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SUMMARY

We consider continuous-time diffusion models driven by fractional Brownian motion.
Observations are assumed to possess a nontrivial likelihood given the latent path. Due to the
non-Markovian and high-dimensional nature of the latent path, estimating posterior expecta-
tions is computationally challenging. We present a reparameterization framework based on the
Davies and Harte method for sampling stationary Gaussian processes and use it to construct a
Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference.
The algorithm is based on a version of hybrid Monte Carlo simulation that delivers increased
efficiency when used on the high-dimensional latent variables arising in this context. We specify
the methodology on a stochastic volatility model, allowing for memory in the volatility incre-
ments through a fractional specification. The method is demonstrated on simulated data and on
the S&P 500/VIX time series. In the latter case, the posterior distribution favours values of the
Hurst parameter smaller than 1/2, pointing towards medium-range dependence.

Some key words: Bayesian inference; Davies and Harte algorithm; Fractional Brownian motion; Hybrid Monte Carlo
algorithm.

1. INTRODUCTION

A natural continuous-time modelling framework for processes with memory uses fractional
Brownian motion as the driving noise. This is a zero-mean self-similar Gaussian process,
say B H = {B H

t , t � 0}, of covariance E(B H
s B H

t )= (|t |2H + |s|2H − |t − s|2H )/2 for 0 � s � t ,
parameterized by the Hurst index H ∈ (0, 1). For H = 1/2 we get Brownian motion with inde-
pendent increments. The H > 1/2 case gives smoother paths of infinite variation with positively
autocorrelated increments that exhibit long-range dependence, in the sense that the autocorre-
lations are not summable. For H < 1/2 we obtain rougher paths with negatively autocorrelated
increments that exhibit medium-range dependence; the autocorrelations are summable but decay
more slowly than the exponential rate characterizing short-range dependence.

Since the pioneering work of Mandelbrot & Van Ness (1968), various applications have used
fractional noise in models to capture self-similarity, non-Markovianity, or subdiffusivity and
superdiffusivity; see, for example, Kou (2008). Closer to our context, numerous studies have
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810 A. BESKOS, J. DUREAU AND K. KALOGEROPOULOS

explored the well-posedness of stochastic differential equations driven by B H ,

dXt = b(Xt ) dt + σ(Xt ) dB H
t (1)

for given functions b and σ ; see Biagini et al. (2008) and references therein. Unlike most infer-
ence methods for models based on (1) in nonlinear settings, which have considered direct and
high-frequency observations on Xt (Prakasa Rao, 2010), the focus of this paper is on the partial
observation setting. We provide a general framework, which is suitable for incorporating infor-
mation from additional data sources and potentially from different time scales. The aim is to
perform full Bayesian inference for all parameters, including H . The Markov chain Monte Carlo
algorithm we develop is relevant in contexts where the observations Y have a nontrivial likeli-
hood, say p(Y | B H ), conditionally on the driving noise. We assume that p(Y | B H ) is known
and genuinely a function of the infinite-dimensional latent path B H , i.e., we cannot marginalize
the model onto finite dimensions. While the focus is on a scalar context, the method applies in
principle to several latent processes at greater computational cost, for instance with likelihoods
p(Y | B Hi

i , i = 1, . . . , κ) for Hurst parameters Hi (i = 1, . . . , κ).
A first problem in this set-up is the intractability of the likelihood function,

p(Y | θ)=
∫

p(Y | X, θ) p(dX | θ),

where θ ∈ R
q represents all the unknown parameters. A data-augmentation approach is adopted,

to obtain samples from the joint posterior density

�(X, θ | Y )∝ p(Y | X, θ) p(X | θ) p(θ).

In practice, a time-discretized version of the infinite-dimensional path X must be considered, on
a time grid of size N . It is essential to construct an algorithm that has stable performance as N
gets large, giving accurate approximation of the theoretical posterior p(θ | Y ).

