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ABSTRACT: Hybrid halide perovskites have recently emerged as a highly efficient class
of light absorbers; however, there are increasing concerns over their long-term stability.
Recently, incorporation of SCN− has been suggested as a novel route to improving stability
without negatively impacting performance. Intriguingly, despite crystallizing in a 2D
layered structure, (CH3NH3)2Pb(SCN)2I2 (MAPSI) possesses an ideal band gap of 1.53
eV, close to that of the 3D connected champion hybrid perovskite absorber, CH3NH3PbI3
(MAPI). Here, we identify, using hybrid density functional theory, the origin of the smaller
than expected band gap of MAPSI through a detailed comparison with the electronic
structure of MAPI. Furthermore, assessment of the MAPSI structure reveals that it is
thermodynamically stable with respect to phase separation, a likely source of the increased
stability reported in experiment.

The past three years have witnessed an explosion of interest
into hybrid halide perovskite solar cells.1−3 Power

conversion efficiencies (PCEs) have skyrocketed to 20.1%,4

quickly surpassing other third-generation devices such as dye-
sensitized solar cells,5 organic photovoltaics,6 and the champion
inorganic earth-abundant absorber, Cu2ZnSn(S,Se)4
(CZTSSe).7,8 Currently, the highest performing hybrid perov-
skite is CH3NH3PbI3 (MAPI), which can be easily solution
processed for widespread application9−11 and possesses an ideal
direct band gap of 1.55 eV,12 a small exciton binding energy,13

balanced electron−hole transport with extremely long carrier
diffusion lengths,14,15 defect self-regulation,16 and excellent
charge carrier mobilities.17−19

Unfortunately, despite these excellent properties, chemical
stability is still a major concern facing hybrid perovskites as they
move toward industrial deployment.20,21 Indeed, while suitable
encapsulation should reduce decomposition by hydrolysis,22−24

the fundamental long-term stability of the MAPI structure is still
a topic of dispute.25 Much effort has been devoted to increasing
the stability of MAPI based devices, however, these stable cells
generally perform with reduced PCEs of 10−13%.26−28
Preserving high efficiencies while demonstrating increased
chemical and thermodynamic stability is therefore a significant
challenge facing the hybrid halide perovskite community.29

In the past six months, the substitution of iodine with the
pseudohalide ion, SCN−, has been proposed as a novel method
for increasing the stability of MAPI based devices.30−33 Chen et
al. reported that the incorporation of SCN− (which has a similar
ionic radius to I−) to form CH3NH3PbI3−x(SCN)x resulted in
larger crystal sizes and fewer trap states than pure MAPI.30 The

a u t h o r s r e p o r t e d a PCE o f 1 1% f o r p l a n a r
CH3NH3PbI3−x(SCN)x/PC61BM bilayer heterojunction solar
cells, finding that 5% SCN− incorporation was the optimum in
the range of 1−10%, and that the CH3NH3PbI3−x(SCN)x films
displayed greater stability, higher reproducibility, and lower
amounts of hysteresis than similarly prepared MAPI films.34,35

The reason for this extra stability was not elucidated.
Halder et al. subsequently observed that incorporation of

SCN− as a dopant opened up the fundamental band gap versus
MAPI by 8 meV, and had a remarkable effect on the
photoluminesence response, concluding that SCN− incorpo-
ration is a valuable addition to the hybrid halide family.31

Jiang et al. recently reported that CH3NH3Pb(SCN)2I films
crystallized in the perovskite structure, with a band gap of 1.53
eV.32 These CH3NH3Pb(SCN)2I films were found to be much
more stable after 4 h in air with 95% humidity compared toMAPI
films.36 The reason for this stability, however, is not explained.
Overall, the CH3NH3Pb(SCN)2I films displayed an efficiency of
8.3%, with a larger open circuit voltage (0.87 eV versus 0.80 eV),
but a smaller fill factor (52 versus 63) than MAPI films.32

Very recently, Daub and Hillebrecht have reported that the
reaction of MAI and Pb(SCN)2 results in the formation of
(CH3NH3)2Pb(SCN)2I2 (herein denoted MAPSI).33 MAPSI
crystallizes in a layered orthorhombic pattern with space group
Pnm21, in which the Pb is octahedrally coordinated to four axial
I− and two apical (or trans) S-bonded SCN− ions. The MA
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molecules are situated between the layers, resulting in a structure
that is similar to the K2NiF4-type structure, as indicated in Figure
1. Daub and Hillebrecht demonstrated that the X-ray diffraction

(XRD) pattern for MAPSI is actually an excellent fit for the XRD
patterns of the CH3NH3PbSCN2I films produced by Jiang et al.32

