θ

θ + 1
− bi

zi
+ θ

(

F θ
2 ui − 1

)−1
(

logF2 −
Ci

ui

)]

,

Ei = f2F
−θ−1
2

(

F θ
2 − θ

ui

)

− hi
zi

+ σ−1ẽ2i,

Pi = pi

[

F−1
1 φ(−η1i)(θ + 1 − F−θ

1 u−1(θ + (1 + θ)(1 − z)−1)) − η1i

]

,

h14 = θpi

(

1

θ + 1
+

Ci

u
− bi

ziθ
− logF1

)

,

h44 =
z

1 − z

[

θ logF2 +
log ui
θ

+ (1 − θ)
Ci

ui
+ θ(θ + 1)

(

C̃i

ui
− C2

i

u2i

)]

− b2i
zi
.

For Joe,

σ = exp(σ∗),

θ = 1 + exp(θ∗) + ǫ,

ui = F̄ θ
1 + F̄ θ

2 − (F̄1F̄2)
θ,

zi = (1 − F̄ θ
1 )F̄ θ−1

2 u
1−θ
θ ,

pi =
1

1 − z
(F̄1F̄2)

θ−1u
1−2θ

θ (u + θ − 1),

bi = (θ − 1)
z

1 − z

(

log ui
θ2

− log F̄2 −
1 − θ

θ

Ci

ui
+

F̄ θ
1

1 − F̄ θ
1

log F̄1

)

,

hi = (θ − 1)
z

z − 1
f2F̄

−1
2 F̄ θ

1 u
−1,

Ci = F̄ θ
1 log F̄1 + F̄ θ

2 log F̄2 − (F̄1F̄2)
θ log(F̄1F̄2),

C̃i = F̄ θ
1 (log F̄1)

2 + F̄ θ
2 (log F̄2)

2 − (F̄1F̄2)
θ(log(F̄1F̄2))

2,
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Bi = hi

[

1 − bi
zi

+ (θ − 1)

(

log F̄1 −
Ci

ui

)]

,

Ei = f2F̄
−1
2

(

θF̄ θ
1 u

−1 − θ − 1
)

− hi
zi

+ σ−1ẽ2i,

Ai = (θ − 1)pif2F̄
−1
2

(

1 +
z

1 − z
F̄ θ
1 u

−1

)

+ F̄ θ
2

2θ + u− 1

u
hiF̄

−1
1 ,

Pi = φ(−η1i)F̄
−1
1

[

pi(θ − 1 − F̄1pi) + (1 − θ)

(

1 − F̄ θ
1

u

)(

2pi +
z

1 − z
F̄−1
1

(

1 − F̄ θ
2

u

))]

−piη1i,

h14 = pi

[

(θ − 1)

(

1 − (θ − 1)Ciu
−1

ui + θ − 1
+

log F̄1

1 − F̄ θ
1

)

− bi
zi

]

,

h44 = bi(1 − bi) + (θ − 1)

[(

log F̄2 +
1 − θ

θ

Ci

ui
− log ui

θ2

)(

bi − (θ − 1)
zi

zi − 1

log F̄1

1 − F̄θ

)

+ bi log F̄1 + (θ − 1)
zi

zi − 1

(

1 − θ

θ

(

C̃i

u
− C2

i

u2

)

− 2

θ2

(

Ci

u
− log u

θ

)

)]

.

For FGM,

σ = exp(σ∗),

θ = tanh(θ∗),

ui = 1 − θF1(1 − 2F2),

zi = 1 − ui(1 − F1),

pi = (1 − F1)
−1 + θ(1 − 2F2)u

−1,

bi = (θ2 − 1)F1(1 − 2F2)u
−1,

hi = −2θF1f2u
−1,

Bi = (θ2 − 1)2F1f2u
−2,

Ei = −hi + ẽ2iσ
−1,

Ai = 2θf2u
−2,

Pi = φ(−η1i)
(

p2i − 2θu−1(1 − 2F2)(1 − F1)
−1
)

+ η1ipi,

h14 = (1 − θ2)(1 − 2F2)u
−2,

h44 = −bi(2θ + bi).

For Frank,

σ = exp(σ∗),

θ = θ∗ + sign(θ∗)ǫ,

ui = eθ(F1+F2) − eθ(1+F2),

zi = 1 − u
(

u− eθ(1+F1) + eθ
)−1

,

pi = θ(eθ − 1)
1 − z

u2
eθ(1+F1+F2),

bi =
1 − z

u

[

z

1 − z

(

u(F1 + F2 − 1) + (F1 − 1)eθ(1+F2)
)

+ F1e
θ(1+F1)

]

,
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hi = θeθ(eθF1 − 1)
1 − z

u
f2,

Ei = θ(1 − z)f2 + ẽ2iσ
−1,

Ai = (1 − eθ)−1p2i f2ui(e
−θF1 − e−θ),

Bi = f2
1 − z

u
eθ
{

(1 + θ + θF1)e
θF1 − θ − 1

− θ(eθF1 − 1)
1 − z

u

[

u(F1 + F2) + (F1 − 1)eθ(1+F2) − (1 + F1)e
θ(1+F1) + eθ

]

