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We present large scale molecular dynamics simulations of liquid crystals, which are modeled as
fluids of soft repulsive ellipsoidal molecules. In the first part of the paper, we discuss the bulk
structure of nematic liquid crystals. The direct correlation function (DCF) has been determined
for the first time in a nematic fluid without any approximations. We demonstrate that it can be
used to calculate the Frank elastic constants, which are important phenomenological parameters
in the continuum theory of liquid crystals. In the second part, we consider an interface between
a nematic and an isotropic phase. The interplay between the surface tension and the elastic
interactions in the nematic phase leads to an unusual fluctuation spectrum.

1 Introduction

Liquid crystals are beautiful examples of materials that are fascinating from a fundamental
point of view – as complex fluids with intriguing symmetries and unusual elastic proper-
ties – and highly interesting for technological applications1, 2. Like in most materials, many
important properties depend on the structure of inhomogeneities and interfaces in the ma-
terial. For example, the alignment of nematic liquid crystal on surfaces plays a key role in
the domain of liquid crystal display devices3–5. For the theoretical physicist, interfaces in
liquid crystals are appealing for yet another reason: Surfaces and interfaces break two con-
tinuous symmetries, the isotropy of space and the translational invariance. The interplay
of this symmetry breaking with the broken symmetries in the various liquid crystal phases
leads to a wealth of new intriguing phenomena6–10. Apart from discussing these effects
from a phenomenological point of view, it is also interesting to investigate how they come
about on a microscopic level, and to study the relation between the local structure of liquid
crystals and relevant “mesoscopic” phenomenological parameters.

In this paper, we review some computer simulation work that we have done in this di-
rection. We shall discuss the local structure and interfacial properties in two of the most
important liquid crystal phases: The isotropic phase (I), which is an ordinary fully sym-
metric fluid phase, and the nematic phase (N), where the fluid has translational symmetry
in all directions, but long range orientational order. Since we wish to restrict ourselves to
these two phases, it is convenient to study a model which does not exhibit any other liquid
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crystal phases – in particular, no smectic phases. We chose a simple idealized model of
soft ellipsoids, which is particularly suited for large scale molecular dynamics simulations.

Our work pursues two goals: First, we seek to improve our understanding of local and
large scale interfacial properties. Second, we wish to explore ways which allow to bridge
between the microscopic structure – which is to some extent accessible to computer simu-
lations of particle based models – and phenomenological theories, which operate on larger
scales. Our paper will highlight some aspects of these two issues.

The paper is organized as follows: The model and the simulation method are presented
in the next section. Then we discuss the local liquid structure in isotropic and nematic
fluids and show how that knowledge can be used to evaluate elastic constants in a nematic
liquid crystal. The procedure is based on a density functional result, which is originally
due to Poniewiersky and Stecki11. It is an example of a procedure that bridges between
local properties and phenomenological theories. In the third section, we describe results
from large scale molecular dynamics simulations of a nematic-isotropic interface. Among
other, we find an intriguing capillary wave spectrum, which reflects the complex interplay
between the bare surface tension and the elastic interactions in the nematic phase. Finally,
we summarize and discuss briefly the prospective future work.

2 Model, Method and Technical Details

Our model liquid crystal is defined as follows: We study soft ellipsoidal particles of mass
m0 with elongation κ = σend-end/σside-side. Two particles i and j with orientations ui and uj

separated by the center-center vector rij interact via a purely repulsive pair potential,

Vij =

{

4ε0 (X12
ij − X6

ij) + ε0 : X6
ij > 1/2

0 : otherwise
. (1)

where Xij = σ0/(rij − σij + σ0) and

σij = σ0

{

1 − χ

2

[ (ui · r̂ij + uj · r̂ij)
2

1 + χui · uj
+

(ui · r̂ij − uj · r̂ij)
2

1 − χui · uj

] }−1/2

(2)

with χ = (κ2 − 1)/(κ2 + 1). The function σij approximates the contact distance between
the two ellipsoids in the direction r̂ij = rij/rij

12.

