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Abstract

Non-invasive estimation of cell size and shape is a key challenge in diffusion MRI.
This paper presents a model-based approach that provides independent estimates of
pore size and eccentricity from diffusion MRI data. The technique uses a geometric
model of finite cylinders with gamma distributed radii to represent pores of various
sizes and elongations. We consider both macroscopically isotropic substrates as well
as substrates of semi-coherently oriented anisotropic pores and we use Monte Carlo
simulations to generate synthetic data. We compare the sensitivity of single and
double diffusion encoding (SDE and DDE) sequences to the size distribution and
eccentricity and further analyse different protocols of DDE sequences with parallel
and/or perpendicular pairs of gradients. We show that explicitly accounting for size
distribution is necessary for accurate microstructural parameter estimates, and a
model that assumes a single size yields biased eccentricity values. We also find that
SDE sequences support estimates, although DDE sequences with mixed parallel and
perpendicular gradients enhance accuracy. In the case of macroscopically anisotropic
substrates, this model-based approach can be extended to a rotationally invariant
framework to provide features of pore shape (specifically eccentricity) in the presence
of size distribution and orientation dispersion.
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Abbreviations used: SDE - single diffusion encoding, DDE - double diffusion
encoding, FE - fractional eccentricity, MC - Monte Carlo, IFC - isotropic finite
cylinders, IGFC - isotropic gamma finite cylinders, WFC - watson finite cylinders,
WGFC - watson gamma finite cylinders, CRLB - Cramer-Rao lower bound

1. Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-invasive
probe of molecular displacement, providing structural information at the microscopic
level. Cellular membranes in the tissue restrict the diffusion of water molecules so
that the measured signal is sensitive to cellular architecture. Accurate estimation of
pore size and shape from diffusion data is a key challenge in DW-MRI, with potential
applications to cancer imaging to discern differences in tumour microstructure [1, 2],
white matter imaging to map axon diameter in the presence of orientation dispersion
[3] and undulation [4], grey matter imaging to discriminate cytoarchitectures [5], and
muscle imaging to assess the degree of injury [6].

Microstructure imaging uses mathematical models to relate tissue features di-
rectly to the signal and thus supports estimates of specific tissue parameters from
combinations of diffusion MRI measurements. The single diffusion encoding (SDE)
sequence [7, 8] is the standard pulse sequence for acquiring diffusion MRI data. A col-
lection of SDE measurements is sensitive to pore-size distribution in known isotropic
pores or coherently oriented anisotropic pores. This has led to various imaging tech-
niques using SDE to make estimates of axon density, diameter distribution [9, 10, 11]
and fibre dispersion [12] in white matter as well as tumour specific microstructural
indices such as cell size and density, vascular volume fraction and cellularity [1].
However SDE sequences fail to discriminate between more complex systems, such
as certain configurations of isotropic pores with a size distribution and randomly
oriented anisotropic pores [13].

More sophisticated pulse sequences, in particular those that have varying gradi-
ent orientation within one measurement such as double diffusion encoding (DDE)
sequences [14, 8] can remove some of this ambiguity [15]. As illustrated in Figure
1a), the DDE sequence concatenates two SDE sequences separated by a mixing time.
Thus, it measures the correlation of water displacement at different times and/or
in different directions. This can provide sensitivity to features less visible to SDE
sequences, such as pore shape or exchange rate. In practice, protocols of DDE mea-
surements cover different subsets of the full measurement space depending on what
features they intend to investigate. For example, in the limit of short pulses, long
diffusion time and short mixing time, pairs of diffusion gradients with the same am-
plitude and varying orientations have been used to estimate pore size [16, 17, 18, 19].
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In the same limit, [20] showed that DDE sequences preserve the diffusion-diffraction
patterns in the case of a distribution of sizes. In the long mixing time regime, pairs of
diffusion gradients with the same orientation and varying amplitudes have been used
to measure exchange [21, 22]. If, on the other hand, the gradient amplitudes are fixed,
the dependence of diffusion signal on the angle between the two gradients reflects
pore eccentricity [15, 13]. The diffusion signal from angular DDE measurements has
been investigated in various studies that cover simulations [13, 23], phantom exper-
iments [24, 17, 25] as well as ex-vivo and in-vivo imaging [26, 27, 28]. Most of these
studies assume macroscopically isotropic substrates or known fibre orientation. The
residual ensemble anisotropy is modelled in [26] as a phase shift in the angular depen-
dence of the signal, while more recent studies propose rotationally invariant metrics,
such as the microscopic anisotropy (MA) [29] index or fractional eccentricity (FE)
[30]. These metrics of microscopic anisotropy are obtained by contrasting DDE mea-
surements with parallel and perpendicular gradients. A similar metric, microscopic
fractional anisotropy (µFA) [31], derived assuming time independent diffusivities,
uses a combination of gradient waveforms which provide isotropic diffusion weight-
ing. Other studies use DDE measurements for estimating intrinsic microstructural
features. For instance, a model of identical pores featuring microscopic anisotropy
[13] has been employed to show differences between isotropic substrates in the special
case of spherical pores or randomly oriented cylindrical pores [25] and a more recent
study has investigated the ability of SDE and DDE sequences to recover pore size
[32] and length distributions [33] in cylindrical pores with known orientation.

In this paper we demonstrate in simulation the feasibility of using a model-based
approach to provide quantitative microstructural features for a wide range of pores
with various elongations, size distributions and orientation dispersions. First, we in-
vestigate the dependence of standard indices of microscopic anisotropy on substrate
parameters, then we show that more specific parameters such as pore size and ec-
centricity can be estimated by fitting a microstructural model to the diffusion data.
We test whether a simple model with identical pores can provide a good estimate
of volume-weighted mean pore size and eccentricity and we investigate the effects of
explicitly modelling pore size distribution. Additionally, we compare the ability of
different protocols with SDE and DDE sequences to recover the ground truth param-
eters. We further hypothesize that such a model-based technique can be extended
to analyse macroscopically anisotropic substrates as well as substrates with various
parametric and non-parametric size distributions.
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2. Methods

2.1. Data synthesis

To synthesize diffusion data we use the MC simulator in Camino [34] using a
mesh-based substrate, with closed pores represented as cuboids. The diffusion meshes
have 1000 cuboids with two equal sides (lx = ly) and a gamma distribution of sizes,
as illustrated in Fig.1b in the case of a macroscopically isotropic substrate. The
parameters of the model are the mean width of the cuboid l̄x, the ratio between the
height and width E = lz/lx (eccentricity), which is the same for all pores regardless of
size, the gamma distribution shape parameter a and the diffusivity constant D. We
choose different geometric models to synthesize and fit the data in order to emphasize
the robustness of this approach when the geometry is not a perfect match. Moreover,
we prefer cuboids over ellipsoids due to the reduced computational complexity of the
mesh. All MC simulations have 1000 time steps and 200000 walkers located inside
the pores. Thus the synthesized data has intra-cuboidal signal only. Noise, with a
Rician distribution and a signal-to-noise ratio (SNR) of 50, was added to the data
to create 100 different data sets for each substrate.