}

,

Pi = pi

[

φ(−η1i)(e
θ − 1)−1pi

(

eθF1

(

eθ(F2−1) − 1
)

− eθ(1−F1)
(

eθF2 − 1
))

− η1i

]

,

h14 = θ−1(eθ − 1)−1pi

{

(1 + θ)eθ − 1 − pi

[

(F1 + F2 − 1)eθ(F1+F2−1) − 2F2e
θF2 − F1e

θF1

+ (1 − F1 + F2)e
θ(1−F1+F2) − (1 − F1)e

θ(1−F1) + eθ
]}

,

h44 = bi

[

bi − u−1
(

u(F1 + F2) + eθ(1+F2)(F1 − 1)
)]

+
1 − z

u
F1(1 + F1)e

θ(1+F1)

+ (F1 + F2 − 1) (z(F1 + F2) − bi) + u−1eθ(1+F2)(F1 − 1) (z(F1 + 2F2) − bi) .

For AMH,

σ = exp(σ∗),

θ = tanh(θ∗),

ui = 1 − θ(1 − F1)(1 − F2),

zi = F1(1 − θ + θF1)u
−2,

pi =
1

z − 1
u−2 [2θ(zu(1 − F2) − F1) + θ − 1] ,

bi =
1 − θ2

z − 1
(1 − F1)

(

2zu−1(1 − F2) − F1u
−2
)

,

hi = 2θ
z

z − 1
u−1(1 − F1)f2,

Ei = θu−1(1 − F1)f2(z − 3)(z − 1)−1 + σ−1ẽ2i,

Ai = 2θ(z − 1)−1u−1f2
[

zu−1 − pi(1 − F1)
]

,

Bi = 2(1 − F1)f2u
−1(z − 1)−1

(

(1 − θ2)zu−1 − biθ
)

,

Pi = φ(−η1i)

[

2θ

u2

(

(1 − F2)

(

2piui −
z

z − 1
θ(1 − F2)

)

+
1

z − 1

)

− p2i

]

− piη1i,

h14 =
1 − θ2

u2

[

2piui(1 − F1)(1 − F2) +
z

z − 1
2(2ui − 1)(1 − F2) −

2F1 − 1

z − 1

]

+ 2θ(1 − F2)
bi
ui

− bipi,

h44 = −bi(bi + 2θ) + 2
1 − θ2

u
(1 − F1)(1 − F2)

(

2bi −
1 − θ2

u
(1 − F1)(1 − F2)

z

z − 1

)

.

For Gumbel,

σ = exp(σ∗),

θ = 1 + exp(θ∗),

ui = (− logF1)
θ + (− logF2)

θ,

zi = exp{−u1/θ}F−1
2 u

1−θ
θ (− logF2)

θ−1,
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pi =
z

z − 1
(− logF1)

θ−1F−1
1 u−1(1 − θ − u1/θ),

Ci = (− logF1)
θ log(− logF1) + (− logF2)

θ log(− logF2),

C̃i = (− logF1)
θ (log(− logF1))

2 + (− logF2)
θ (log(− logF2))

2 ,

bi =
z

z − 1
(θ − 1)

[

1

θ

Ci

u

(

1 − θ − u1/θ
)

+ log(− logF2) −
Ci

u

]

,

hi =
z

z − 1
f2F

−1
2

[

1 + (θ − 1)(− logF2)
−1 + u−1(− logF2)

θ−1(1 − θ − u1/θ)
]

,

Bi = (θ − 1)
z

z − 1
f2F

−1
2 (− logF2)

θ−1u−1

[

(θ + u1/θ)

(

Ci

ui
− log(− logF2)

)

− Ci

ui
θ−1 − 1

+
log u

θ2
+

z

z − 1

bi
θ − 1

]

− hibi
zi

− (θ − 1)
z

z − 1
f2F

−1
2 (logF2)

−1,

Ei =
ẽ2i
σ

− hi
zi

+ f2F
−1
2

{

1 + (θ − 1)(logF2)
−2 z

z − 1
f2F

−1
2 h−1

i ·

·
[

(− logF2)
θ

(

1 − θ − u1/θ

u
+

θ + u1/θ

u2
(− logF2)

θ

)

− 1

]}

,

Ai = (θ − 1)f2F
−1
2 pi(θ + u1/θ)u−1(− logF2)

θ−1(1 − θ − u1/θ)−1 − hipi
zi

,

Pi = piφ(−η1i)

[

F−1
1 − F−1

1 (logF1)
−1

(

θ − 1 − (− logF1)
θ

u

(

θ +
u1/θ

1 − θ − u1/θ

))

− pi
zi

]

−piη1i,

h14 = pi

{

θ − 1

1 − θ − u1/θ

[

θ − 1

θ

Ci

ui
(θ + u1/θ) + u1/θ

log u

θ2
− 1

]

− bi
zi

+ (θ − 1) log(− logF1)

}

,

h44 = (θ − 1)2
zi

zi − 1

[

1 − u1/θ

θ

(

C̃i

u
− C2

i

u2
− 2

θ

(

Ci

u
− log u

θ

)

)

− u1/θ
1

θ2

(

Ci

u
− log u

θ

)2

− C̃i

u
+

C2
i

u2

]

+ bi −
b2i
zi
.

