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SUMMARY 39 

1. Monitoring global biodiversity is critical for understanding responses to anthropogenic 40 

change, but biodiversity monitoring is often biased away from tropical, megadiverse 41 

areas that are experiencing more rapid environmental change. Acoustic surveys are 42 

increasingly used to monitor biodiversity change, especially for bats as they are 43 

important indicator species and most use sound to detect, localise and classify 44 

objects. However, using bat acoustic surveys for monitoring poses several 45 

challenges, particularly in mega-diverse regions. Many species lack reference 46 

recordings, some species have high call similarity or differ in call detectability, and 47 

quantitative classification tools, such as machine learning algorithms, have rarely 48 

been applied to data from these areas. 49 

2. Here, we collate a reference call library for bat species that occur in a megadiverse 50 

country, Mexico. We use 4,685 search-phase calls from 1,378 individual sequences 51 

of 59 bat species to create automatic species identification tools generated by 52 

machine learning algorithms (Random Forest). We evaluate the improvement in 53 

species-level classification rates gained by using hierarchical classifications, 54 

reflecting either taxonomic or ecological constraints (guilds) on call design, and 55 

examine how classification rate accuracy changes at different hierarchical levels 56 

(family, genus, and guild). 57 

3. Species-level classification of calls had a mean accuracy of 66% and the use of 58 

hierarchies improved mean species-level classification accuracy by up to 6% 59 

(species within families 72%, species within genera 71.2% and species within guilds 60 

69.1%). Classification accuracy to family, genus and guild-level was 91.7%, 77.8% 61 

and 82.5%, respectively.  62 

4. The bioacoustic identification tools we have developed are accurate for rapid 63 

biodiversity assessments in a megadiverse region and can also be used effectively to 64 

classify species at broader taxonomic or ecological levels. This flexibility increases 65 
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their usefulness when there are incomplete species reference recordings and also 66 

offers the opportunity to characterise and track changes in bat community structure. 67 

Our results show that bat bioacoustic surveys in megadiverse countries have more 68 

potential than previously thought to monitor biodiversity changes and can be used to 69 

direct further developments of bioacoustic monitoring programs in Mexico. 70 

Keywords: acoustic identification, guild, hierarchical classification, random forest, machine 71 

learning, Neotropical, whispering bats.  72 

73 
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INTRODUCTION 74 

Effective conservation depends on our ability to define, measure and track ecological 75 

communities through time and space (Magurran et al. 2010). Although biodiversity 76 

monitoring programmes are critical to assess the impact of anthropogenic change, many are 77 

biased towards high latitude, temperate countries (Collen et al. 2009). Megadiverse 78 

countries (e.g., Indonesia, Mexico, Zaire) cover only 34% of the Earth surface, yet they 79 

harbour 70% of the world’s biodiversity and are undergoing rapid environmental degradation 80 

(Mittermeier et al. 1997). In spite of the great conservation opportunity these hotspot regions 81 

offer, biodiversity monitoring programmes are often lacking, causing considerable knowledge 82 

gaps. 83 

Bioacoustic surveys, especially for bats, are increasingly used to survey and monitor 84 

biodiversity responses to anthropogenic change (Jones et al. 2013; Amorim et al. 2014). 85 

Echolocating bats use sound to detect, localise and classify objects (Schnitzler et al. 2003) 86 

making them detectable both remotely and non-invasively. Bats are also ideal biodiversity 87 

indicators since they have a wide range of ecological traits, different tolerances to 88 

environmental variables and play key roles in ecosystems (Jones et al. 2009; Russo & Jones 89 

2015). However, using bat acoustics as a monitoring tool poses several challenges, 90 

especially in megadiverse and tropical regions (Walters et al. 2013). First, in spite of the 91 

growing efforts to create more bat call reference recording libraries, tropical and 92 

megadiverse regions have rarely been included in such initiatives. This is compounded by 93 

recording method heterogeneity (e.g., full spectrum, frequency division, heterodyne), which 94 

makes compiling comprehensive libraries difficult (Walters et al. 2013). Such poor and 95 

uneven coverage of intra- and inter-specific variation makes Identification of bat calls for 96 

these regions challenging  97 

Second, although it is possible to identify many bat species based on their calls, 98 

phylogenetic relatedness, ecological similarities, and call plasticity have led to overlapping 99 
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structures and high call similarity among and within species in some groups (Obrist 1995; 100 