For the standard case of H = 1/2, data-augmentation algorithms with mixing time indepen-
dent of N are available (Roberts & Stramer, 2001; Golightly & Wilkinson, 2008; Kalogeropoulos
et al., 2010). However, important challenges arise when H |= 1/2. First, some parameters, includ-
ing H , can be fully identified by a continuous path of X (Prakasa Rao, 2010), as the joint law of
{X, H} is degenerate, with p(H | X) being a Dirac measure. To avoid slow mixing, the algorithm
must decouple this dependence. This decoupling can in general be achieved by suitable reparam-
eterization, see the above references for H = 1/2, or by a particle algorithm (Andrieu et al.,
2010). In the present setting, the latter approach would require a sequential-in-time realization of
B H paths of cost O(N 2) via the Hosking (1984) algorithm or approximate algorithms of lower
cost (Norros et al., 1999). Such a method would then face further computational challenges, such
as overcoming path degeneracy and producing unbiased likelihood estimators of small variance.
The method developed in this paper is tailored to the particular structure of the models of interest,
that of a change of measure from a Gaussian law in high dimensions. Second, typical algorithms
for H = 1/2 make use of the Markovianity of X . They exploit the fact that given Y , the X -path
can be split into small blocks of time with updates on each block involving computations only
over its associated time period. For H |= 1/2, X is not Markovian, so a similar block update
requires calculations over its complete path. Hence, a potentially efficient algorithm should aim
to update large blocks.

In this paper, these issues are addressed in order to develop an effective Markov chain Monte
Carlo algorithm. The first issue is tackled via a reparameterization provided by the Davies and
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Inference for stochastic differential equations 811

Harte construction of B H . For the second issue, we resort to a version of the hybrid Monte Carlo
algorithm (Duane et al., 1987), adopting ideas from Beskos et al. (2011, 2013a). This algorithm
has mesh-free mixing time, and so is particularly appropriate for large N .

The method is applied to a class of stochastic volatility models of importance in finance and
econometrics. Use of memory in the volatility is motivated by empirical evidence (Ding et al.,
1993; Lobato & Savin, 1998). The autocorrelation function of squared returns is often observed
to be slowly decaying towards zero, not in an exponential manner that would suggest short-range
dependence, nor implying a unit root that would point to integrated processes. In discrete time,
such effects can be captured, for example, with the long-memory stochastic volatility model
of Breidt et al. (1998), where the log-volatility is a fractional autoregressive integrated moving
average process. In continuous time, Comte & Renault (1998) introduced the model

dSt =μSt dt + σS(Xt ) St dWt , S0 > 0, (2)

dXt = bX (Xt , ζ ) dt + σX (Xt , ζ ) dB H
t , X0 = x0 ∈ R, 0 � t � �. (3)

Here, St and Xt are the asset price and volatility processes, respectively, and W is standard
Brownian motion that is independent of B H . The definition also involves the length � > 0 of
the time period under consideration, as well as functions σS : R → R, bX : R × R

p → R and
σX : R × R

p → R, together with unknown parameters μ ∈ R and ζ ∈ R
p (p � 1). In Comte &

Renault (1998), the log-volatility is a fractional Ornstein–Uhlenbeck process, with H > 1/2, and
the paper argues that incorporating long memory in this way captures the empirically observed
strong smile effect for long maturity times. In contrast with previous work, we consider the
extended model that allows H < 1/2, and we show in § 4 that evidence from data points towards
medium-range dependence, H < 1/2, in the volatility of the S&P 500 index.

In the setting of (2) and (3), partial observations over X correspond to direct observations from
the price process S; that is, for times 0< t1 < · · ·< tn = � for some n � 1, we have

Yk = log Stk (k = 1, . . . , n), Y = {Y1, . . . , Yn}. (4)