2.2. Signal model and fitting

For fast signal computation, we expand the Gaussian Phase Distribution (GPD)
approximation [35] for DDE sequences and a restriction model of finite cylinders with
various sizes. Previous work [36] derived analytical expressions for DDE sequences
and a similar restriction model keeping terms up to second order in 2πqR, where
q is the wavenumber and R is the radius. Here we keep second order terms in the
expansion of the signal logarithm (cumulant expansion) which has a wider range of
applicability than the same order of the Taylor series [37]. The GPD approximation
provides analytical expressions of the signal S(u, R,E) for a finite cylinder with
orientation u, radius R and length 2RE. We use the same framework presented in
[38] for oscillating gradients.

To calculate the signal for an ensemble of finite cylinders, we numerically in-
tegrate the signal over orientation and size distribution weighted by volume, to
obtain the overall signal S =

∫
u

∫∞
0
P(R)F(u)S(u, R,E)duR3dR. P(R) is the

probability distribution of radii, F(u) is the probability distribution of cylinder
orientation and E is fixed. The factor R3 arises because the diffusion MRI sig-
nal from each pore depends on the amount of spins it contains and in our model
the length of the cylinder is proportional to the radius. Assuming independence
of parallel and perpendicular displacements [39], the signal for one cylinder is then
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Figure 1: a) Effective diffusion gradient waveforms (accounting for the effect of 180o

rf pulses) for SDE, DDE with parallel gradients and with perpendicular gradients. b)
Isotropic mesh based diffusion substrate for MC simulations (l̄x = 6µm, E = 2, a = 2.5).
c) Schematic representation of the IFC model. d) Schematic representation of the IGFC
model

S(u, R,E) = S⊥(u, R,E)S‖(u, R,E) with

lnS⊥(u, R,E) =
γ2

2

∑
n

Bcyl,n

∫ TE

0

dt1

∫ TE

0

dt2 exp (−λcyl,nD|t2 − t1|)

G⊥(t1) ·G⊥(t2)

lnS‖(u, R,E) =
γ2

2

∑
n

Bplane,n

∫ TE

0

dt1

∫ TE

0

dt2 exp (−λplane,nD|t2 − t1|)

G‖(t1)G‖(t2) (1)
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where γ is the gyromagnetic ratio Bn and λn are geometry related factors for cylin-
drical and planar restriction [40] which depends on R and E, G⊥ and G‖ are the
components of the diffusion gradient perpendicular and parallel, respectively, to the
cylinder axis and TE is the echo time. The full expressions of the signal are provided
in the Supplementary Material.

We fit the models to data in Matlab using a two-step procedure: a grid search of
predefined values, which gives a rough estimates of parameters, followed by a gradient
descent which minimizes the difference between the data and the model given Rician
noise. During all stages of fitting D is fixed to its true value. For numerical stability,
the lower limit of a in the IGFC model is set to 1 and the upper limit to 10000.
All other parameters are estimated with no constraints. We also ensured that the
parameter values used in the grid search do not overlap with simulation parameters.
For the anisotropic substrates, the main orientation is estimated from a DTI data
set, by fitting a linear diffusion tensor model, and fixed afterwards. This reduces the
computational complexity of the gradient descent without compromising on accuracy.

2.3. Simulation 1: Metrics of microscopic anisotropy

Derivation of ε and FE

This experiment investigates the dependence of eccentricity (ε) and the normal-
ized metric fractional eccentricity (FE) [30] on substrate parameters. We use the
expressions and the acquisition protocol derived in [30]. Thus, the measurements
consist of 12 DDE sequences with parallel gradients and 60 DDE sequences with
perpendicular gradients, with the directions defined in [30]. The two metrics of mi-
croscopic anisotropy, ε and FE, are derived based on the difference between the
measurements with parallel and perpendicular gradients:

log(
1

12

∑
S‖)− log(

1

60

∑
S⊥) = q4ε, (2)

where S‖ is the signal for the DDE sequences with parallel gradients, S⊥ is the signal
for the DDE sequences with perpendicular gradients, q = γGδ is the wavenumber, γ
the gyromagnetic ratio , G the gradient strength, δ the pulse duration and ε depends
on pore size and eccentricity. For spherical pores ε = 0. Fractional eccentricity
normalizes ε with respect to size:

FE =

√
ε

ε+ 3∆2D̄2/5
(3)

which varies between 0 (spherical pores) and 1 (elongated pores), where ∆ is the
diffusion time and D̄ is the mean diffusivity calculated from the measurements with
parallel gradients.

6



Diffusion substrates

To analyse the dependence of ε and FE on pore eccentricity we construct dif-
fusion substrates as explained in section 2.1 with the following parameters: l̄x =
{4, 8, 12}µm, a = {2.5, 10,∞} (a → ∞ yields identical pores) and E varying be-
tween 1 and 3.

Measurement protocol

Further, we choose DDE sequences with parallel and perpendicular gradients with
long diffusion and mixing times and pulse duration of δ = 5ms. To have a similar
diffusion attenuation for all substrates and to be in the same diffusion regime we
keep constant γδGl̄x and ∆D/(l̄x)

2, respectively, as explained in [41]. The gradient
strength corresponding to the substrates with l̄x = 4µm is G = 300mT/m and
decreases accordingly for larger pores. This ensures the signal attenuation is above
the noise floor for all substrates, with values between 0.9 and 0.2. The diffusion and
mixing times, which are τm = ∆ = 100ms for the substrates with l̄x = 4µm, are
increased for larger pores, yielding a constant ratio ∆D/l̄x

2
= 12.5. Additionally, we

investigate the effect of noise with three different SNR levels of 50, 100 and ∞. As
S‖ − S⊥ ≥ 0 [13], the negative values of ε occur solely due to noise and are set to 0,
in order to obtain real valued FE.