Jones & Teeling 2006). For example, species may have similar calls within families and 101 

genera (Jung et al. 2007, 2014), and ecological guild membership may also reflect foraging 102 

and echolocation behaviour (e.g., aerial insectivores, gleaners) (Denzinger & Schnitzler 103 

2013). An additional challenge is that bat species differ in detectability of their calls. Aerial 104 

insectivores typically produce loud calls of high-intensity and low frequency, whereas 105 

‘whispering’ bats (including many bats in the families Phyllostomidae, Natalidae, and 106 

Thyropteridae) often produce low-intensity, high frequency calls (Griffin 1958). However, 107 

recent findings suggest that some ‘whispering’ bat calls are more detectable than previously 108 

thought. For example, Macrophyllum macrophyllum and Artibeus jamaicensis can emit calls 109 

as loud as those of many aerial insectivores (Brinkløv et al. 2009). Otonycteris hemprichii, a 110 

passive gleaner, can also operate as an aerial hawker and can adjust its call intensity 111 

depending on foraging mode even while flying in the same habitat type (Hackett et al. 2014).  112 

Third, although acoustic species identification tools for different species are developing 113 

rapidly (e.g., European bats Walters et al. 2012; birds Stowell & Plumbley 2014), they 114 

remain rare for megadiverse regions. The immense amount of data obtained from acoustic 115 

monitoring can be daunting and automatic analytical tools are extremely useful in analysing 116 

such data (Walters et al. 2013). Bat call identification tools have been mainly developed 117 

using multivariate statistical techniques such as discriminant function analysis (e.g., 118 

Vaughan et al. 1997; Russo & Jones 2002; Avila-Flores & Fenton 2005; MacSwiney et al. 119 

2008) or machine learning algorithms (e.g., Skowronski & Harris 2006, Walters et al. 2012), 120 

the latter generally providing higher species-level classification accuracy (Armitage & Ober 121 

2010; Britzke et al. 2011; Keen et al. 2014). Machine learning algorithms have mostly been 122 

applied to classify data at one level of categorisation (e.g., species) and have rarely 123 

incorporated hierarchical information to aid classification accuracy (e.g., species within 124 

families or orders). Hierarchical classification approaches have been shown to improve 125 

general species classification accuracy for European bat calls up to 13% (Parsons & Jones 126 
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2000; Walters et al. 2012). Assigning taxa to classes within a hierarchy may reduce model 127 

complexity and minimise misclassifications outside their hierarchy (Vens et al. 2008). 128 

However, if an erroneous hierarchy is applied, then classification errors are added 129 

cumulatively across different levels, leading to a reduction in classification accuracy.  130 

A hierarchical classification approach may be useful to classify calls to broader classes (e.g., 131 

genera, families or guilds) when reference material is missing for species, or where 132 

discrimination at species-level is difficult. For example, where there is high call variability 133 

within species, or a high overlap of call parameters between species. Although identification 134 

to species is most desirable, monitoring the status of the same recognizable signal over time 135 

without specific identification may be sufficient in some situations (Redgwell et al. 2009; 136 

Armitage & Ober 2010). Finding alternatives to species-level studies is needed in 137 

megadiverse areas, which usually face considerable financial and data constraints but are a 138 

priority for rapid conservation assessments.  139 

Here, we collate a reference call library for bat species that occur in a megadiverse country 140 

to create acoustic identification tools using machine learning algorithms. We focus on 141 

Mexico because it contains one of the highest number of species in the world and has one of 142 

the highest rates of species extinction and habitat loss (Myers et al. 2000; Brooks et al. 143 

2002). We also evaluate the improvement in species-level classification rates gained by 144 

using hierarchical classifications reflecting either taxonomic or ecological constraints on call 145 

design. Our results show that accurate bioacoustic identification tools can be developed for 146 

rapid biodiversity assessments in megadiverse regions where hierarchies generally improve 147 

species-level classifications. These tools can also be used effectively to classify calls at 148 

broader levels, so increasing the usefulness of the tool when there are incomplete species 149 

reference recordings.  150 

 151 

MATERIALS AND METHODS 152 
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Reference call library 153 