Given Y , we aim to make inference for all parameters θ = (μ, ζ, H, x0) in our model. Inference
methods available in this partial observation setting are limited. Comte & Renault (1998) and
Comte et al. (2012) extracted information on the spot volatility from the quadratic variation of
the price, and subsequently used it to estimate θ . Rosenbaum (2008) linked the squared incre-
ments of the observed price process to the volatility and constructed a wavelet estimator of H .
A common feature of these approaches, and of related ones (Gloter & Hoffmann, 2004), is that
they require high-frequency observations. In principle, the method of Chronopoulou & Viens
(2012a,b) operates on data of any frequency and estimates H in a non-likelihood manner by cali-
brating estimated option prices over a grid of values of H against observed market prices. In this
paper we develop a computational framework for performing full Bayesian inference based on
data augmentation. Our approach is applicable even to low-frequency data. Consistency results
for high-frequency asymptotics in a stochastic volatility setting point to slow convergence rates
of estimators of H (Rosenbaum, 2008). In our case, we rely on the likelihood to retrieve max-
imal information from the data at hand, so our method could contribute to developing a better
empirical understanding of the amount of such information, strong or weak.

Our algorithm has the following characteristics. First, the computational cost per algorithmic
step is O(N log N ). Second, the algorithmic mixing time is mesh-free, O(1), with respect to
N ; that is, reducing the discretization error will not worsen the convergence properties, since
the algorithm is well-defined even when considering the complete infinite-dimensional latent
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812 A. BESKOS, J. DUREAU AND K. KALOGEROPOULOS

path X . Third, the algorithm decouples the full dependence between X and H . Finally, it is based
on a version of hybrid Monte Carlo simulation, employing Hamiltonian dynamics to allow large
steps in the state space while treating big blocks of X . In examples the whole of the X -path and
parameter θ are updated simultaneously.

Markov chain Monte Carlo methods with mesh-free mixing times for distributions that are
changes of measures from Gaussian laws in infinite dimensions have already appeared (Cotter
et al., 2013), with the closest references for hybrid Monte Carlo being Beskos et al. (2011, 2013a).
A contribution of the present work is to assemble various techniques, including the Davies and
Harte reparameterization to re-express the latent-path part of the posterior as a change of measure
from an infinite-dimensional Gaussian law, a version of hybrid Monte Carlo which is particu-
larly effective when run on the contrived infinite-dimensional latent-path space, and a careful
joint update procedure for the path and parameters, enforcing O(N log N ) costs for the complete
algorithm.

2. DAVIES AND HARTE SAMPLING AND REPARAMETERIZATION

2·1. Fractional Brownian motion sampling

Our Monte Carlo algorithm considers the driving fractional noise on a grid of discrete times.
We use the Davies and Harte method, sometimes called the circulant method, to construct
{B H

t , 0 � t � �} on the regular grid {δ, 2δ, . . . , Nδ} for some N � 1 and mesh size δ = �/N . The
algorithm samples the grid points via a linear transform from independent standard Gaussians.
This transform will be used in § 2·2 to decouple the latent variables from the Hurst parameter H .
The computational cost is O(N log N ) owing to use of the fast Fourier transform. The method
is based on the stationarity of the increments of fractional Brownian motion on the regular grid
and, in particular, exploits the Toeplitz structure of the covariance matrix of the increments; see
Wood & Chan (1994) for a complete description.

We briefly describe the Davies and Harte method, following Wood & Chan (1994). We define
the 2N × 2N unitary matrix P with elements Pjk = (2N )−1/2 exp{−π i jk/N } (0 � j, k � 2N −
1), where i2 = −1. Consider also the 2N × 2N matrix

Q =
(

Q11 Q12
Q21 Q22

)
,

with the N × N submatrices defined as follows: Q11 = diag(1, 2−1/2, . . . , 2−1/2); Q12 = (qi j )

where qi,i−1 = 2−1/2 for i = 1, . . . , N − 1 and otherwise qi j = 0; Q21 = (qi j ) where qi,N−i =
2−1/2 for i = 1, . . . , N − 1 and otherwise qi j = 0; Q22 = diaginv(1,−i 2−1/2, . . . ,−i 2−1/2),
where diaginv denotes a matrix with nonzero entries on the inverse diagonal. We define the diag-
onal matrix 
H = diag(λ0, λ1, . . . , λ2N−1) with the values

λk =
2N−1∑

j=0

c j exp(−π i jk/N ) (k = 0, . . . , 2N − 1).