Intriguingly for a 2D layered inorganic hybrid halide, MAPSI
possesses an optical band gap of 1.56 eV, very close to that of
quasi-cubic MAPI.12,37 Typically, upon moving from a 3D to a
2D connectivity of the Pb-halide octahedra, the band gap opens
up,38,39 severely affecting solar cell absorber ability. Therefore, an
open question remains: why can MAPSI possess a smaller band
gap than other 2D hybrid halides?
In this Letter we investigate the fundamental electronic

structure of MAPSI using hybrid density functional theory
(DFT). We demonstrate: (i) that MAPSI does indeed possess a
band gap suitable for PV applications, and explain why this is so
via a detailed comparison with the electronic structure of MAPI,
and (ii) show that MAPSI should be more stable against
decomposition than MAPI. Lastly we speculate on the ability of
this system to be the parent for other MAPSI structured hybrid
halide-pseudohalide photovoltaic (PV) absorbers.
Computational Methods. All of our DFT calculations were

performed using the Vienna Ab initio Simulation Package
(VASP),40−43 with interactions between the core and valence
electrons described using the Projector Augmented Wave
(PAW) method.44 Electronic properties were calculated using
the Heyd−Scuseria−Ernzerhof (HSE06) hybrid DFT func-
tional45 with the addition of spin orbit effects, which is known to
accurately predict the properties of hybrid halide perovskite
systems.46 Both k-point sampling and the plane wave basis set
were checked for convergence, with a cutoff of 520 eV and k-
point grid of Γ-centered 1 × 4 × 4 for the 50 atom unit cell of
(CH3NH3)2Pb(SCN)2I2 found to be sufficient. The structure
was geometrically optimized and considered to be converged
when the forces on all the atoms totalled less than 10 meV Å−1.
Geometry. We have minimized the experimental structure of

MAPSI using three functionals, the Perdew, Burke, and
Ernzerhof (PBE)47 functional revised for solids (PBEsol),48

PBEsol plus the addition of Grimme’s D3 dispersion correction
(PBEsol+D3),49 and the PBE functional plus the addition of D3
(PBE+D3), with the results presented in Table 1. PBEsol and
PBE+D3 yield structures in good agreement with the single
crystal experimental structure,33 whereas the PBEsol+D3
appears to underestimate the lattice constants more drastically.

In all cases, the a parameter is underestimated compared to the
experimental structure, indicating that thermal effects may play a
role in determining the distance between the layers.
Electronic Structure. To test the effect of a-parameter variation

on the electronic structure, we calculated the band structures at
the experimental (room temperature, RT) coordinates and at the
PBEsol structure, using the Heyd−Scuseria−Ernzerhof hybrid
DFT functional45 with the addition of spin orbit coupling (SOC)
to accurately treat known relativistic effects experienced by lead-
iodide-based hybrid halides. The lengthening of the a parameter
shortens the calculated band gap of MAPSI from 1.79 to 1.57 eV
(Figure S1 of the Supporting Information), remarkably close to
the experimental optical band gap.33 The partial (ion
decomposed) density of states of MAPSI is presented in Figure
2a. It is immediately clear that the valence band maximum
(VBM) is dominated by I p states with some Pb s states present,
with the conduction band minimum (CBM) dominated by Pb p
states, similar to to the electronic structure of MAPI (Figure 2c).
The main difference stems from the N p and S p states, which are
present ∼1 eV below the valence band maximum.
In semiconductors, d−p repulsion has been shown to play a

role in determining the absolute ionization potential and, as such,
the position of the VBM.51 Comparison of the Pb d states in
MAPSI against those in MAPI reveals an average shift in energy
of only 0.15 eV, indicating a slight increase in Pb 5d−I 5p
repulsion but unlikely to be sufficient to account for the smaller
than expected band gap. Instead, the SCN states must act to push
up the VBM of MAPSI, maintaining a small band gap despite the
layered nature of the system. This is corroborated by analysis of
the S−C−N bond lengths, which reveals an increase in the
covalent character of the pseudohalide, as evidenced by the
shortening of the S−C and lengthening of the C−N bonds in
MAPSI (S−C = 1.601 eV, C−N = 1.169 eV) when compared to
the ionic AgSCN (S−C = 1.783 eV, C−N = 1.144 eV).52 The
SCN therefore plays an active role in bonding, in contrast to
other polyanion substituted MAPI structures,53 which is
supported by the charge density isosurfaces presented in Figure
3. Here, it can be seen that the VBM is dominated by Pb 6p/I 5p
with a small contribution from the S 3p and N 2p of the SCN,
with the CBM dominated by Pb 6p states.
The HSE06+SOC-calculated band gap for the RT MAPSI

structure is presented in Figure 2b. The fundamental band gap is
1.57 eV, with the CBM and VBM situated just off the U point
(0.0, 0.5, 0.5). There is noticeably no dispersion in the X−S
direction, which is to be expected as this spans across the layers in
the [100] direction. The calculations indicate that mild
relativistic Dresselhaus splitting is present in the lower
conduction band, and to a lesser extent in the upper valence
band, due to the lack of the inversion symmetry in the MAPSI

Figure 1.Crystal structure of (a) CH3NH3PbI3 and (b) (CH3NH3)2Pb-
(SCN)2I2 as viewed along the [001] direction. Pb, I, C, H, N, and S
atoms are denoted by dark gray, purple, brown, pink, light gray/blue,
and yellow spheres, respectively. The octahedral nature of the Pb is
illustrated using turquoise polyhedra.