We collated reference search-phase echolocation calls for bat species that occur in Mexico 154 

through a combination of field work and donated material. Field work was conducted in 155 

central and northern Mexico from June 2012 to May 2013 at 35 sites (Fig. 1a). Bats were 156 

caught with mist nets and identified to species level using field keys (Reid 1997; Medellín et 157 

al. 2008), before being released. Full spectrum, real time recordings were made from all 158 

individuals in the habitat in which they were captured using a Pettersson D1000x detector, 159 

sampling rate 500kHz, high pass filter off (Pettersson Elektronik AB, Uppsala, Sweden). 160 

Files were saved in WAV format on a flash card. We obtained 907 recordings of 39 species 161 

from 6 families (see Table S1 in Supporting Information). Additionally, 1,403 full spectrum 162 

recordings of bat calls from 87 species that occur in Mexico were donated by colleagues, 163 

giving a total of 2,310 recordings (each recording was assumed to contain one individual call 164 

sequence) from 92 species in 8 families (68% of species and 100% of families of bats 165 

occurring in Mexico). These recordings were obtained from bats released in different ways 166 

using several different real time or time-expanded full spectrum detectors, and in a range of 167 

habitats across species’ distributions (including localities outside Mexico) (Table S2). The 168 

inclusion of call variation in the dataset avoids generating biases for any particular recording 169 

situation or method (Walters et al. 2013), and provides the acoustic identification tools with 170 

more flexibility and generality (see Walters et al. 2012).   171 

Taxonomy followed Simmons (2005), but because of taxonomic changes since 2005 we 172 

assume that Natalidae contains only one species, Natalus stramineus (López-Wilchis et al. 173 

2012). Data from Molossus sinaloae and the new species M. alvarezi (González-Ruiz et al. 174 

2011) were analysed together as M. sinaloae because most of the material was recorded 175 

prior to the description of the new species. As some species are hard to identify in the field, 176 

we only used the material which were confidently identified. To examine the taxonomic and 177 

geographic coverage of the reference call library within Mexico, distribution maps were 178 

downloaded from the IUCN mammal assessments (IUCN 2012) and species richness within 179 
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each 50 km2 grid cell was estimated by overlaying and counting how many of those range 180 

maps overlap in each grid cell (Hawths Tools, Beyer, 2004). We then calculated the 181 

proportion of species both recorded and used in our classifiers from out of those potentially 182 

distributed in each cell. 183 

Acoustic Identification Tools 184 

We visually inspected all recorded sequences using the sound analysis software BatSound 185 

Pro v.3.31b (Pettersson Elektronik AB, Uppsala Sweden) to remove non search-phase calls. 186 

We distinguished search-phase calls from approach-phase and terminal-phase calls as 187 

these phase shifts are characterized by a decrease in call duration and interval, and 188 

increase in repetition rate (Schnitzler & Kalko 2001). Social calls were distinguished from 189 

echolocation calls by their duration, frequency and pattern of change over time, with social 190 

calls being more sporadic and often of a lower frequency range (Fenton 2003). In addition, 191 

bats were recorded in situations that significantly minimized the presence of social calls and 192 

approach and end-phase echolocation calls (e.g., recorded in open spaces upon release). 193 

We then automatically extracted and parameterised search-phase calls using the in-built 194 

algorithms in Sonobat v.3 (Szewczak 2010) (following methods in Walters et al. 2012). For 195 

species which used harmonics, we used measurements from the call used as the main 196 

harmonic. We measured a total of 21,064 search-phase echolocation calls from 1,692 197 

sequences and 85 species in 8 families, with each sequence assumed to be from a different 198 

individual. Material recorded in Mexico contained 16,344 calls, 1,187 sequences from 65 199 

species in 7 families across 91 different localities (Fig. 1a).  200 

We used Random Forest (RF) models (randomForest package, Liaw & Wiener 2002) to train 201 

the classifiers, rejecting species that had less than five sequences. RF models consist of a 202 

collection or ensemble of decision tree classifiers where each classifier is randomly built 203 

using a bootstrapped sample of the training dataset (Breiman 2001). Each classifier is 204 

estimated based on probabilities using a selection of the predictor variables (in our case call 205 

parameters) that best separate the classes of interest (e.g., species, families) at different 206 
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branching splits or nodes in the tree. RF model classifications are then derived from 207 

averages of the tree ensembles. RF models possess several advantages over other 208 

machine learning algorithms as they are not affected by heteroscedasticity or distributional 209 

errors in the data, are not sensitive to outliers or irrelevant variables, can deal with mixed 210 

data and missing variables, and are relatively simple to train using reasonable computational 211 

resources (Olden et al. 2008). We selected 27 of the relevant call parameter variables 212 