The systems were studied using a domain decomposition molecular dynamics program
(GBMEGA). The simulations and parts of the data analysis (extensive evaluations of corre-
lation functions) were carried out on the CRAYs T3E at NIC, using 128 and 256 processors
in a typical run. The simulations were performed in the microcanonical ensemble using
the RATTLE integrator13, in rectangular simulation boxes with periodic boundary condi-
tions in all directions. The time step ∆t and the moment of inertia I depended on the
elongation κ of the ellipsoids in the systems under consideration: For systems with κ = 3,
we chose ∆t = 0.003

√

m0/ε0 σ0 and I = 2.5 m0 σ2
0 , and for systems with κ = 15,

∆t = 0.002
√

m0/ε0 σ0 and I = 50 m0 σ2
0 . Further simulation details will be given in the

appropriate section.
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We describe the orientation of an ellipsoid i by a unit vector ui. The nematic phase is then
characterized by a nonzero order tensor1

Q =
1

n

n
∑

i=1

1

2
(3ui ⊗ ui − I), (3)

where the sum i runs over all n particles of the system, I is the unit matrix and ⊗ the
dyadic product of two vectors. The largest Eigenvalue of this matrix is the nematic order
parameter S. The corresponding Eigenvector points in the direction of alignment. It is
called the director n.

In the following, we shall use scaled units defined in terms of σ0, ε0, m0 and the Boltzmann
constant kB .

3 Bulk Structure and Elastic Constants

Before studying interfacial and surface properties of fluids, it is important to understand the
local bulk structure of these fluids. A good knowledge of the local equilibrium structure al-
lows one to calculate effective parameters, which in turn can be used in phenomonological
theories to predict material properties on a larger scale.

On a phenomenological level, nematic liquid crystals are often described by the Frank free
energy functional14, 15

F{n(r)} =
1

2

∫

dr
{

K11[∇ · n]2 + K22[n · (∇× n)]2 + K33[n× (∇× n)]2
}

. (4)

Here it is assumed that the absolute value of the order parameter S is roughly constant
throughout the system. Nevertheless, long wavelength fluctuations of the director n(r)
must exist, because the nematic order breaks the isotropy of space, which is a continuous
symmetry, and the Goldstone theorem applies16. The three contributions to the free energy
functional – the splay mode (K11), the twist mode (K22), and the bend mode (K33) –
are illustrated in Figure 1. They are controlled by the Frank elastic constants Kii and
determine almost exclusively the structure and the properties of nematic liquid crystals on
mesoscopic length scales.

On a microscopic level, the structure of fluids is described by N -particle distribution func-
tions17, 18 and in particular by pair correlations. The central quantity in many theories of
liquid matter is the so-called direct correlation function (DCF). It is defined as follows:

Splay BendTwist

Figure 1. Elastic modes in nematic liquid crystals
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The starting point are the two-particle probability density ρ(2)(u1, r1,u2, r2) of finding
simultaneously one particle of orientation u1 at the position r1, and another with orien-
tation u2 at the position r2, and the one-particle probability density ρ(1)(u) of finding a
particle with the orientation u at the position r. In the bulk, ρ(1) is independent of r, and
ρ(2) depends only on the relative coordinates r12 = r1 − r2. The correlations between two
particles are described by the total correlation function

h(u1,u2, r12) =
ρ(2)(u1,u2, r12)

ρ(1)(u1)ρ(1)(u2)
− 1. (5)

This function subsumes the direct effect of a particle 1 on a particle 2 and all the “indirect”
effects mediated by the bulk of surrounding fluid. Due to the elasticity of the nematic
fluid, it decays only slowly with an algebraic power law 1/r. The long range correlations
result from indirect contributions. In order to characterize the local structure, it thus seems
desirable to separate “indirect” effects from “direct” effects. This is done by the Ornstein-
Zernike equation17, 18

h(u1,u2, r12) = c(u1,u2, r12) +

∫

c(u1,u3, r13) ρ(1)(u3) h(u3,u2, r32)du3dr3. (6)

The DCF is the function c(u1,u2, r12). As it turns out, c is indeed short ranged even in
the nematic phase.

The DCF is the starting point for several liquid state theories17. Many material constants
can be calculated from the DCF. In nematic fluids, one is specially interested in the pa-
rameters which control the director profiles. Poniewierski and Stecki11 have derived a set
of expressions which relate the DCF with the elastic constants Kii. These equations have
been used a few times in the past to calculate elastic constants from simulations19–22. How-
ever, approximations were used for the form of the DCF, and the results therefore differed
from values obtained by other methods for the same systems23.