2.4. Simulation 2: Macroscopically isotropic substrates

Diffusion substrates

This simulation explores a model-based approach for estimating pore size and
eccentricity in macroscopically isotropic substrates that have a distribution of pore
sizes. To this end, we construct separate substrates for each combination with the fol-
lowing parameter values: l̄x = {2, 4, ...12}µm, E = {1, 1.5, 2, 2.5, 3}, a = {2.5, 10,∞}
and D = 2 · 10−9 m2/s. The smaller pores have similar sizes to axons and dendrites
in brain tissue [42, 43], while larger pores are closer to certain cancer cells, e.g. [44].
For intrinsic diffusivity we chose a value similar to the principal eigenvalue of the
diffusion tensor measured at short diffusion time in the human brain [45].

Signal model

For the model-based estimation of pore size and eccentricity in a macroscopically
isotropic substrate, we construct two signal models. The first one has identical
pores and aims to test whether a simpler model can recover the average volume
weighted size and eccentricity, in a similar way ActiveAx [10] yields an index of axon
diameter. The second model explicitly accounts for pore size distribution. As we
are investigating macroscopically isotropic substrates, the probability distribution of
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cylinder orientation is the 0th order spherical harmonic (F(u) = 1/
√

4π). The two
models are:

1. Isotropic finite cylinders (IFC) consists of randomly oriented identical finite
cylinders and is illustrated in Fig.1c. This model has three parameters: cylinder
radius R, ratio between cylinder length and diameter E (eccentricity) and
diffusivity constant D. In this case the probability distribution of radii is a
delta function P(R) = δ(R).

2. Isotropic gamma finite cylinders (IGFC) consists of randomly oriented fi-
nite cylinders with a volume weighted gamma distribution of radii, so explicitly
accounts for a size distribution, as illustrated in Fig. 1d. This model has four
parameters: D, mean radius R̄, the gamma distribution shape parameter a,
and eccentricity E, which is the same across all sizes. In this case the proba-

bility distribution of radii is P(R) = 1
C
Ra−1(a/R̄)a exp(−Ra/R̄)

Γ[a]
, where Γ(a) is the

Gamma function and C =
∫∞

0
Ra−1(a/R̄)a exp(−Ra/R̄)

Γ[a]
R3dR is a normalisation con-

stant which accounts for volume weighting. The variance of the distribution is
var{P(R)} = R̄2/a.

Measurement protocol

For estimating microstructural parameters, we test four different measurement
protocols, constructed from basic SDE and DDE sequences shown in Fig. 1a. We
construct a rich protocol for each sequence type to ensure sensitivity across as wide
a range of pore sizes as possible. As the substrates are macroscopically isotropic, the
diffusion gradients are only in x direction (parallel) and y direction (perpendicular).
To make the comparison as fair as possible, we choose sequence parameters that
yield the same maximum diffusion weighting (b-value) and number of measurements
in each protocol. The protocols are:

1. SDE protocol. This has the following parameters: pulse duration δ = {5, 10, , ...25}
ms, gradient strength G = {25, 50, 75, 100, 300, 500}

√
2 mT/m and time inter-

val between the beginning of the first and second gradients ∆ = δ+{5, 10, 20, 30, 40}
ms with two repetitions for each measurement. The gradient strength for SDE
measurements is higher by a factor of

√
2 in order to have the same b-value as

the other protocols.

2. DDE‖ protocol. This has DDE sequences with parallel gradients of equal
amplitudes. The other parameters are: δ = {5, 10, , ...25} ms, ∆ = δ +
{5, 10, 20, 30, 40} ms, G = {25, 50, 75, 100, 300, 500} mT/m, and mixing time
tm = ∆, with two repetitions for each measurement.
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3. DDE⊥ protocol. This has DDE sequences with perpendicular gradients of
equal amplitudes. The rest of the parameters are the same as for DDE‖.

4. DDE‖&⊥ protocol. This has DDE sequences with both parallel and perpen-
dicular gradients for each combination of parameters in the DDE‖. Including
only one repetition rather than two in the SDE, DDE‖ and DDE⊥ protocols
ensures the same number of measurements in all protocols.

Protocol comparison

For a quantitative protocol comparison, we use an objective function derived
from the Cramer-Rao Lower Bound (CRLB) to rank the four protocols. The CRLB
provides a lower bound on the variance of the parameter estimates given a set of
measurements, and often is closely correlated to the true variance. Thus, objective
functions based on the CRLBs are a standard optimality criterion and have been
previously used in diffusion MRI experiment design [46, 47]. To ensure similar scale,
we use the sum of the normalized CRLBs to compare the four protocols:

F =
P∑
i

(J−1)ii/p
2
i (4)

where pi are the model parameters with i = 1, ...P , J is the Fisher information
matrix and (J−1)ii is the CRLB for pi.

2.5. Simulation 3: Macroscopically anisotropic substrates

Diffusion substrates

This simulation tests the hypothesis that a model-based approach can be extended
to estimate pore size and eccentricity in the presence of macroscopic anisotropy. To
this end, we construct diffusion substrates consisting of cuboids oriented accord-
ing to a Watson distribution, as explained in section 2.1. The substrates have the
largest size variance (a = 2.5) and all combinations of l̄x and E presented in Sim-
ulation 2, as well as various concentration parameters of the Watson distribution
κ = {2, 4, 8, 16, 32}.

Signal model

For a macroscopically anisotropic substrate, in order to recover rotationally in-
variant indices of pore size and eccentricity, we explicitly model the orientation dis-
tribution of the pores as a Watson distribution, i.e. F(u) = W (1

2
, 3

2
, κ)−1eκ(µ·u)2 ,

where W is a confluent hypergeometric function, κ is the concentration parameter
and µ is the main orientation. Thus, the new models are:
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1. Watson finite cylinders (WFC) has three additional parameters compared
to the IFC model: concentration parameter of the Watson distribution κ and
the angles θ and φ in spherical coordinates describing the main direction µ.