(following methods in Walters et al. 2012) extracted and parameterised by Sonobat (Table 213 

S3), and ran a grid search to find the mtry value (optimal number of variables to be randomly 214 

sampled at each node). This value was allowed to range from 2-10, in steps of one. Each 215 

forest was grown to 2,000 trees and the final mtry value and number of trees were selected 216 

for their highest accuracy. The final set of parameters used was 1,000 trees and an mtry 217 

value of three. We used the coefficient of the Gini impurity index (used by the RF models to 218 

select the most informative variables at nodes during training), as an indicator of call 219 

parameter variable importance (Breiman 2001). 220 

We trained four different RF model classifiers: Classifier 1 - Species-level without a 221 

hierarchy; Classifier 2 - Species-level within a family hierarchy (see call examples in Fig. 222 

S1a-f); Classifier 3 - Species-level within a genus hierarchy (see call examples in Fig. S1g); 223 

and Classifier 4 - Species-level within a guild hierarchy, following definitions of guilds from 224 

Denzinger & Schnitzler (2013) (see call examples in Fig. S2a-e): Guild 1 represented Open 225 

space aerial foragers; Guild 2 - Edge space aerial foragers; Guild 3 -  Edge space trawling 226 

foragers; Guild 4 - Narrow space flutter detecting foragers; and Guild 5 - Narrow space 227 

passive gleaning foragers and Guild 6 - Narrow space passive/active gleaning foragers. 228 

Guild 7 - Narrow space active gleaning foragers was not included in the study because of 229 

the lack of reference material.  230 

We used five-fold cross-validation to assess the accuracy of all four RF classifiers and 231 

assigned the individual calls into the five folds by sequence rather than individual calls 232 

(Stathopoulos et al. 2014). This procedure ensured that calls from the same individual (i.e., 233 
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sequence) were not used in the same training and testing run of the cross-validation to avoid 234 

over-fitting. We set a maximum of 100 calls per species for Classifier 1 and a minimum of 20 235 

calls per species for Classifiers 2, 3 and 4, as a compromise between maximising the 236 

number of calls and balancing the datasets, since RF classifiers tend to be biased towards 237 

the majority class (species, genus, family or guild with the highest number of training calls) 238 

(Chen et al. 2004). Only the highest quality calls were selected from each sequence 239 

(determined by the signal to noise ratio given by Sonobat), until the selected number of calls 240 

was reached. However, for some species with smaller sample sizes, we continued selecting 241 

calls from sequences in descending order of quality until we had used all available data or 242 

reached the number of calls allowed (Table S4). The number of calls selected per sequence 243 

was a compromise between maximising the number of calls and avoiding over-fitting the RF 244 

models. Sample sizes after this selection process were 4,685 calls and 1,378 sequences 245 

from 8 families, 32 genera, and 59 species that occur in Mexico. See Figure S3 for an outline 246 

of the analytical procedure.  247 

As we used recordings from locations from both inside and outside of Mexico, we checked 248 

that the variation in call parameters recorded in locations outside of Mexico did not impact 249 

species classification accuracy. To investigate this, we compared model accuracy using the 250 

four classifiers of two datasets consisting of 47 species recorded from locations inside 251 

Mexico and the same species recorded from all locations. We found very little difference in 252 

classification accuracy between the two datasets. Classifier 1 had the biggest difference in 253 

classification accuracy, albeit with only 1.5% reduction in correct classification rates (67.1% 254 

and 65.6% for inside Mexico and for all locations, respectively). We therefore used 255 

recordings from outside Mexico to complement species with less than five Mexican 256 

sequences. All analyses were performed in R version 3.0.2 (R Development Core Team 257 

2013). 258 

 259 

RESULTS 260 
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Database coverage 261 

Our collated library of echolocation call recordings covered 69% of the species, 79% of the 262 

genera, and 100% of the families occurring in Mexico. Data of high enough quality to build 263 

the automatic identification tools covered 43% of the species, 51% of the genera, and 100% 264 

of the families (Table S5). There was generally a good representation of species for the 265 

identification tools within genera and families (>50%), except for Phyllostomidae, where only 266 