Appendix B - Tables and figures of simulation results

For convenience, in this section we report all the tables and figures of results which are
commented in Sections 4.1 and 4.2.



34
S
e
m
iP

a
r
S
a
m
p
le
S
e
l:

C
o
p
u
la

R
eg
ressio

n
S
p
lin

e
S
a
m
p
le

S
electio

n
M
o
d
els

α̂21 α̂22 σ̂ τ̂ ŝ21(z1)

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE AIC (%) BIC (%)
τ

=
0.

1
Normal 10.2 0.336 5.7 0.292 0.1 0.034 -62.7 0.18 0.118 10 6.8

Clayton 6.4 0.174 4.5 0.171 0.5 0.04 -40.5 0.087 0.093 33.6 38.8

Joe 4.7 0.193 2.9 0.188 -2 0.038 -48.4 0.095 0.096 10.8 14

FGM 14.2 0.278 7.3 0.248 -0.3 0.032 -78.2 0.156 0.109 12.8 12.8

AMH 12.5 0.263 6.9 0.236 0.3 0.037 -66.1 0.147 0.108 8.4 4.8

Frank 13.2 0.309 6.9 0.271 -0.1 0.033 -74.4 0.173 0.114 7.2 7.2

Gumbel 0.1 0.22 1.2 0.203 -1.4 0.034 -25.9 0.108 0.098 17.2 15.6

τ
=

0.
5

Normal -4.5 0.169 -0.4 0.161 -0.5 0.046 1 0.078 0.086 56.9 22

Clayton 33 0.308 17.5 0.313 0.9 0.049 -25.6 0.161 0.123 3.7 3.3

Joe 4.3 0.329 1.2 0.29 -5.2 0.079 -14.5 0.189 0.114 1.6 2.8

FGM 59.2 0.464 26 0.408 -8 0.085 -56.6 0.285 0.161 1.6 26.8

AMH 45.9 0.368 22.3 0.356 -2.2 0.042 -38 0.196 0.138 10.2 28.5

Frank 5.2 0.223 3.6 0.207 -1.3 0.052 -7.3 0.118 0.093 8.5 7.7

Gumbel -9.3 0.226 -3.5 0.204 -1.8 0.056 3.2 0.111 0.093 17.5 8.9

τ
=

0.
7

Normal -6 0.127 -1 0.13 -0.1 0.042 2.4 0.049 0.076 62.3 52.9

Clayton 11.1 0.177 8.6 0.204 2.4 0.052 -4.2 0.084 0.086 9.4 12.1

Joe -12.2 0.159 -5.1 0.154 -1.5 0.049 0.7 0.059 0.081 0.9 1.3

FGM 89.9 0.687 38.8 0.591 -14.1 0.143 -68.3 0.478 0.219 0 0

AMH 78.3 0.599 36 0.549 -8.6 0.091 -52.7 0.369 0.198 0 4.5

Frank -2.9 0.126 0.7 0.132 -0.1 0.043 -0.2 0.052 0.075 6.7 10.3

Gumbel -10.6 0.144 -3.5 0.139 -0.2 0.043 5 0.058 0.078 20.6 18.8

Table 4: Percentage biases and RMSEs for α̂21, α̂22, σ̂, τ̂ and ŝ21(z1), and percentage frequency at which each copula model was
selected by AIC and BIC for data simulated using a normal bivariate distribution, when employing the normal, Clayton, Joe, FGM,
AMH, Frank and Gumbel copula regression spline sample selection models. Number of simulated datasets is equal to 250. τ denotes
the association between the selection and outcome equations. See Section 4 for further details.
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α̂21 α̂22 σ̂ τ̂ ŝ21(z1)

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE AIC (%) BIC (%)
τ

=
0.