We have determined for the first time the exact direct correlation functions in a nematic
fluid24–27. To this end, we have studied systems of up to 8000 soft ellipsoids at the number
density ρ = 0.3/σ3

0 and temperature T = 0.5 ε0/kB. This corresponds to a nematic state
with the order parameter 〈S〉 = 0.69. The phase transition to the isotropic phase occurs
at ρ = 0.29/σ3

0. For comparison, we have also calculated the DCF at the number density
ρ = 0.24/σ3

0, i.e., in an isotropic fluid. The run lengths were 5-10 million molecular
dynamics steps.

All densities and correlation functions were expanded in spherical harmonics Ylm(u), in a
frame where the z-axis points along the director.

ρ(1)(u) = %
∑

l even

fl Yl0(u) (7)

F (u1,u2, r12) =
∑

l1,l2,l

m1,m2,m

Fl1m1l2m2lm(r) Yl1m1
(u1) Yl2m2

(u2) Ylm(r̂12). (8)
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Figure 2. Pair distribution function ρ(2) (left) and direct correlation function c (right) vs. molecular distance
r, averaged over all orientations of ui,uj , and rij , for different system sizes N , at the density ρ = 0.3/σ3

0
(nematic phase). Solid black line shows corresponding curve for ρ = 0.24/σ3

0 (isotropic phase) for comparison.

where F = ρ(2), h or c, r = |r12|, and r̂12 = r12/r12. For symmetry reasons, all coeffi-
cients fl and F···(r) are real, and only coefficients with m1 + m2 = −m and even li enter
the expansion.

The expansion coefficients of ρ(2) were computed from simulation configurations using28

ρ
(2)
l1m1l2m2lm(r) = 4π %2 g(r) 〈 Y ∗

l1m1
(u1) Y ∗

l2m2
(u2) Y ∗

lm(r̂) 〉δr , (9)

where g(r) is the radial distribution function, i.e. the number of molecular pairs at dis-
tances between r and r + δr, divided by 4π% r2δr. These time-consuming averages were
calculated on a Cray T3E. We have determined coefficients for li, l up to lmax = 6 in all
systems, and up to lmax = 8 in the smallest nematic system. A calculation with lmax = 8
requires the evaluation of 1447 different expansion coefficients of ρ(2) from the configura-
tion data. Our computational resources did not permit to perform such a time consuming
analysis in the larger systems. Choosing lmax = 6, we still had to calculate 469 different
coefficients, which we did mostly on the CRAYs at NIC. The bin size was δr = 0.04σ0.

Results for selected coefficients of ρ(2) and c are presented in Figures 2 and 326. Figure
2 shows orientational averages (over ui,uj , and rij) of the pair distribution function and
the DCF. Note that these curves are proportional to the coefficients ρ

(2)
000000 and c000000(r).

The pair distribution does not look very different in the isotropic and the nematic phase.
The DCF however reveals that the nematic phase has more hidden structure. Since we
consider orientational averages, the long range algebraic correlations are not yet apparent:
Both 〈ρ(2)〉 and 〈c〉 are short ranged.

The effects of the elasticity become evident when looking at orientation dependent cor-
relations. Figure 3 shows results for the expansion coefficients with l1 = l2 = l = 2,
m1 = −m2 = 1, m = 0. In the case of ρ(2), this coefficient has a particularly pronounced
long range tail. It disappears entirely in the corresponding curve for the DCF.
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Figure 3. Expansion coefficient with l1 = 2, l2 = 2, m1 = 1, m2 = −1, l = 2, and m = 0 of the pair
distribution function ρ(2) (left), and the direct correlation function (right) vs. molecular distance r for different
system sizes N at the density ρ = 0.3/σ3

0 (nematic phase). Black solid line shows corresponding curve for
ρ = 0.24/σ3

0 (isotropic phase) for comparison.