19% of the species were represented. Species coverage was more comprehensive within 267 

the central and northern parts of Mexico for both the library and identification tools (Fig. 1b-268 

c). 269 

 270 

Acoustic Identification Tools  271 

Overall 16 out of the 27 parameters used to train the models contributed most to all classifiers 272 

(based on a score >30 for the Gini Coefficient from the RF models) (Table S6, Fig 2a-d). 273 

Although different parameters were important for each hierarchy, the most important overall 274 

were Fc Characteristic call frequency (kHz), FCtr Frequency at the center of the call duration 275 

(kHz), FLed Frequency of the ledge (kHz), StartF Frequency at the start of a call (kHz), 276 

HFreq Highest call frequency (kHz), and FMPwr Frequency of the maximum call amplitude 277 

(kHz) (Fig. 2a-d, see Table S3 for further variable definitions).  278 

 279 

Overall mean species-level classification accuracies for Mexican bat species varied across 280 

the four classifiers between 66.0% (Classifier 1: Species-level without a hierarchy) and 281 

72.0% (Classifier 2: Species-level within a family hierarchy), with Classifiers 3 (Species-level 282 

with a genus hierarchy) and 4 (Species-level with a guild hierarchy) having accuracies of 283 

71.2% and 69.1%, respectively (Table 1).  Across all classifiers, on average the highest 284 

classification accuracies where found for species within families Natalidae (100%), 285 

Mormoopidae (94.6%), Thyropteridae (81.5%), and Emballonuridae (77.7%), with the lowest 286 

found within Noctilionidae (70.4%), Molossidae (67%), Vespertilionidae (51.5%), and 287 

Phyllostomidae (51.4%) (Fig. 3). Phyllostomid species were mostly misclassified with other 288 
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phyllostomids or with vespertilionids, whereas vespertilionids were commonly misclassified 289 

with other vespertilionids or with molossids (Table 1). For the ecological classifier, species 290 

within Guild 4 (narrow space flutter detecting foragers) (100%), Guild 3 (edge space trawling 291 

foragers) (74.6%), and Guild 1 (open space aerial foragers) (63.8%) had on average the 292 

highest classification rates. The lowest average classification rates for species were found 293 

within in the gleaners (Guild 5 58.5% and Guild 6 57.7%) Guild 2 (edge space aerial 294 

foragers) (54.5%) (Fig. 4).  295 

 296 

Classification accuracy at different hierarchical levels was highest at family-level with a mean 297 

of 91.7% across all families (Table 1, Fig. 3), where Natalidae and Mormoopidae had the 298 

highest classification accuracies (100% and 97.3%, respectively). Noctilionidae had the 299 

lowest classification accuracy (72.8%) and was frequently misclassified as Molossidae (17% 300 

of the calls). Genus-level mean classification accuracy was 77.8% across all genera (Table 301 

1), Natalus (Natalidae) and Rhynchonycteris (Emballonuridae) had the highest classification 302 

accuracies (100%), and 18 genera had accuracies >80% (Fig. 3). The genus Myotis yielded 303 

a classification accuracy of 73.8%, with two species over >80% (Myotis thysanodes and 304 

Myotis keaysi) and only 4 with <50%. Genera with the lowest classification accuracies 305 

(<50%) were in the Phyllostomidae and Vespertilionidae (Fig. 3). Phyllostomids were mostly 306 

misclassified as other phyllostomids, while vespertilionids were misclassified as other 307 

vespertilionids and molossids. Mean guild-level classification accuracy was 82.5% across all 308 

guilds (Table 1, Fig. 4). Guild 4 (narrow space flutter detecting foragers) had the highest 309 

classification accuracy (100%), followed by Guild 6 (88.3%) although 6% of these calls were 310 

misclassified with Guild 5. Guild 5 had the worst classification accuracy (68%), and 18% of 311 

calls were misclassified as Guild 6 (Fig. 4). 312 

 313 

DISCUSSION  314 
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We have collated the most extensive bat acoustic library for a megadiverse region (all 315 

families and over half of the species occurring in Mexico) and developed the most 316 

comprehensive bat acoustic automated species-level classifiers to date. The mean species-317 

level classification accuracy rate of 66-72% (depending on which hierarchy is chosen) is 318 

reasonable given the high level of call similarity of the bat species in this area (Walters et al. 319 