1
Normal 23.2 0.431 10.8 0.373 -1.7 0.044 -125.2 0.242 0.139 13.6 5.6

Clayton -3.3 0.18 0.6 0.164 -0.8 0.048 -4 0.093 0.09 36.8 31.2

Joe 6.7 0.204 3.6 0.192 -3.9 0.052 -61.8 0.108 0.1 12 23.2

FGM 25.9 0.333 11.9 0.294 -2.5 0.043 -137.5 0.2 0.125 13.2 12.4

AMH 22.5 0.31 10.8 0.277 -1.8 0.044 -117 0.185 0.121 9.2 7.6

Frank 27.6 0.379 12.6 0.33 -2.2 0.043 -144.4 0.226 0.132 7.2 8

Gumbel 3.3 0.225 2.3 0.205 -3.5 0.049 -45.6 0.12 0.102 8 12

τ
=

0.
5

Normal -14.7 0.35 -6.6 0.304 -4.1 0.069 2.3 0.192 0.099 4.4 3.6

Clayton -3.8 0.156 0.3 0.147 -0.8 0.047 0.9 0.078 0.077 81.2 33.2

Joe 5.8 0.519 0.6 0.45 -7.6 0.108 -24.8 0.312 0.155 0 0.8

FGM 63.7 0.564 26 0.466 -12.3 0.127 -72.9 0.4 0.174 0 2.4

AMH 46.5 0.449 20.7 0.388 -7.3 0.083 -48.1 0.297 0.142 14 56

Frank 6.1 0.517 2.2 0.433 -4.8 0.079 -19.5 0.32 0.13 0.4 2

Gumbel -15.1 0.416 -7.4 0.361 -4.8 0.084 0.3 0.233 0.119 0 2

τ
=

0.
7

Normal -18.6 0.184 -7.9 0.17 -2 0.05 4.9 0.067 0.076 2.8 8.1

Clayton -6.3 0.128 -0.9 0.126 -0.4 0.042 2.7 0.061 0.069 96.3 80.9

Joe -28.2 0.264 -13.3 0.249 -2.1 0.06 3.5 0.092 0.095 0 0

FGM 82.4 0.642 34.3 0.534 -16.1 0.164 -70.3 0.498 0.209 0 0

AMH 69.6 0.532 31 0.473 -11.3 0.117 -52.4 0.367 0.187 0 7.7

Frank -19.7 0.189 -8 0.171 -1.5 0.048 3.4 0.061 0.076 0.4 2.4

Gumbel -24.7 0.222 -10.9 0.204 -1.3 0.049 7.8 0.08 0.082 0.4 0.8

Table 5: Percentage biases and RMSEs for α̂21, α̂22, σ̂, τ̂ and ŝ21(z1), and percentage frequency at which each copula model was
selected by AIC and BIC for data simulated using a bivariate Clayton copula with normal margins, when employing the normal,
Clayton, Joe, FGM, AMH, Frank and Gumbel copula regression spline sample selection models. Number of simulated datasets is
equal to 250. τ denotes the association between the selection and outcome equations. See Section 4 for further details.
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α̂21 α̂22 σ̂ τ̂ ŝ21(z1)

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE AIC (%) BIC (%)
τ

=
0.