Based on these results, we can establish the connection with the elastic constants in the
nematic fluid. The Poniewierski-Stecki equations11 are most conveniently evaluated in
Fourier space. They can be written as24

Kii =
1

2

d2

dk2
Cii(k)

∣

∣

∣

k=0
for i = 1, 2, 3, (10)

where the Cii(k) are defined as

Cii(k) =
kBT%2

8
√

π

∑

l1l2

√

l1(l1 + 1)
√

l2(l2 + 1) fl1 fl2

{

[cl11l2−100(k) + cl1−1l2100(k)]

+ vi

√
5

2
[cl11l2−120(k) + cl1−1l2120(k)] + wi

√
15√
8

[cl11l212−2(k) + cl1−1l2−122(k)]
}

with (v1, v2, v3) = (−1,−1, 2), (w1, w2, w3) = (−1, 1, 0). The elastic constants Kii can
thus be determined from the initial slope of a plot of Cii(k) vs. k2. Such a plot is shown
in Figure 4. For comparison and as a check of our method, we have also performed an
analysis of order tensor fluctuations following a method proposed by Allen et al29, 23. To
this end, we have performed additional molecular dynamics simulations of 4000 and 16000
particles in an ensemble where the director was constrained to be aligned along one side
of the simulation box.

The results are summarized in Table 1. We have evaluated the pair distribution functions
and calculated the DCF in systems of 1000, 4000, and 8000 particles. The upper cutoff
lmax for the spherical harmonics expansion was chosen lmax = 8 in the smallest systems,
and lmax = 6 in the others. Results for lmax = 6 and lmax = 8 were compared in the
smallest system. They differed most critically in the value of K33, but the difference is
small (a few percent at N = 1000). As explained above, we were not able to carry out an
analysis with lmax = 8 for all system sizes.
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Figure 4. Weighted sum of the DCF expansion coefficients Cii(k) as defined in Eqn. (10) vs. k2 for different
system sizes N . The initial slopes give the elastic constants Kii. Thick solid lines indicate corresponding fits for
the N = 4000 system.

Comparing the results for the elastic constants with those obtained from the analysis of
order tensor fluctuations, we find that the values of K11 and K22 are identical for both
methods. The DCF method slightly underestimates K33, but since the value increases with
lmax, this is probably an artefact of the cutoff in the spherical harmonics expansion.

Despite these systematic errors, the agreement between the values obtained from the
two methods is reasonable. Hence we have established a practical way to apply the
Poniewierski-Stecki equations to simulation data. It allows to calculate the elastic con-
stants, which determine the mesoscopic structure of a nematic fluid, from the DCF, which
characterizes its local liquid structure. Moreover, our findings give confidence in our results
for the DCF. As a central quantity in density functional theory, the possible applications
of the DCF go of course far beyond the calculations of elastic constants17, 30. We plan to
explore some of these in the future.

N method lmax 〈K11〉 〈K22〉 〈K33〉
1000 PS 8 0.55 (2) 0.35 (3) 1.56 (4)
1000 PS 6 0.51 (2) 0.34 (3) 1.52 (4)
4000 PS 6 0.52 (2) 0.31 (1) 1.51 (3)

OF 0.53 (1) 0.30 (1) 1.60 (1)
8000 PS 6 0.51 (2) 0.33 (2) 1.48 (3)
16000 OF 0.53 (1) 0.30 (1) 1.59 (1)

Table 1. Elastic constants as obtained in systems with N particles with two methods. PS: Poniewerski-Stecki
equations with DCF, calculated with a spherical harmonics expansion with an upper cutoff lmax; the results for
lmax < 6 were about 20 % worse. OF: analysis of order tensor fluctuations. The statistical error on the last digit
is given within parentheses.
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Figure 5. Configuration snapshot of an interface between the nematic and the isotropic phase in a system of soft
ellipsoids with elongation κ = 15.

4 The Nematic/Isotropic Interface

We turn to discuss interfacial properties in nematic liquid crystals. From a macroscopic
point of view, the presence of surfaces or interfaces introduces three new effective parame-
ters: the interfacial tension, the anchoring angle, and the anchoring energy. The anchoring
angle is the director angle (with respect to the surface normal) favored by the surface. The
anchoring energy is related to the force needed to twist the director out of the anchoring
angle.

Our work at NIC currently concentrates on the study of interfaces between nematic and
isotropic states (NI-interface). These interfaces are of fundamental interest, because they
connect two fluid phases with a different symmetry. They are essential for wetting phenom-
ena, which can be exploited to manipulate the anchoring at surfaces. They also play a key
role for important nonequilibrium phenomena such as shear banding31, 32. In all of these
cases, the physics depends crucially on the structure and in particular on the fluctuations
of the associated interfaces.