2. Watson gamma finite cylinders (WGFC) has three additional parameters
compared to the IGFC model: concentration parameter of the Watson distri-
bution κ and the angles θ and φ in spherical coordinates describing the main
direction µ.

Measurement protocol

In this experiment we extend the measurement protocol to provide directional
information. To measure the dominant orientation of pores, we use a DTI-like mea-
surement set with 32 isotropically distributed directions and a b-value of 2000 mm2/s
(G = 100 mT/m, δ = 10 ms and ∆ = 31 ms). We chose a higher b value compared
to the standard b = 1000 mm2/s DTI measurements as we are probing restricted
diffusion only. To measure pore size and eccentricity as well as orientation dispersion
we use DDE sequences with 6 gradient orientations (xx,xy,xz,yy,yz,zz) for each com-
bination of parameters in protocol DDE‖. This is the minimum number of gradient
directions to ensure that parallel and perpendicular measurements along the three
orthogonal axes are acquired. We refer to this protocol, which is designed to enable
estimates of pore size and eccentricity in macroscopically anisotropic substrates with
unknown orientation, as a rotationally invariant protocol DDERI .

2.6. Simulation 4: Varying size and orientation distribution

In Simulation 2 and 3, both the diffusion substrates and the signal model use a
Gamma distribution for pore sizes and a Watson distribution for pore orientation. In
this section we relax these assumptions and test the applicability of a model-based
approach when the simulated data and signal model have different distributions of
pore size and orientation.

Different size distributions

Here we investigate the effects of fitting the IGFC model to diffusion substrates
consisting of elongated cuboids that have different size distributions. First we test a
different parametric distribution, namely inverse Gaussian, then a realistic histologi-
cal distribution taken from histology of SW-620 cell line of colorectal cancer [48]. In
both cases we simulate the diffusion signal from the DDE||&⊥ protocol.

In the first simulation we analyse meshes consisting of randomly oriented cuboids
with eccentricity E = 2 and a size distribution given by an inverse Gaussian with
mean size l̄x = 6µm and shape parameter λ = {10, 50, 100}µm. As the shape
parameter increases, the inverse Gaussian tends towards a normal distribution.

10



In the second simulation we construct a cuboid mesh with the discrete size distri-
bution from histology of SW-620 colorectal cancer cells [48], which has a mean value
l̄x = 10.8µm and we assume a smaller eccentricity E = 1.5.

Different orientation distributions

In this experiment we relax the assumption that the diffusion substrate and
signal model have the same orientation distribution. Thus, we analyse the effect
of fitting the Watson distribution to diffusion signal originating from substrates
with a combination of coherently oriented cuboids occupying a volume fraction
f = {0.25, 0.5, 0.75} and randomly oriented cuboids with volume fraction 1 − f .
The cuboids have a gamma distribution of sizes with shape parameter a = 2.5 and
mean value l̄x = 6µm. To maximize the effect of orientation distribution we choose
the largest eccentricity used in previous simulations E = 3. The diffusion signal is
synthesized for the DDERI protocol and we fit the WGFC model.

3. Results

3.1. Simulation 1: Metrics of microscopic anisotropy

In the first simulation we investigate the dependence of FE and ε from Eq. 3 on
pore elongation for various substrates and different noise levels SNR = {50, 100,∞}.
Figure 2a) plots FE against cuboid eccentricity in the range E ∈ [1, 3] for substrates
of various mean sizes l̄x = {4, 8, 12}µm and size distribution a = {2.5, 10,∞}. Figure
2b) shows a similar dependence for ε normalized with the pore size l̄x. The plots
present the median values over 100 noise trials with SNR = 50 (left), 100 (middle)
and ∞ (right). Figure 2c) illustrates the FE values pooled from substrates with
different l̄x and a for different eccentricities E = {1, 1.5, 2, 2.5, 3}. The simulations
show that FE is very noisy and the values are overestimated for pores with low
eccentricity, where the difference between the DDE measurements with parallel and
perpendicular gradients is smaller than the standard deviation of the noise. The
metric ε, which is a direct measure of the signal difference, is less affected by noise,
however it depends on both pore size and eccentricity.

In this experiment FE and ε are computed assuming the long diffusion and
mixing time limit for all substrates. If we keep the diffusion time the same for all
substrates (τm = ∆ = 100ms), both FE and ε are underestimated for the larger
pores (l̄x = 12µm) (data not shown), which shows the importance of having the
sequence parameters in the correct diffusion regime.
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Figure 2: Dependence of a) FE and b) ε on pore eccentricity. The plot illustrates
the median values over 100 instances of noise with SNR = {50, 100 and ∞}. Different
colours represent different sizes and different line styles represent different shapes of the
gamma distribution. c) Box plots of FE values for E = {1, 1.5, 2, 2.5, 3} when the data
is pooled from substrates with different mean sizes and shape parameters of the gamma
distribution. The box plots present the median, 25th percentile (lower quartile) and 75th
percentile (upper quartile) as well as data points that extend up to 1.5 × inter-quartile
range.

3.2. Simulation 2: Macroscopically isotropic substrates

This section focuses on model-based parameter estimation in macroscopically
isotropic substrates. First we investigate the ability of a signal model with identical
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pores (IFC) to recover ground truth microstructural features in the case of substrates
with a single pore size or a distribution of sizes. Then we analyse a signal model which
directly accounts for the size distribution (IGFC). The last analysis of this section
compares the sensitivity of the four protocols to recover the model parameters.

IFC model: Figure 3a) illustrates the relative error of the parameter estimates
(∆R = (Rest − Rg.t.)/Rg.t.) and ∆E = (Eest − Eg.t.)/Eg.t.) from the IFC model
for different ground truth values used in the MC simulation. When computing the
relative errors, the ground truth parameter values are adapted to account for the
difference in geometry between cuboids (MC simulation) and finite cylinders (signal
model) by matching cylinder radius to give the same pore volume. Thus, for a cuboid
with width lx and E = lz/lx, the corresponding radius of a finite cylinder is lx/

√
π and

eccentricity is E
√
π/2. The results are shown for SDE and DDE‖&⊥ protocols. The

relative errors are separated according to the ground truth values of the parameters,
with radius estimates in the middle column and eccentricity estimates in the right
column.