15
Normal 6.5 0.231 5.2 0.218 3.3 0.049 -16.5 0.114 0.1 6.4 5.2

Clayton 31.9 0.278 16 0.275 2.9 0.046 -81.6 0.133 0.115 18 51.2

Joe -2.1 0.189 0.5 0.185 -0.2 0.033 -5.8 0.083 0.095 57.2 28.8

FGM 23.2 0.244 12.2 0.243 2.5 0.042 -57.8 0.116 0.106 2.4 4.8

AMH 25.8 0.247 13.4 0.248 2.7 0.043 -64.1 0.117 0.108 0.8 0.4

Frank 18.9 0.238 10.4 0.235 2.7 0.043 -45.8 0.117 0.104 5.2 2.4

Gumbel -5.3 0.196 -0.5 0.184 1.4 0.036 8.2 0.091 0.093 10 7.2

τ
=

0.
5

Normal 14.4 0.182 9.8 0.202 2.1 0.049 -10.5 0.096 0.093 1.8 0.9

Clayton 78.4 0.623 37.8 0.591 0 0.051 -62.3 0.331 0.195 0.5 1.4

Joe -3.6 0.119 -0.1 0.121 -0.8 0.043 1.4 0.061 0.082 82.4 66.2

FGM 68.4 0.527 32.3 0.495 -4.1 0.053 -55.8 0.279 0.174 0.5 14.4

AMH 70 0.54 33.6 0.516 -2 0.042 -53.7 0.271 0.176 0 0.5

Frank 21.7 0.209 12.9 0.231 1 0.042 -11.2 0.09 0.096 3.6 4.5

Gumbel -2.8 0.117 1.4 0.121 1.6 0.045 3.6 0.063 0.082 11.3 12.2

τ
=

0.
75

Normal 3.8 0.107 5.2 0.141 1.4 0.046 -1.7 0.054 0.081 0.6 2.8

Clayton 27.8 0.303 17.9 0.336 3.9 0.068 -12.3 0.168 0.115 0 0.6

Joe -4.1 0.099 0 0.109 -0.2 0.042 2.8 0.043 0.074 82.8 65.6

FGM 99.9 0.762 44.7 0.677 -13.3 0.138 -70.4 0.528 0.239 0 0

AMH 92 0.703 43.1 0.653 -8.9 0.096 -58.2 0.437 0.224 0 0

Frank 7.2 0.112 6.3 0.146 0.2 0.042 0.3 0.044 0.076 3.3 10

Gumbel -3 0.096 1.5 0.111 1.1 0.044 3.4 0.045 0.075 13.3 21.1

Table 6: Percentage biases and RMSEs for α̂21, α̂22, σ̂, τ̂ and ŝ21(z1), and percentage frequency at which each copula model was
selected by AIC and BIC for data simulated using a bivariate Joe copula with normal margins, when employing the normal, Clayton,
Joe, FGM, AMH, Frank and Gumbel copula regression spline sample selection models. Number of simulated datasets is equal to 250.
τ denotes the association between the selection and outcome equations. See Section 4 for further details.
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α̂21 α̂22 σ̂ τ̂ ŝ21(z1)

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE AIC (%) BIC (%)

τ
=

−
0.

2

Normal 0.3 0.294 1.9 0.259 0.5 0.039 10.6 0.149 0.105 10.8 2.8

Clayton -64.1 0.511 -24.4 0.393 -1.1 0.038 -126.5 0.265 0.14 22.4 30.8

Joe -55.3 0.444 -21.3 0.352 -2.6 0.041 -104.2 0.215 0.123 4.8 7.6

FGM -11.6 0.2 -3 0.178 -0.7 0.035 -12.6 0.089 0.087 29.2 31.2

AMH -18.4 0.22 -5.5 0.184 -0.4 0.035 -30 0.097 0.086 13.6 12

Frank 0.9 0.251 2.3 0.231 0.3 0.039 14.5 0.129 0.102 15.6 7.6

Gumbel -56 0.454 -21.6 0.358 -2.5 0.041 -106 0.222 0.124 3.6 8

τ
=

0.
15

Normal 13.5 0.352 7.5 0.312 -0.3 0.035 -51 0.189 0.117 8.4 4

Clayton 16.6 0.21 9.3 0.206 0.2 0.039 -54.3 0.117 0.106 28 34.8

Joe 7.2 0.287 4.2 0.264 -2.3 0.041 -41.5 0.145 0.113 17.2 23.2

FGM 12.3 0.267 6.9 0.245 -0.8 0.035 -45.7 0.144 0.103 16.4 14.8

AMH 14.8 0.269 8.3 0.249 0 0.038 -48.5 0.145 0.105 8.8 6.4

Frank 9.7 0.322 5.9 0.289 -0.4 0.036 -38.3 0.171 0.111 11.2 6.8

Gumbel 1.9 0.294 2.2 0.266 -1.5 0.038 -23.2 0.148 0.112 10 10

Table 7: Percentage biases and RMSEs for α̂21, α̂22, σ̂, τ̂ and ŝ21(z1), and percentage frequency at which each copula model was
selected by AIC and BIC for data simulated using a bivariate FGM copula with normal margins, when employing the normal,
Clayton, Joe, FGM, AMH, Frank and Gumbel copula regression spline sample selection models. Number of simulated datasets is
equal to 250. τ denotes the association between the selection and outcome equations. See Section 4 for further details.
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α̂21 α̂22 σ̂ τ̂ ŝ21(z1)