We have started with studying a free NI-interface. There have been a few simulations of NI-
interfaces previously34–36. However, the systems were small, and fluctuation effects could
not be studied. We considered a system with 115200 soft ellipsoids of elongation κ = 15.
The high value of κ ensured a broad coexistence region: At the temperature T = 1ε/kB,
the coexistence densities of the nematic and the isotropic phase were ρN = 0.018/σ3

0 and
ρI = 0.016/σ3

0, respectively. The simulations were done in the microcanonical ensemble
in a box geometry (Lx : Ly : Lz) = (1 : 1 : 2) with periodic boundary conditions.
The average density ρ = 0.17/σ3

0 (i. e. Lx = 150.2σ0) was chosen in the coexistence
region. Thus the system phase separated into a nematic slab and an isotropic slab, with
two interfaces in between. After a long equilibration procedure (see Reference [33] for
details), the systems were sampled over 3 million molecular dynamics steps.
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A snapshot of part of a configuration is shown in Figure 5. One recognizes the nematic side
(bottom), the isotropic side (top), and the interface between the two. The anchoring on the
nematic side is planar, i. e., the particles are aligned parallel to the interface on average.
One also recognizes strong fluctuations of the position of the interface (capillary waves).
These clearly have to be taken into account when studying the interfacial structure.

The simplest theory of interfacial fluctuations, the capillary wave theory37, presumes that
the local position of the interface can be parametrized by a unique function h(x, y), and
that the fluctuations of h are controlled solely by the interfacial tension γ. Under that
assumption, the (two-dimensional) Fourier modes of h are distributed like

〈|h(q)|2〉 = kBT/(γq2). (11)

The capillary waves broaden the interfacial region. The apparent interfacial width ω is
predicted to depend on the lateral size L‖ like

ω2 = ω2
0 +

kBT

4γ
ln(L‖/b0), (12)

where b0 is a microscopic reference length, and ω0 is the interfacial width on that length
scale.

In order to study these effects, we have divided the simulation box in columns of size
B × B × Lz and calculated the two local interface positions h in each block. Profile
averages were then computed with respect to the distance to the closest interface. Figure 6
(left) shows the resulting order parameter profiles for different block sizes B. The apparent
width of the interface increases with the block size B. We have determined the interfacial
width ω by fitting the profiles to a tanh-function. In a plot of ω2 as a function of the block
size B (Figure 6, right), we recover the logarithmic growth predicted by the capillary wave
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Figure 6. Left: Order parameter profiles for different block sizes as indicated. SN and SI denotes average values
of the order parameter in the nematic and the isotropic phase, respectively. Right: Squared interfacial width ω2

vs. block size B.
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Figure 7. Inverse of mean-squared Fourier components of the interface position, 1/〈|h(q)|2〉, vs. square of the
wave vector q2, for wavevectors pointing parallel (circles) and perpendicular (squares) to the director. Dashed
lines are guides to the eye. Solid lines are predictions of the capillary wave theory (11) with γ = 0.016σ2

0/kBT
(upper, blue line) and γ = 0.0093 σ2

0/kBT (lower, red line).

theory (12 with L‖ = B). From the slope of the straight line, one can estimate the interfa-
cial tension, γ = 0.016± 0.002 kBT/σ2

0 .

The capillary wave spectrum h(q) was analyzed from the landscape of interfacial positions
h at a fixed block size B = Lz/8. Figure 7 plots the results for 1/〈|h(q)|2〉 versus q2.
Comparing these data with the equation (11), one notices that the prediction of the simple
capillary wave theory does not describe the interface quite as well as the results for the
interfacial broadening made us believe. First, the fluctuations of the interfacial position
are anisotropic: They are much larger in the direction perpendicular to the director than
in the parallel direction. Second, the amplitude of the fluctuations is larger than expected
on small length scales (large q), and smaller than expected on large length scales (q → 0).
The discrepancy with the capillary wave prediction on large length scales becomes even
worse if we use an independent estimate of the interfacial tension, γ = 0.0093 σ2

0/kBT ,
which was calculated from the anisotropy of the pressure tensor36.