The relative errors of the IFC model parameter estimates (R and E) are reported
in Table 1a) and 1b). As the values are not normally distributed, we report non-
parametric statistics to control for outliers. The median, lower quartile and upper
quartile of the relative errors are presented separately for each measurement protocol
and size distribution. The results show that, if the diffusion substrate consists of
identical pores, then a simple model of microscopic anisotropy, such as IFC, can be
used to measure average size and eccentricity using any of the four protocols. Most
outliers illustrated in Figure 3a) occur for the substrates with lx = 2µm, because
the size reaches the lower bound on the range of sizes to which the measurements
are sensitive with Gmax = 500

√
2mT/m, as described in [49]. A key observation

is that, for these simple substrates, the estimates based on SDE sequences have
similar accuracy to those from DDE sequences, when a suitable model has been
assumed. This happens because, for the subset of identical randomly oriented pores,
the elongation contributes to the apparent size distribution in any given direction,
which can be estimated using SDE measurements. Nevertheless, DDE acquisitions
can provide information regarding the presence of microscopic anisotropy with no
a-priori assumption.

Figure 3b) illustrates the relative errors of the parameter estimates from the IFC
model for a substrate with a gamma distribution of sizes, with shape parameter
a = 2.5. The results are presented for SDE and DDE‖&⊥ sequences. In this case,
when computing the relative errors, the ground truth parameter values are adapted
to account both for the geometric correction explained above, as well as for volume
weighting the size distribution, as discussed in section 2.2. The figure shows that, in
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IFC - relative error of estimated radius R : Md (q1, q3)
a→∞ a = 10 a = 2.5

a)

SDE 3.6 (1.6, 6.3)% −9.6 (−20,−2.9)% −20 (−32,−13)%
DDE‖ 2.1 (0.6, 4.0)% −12 (−22,−5.7)% −22 (−33,−16)%

DDE⊥ 0.4 (−3.1, 3.9)% −18 (−52,−11)% −29 (−68,−20)%
DDE‖&⊥ 1.6 (−0.5, 3.1)% −12 (−20,−5.8)% −20 (−31,−14)%

IFC - relative error of estimated eccentricity E : Md (q1, q3)
a→∞ a = 10 a = 2.5

b)

SDE −0.8 (−5.5, 1.4)% 28 (16, 72)% 103 (58, 192)%
DDE‖ −1.7 (−4.6, 0.1)% 27 (11, 77)% 87 (38, 186)%

DDE⊥ 0.9 (−3.8, 7.5)% 35 (18, 140)% 92 (47, 329)%
DDE‖&⊥ −0.2 (−3.2, 1.4)% 20 (8.5, 58)% 50 (25, 105)%

Table 1: Median (Md), lower quartile (q1) and upper quartile (q2) of the relative error of
estimated parameters from the IFC model: a) radius and b) eccentricity. For each mea-
surement protocol and ground truth shape parameter a, the data is pooled from substrates
with different mean radii and eccentricities.

14



the presence of a distribution of sizes, the IFC model does not give consistent size and
eccentricity estimates from either protocol, nevertheless, the DDE‖&⊥ protocol yields
the smallest relative errors compared to the other sequences, while the eccentricity
estimates based on SDE measurements appear more biased. The volume weighted
average radius is underestimated and the pore eccentricity is overestimated for all
diffusion protocols for both a = 10 and a = 2.5 as detailed in Table 1a) and 1b). The
eccentricity estimates have larger errors and more outliers, which mostly occur for
pores with small size (lx = 2µm). The bias in parameter estimation increases with
the variance of the size distribution. This effect is especially pronounced for pores
with low eccentricity, when the IFC model explains the size variation as coming from
pores with increased eccentricity.

IGFC model: Figure 4 presents the relative errors of the R̄ and E estimates
from fitting the IGFC model to data synthesized from gamma distributed pores
with shape parameter a = 2.5 (the shape parameter that yields the largest variance
considered in this study). The results are presented for all four protocols and are
separated according to the ground truth values of the parameters. When computing
the relative errors, the ground truth parameter values are adapted to account for
the geometric correction and the volume weighting is incorporated in IGFC model.
In comparison to the IFC model, explicitly accounting for size distribution improves
the parameter estimates in more complex substrates from all measurement protocols.
Fitted parameters from all protocols are close to the ground truth values used in the
MC meshes with median relative errors less than 10% for radius and less than 30%
for eccentricity. Outliers occur for either very small pores, close to the lower bound
of sensitivity [49], or for very large pores, when the longest diffusion time is too short
to observe restriction. DDE‖&⊥ sequences yield the smallest errors for both radius
and eccentricity estimates. However, when an appropriate model is assumed, as it
is the case here, all the protocols, including SDE, show reasonable sensitivity and
enable estimation of all the parameters of the system.

Although not shown in Figure 4, the shape parameter of the gamma distribution
was fitted as well. As the variance of the gamma distribution is inversely proportional
to the shape parameter (var{P(R)} = R̄2/a, see section 2.2), quantifying the error of
the variance is more meaningful than quantifying the error of the shape parameter.
Thus, the relative errors of mean radius, eccentricity and variance are reported in
Table 2a), 2b) and 2c) for all substrates and measurement protocols. The SDE
protocol yields the highest relative errors in estimating the size distribution variance
which is also reflected by poorer estimates of R̄ and E. The relative errors of the
estimated variance are slightly higher, as it depends on both mean radius and shape
parameter estimates.
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Figure 3: Relative errors of estimated parameters of the IFC model for different ground
truth values in MC simulations, for a) a substrate with identical pores and b) a gamma
distribution of sizes. The data is pooled across all substrates with a given size (middle
column) or eccentricity (right column) and 100 noise trials. The box plots present the
median, 25th percentile (lower quartile) and 75th percentile (upper quartile) as well as
data points that extent up to 1.5 × inter-quartile range.