Table 1. Calculated Lattice Parameters of
(CH3NH3)2Pb(SCN)2I2

a

a (Å) b (Å) c (Å) volume (Å3)

PBEsol 18.268
(−1.67%)

6.230
(−0.58%)

6.475
(+0.13%)

736.917
(−2.12%)

PBEsol+D3 17.657
(−4.97%)

6.134
(−2.12%)

6.388
(−1.21%)

691.872
(−8.10%)

PBE+D3 18.232
(−1.87%)

6.274
(+0.11%)

6.525
(+0.92%)

746.379
(−0.87%)

experiment33 18.580(2) 6.267(7) 6.466(6) 752.907
aPercentage difference from experiment or experimental error in
brackets. All cell angles were found to be 90°. The equilibrium crystal
structures are provided in an online repository.50
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structure. We note that similar Dresselhaus splitting has
previously been predicted for BF4-substituted MAPI.53

The average effective masses of the VBM and CBM were
found to be 0.20 m0 and 0.14 m0, respectively, indicating that
both electrons and holes will be mobile in the MAPSI system,
although the conductivity should be somewhat anisotropic due
to its layered nature. We also tested the effect of SOC on the
electronic structure of this system, with the results displayed in
Figure S2 of the Supporting Information. Similar to MAPI,54,55

the relativistic renormalization of the conduction band is large
(∼0.68 eV), indicating that proper treatment of relativistic effects
is of vital importance. It should be noted that many body effects
will also likely play a role in this Pb−I based system,56,57 although
the size of the MAPSI unit cell (50 atoms) means they are
currently beyond the scope of this study.
Stability. The chemical stability of MAPI has been the subject

of much debate in the past half decade.20,21 It has been suggested
that moisture or oxygen in the environment causes the poor
stability of MAPI films,24,36 but recent theoretical analysis
suggests that the material is intrinsically thermodynamically
unstable with respect to phase separation into PbI2 and
CH3NH3I.

58 To test the stability of MAPSI with regard to
decomposition, we have tested two decomposition pathways,
with their energetics compared to the decomposition of MAPI:

→ +

Δ = −H

CH NH PbI CH NH I PbI ,

0.09 eV
3 3 3 3 3 2

R (1)

→ +

Δ =H

(CH NH ) Pb(SCN) I 2CH NH I Pb(SCN) ,

0.38 eV
3 3 2 2 2 3 3 2

R (2)

Figure 2. (a,c) Ion decomposed partial and total density of states and (b,d) band structure along the high symmetry directions for
(CH3NH3)2Pb(SCN)2I2 and CH3NH3PbI3, respectively. In all cases, the HSE06+SOCmethod was used, and the VBM is set to 0 eV. The valence band
and conduction band of panels b and d are denoted by blue and orange, respectively.

Figure 3. Charge density isosurfaces of (a) the VBM and (b) the CBM.
Regions of low and high electron density are shown in blue and red,
respectively. Pb, I, C, H, N, and S atoms are denoted by dark gray,
purple, brown, pink, light gray/blue, and yellow spheres, respectively.
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→ +

Δ =H

(CH NH ) Pb(SCN) I 2CH NH (SCN) PbI ,

1.97 eV
3 3 2 2 2 3 3 2

R (3)

We find that the decomposition routes into either CH3NH3I and
Pb(SCN)2 (the starting materials in the synthesis of MAPSI) or
CH3NH3(SCN) and PbI2 are both positive, indicating that
MAPSI does not spontaneously decompose, unlike MAPI, in
which it is favorable to decompose to CH3NH3I and PbI2. This is
the likely origin of the increased stability reported for materials
with SCN incorporation.
We have demonstrated using DFT that MAPSI has an

appropriate electronic structure for PV application, displaying a
band gap of ∼1.57 eV, low effective masses for both holes and
electrons, and improved chemical stability against phase
separation when compared to MAPI. Experimentally, the
addition of MAPSI to MAPI films seems to promote stability,
and to be able to maintain reasonable efficiencies.30 Interestingly,
these results open up some fundamental questions. As ABX3
perovskite structured MAPI can be electronically tuned by
substitution on the A, B, and X sites, can MAPSI also act as a
parent compound for a range of MAPSI structured analogues?
Chemically, it should be possible to replace CH3NH3 with
alternative organic molecules, Pb with Sn, I with Cl and Br, and
even SCN with other pseudohalides such as SeCN and OCN.
MAPSI, therefore, represents a novel material class with four
degrees of freedom for property tuning. It is clear that further
work on this new hybrid halide structural motif is warranted.
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