Hence the simulations reveal an unexpectedly complex capillary wave spectrum. In flu-
ids with purely short-range interactions, the capillary wave theory (11) usually describes
fluid-fluid interfaces quite well on large length scales. The discrepancies observed here
suggest that the effectively long-range elastic interactions in the nematic phase influence
the interfacial fluctuations significantly. One can speculate that they might even suppress
them entirely in the limit of infinitely long particles33 (Onsager limit38, 39). These relations
between elastic properties and fluctuations shall be explored in more detail in the future.
Obviously, they are not only important for the nematic-isotropic interface, but more gener-
ally for all surfaces of nematic fluids.
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5 Conclusions and Outlook

To summarize, we study the structure and properties of liquid crystals by molecular dy-
namics simulations. As for all materials, a global understanding of the properties of liquid
crystals requires simulations on many different length scales and levels of coarse graining.
Our simulations operate on a coarse grained microscopic level: The length scale is micro-
scopic, yet details of the molecular structure are disregarded. The purpose of our studies
is twofold: On the one hand, we aim at a better understanding of the relationship between
the microscopic, local structure, and the mesoscopic properties of inhomogeneous liquid
crystals: For example, we have demonstrated that the DCF can be used to bridge between
the microscopic length scale and higher levels of coarse graining, in which only effective
parameters like the elastic constants matter. On the other hand, we explore physical phe-
nomena which are characteristic for our length scale – such as the specific properties of
interfacial fluctuations on the length scale of a few molecular lengths.

Our future work shall follow these lines. We plan to study the relationship between the
local structure at surfaces and the phenomenological parameters which describe surface
anchoring. Here again, density functional approaches which make use of DCF information
seem promising. Furthermore, we believe that the unusual fluctuation spectrum which
we have observed in equilibrium interfaces will lead to a wealth of new phenomena in
nonequilibrium interfaces, i. e., interfaces under shear.
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15. F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).
16. J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam, S. Weinberg

Phys. Rev. 127, 965 (1962).
17. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London,

1986).
18. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids, Vol. 1 (Oxford, New

York, 1984).
19. J. Stelzer, L. Longa, and H. R. Trebin, J. Chem. Phys. 103, 3098 (1995); ibid., 107,

1295 (1997).
20. J. Stelzer, L. Longa, and H. R. Trebin, Mol. Cryst. and Liq. Cryst. 262, 455 (1995).
21. J. Stelzer, M. A. Bates, L. Longa, and G. R. Luckhurst, J. Chem. Phys. 107, 7483

(1997).
22. A. V. Zakharov and A. Maliniak, Eur. Phys. J. E 4, 85 (2001).
23. M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, J. Chem. Phys.

105, 2850 (1996).
24. N. H. Phuong, G. Germano, F. Schmid, J. Chem. Phys. 115, 7227 (2001).
25. N. H. Phuong, G. Germano, F. Schmid, submitted to Comp. Phys. Comm. (2001).
26. N. H. Phuong, Dissertation Universität Bielefeld, in preparation (2002).
27. N. H. Phuong, F. Schmid, manuscript in preparation (2002).
28. W. B. Streett and D. J. Tildesley, Proc. Roy. Soc. Lond. A 348, 485-510 (1975).
29. M. P. Allen and D. Frenkel, Phys. Rev. A 37, 1813 (1988); ibid. 42, 3641E (1990).
30. R. Evans, in Fundamentals of Inhomogeneous Fluids, p. 86, D. Henderson ed.

(Marcel Dekker, New York, 1992).
31. P.D. Olmsted, P.M. Goldbart, Phys. Rev. A 46, 4966 (1992); P.D. Olmsted, C.-Y. D.

Lu, Faraday Discuss. 112, 183 (1999); P.D. Olmsted, Europhys. Lett. 48, 339 (1999).
32. G. Porte, J.-F. Berret, J.L. Harden, J. Phys. II France 7, 459 (1997).
33. N. Akino, F. Schmid, M. P. Allen, Phys. Rev. E 63, 041706 (2001).
34. M. A. Bates and C. Zannoni, Chem. Phys. Lett. 280, 40 (1997).
35. M. P. Allen, J. Chem. Phys. 112, 5447 (2000).
36. A. J. McDonald, M. P. Allen, F. Schmid, Phys. Rev. E 63, 10701R (2001).
37. J. D. Weeks, J. Chem. Phys. 67, 3106 (1977); D. Bedeaux and J. D. Weeks, J. Chem.

Phys. 82, 972 (1985).
38. L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).
39. Y. Mao, M. E. Cates, H. N. W. Lekkerkerker, J. Chem. Phys. 106, 3721 (1997).

346