2013). The species-level classifiers also contain a large variation in accuracy rates, where 320 

some species are classified to >80% accuracy (species of Emballonuridae, Mormoopidae, 321 

Natalidae and Thyropteridae), with the poorest results overall from species of 322 

Vespertilionidae and Phyllostomidae. This suggests that acoustic monitoring may be more 323 

feasible focusing on a few species whose calls can be reliably classified.  324 

The bat call library and classifiers incorporate both extensive geographic (from 9 countries 325 

within the species range of Mexican bats) and intra-specific variation in call types (e.g., the 326 

classifiers were trained on the different search-phase echolocation call types found within 327 

molossid species, Jung et al. 2014). However, the species-level classifiers have a very low 328 

coverage of Phyllostomidae and results should be interpreted with caution. It has been 329 

traditionally assumed that whispering bats, which include all phyllostomids, echolocate at 330 

intensities that were too low for the inclusion of these species in acoustic studies. However, 331 

recent field studies of their echolocation behaviour challenged these assumptions about their 332 

echolocation characteristics (Brinkløv et al. 2009; Hackett et al. 2014). Future work should 333 

focus on collecting more reference material for the family, to better assess its potential for 334 

acoustic monitoring programmes. 335 

Our classifiers will be the most accurate in regions where there is a higher coverage of the 336 

species present, such as the less species-rich arid and semi-arid regions of Mexico. These 337 

ecosystems (e.g., xerophytic scrubland and grasslands) cover at least 40% of the territory 338 

(Rzedowski 2006), and together with other North American drylands, support some of the 339 

biggest concentrations of mammalian abundance, because bats can form colonies of several 340 

millions of individuals (O’Shea & Bogan 2003). These bat populations can provide important 341 
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ecosystem services such as pollination and control of insect populations (Cleveland et al. 342 

2006; Munguía-Rosas et al. 2009). These important arid and semi-arid environments are 343 

increasingly threatened by environmental changes (Villers-Ruiz & Trejo-Vázquez 2003; 344 

Rodríguez-Estrella 2007) and future efforts should focus on these arid areas where there are 345 

considerable information gaps. 346 

  347 

Our species-level classifier mean accuracy was similar to that of previous studies of bats for 348 

species shared with this study (Mexico - MacSwiney et al. 2008; Stathopoulos et al. 2014; 349 

West Indies - Pio et al. 2010; United States -  Skowronski & Harris 2006; Britzke et al. 2011). 350 

However, our classification accuracies were slightly lower for some species compared with 351 

previous work. This is a consequence of the higher number of classes (species) included in 352 

our classifiers compared to all previous studies. Higher numbers of species increases the 353 

similarity in the call parameters of several species. For example, we included 26 354 

vespertilionids and 8 Myotis species, compared to 6 vespertilionids and one Myotis in 355 

MacSwiney et al. (2008) and 9 vespertilionids and two Myotis in Stathopoulos et al. (2014). 356 

Our study nearly triples the number of species used compared to any other quantitative bat 357 

call classification study in the Americas or any other megadiverse tropical region in the 358 

world. We also included a wide range of ecological, technological and methodological 359 

variation in the training dataset, which on one hand increases the classification challenge, 360 

but on the other makes the classifiers more robust to real-world recording situations. In spite 361 

of the great difference in the number of species used here, we also obtained higher 362 

classification accuracies to species level and better mean accuracies than previous studies 363 

(e.g., Pio et al. 2010; Stathopoulos et al. 2014). 364 

 365 

Our use of taxonomic and ecological guild hierarchies improved mean species-level 366 

classification rates. By using hierarchical classification approaches the number of final 367 

classes is considerably reduced and misclassifications are limited to classes within the 368 

respective hierarchy (Vens et al. 2008). Mean species-level classification accuracies were 369 
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most improved using a family hierarchy, closely followed by genera (72% and 71%, 370 

respectively), although not all species improved their accuracies (contrary to other studies - 371 

Parsons & Jones 2000; Walters et al. 2012). The genus-level hierarchy produced the highest 372 

number of species-level classifications with >80% accuracy but for many genera not all 373 

species were included in the analysis and genus-level taxonomic names can be subject to 374 

rapid changes (Simmons 2005). This may suggest that using a genus-level hierarchy may 375 

be more problematic than a family hierarchy, especially with incomplete reference material. 376 