Protocol comparison: For a more quantitative protocol comparison, we use
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Figure 4: Relative errors of estimated parameters (R̄ and E) of the IGFC model for
different ground truth values in MC simulations, for substrates with a gamma distribution
of sizes (a = 2.5). The data is pooled across all substrates with a given size (middle column)
or eccentricity (right column) and 100 noise trials.

the objective function F , defined in equation 4 as the sum of the normalized CRLBs
of the model parameters. The lower the objective function, the smaller the expected
variance of the estimated parameters. For the ICF model, Figure 5a) illustrates F
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IGFC - relative error of estimated mean radius R̄ : Md (q1, q3)
a→∞ a = 10 a = 2.5

a)

SDE 2.8 (0.5, 6.6)% 4.0 (−0.3, 7.5)% 2.8 (−5.9, 12)%
DDE‖ 2.0 (0.5, 4.0)% 3.0 (−0.4, 5.6)% 4.2 (−3.4, 11)%

DDE⊥ 0.4 (−4.6, 4.1)% −2.1 (−6.7, 1.4)% −5.6 (−13, 0.8)%
DDE‖&⊥ 1.4 (−1.3, 2.9)% 1.8 (−1.0, 4.1)% 1.9 (−3.7, 7.4)%

IGFC - relative error of estimated eccentricity E : Md (q1, q3)
a→∞ a = 10 a = 2.5

b)

SDE −4.4 (−14, 0.1)% −6.7 (−20, 0.1)% −9.2 (−31, 0.1)%
DDE‖ −1.8 (−4.9, 0.1)% 4.6 (0.1, 12)% 7.4 (0.1, 23)%

DDE⊥ 0.6 (−4.3, 7.1)% 8.5 (2.3, 17)% 11 (4.2, 23)%
DDE‖&⊥ −0.2 (−3.2, 1.4)% 1.9 (−1.0, 6.7)% 1.5 (−5.6, 7)%

IGFC - relative error of estimated variance Md (q1, q3)
a→∞ a = 10 a = 2.5

c)

SDE 119 (5.8, 373)% 38 (−8, 87)% 38 (10, 61)%
DDE‖ 4.8 (2.1, 10)% −32 (−52,−12)% −19 (−32,−2)%

DDE⊥ 5.0 (−1.9, 39)% −19(−31,−2.6)% −8.5 (−19, 4.4)%
DDE‖&⊥ 4.4 (0.8, 9.5)% −16 (−29,−0.5)% −8.6 (−18, 3.4)%

Table 2: Median (Md), lower quartile (q1) and upper quartile (q2) for the relative errors
of the estimated parameters from the IGFC model: a) radius and b) eccentricity and c)
variance. For each measurement protocol and ground truth shape parameter a, the data
is pooled from substrates with different mean radii and eccentricities. For the substrates
with identical pores, the upper limit of a (a = 10000) from the signal model was used to
compute the variance.

for the four protocols as a function of eccentricity for substrates with identical pores
(a → ∞) and two different radii R = 2 and 4µm. The plots show that DDE⊥
protocol has the highest F (i.e. lowest sensitivity), while the other protocols have
similar performance. The same trend appears for the other substrates. This result
reflects with the data presented in Table 1 for a→∞, where DDE⊥ has the largest
interquartile range for both radius and eccentricity estimates. Figure 5b) illustrates
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the objective function values for the IGFC model for substrates with R̄ = 2 and 4µm
and a = 2.5. In this case the DDE‖&⊥ and DDE⊥ protocols perform better than the
protocols with one single gradient orientation. Table 2 supports this finding where,
for substrates with a = 2.5, the last two protocols have smaller interquartile ranges.

IGFC model, R = 2μm, a = 2.5 IGFC model, R = 4μm, a = 2.5
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Figure 5: Dependence of the objective function F on pore eccentricity for the four protocols
for a) the IFC model and b) the IGFC model.

3.3. Simulation 3: Macroscopically anisotropic substrates

This section presents the results for macroscopically anisotropic substrates. Hav-
ing a rotationally invariant acquisition protocol and explicitly incorporating direc-
tional information in the tissue models allows for estimating size and eccentricity
in the presence of macroscopic anisotropy. Thus we investigate the ability of signal
models with a Watson orientation distribution to recover ground truth microstruc-
tural features.

As in the case of isotropically oriented pores, the WFC model with identical
pores underestimates the radius and overestimates the eccentricity, especially in the
case of pores with low eccentricity (data not shown). After accounting for the size
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Figure 6: a) Relative error of the estimated size and eccentricity parameters from fitting
the WGFC model a function of ground truth values in MC simulations, for a substrate
with a gamma distribution of sizes (a = 2.5) and two different concentration parameters
of the orientation distribution (κ = 2 and 8). The data is pooled across all substrates
with a given size (middle column) or eccentricity (right column) and 100 noise trials. b)
Estimated concentration parameter κ of the WGFC model as a function of ground truth
values used in MC simulations, for substrates with gamma distributed sizes (l̄x = {6, 8}µm,
a = 2.5) and various eccentricities. The values were computed as the mean estimates over
100 noise trials.

distribution of the pores, the WGFC model accurately recovers the ground truth
parameters for mean radius and eccentricity. Figure 6a) illustrates the estimates of
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radius and eccentricity given by the WGFC model for substrates with two different
orientation distributions (κ = {2, 8}) and pores of various sizes and elongations.
The shape parameter of the gamma distribution is a = 2.5 for all substrates (largest
variance considered in this study). The results show accurate estimates for mean
radius and eccentricity for all κ values. The median relative error of the estimated
shape parameter a is 4.8%, with lower and upper quartiles of −7.1% and 16%,
respectively. As for the isotropic substrates, larger errors occur for very small pores,
close to the lower bound of sensitivity of the maximum gradient strength in this
study.

Figure 6b) illustrates the estimates of the concentration parameter of the Watson
distribution. For pores with low eccentricity (E = 1,1.5) the estimates of kappa
are not accurate, as the choice of κ becomes increasingly redundant as the pores
approach isotropy. For elongated pores the estimated values of κ are closer to the
ground truth values from the MC simulations. As noted in [50], high κ is hard to
estimate precisely as the numerical value has an exponentially decreasing effect as
κ→∞.

3.4. Simulation 4: Varying size and orientation distribution

Different size distributions

This section studies the accuracy of parameter estimates when the IGFC model
is fitted to diffusion measurements from substrates with a different size distribution.
We investigate both parametric and non-parametric distributions, as described in
section 2.6.