Here (c0, c1, . . . , c2N−1)= {g(0), g(1), . . . , g(N − 1), 0, g(N − 1), . . . , g(1)}, where g(k)
denotes the covariance of increments of B H of lag k = 0, 1, . . . , i.e.,

g(k)= E{B H
1 (B

H
k+1 − B H

k )} = 1
2 |k + 1|2H + 1

2 |k − 1|2H − |k|2H .
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Inference for stochastic differential equations 813

The definition of the c j ( j = 0, 1, . . . , 2N − 1) implies that the λk are all real numbers. The
Davies and Harte method for generating B H is shown in Algorithm 1. Finding Q Z costs O(N ).
Finding 
H and then calculating P
1/2

H Q Z costs O(N log N ) due to a fast Fourier transform.

Separate approaches show that the λk are nonnegative for any H ∈ (0, 1), and hence
1/2
H is well-

posed (Craigmile, 2003). There are several other ways to sample a fractional Brownian motion;
see, for instance, the 2004 University of Twente MSc thesis of T. Dieker. However, the Davies
and Harte method is, to the best of our knowledge, the fastest exact method on a regular grid and
boils down to a simple linear transform that can be easily differentiated, which is needed for our
method.

Algorithm 1. Simulation of stationary increments
(

B H
δ , B H

2δ − B H
δ , . . . , B H

Nδ − B H
(N−1)δ

)
.

(i) Sample Z ∼ N (0, I2N ).
(ii) Calculate Z ′ = δH P
1/2

H Q Z .
(iii) Return the first N elements of Z ′.

2·2. Reparameterization

Algorithm 1 gives rise to a linear mapping Z �→ (B H
δ , . . . , B H

Nδ) to generate B H on a regu-
lar grid of size N from 2N independent standard Gaussian variables. Thus, the latent variable
principle described in § 1 is implemented using the vector Z , a priori independent of H , rather
than using the solution X of (1). Indeed, we work with the joint posterior of (Z , θ), which has a
density with respect to

⊗2N
i=1 N (0, 1)⊗ Lebq , namely the product of 2N standard Gaussian laws

and the q-dimensional Lebesgue measure. Analytically, the posterior distribution�N for (Z , θ)
is specified as follows:

d�N

d{⊗2N
i=1 N (0, 1)× Lebq}(Z , θ | Y )∝ p(θ) pN (Y | Z , θ). (5)

In (5) and the following, the subscript N emphasizes the finite-dimensional approximations due
to using an N -dimensional proxy for the infinite-dimensional path X . Some care is needed here,
as standard Euler schemes may not converge when used to approximate stochastic integrals driven
by fractional Brownian motion. We explain this in § 2·3 and detail the numerical scheme in the
Supplementary Material. The target density can be written as

�N (Z , θ)∝ exp
{
−1

2〈Z , Z〉 −�(Z , θ)
}

(6)

where, in agreement with (5), we have defined

�(Z , θ)= − log p(θ)− log pN (Y | Z , θ). (7)

In § 3 we describe an efficient Markov chain Monte Carlo sampler tailored to sampling (6).

2·3. Diffusions driven by fractional Brownian motion

An extensive literature exists on the stochastic differential equation (1) and its nonscalar exten-
sions, involving various definitions of stochastic integration with respect to B H and ways of
determining a solution; see Biagini et al. (2008). For scalar B H , the Doss–Sussmann representa-
tion (Sussmann, 1978) provides the simplest framework for interpreting (1) for all H ∈ (0, 1).
It involves a pathwise approach, whereby for any t �→ B H

t (ω) one obtains a solution of the
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814 A. BESKOS, J. DUREAU AND K. KALOGEROPOULOS

differential equation for all continuously differentiable paths in a neighbourhood of B H· (ω) and
considers the value of this mapping at B H· (ω). Conveniently, the solution found in this way
follows the rules of standard calculus and coincides with the Stratonovich representation when
H = 1/2.