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE AIC (%) BIC (%)
τ

=
−

0.
12

Normal 6.1 0.344 3.7 0.295 0.6 0.042 35.6 0.176 0.112 11.2 4.8

Clayton -50.1 0.413 -19.3 0.324 -1 0.038 -133.6 0.202 0.12 26.8 33.6

Joe -42.3 0.349 -16.5 0.287 -2.3 0.039 -105.7 0.154 0.106 5.6 8.8

FGM -4.5 0.213 -0.6 0.193 -0.6 0.034 7.7 0.101 0.092 17.2 23.2

AMH -10.7 0.227 -2.9 0.197 -0.1 0.036 -15.6 0.105 0.089 16.8 13.2

Frank 7.6 0.303 4.5 0.267 0.4 0.041 44.4 0.159 0.108 17.6 9.2

Gumbel -43.3 0.358 -16.9 0.292 -2.3 0.039 -108.8 0.161 0.107 4.8 7.2

τ
=

0.
1

Normal 16.5 0.382 7.9 0.327 0 0.035 -93.2 0.204 0.122 9.2 7.6

Clayton 6.9 0.162 4.3 0.157 0 0.036 -49.5 0.088 0.091 37.6 43.2

Joe 2.7 0.23 1.8 0.218 -2 0.038 -46.2 0.108 0.098 12 14

FGM 13.8 0.306 6.9 0.269 -0.4 0.033 -82.1 0.164 0.111 10.8 9.6

AMH 13.1 0.293 6.8 0.259 0.3 0.037 -72.8 0.157 0.108 11.2 7.6

Frank 11.8 0.339 6 0.294 -0.2 0.034 -73.9 0.183 0.114 10 7.6

Gumbel -0.9 0.245 0.4 0.22 -1.4 0.035 -27.7 0.119 0.099 9.2 10.4

τ
=

0.
28

Normal 16.9 0.493 6.6 0.409 -4.1 0.06 -40.7 0.29 0.134 7.2 2.8

Clayton 11.6 0.204 5.9 0.184 -1.7 0.049 -25 0.128 0.093 26.4 10

Joe 25.8 0.439 9.6 0.375 -7 0.082 -59 0.265 0.147 2.8 14.8

FGM 46.2 0.493 18.8 0.411 -6.3 0.071 -83.8 0.313 0.145 12.8 30

AMH 32.7 0.434 14.1 0.366 -3.4 0.056 -57.6 0.268 0.128 35.2 22.8

Frank 34.4 0.58 13.9 0.484 -4.3 0.062 -66.6 0.35 0.159 11.2 8

Gumbel 11.2 0.414 3.7 0.354 -5.7 0.074 -35.2 0.243 0.134 4.4 11.6

Table 8: Percentage biases and RMSEs for α̂21, α̂22, σ̂, τ̂ and ŝ21(z1), and percentage frequency at which each copula model was
selected by AIC and BIC for data simulated using a bivariate AMH copula with normal margins, when employing the normal,
Clayton, Joe, FGM, AMH, Frank and Gumbel copula regression spline sample selection models. Number of simulated datasets is
equal to 250. τ denotes the association between the selection and outcome equations. See Section 4 for further details.



J
o
u
rn
a
l
o
f
S
ta
tistica

l
S
o
ftw

a
re

39

α̂21 α̂22 σ̂ τ̂ ŝ21(z1)

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE AIC (%) BIC (%)
τ

=
0.

2
Normal 7.8 0.345 5 0.3 -0.3 0.039 -30.3 0.189 0.117 9.6 4.4

Clayton 22.2 0.242 11.3 0.233 0.2 0.044 -55.1 0.145 0.112 19.2 24.8

Joe 1.8 0.33 1.1 0.299 -2.8 0.046 -26.6 0.166 0.119 12 18.8

FGM 11.3 0.229 6 0.211 -1.2 0.035 -35.6 0.132 0.1 19.2 18.4

AMH 13.7 0.238 7.5 0.221 -0.1 0.041 -36.4 0.136 0.103 6.4 8

Frank 3.2 0.282 2.6 0.246 -0.5 0.037 -18 0.157 0.106 23.6 12.8

Gumbel -3.7 0.324 -0.8 0.286 -1.5 0.042 -10.3 0.167 0.115 10 12.8

τ
=

0.
5

Normal -2.7 0.191 0.4 0.18 -0.7 0.044 -2.8 0.103 0.092 9.6 7.2

Clayton 40.7 0.376 20.6 0.362 -0.1 0.053 -34.7 0.218 0.141 3.2 2.8

Joe -18.6 0.283 -8.6 0.259 -2.6 0.057 3.4 0.131 0.103 4 2.4

FGM 56.5 0.441 24.9 0.39 -7.9 0.084 -56.3 0.284 0.158 4.4 33.2

AMH 49.5 0.392 23.3 0.369 -3.8 0.051 -43.2 0.222 0.146 4.4 10.8

Frank -3.9 0.191 -0.3 0.174 -0.6 0.042 0.2 0.103 0.086 62.8 34.8

Gumbel -17.6 0.233 -7 0.209 -0.7 0.047 8.6 0.108 0.093 11.6 8.8

τ
=

0.
7

Normal -5.8 0.117 -0.9 0.122 0.2 0.038 0.7 0.059 0.078 7.7 10.2

Clayton 15.8 0.231 10.9 0.249 2.8 0.055 -7.4 0.136 0.101 5.5 5.5

Joe -19.4 0.179 -8.6 0.174 -0.4 0.041 4.4 0.064 0.082 8.1 4.3

FGM 87.9 0.671 38 0.577 -13.6 0.138 -68.3 0.478 0.219 0 0.4

AMH 79 0.604 36.1 0.549 -8.9 0.093 -54.2 0.379 0.204 0 0

Frank -6.9 0.111 -1.6 0.116 0 0.036 2.7 0.051 0.071 68.9 68.5

Gumbel -14.3 0.149 -5.2 0.141 0.4 0.039 5.4 0.062 0.077 9.8 11.1

Table 9: Percentage biases and RMSEs for α̂21, α̂22, σ̂, τ̂ and ŝ21(z1), and percentage frequency at which each copula model was
selected by AIC and BIC for data simulated using a bivariate Frank copula with normal margins, when employing the normal,
Clayton, Joe, FGM, AMH, Frank and Gumbel copula regression spline sample selection models. Number of simulated datasets is
equal to 250. τ denotes the association between the selection and outcome equations. See Section 4 for further details.
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α̂21 α̂22 σ̂ τ̂ ŝ21(z1)

Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE RMSE AIC (%) BIC (%)
τ

=
0.