First we analyse substrates consisting of randomly oriented cuboids with eccen-
tricity E = 2 and an inverse Gaussian size distribution with mean value l̄x = 6µm
and shape parameter λ = {10, 50, 100}µm. The variance of the inverse Gaussian is

l̄x
3
/λ, and the distribution tends towards a normal distribution as the shape param-

eter increases. Fitting the IGFC model to the diffusion data synthesized from the
three meshes provides accurate estimates of mean radius and eccentricity, while the
relative errors of the variance are larger. The size distribution of the cuboids as well
as the relative errors of the parameter estimates are shown in Table 3a).

In the second simulation we evaluate the accuracy of the parameter estimates
in a histological size distribution, as described in section 2.6. The average relative
errors of the estimated IGFC model parameters over 10 noise trials with SNR = 50

are: ∆R̄ = 5.3±2.1% for the mean radius, ∆E = 1.1±3.8% for the eccentricity and
∆Var = −22± 54% for the variance.

The results show that fitting the IGFC model to diffusion substrates with a
different size distribution provides accurate estimates of average size and eccentricity,
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f + (1-f)

Diffusion substrates with an inverse Gaussian distribution of pore sizes 
(ground truth parameters: lx = 6μm, E = 2)  

a)
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λ = 10μm λ = 50μm λ = 100μm

Initial distribution of sizes

Relative error of 
parameter 
estimates
(IGFC model)  

ΔR

ΔE

-15 ± 7.1 % 1.9 ± 1.6 % 2.9 ±1.4 %

5.2 ± 2.7 % 0.9 ±3.4 % 3.9 ± 3.3 %

Diffusion substrates with different orientation distributions 
(ground truth parameters: lx = 6μm, E = 3, a = 2.5)  

b)
f = 25% f = 50% f =  75%

Relative error of 
parameter 
estimates 
(WGFC model) 

ΔR

ΔE

-3.3 ± 3.8 % -9.4 ± 2.6 % -12 ± 6.8 %

1.3 ± 1.5 % 1.6 ± 1.0 % 4.9 ± 1.6 %

Volume fraction of coherently oriented pores

ΔVar -5.3 ± 9.1 % -4.3 ± 7.5 % 12 ± 17 %

ΔVar 74 ± 20 % 52 ± 27 % -68 ± 38 %

Table 3: a) Average relative error of estimated mean radius and eccentricity provided by
the IGFC model when fitted to pores that have an inverse Gaussian distribution of sizes.
b) Average relative error of estimated mean radius, eccentricity and shape parameter of the
gamma distribution provided by the WGFC model when fitted to substrates with different
volume fractions of coherently oriented pores. The mean value and standard deviation are
computed over 10 noise trails with SNR = 50.

for both parametric and non-parametric distributions. The estimated variance has
the largest relative errors, which are further increased compared to the values in
Simulation 2 and 3 due to the mismatch between the distributions.

Different orientation distributions

This simulation tests the ability of the WGFC model to estimate pore size and
eccentricity in substrates that have a different orientation distribution. Thus we
analysed substrates that have different volume fractions of coherently oriented and
randomly oriented pores. The results presented in Table 3 show a good agreement
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between the estimated parameters of the WGFC model (mean radius, eccentricity
and variance of the size distribution) and the ground truth values from the cuboid
meshes. The estimated concentration parameter of the Watson distribution κ in-
creases (κ̄ = 1.5, 2.7, 4.9) with the volume fraction of the coherently oriented pores,
reflecting the more anisotropic orientation distribution. These results illustrate that
the WGFC model yields accurate estimates of pore size and eccentricity, even for a
different orientation distribution of pores in the underlying substrate.

4. Discussion

This work is a proof of concept showing that microstructural parameters such as
pore size and eccentricity can be estimated from diffusion MRI data using a geometric
model of restriction even in the presence of macroscopic anisotropy and a distribution
of pore sizes.

In Simulation 1 we investigated model-free metrics of microscopic anisotropy,
specifically FE and ε which are computed from the difference of DDE measurements
with parallel and perpendicular gradients. The results presented in Figure 2, show
that FE is a really noisy measure with overestimated values at low eccentricities,
while ε is less noisy but depends on pore size. This is the case especially for pores with
low eccentricity, when the signal difference is below the noise level. These findings
are consistent with the original results presented in [30] which show noisy estimates
in the grey matter of monkey brain. Moreover, both FE and ε are underestimated
when the acquisition protocol does not match the theoretical limit of long diffusion
and mixing times. This analysis is focused on FE and ε , but the observations hold
for similar indices presented in [29] which are based on signal differences.

In the model-based approach, we fit the diffusion signal itself, avoiding the in-
creased noise variance of the signal difference. Moreover, we explicitly account for
the finite gradient duration and we do not assume long mixing and diffusion times.
Simulation 2 is focused on estimating microstructural parameters in isotropic sub-
strates and we investigated the sensitivity of four different protocols: SDE, DDE‖,
DDE⊥ and DDE‖&⊥. For fair comparison, all protocols were adjusted to have the
same maximum diffusion weighting (b-value) and number of measurements. First
we test whether a simple model with identical pores (IFC) can provide good esti-
mates of the volume-weighted mean pore size and eccentricity. In the elementary
case when the underlying substrates have identical pores, the IFC model provides
accurate parameter estimates. In this situation, DDE sequences offer no clear ad-
vantage over SDE sequences. This result is consistent with previous work which uses
SDE measurements to estimate the parallel and perpendicular diffusivities, assuming
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an ensemble of identical micro-domains with time-independent diffusion coefficients
[51, 52, 53]. However, this model underestimates radius and overestimates eccen-
tricity if the substrates have a distribution of pore sizes for both types of protocols.
Directly accounting for size distribution, i.e. the IGFC model, overcomes this prob-
lem and provides accurate microstructural estimates. The DDE‖&⊥ protocol yields
the smallest relative errors for all parameter estimates, with 50% of data points hav-
ing a relative error less than 10% for mean radius and eccentricity estimates. From
all IGFC model parameters, the shape of the gamma distribution a has the largest
variability which translates to larger interquartile range for the relative error of the
size distribution variance compared to the other parameters, as illustrated in Table
2. Nevertheless, explicitly accounting for size distribution improves the accuracy of
mean radius and eccentricity estimates. During fitting, D was fixed to its ground
truth value. For the protocols considered, additionally fitting for D does not affect re-
sults significantly and provides good estimates of D, but increases the computational
time, as the restricted signal depends on the ratio D/R2.