For example, accuracy may decrease as more species are included, whereas variation 377 

within a family may be already adequately represented. In contrast, classification to genus 378 

level may be more helpful to reduce the number of options of possible misclassifications 379 

inside the hierarchy and further methods for call identification could then be applied (e.g., 380 

visual inspection).  381 

Although we found species-level classification rates within an ecological guild-level hierarchy 382 

were worse than species-level classification rates within either taxonomic hierarchy, 383 

classification of calls to guild-level performed well and could provide a useful alternative to 384 

taxonomic-level classifiers. Gleaners, in particular the speciose family Phyllostomidae, are 385 

the most abundant and diverse in bat communities in the Americas, yet poorly represented 386 

in acoustic libraries. Our results at family and guild-level suggest that there is a good 387 

potential for accurate acoustic identification of gleaners. As more sensitive microphones with 388 

better signal/noise ratios become available, the detectability of these species will improve, as 389 

will the potential for monitoring them acoustically. Guilds 5 and 6, representing gleaning 390 

foragers, were frequently confused with each other, so these should be grouped into one 391 

class, since the main difference among them is how they use other non-echolocation cues to 392 

forage (Denzinger & Schnitzler 2013).  393 

Acoustic analysis techniques are evolving rapidly and there is a growing tendency to replace 394 

classifications based on parameters extraction with those of whole signal analysis. However, 395 

applications of these approaches have mainly focused on bird and marine mammal 396 
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acoustics (e.g., Ren et al. 2009; Damoulas et al. 2010) and most bat acoustic classification 397 

tasks still represent classifications with a few parameters and further classify them using 398 

manual or non-parametric techniques. Such whole signal analyses in bat acoustics are 399 

growing (Obrist et al. 2004; Skowronski & Harris 2006; Stathopoulos et al. 2014) but should 400 

be further explored. However, exploration of new approaches requires adequate reference 401 

material collected in a systematic way, controlling for variation introduced by the use of 402 

different methods, and we strongly encourage further efforts to collect comprehensive 403 

reference bat call libraries. 404 

 405 

Applications  406 

Standardized identification tools such as these, offer the opportunity for objective and 407 

repeatable identifications of monitoring ‘units’ to identify changes in populations, distributions 408 

or community structures through time and space. Furthermore, hierarchical approaches offer 409 

the flexibility to adapt the identification tools to the purpose of the study or monitoring 410 

programme and the geographic and taxonomic coverage of the reference material available. 411 

Although the accuracy reached for some groups might not be sufficient for studies targeting 412 

their particular species (e.g., Myotis spp.), the hierarchical classifiers can act as filters for 413 

large amounts of data. The use of hierarchies considerably reduces the list of species to 414 

which an unknown call could belong, thus making detailed inspections and further 415 

validations more feasible.  416 

Hierarchical classifications, in particular at family-level, could help reduce the costs of 417 

monitoring tropical bat communities, which is crucial due to the limited funding these regions 418 

often devote to conservation efforts. Despite the relatively poor classification accuracies to 419 

species-level within the guild-level hierarchy, classification to guild-level could be used to 420 

rapidly characterize ensemble/environment associations or to track changes in community 421 

structure. The hierarchical approach may be improved through the use of regional classifiers 422 

which allow the reduction of the number of classes and the improvement of classification 423 
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accuracy. However, such an approach should be used with caution as least known species 424 

or those with expanding ranges could be ignored. 425 

 426 

CONCLUSIONS 427 

Our study shows that there is more potential for bat acoustic monitoring in megadiverse 428 

countries than previously considered. Hierarchies considerably reduced the complexity of 429 

call identification at different levels and provided sufficient confidence in the classification of 430 

unknown calls into higher taxonomic levels and ecological guilds.  While the classifiers did 431 

not provide high classification accuracies for several species, they did offer the opportunity 432 

to have objective and repeatable identification of monitoring ‘units’ to implement in national 433 

acoustic monitoring programmes.  434 
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Table 1. Comparison of classification accuracies of four acoustic classifiers for Mexican bat 611 

species (n=59 species). Where Classifier 1 represents species-level without a hierarchy; 612 

Classifier 2: species-level within families; Classifier 3: species-level within genera; Classifier 613 