2
Normal 10.7 0.266 6.8 0.243 1.6 0.04 -23.5 0.137 0.105 10.8 4

Clayton 36.8 0.322 18 0.311 1.5 0.042 -74.2 0.168 0.127 26.4 47.6

Joe 10.1 0.236 5.4 0.226 -1.8 0.038 -31.3 0.12 0.102 32 21.2

FGM 28.4 0.284 14.1 0.277 0.6 0.033 -57.1 0.145 0.114 6.4 6.8

AMH 31.3 0.294 15.5 0.287 1 0.038 -61.7 0.15 0.118 0.8 1.2

Frank 23.2 0.281 12 0.271 0.9 0.036 -46.1 0.145 0.112 3.6 5.2

Gumbel 3.4 0.227 3 0.213 -0.3 0.035 -13.5 0.115 0.099 20 14

τ
=

0.
5

Normal 8.9 0.154 6.4 0.171 0.4 0.039 -9.1 0.089 0.091 11.7 3.3

Clayton 59.7 0.489 29.3 0.468 0.1 0.048 -48.7 0.269 0.165 0.4 1.2

Joe 2.9 0.176 1.7 0.175 -3.8 0.057 -9.5 0.105 0.096 22.5 21.2

FGM 63.6 0.49 29.2 0.451 -5.8 0.064 -56.1 0.281 0.168 2.1 31.2

AMH 59.7 0.465 28.6 0.444 -2.4 0.043 -48.6 0.248 0.161 1.2 5.4

Frank 19.2 0.204 10.8 0.217 -0.8 0.039 -14.9 0.11 0.098 8.3 5

Gumbel -1.2 0.15 1.1 0.155 -0.8 0.041 -1.4 0.08 0.088 53.8 32.9

τ
=

0.
8

Normal -1 0.089 1.9 0.114 0.1 0.035 -0.2 0.041 0.072 17.7 26.5

Clayton 8.2 0.141 7.8 0.179 2.8 0.047 -2.2 0.075 0.081 2.8 3.9

Joe -5.5 0.096 -1.1 0.108 -1 0.037 -0.4 0.044 0.074 15.5 8.8

FGM 103 0.785 45 0.682 -16 0.162 -72.2 0.578 0.244 0 0

AMH 93.1 0.71 42.9 0.65 -11 0.113 -58.7 0.469 0.227 0 0.6

Frank 1.8 0.092 3.3 0.121 -0.1 0.034 -1 0.045 0.073 2.8 9.9

Gumbel -4.2 0.091 0.1 0.107 0 0.035 1.9 0.04 0.073 61.3 50.3

Table 10: Percentage biases and RMSEs for α̂21, α̂22, σ̂, τ̂ and ŝ21(z1), and percentage frequency at which each copula model was
selected by AIC and BIC for data simulated using a bivariate Gumbel copula with normal margins, when employing the normal,
Clayton, Joe, FGM, AMH, Frank and Gumbel copula regression spline sample selection models. Number of simulated datasets is
equal to 250. τ denotes the association between the selection and outcome equations. See Section 4 for further details.
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a) Normal copula
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b) Clayton copula
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Figure 5: RMSEs and percentage bias of α̂21, α̂22, σ̂, τ̂ and ŝ21 for data generated using the a)
normal and b) Clayton copulas when employing the normal and Clayton copula regression spline
sample selection models, respectively. Solid line: model (10) without exclusion restriction. Dotted
line: model (9) with exclusion restriction.
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a) Joe copula
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b) FGM copula
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Figure 6: RMSEs and percentage bias of α̂21, α̂22, σ̂, τ̂ and ŝ21 for data simulated using the a)
Joe and b) FGM copulas when employing the Joe and FGM copula regression spline sample selection
models, respectively. Solid line: model (10) without exclusion restriction. Dotted line: model (9) with
exclusion restriction.
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a) Normal copula
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b) Clayton copula
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Figure 7: RMSEs and percentage bias of α̂21, α̂22, σ̂, τ̂ and ŝ21 for data generated using the a)
normal and b) Clayton copulas when employing the normal and Clayton copula regression spline
sample selection models, respectively. Solid line: model (11) without exclusion restriction. Dotted
line: model (9) with exclusion restriction.
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a) Joe copula
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b) FGM copula
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Figure 8: RMSEs and percentage bias of α̂21, α̂22, σ̂, τ̂ and ŝ21 for data simulated using the a)
Joe and b) FGM copulas when employing the Joe and FGM copula regression spline sample selection
models, respectively. Solid line: model (11) without exclusion restriction. Dotted line: model (9) with
exclusion restriction.
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a) Random samples generated using equations (9) and a normal product distribution (τ = 0).