When probing an ensemble of pores with a size distribution, the SDE protocol
provides sensitivity to mean size and eccentricity, although the DDE‖&⊥ and DDE⊥
protocols provide more accurate estimates. The DDE protocols yield smaller errors
when estimating the variance of the size distribution, which is consistent with previ-
ous studies [32]. The sensitivity of the SDE protocol arises from the fact that choosing
a specific model for parameter fitting resolves ambiguity in the underlying measure-
ments. If the diffusion substrate is unknown, DDE measurements contain information
to distinguish different cases. Moreover, a non model-based approach can be used
to provide prior information in order to select a relevant model. If the appropriate
model is assumed, then SDE measurements can estimate microstructural parameters.
This is important in practice as the SDE sequence is much simpler to implement and
generally returns higher signal by keeping the echo time shorter. Previous work [20]
showed that DDE sequences preserve information from the diffusion-diffraction pat-
terns in the presence of size distribution and can be used to recover more subtle
features of pore shape, differentiating between various geometries [54, 55]. However,
for estimating pore size and eccentricity in the diffusion regime considered here, the
differences in performance among the protocols are quite small and further work
is required to determine if they reflect genuine sensitivity differences. When com-
paring SDE and DDE sequences it is not trivial to define a fair comparison, and
here we choose to have the same maximum diffusion weighting (b-value). Using the
same maximum gradient strength would provide more diffusion weighting for DDE
sequences, increasing sensitivity to small pore sizes. On the other and, the longer
pulse duration for DDE reduces SNR if the effects of T2 decay are considered. A
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better comparison, which might well change the story, can be achieved if the proto-
cols are optimised in order to fully explore the parameter space of each sequences,
given practical constraints for total duration and gradient strength, as described in
[46] or [56].

The microstructure models can be extended to estimate size and eccentricity
in macroscopically anisotropic substrates. In Simulation 3 we used an extended
protocol DDERI consisting of a SDE shell with 32 isotropic directions and DDE
sequences with 6 gradient orientations (xx,xy,xz,yy,yz,zz). The SDE shell is used to
determine the main orientation of the pores, which is subsequently fixed for fitting
the rest of the model parameters. Fitting the WFC model to substrates with a size
distribution, yields biased parameter estimates which underestimate mean radius and
overestimate eccentricity. Accounting for size distribution, i.e. the WGFC model,
provides accurate estimates of size and eccentricity, however an accurate value of
the concentration parameter κ is recovered only for pores with high eccentricity. For
pores with low eccentricity, the influence of κ on the overall diffusion signal is small,
which is reflected in the poor estimate of this parameter at E close to 1.

In all the simulations discussed above, we used the same size distribution and
orientation distribution for the cuboid meshes and the diffusion signal model. We
overcome this limitation in Simulation 4. First, we show that the IGFC model
can accurately recover pore size and eccentricity when the diffusion substrates have
different size distributions. Thus we tested the cases of a parametric inverse Gaussian
as well as a histologically plausible size distribution of cancer cells [48]. Moreover,
we showed that the WGFC model can provide accurate microstructural parameter
estimates when the diffusion substrate has a combination of coherently and randomly
oriented pores.

In this study we constructed comprehensive diffusion protocols in order to have
sensitivity over a wide range of diffusion substrates. Nevertheless, preliminary re-
sults (not shown) suggest that similar accuracy can be obtained with a much smaller
number of measurements if protocols are tailored for a particular application. For
example, we analyse an isotropic substrate with l̄x = 6µm, E = 2, a = 2.5 and a
subset of the DDE‖&⊥ protocol with 25 measurements (10 different sequences with
parallel and perpendicular gradients and 5 b = 0 measurements). We choose the
measurements from the full protocol following a greedy algorithm to maximize sensi-
tivity to this particular substrate. The parameter estimates from the short protocol
overlap within standard deviation with the values obtained from the full protocol,
however the estimates have higher variability (standard deviation over 10 noise trials
is approximately twice larger). Thus, the right balance between acquisition time and
measurement precision is necessary depending on the application.
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The models we propose describe a complex tissue architecture, however they
include only intra-cuboidal diffusion. A first step towards practical applications,
such as cancer imaging, where estimates of cellular eccentricity have the potential
to distinguish between different tumour types [2], is to account for signal from the
extracellular space. For low volume fractions, a simple extracellular model with
hindered diffusion is accurate enough, while for higher volume fractions models that
account for a time-dependent diffusivity which reflects the restriction length-scale [6]
are preferable. Compartment models, as in [1, 9, 10, 11], can separate extracellular
and intracellular contributions to the signal. The main challenge for testing such
a model is creating a diffusion mesh with a realistic intracellular volume fraction
around 0.6. Preliminary experiments, investigating an isotropic mesh with the intra-
cuboidal space occupying around 15% of the total volume, show that we can estimate
all microstructural parameters including volume fraction, but sensitivity reduces as
volume fraction decreases.

The protocols used in this study provide sensitivity over a wide range of pores
and are not designed for practical application. The maximum gradient strength
we use in the simulation is 500

√
2 mT/m for SDE sequences and the maximum

echo time required for the DDE protocols is 250ms. These values can be achieved
on preclinical scanners, however, the range of values is more limited on a clinical
scanner. The lower gradient strengths (80mT/m for a standard scanner or 300mT/m
for the Connectome scanner [57]) decrease the sensitivity to small pore size, while the
short diffusion times affect the estimates for larger pores. The same features which
are desired for such a simulation study (large measurement space, high gradient
strength, long diffusion and mixing times) are a drawback for practical applications
which require short acquisitions and limited diffusion time to prevent signal loss
from T2 decay. When designing such a protocol for practical applications all these
aspects should be considered. Additionally, to preserve the sensitivity over a wide
range of pore sizes for practical situations, rectangular gradients can be replaced
with oscillating ones [56], or if there is prior knowledge of the system, the diffusion
protocol can be substantially shortened using numerical optimisation [46], including
diffusion gradients with varying orientation [58].

Future work will focus on more realistic substrates which include extracellular
space with various volume fractions, in order to mimic different tissue configurations,
as well as using improved measurement protocols which eventually could be used in
practice.
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