UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay

Heywood, WE; Galimberti, D; Bliss, E; Sirka, E; Paterson, RW; Magdalinou, NK; Carecchio, M; ... Mills, K; + view all (2015) Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay. Molecular Neurodegeneration , 10 , Article 64. 10.1186/s13024-015-0059-y. Green open access

[thumbnail of Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay.pdf]
Preview
Text
Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay.pdf - Published Version

Download (3MB) | Preview

Abstract

BACKGROUND: Currently there are no effective treatments for many neurodegenerative diseases. Reliable biomarkers for identifying and stratifying these diseases will be important in the development of future novel therapies. Lewy Body Dementia (LBD) is considered an under diagnosed form of dementia for which markers are needed to discriminate LBD from other forms of dementia such as Alzheimer's Disease (AD). This work describes a Label-Free proteomic profiling analysis of cerebral spinal fluid (CSF) from non-neurodegenerative controls and patients with LBD. Using this technology we identified several potential novel markers for LBD. These were then combined with other biomarkers from previously published studies, to create a 10 min multiplexed targeted and translational MRM-LC-MS/MS assay. This test was used to validate our new assay in a larger cohort of samples including controls and the other neurodegenerative conditions of Alzheimer's and Parkinson's disease (PD). RESULTS: Thirty eight proteins showed significantly (p < 0.05) altered expression in LBD CSF by proteomic profiling. The targeted MRM-LC-MS/MS assay revealed 4 proteins that were specific for the identification of AD from LBD: ectonucleotide pyrophosphatase/phosphodiesterase 2 (p < 0.0001), lysosome-associated membrane protein 1 (p < 0.0001), pro-orexin (p < 0.0017) and transthyretin (p < 0.0001). Nineteen proteins were elevated significantly in both AD and LBD versus the control group of which 4 proteins are novel (malate dehydrogenase 1, serum amyloid A4, GM2-activator protein, and prosaposin). Protein-DJ1 was only elevated significantly in the PD group and not in either LBD or AD samples. Correlations with Alzheimer-associated amyloid β-42 levels, determined by ELISA, were observed for transthyretin, GM2 activator protein and IGF2 in the AD disease group (r(2) ≥ 0.39, p ≤ 0.012). Cystatin C, ubiquitin and osteopontin showed a strong significant linear relationship (r(2) ≥ 0.4, p ≤ 0.03) with phosphorylated-tau levels in all groups, whilst malate dehydrogenase and apolipoprotein E demonstrated a linear relationship with phosphorylated-tau and total-tau levels in only AD and LBD disease groups. CONCLUSIONS: Using proteomics we have identified several potential and novel markers of neurodegeneration and subsequently validated them using a rapid, multiplexed mass spectral test. This targeted proteomic platform can measure common markers of neurodegeneration that correlate with existing diagnostic makers as well as some that have potential to show changes between AD from LBD.

Type: Article
Title: Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s13024-015-0059-y
Publisher version: http://dx.doi.org/10.1186/s13024-015-0059-y
Language: English
Additional information: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Genetics and Genomic Medicine Dept
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Population, Policy and Practice Dept
URI: https://discovery.ucl.ac.uk/id/eprint/1475058
Downloads since deposit
164Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item