n α(%) Copula

Normal FGM AMH Frank Gumbel

1000 1 14 0 2 9 29
5 23 0 5 16 30
10 28 0 9 23 31

3000 1 4 0 2 3 22
5 11 1 4 9 27
10 17 8 10 17 29

5000 1 3 0 1 2 13
5 10 4 5 7 20
10 14 8 12 13 24

b) Random samples generated using equations (10) and a normal product distribution (τ = 0).

n α(%) Copula

Normal FGM AMH Frank Gumbel

1000 1 21 0 0 12 43
5 33 0 3 22 43
10 41 0 5 28 43

3000 1 11 0 1 4 27
5 20 5 8 12 32
10 28 12 16 19 33

5000 1 8 1 2 3 18
5 16 4 3 9 22
10 22 9 6 12 25

c) Random samples generated using equations (11) and a normal product distribution (τ = 0).

n α(%) Copula

Normal FGM AMH Frank Gumbel

1000 1 20 0 4 13 45
5 29 0 10 21 46
10 37 0 16 29 46

3000 1 12 0 0 6 31
5 18 3 2 13 35
10 25 10 4 22 39

5000 1 9 1 3 5 22
5 15 6 5 12 29
10 20 8 7 15 32

Table 11: Null rejection probabilities (%) for testing H0 : τ = 0 based on (100 − α)% confi-
dence intervals for τ , when fitting normal, FGM, AMH, Frank and Gumbel copula regression
spline sample selection models.
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a) data generated using the bivariate FGM copula

n α(%) τ = −0.2 τ = 0.15

1000 1 0 0
5 0 0
10 0 1

3000 1 2 3
5 7 9
10 19 28

5000 1 5 9
5 23 48
10 36 66

b) data generated using the bivariate AMH copula

n α(%) τ = −0.12 τ = 0.1 τ = 0.28

1000 1 2 4 34
5 4 17 54
10 9 25 59

3000 1 5 14 86
5 13 26 91
10 32 37 92

5000 1 8 22 96
5 48 35 97
10 68 45 98

c) data generated using the bivariate Frank copula

n α(%) τ = 0.2 τ = 0.5 τ = 0.7

1000 1 25 99 100
5 53 99 100
10 59 99 100

3000 1 57 100 100
5 74 100 100
10 81 100 100

5000 1 78 100 100
5 90 100 100
10 93 100 100

Table 12: Null rejection probabilities (%) for testing the null hypothesis H0 : τ = 0 based
on (100 − α)% confidence intervals for τ , when fitting a) FGM, b) AMH, c) Frank copula
regression spline sample selection models. Random samples were generated using equations
(9), with exclusion restriction.
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a) data generated using the bivariate FGM copula

n α(%) τ = −0.2 τ = 0.15

1000 1 0 0
5 0 0
10 0 0

3000 1 0 0
5 9 3
10 20 16

5000 1 2 2
5 21 23
10 32 44

b) data generated using the bivariate AMH copula

n α(%) τ = −0.12 τ = 0.1 τ = 0.28

1000 1 0 0 8
5 3 2 18
10 6 5 22

3000 1 3 4 24
5 14 15 30
10 33 23 38

5000 1 9 6 32
5 41 21 40
10 61 35 50

c) data generated using the bivariate Frank copula

n α(%) τ = 0.2 τ = 0.5 τ = 0.7

1000 1 20 97 100
5 38 98 100
10 46 100 100

3000 1 31 100 100
5 48 100 100
10 58 100 100

5000 1 54 100 100
5 70 100 100
10 76 100 100

Table 13: Null rejection probabilities (%) for testing the null hypothesis H0 : τ = 0 based
on (100 − α)% confidence intervals for τ , when fitting a) FGM, b) AMH, c) Frank copula
regression spline sample selection models. Random samples were generated using equations
(10), without exclusion restriction.
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a) data generated using the bivariate FGM copula

n α(%) τ = −0.2 τ = 0.15

1000 1 0 0
5 0 0
10 0 0

3000 1 0 0
5 1 5
10 4 14

5000 1 1 1
5 9 18
10 14 30

b) data generated using the bivariate AMH copula

n α(%) τ = −0.12 τ = 0.1 τ = 0.28

1000 1 4 3 9
5 12 14 21
10 22 19 30

3000 1 20 15 32
5 31 31 42
10 37 38 48

5000 1 32 16 40
5 45 32 48
10 50 42 54

c) data generated using the bivariate Frank copula

n α(%) τ = 0.2 τ = 0.5 τ = 0.7

1000 1 21 78 92
5 39 87 98
10 51 93 98

3000 1 40 95 100
5 59 97 100
10 67 99 100

5000 1 64 99 100
5 81 100 100
10 85 100 100

Table 14: Null rejection probabilities (%) for testing the null hypothesis H0 : τ = 0 based
on (100 − α)% confidence intervals for τ , when fitting a) FGM, b) AMH, c) Frank copula
regression spline sample selection models. Random samples were generated using equations
(11), without exclusion restriction.
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