4: species-level within guild. Misclassification represents those classes having the most 614 

misclassifications with each other for each classifier and level, where Phyllo Phyllostomidae; 615 

Vesp Vespertilionidae; Molo Molossidae; and Noct Noctilionidae.  616 

 617 
Classifier Level Mean 

accuracy 
% 

Accuracy 
range % 

% of 
classes 
≥80% 
accuracy 

% of 
classes 
≤60% 
accuracy 

Misclassifications 

1 Species 66  4.2-100 29 41 Species of Phyllo with 
themselves or Vesp; Vesp 
with themselves or Molo 

2 Species 72  0-100 32 44 Species within families  

 Family 91.7  72.8-100 88 0 Noct with Molo  

3 Species 71.2  0-100 36 37 Species within genera 

 Genus 77.8  0-100 56 16 Phylo with other Phylo and 
Vesp genera; and Vesp 
with Phylo and Molo genera  

4 Species 69.1  4.5-100 25 44 Species within guilds 

 Guild 82.5  68-100 50 0 Guild 5 with Guild 6; Guild 
6 with Guild 5 

 618 

619 
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 620 

Figure 1. Spatial coverage of the number of species recorded in Mexico using a grid size of 621 

50 km2, where (a) shows recording locations in solid squares (n = 91) overlaid with bat 622 

species richness, (b) proportion of species recorded compared to potential species richness 623 

in each grid, and (c) proportion of species used in the classifiers compared to potential 624 

species richness in each grid. A gradient of light green to dark blue indicate higher number 625 

of species and higher percentages. Black solid squares represent collection sites which were 626 

sampled in this study and red solid squares represent collection sites of donated material. 627 

  628 
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 629 

 630 

Figure. 2. Echolocation call parameters (n = 27) selected to build each Random Forest 631 

classifier ranked by Gini Coefficient where (a) Classifier 1: Species-level without a hierarchy; 632 

(b) Classifier 2: Species-level within a family hierarchy; (c) Classifier 3: Species-level within a 633 

genus hierarchy; and (d) Classifier 4: Species-level within a guild hierarchy. See Table S3 634 

for parameter definitions.  635 

 636 
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 637 

Figure. 3. Random Forest percentage classification accuracies obtained for the taxonomic 638 

classifiers (Classifiers 1-3). Species-level accuracies are shown at the end of each branch 639 

for Classifier 1, 2 and 3. Classification accuracies per family and genus are shown in the 640 

middle of each branch (n = 59 species).   641 
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 642 

Figure 4. Random Forest percentage classification accuracies obtained for the ecological 643 

guild classifier (Classifier 4). Species-level accuracies are shown at the end of each branch. 644 

Classification accuracies per guild are shown in the middle of each branch (n = 59 species). 645 

Guild 1 - Open space aerial foragers; Guild 2 – Edge space aerial foragers; Guild 3 – Edge 646 

space trawling foragers; Guild 4 – Narrow space flutter detecting foragers; Guild 5 - Narrow 647 

space passive gleaning foragers and Guild 6- Narrow space passive/active gleaning 648 

foragers. 649 
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Supporting Information 650 

Additional Supporting Information may be found in the online version of this article: 651 

Table S1. Metadata for the search-phase echolocation calls collected during field work in 652 

Mexico from June 2012 to May 2013.  653 

Table S2. Metadata for the search-phase echolocation calls donated for this study.  654 

Table S3. Definitions of the 27 call parameters extracted by Sonobat v.3 used for training 655 

the Random Forest classifiers.  656 

Table S4. Number of classes included in each hierarchy of the four classifiers and number of 657 

calls used in the training process.  658 

Table S5. Taxonomic coverage of the bat call library within each family for the number of 659 

genera and species recorded / used in the classifiers. 660 

Table S6. Descriptive statistics (mean and standard deviation) for the 16 most important call 661 

parameters ranked by Random Forest Gini Coefficient measured by Sonobat for the 59 662 

species.  663 

Figure S1. Spectrograms showing the inter-specific variability of representative search- 664 

phase echolocation calls within taxonomic groups used for the classifiers.  665 

Figure S2. Spectrograms showing inter-specific variability of representative search-phase 666 

echolocation calls within ecological guilds used for the classifiers.  667 

Figure S3. Schematic representation of the protocol used to build the classifiers. 668 