The numerical solution of fractional stochastic differential equations is a topic of intensive
research (Mishura, 2008). As shown in a 2013 Harvard University technical report by M. Lysy
and N. S. Pillai, care is needed because a standard Euler scheme applied to B H -driven multiplica-
tive stochastic integrals may diverge to infinity for H < 1/2. When allowing H < 1/2, we must
restrict attention to a particular family of models to get a practical method. For the stochastic
volatility class in (2) and (3), we can assume a Sussmann solution for the volatility equation (1).
In order to get the corresponding numerical scheme, one can follow the approach in the 2013
technical report by Lysy and Pillai and use the Lamperti transform,

Ft =
∫ Xt

σ−1
X (u, ζ ) du,

so that Ft has additive noise. A standard Euler scheme for Ft will then converge to the analytical
solution in an appropriate mode, under regularity conditions. This approach can in principle be
followed for general models with a scalar differential equation and driving noise B H . The price
process differential equation (2) is then interpreted in the usual Itô way. In § 4 we will extend
the model in (2) and (3) to allow for a leverage effect. In that case, the likelihood p(Y | BH ) will
involve a multiplicative stochastic integral over BH . Due to the particular structure of this class of
models, the integral can be replaced with a Riemannian one, allowing the use of a standard finite
difference approximation scheme. The Supplementary Material details the numerical method
used in the applications. For multi-dimensional models one cannot avoid multiplicative stochastic
integrals. For H > 1/2 there is a well-defined framework for the numerical approximation of
multiplicative stochastic integrals driven by B H ; see an unpublished 2013 University of Kansas
manuscript available from Y. Hu. For 1/3< H < 1/2 one can use a Milstein-type scheme, and
third-order schemes are required for 1/4< H � 1/3 (Deya et al., 2012).

3. AN EFFICIENT MARKOV CHAIN MONTE CARLO SAMPLER

3·1. Standard hybrid Monte Carlo algorithm

We use a hybrid Monte Carlo algorithm to explore the posterior of Z and θ in (6). The standard
method was introduced by Duane et al. (1987), but we employ an advanced version, tailored to
the structure of the distributions of interest and closely related to algorithms developed in Beskos
et al. (2011, 2013a) for effective sampling of changes of measures from Gaussian laws in infinite
dimensions. First we briefly describe the standard algorithm.

The state space is extended via the velocity v = (vz, vθ ) ∈ R
2N+q . The original arguments

x = (z, θ) ∈ R
2N+q can be thought of as location. The total energy function is, for � in (7),

H(x, v; M)=�(x)+ 1
2〈z, z〉 + 1

2〈v,Mv〉, (8)

with a user-specified positive-definite mass matrix M , involving the potential �(x)+ 〈z, z〉/2
and kinetic energy 〈v,Mv〉/2. Hamiltonian dynamics on R

2N+q express conservation of energy
and are defined via the system of differential equations dx/dt = M−1(∂H/∂v), M(dv/dt)=
−∂H/∂x , which, in the context of (8), become dx/dt = v, M(dv/dt)= −(z, 0)T − ∇�(x). In
general, a good choice of M would resemble the inverse covariance of the target �N (x). In our
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Inference for stochastic differential equations 815

context, guided by the prior structure of (z, θ), we set

M =
(

I2N 0
0 A

)
, A = diag(ai , . . . , aq) (9)

and rewrite the Hamiltonian equations as

dx

dt
= v,

dv

dt
= −

(
z
0

)
− M−1∇�(x). (10)

The standard hybrid Monte Carlo algorithm discretizes (10) via a leapfrog scheme, i.e.,

vh/2 = v0 − h

2
(z0, 0)T − h

2
M−1∇�(x0),

xh = x0 + hvh/2, (11)

vh = vh/2 − h

2
(zh, 0)T − h

2
M−1∇�(xh),

where h > 0. Scheme (11) gives rise to the operator (x0, v0) �→ψh(x0, v0)= (xh, vh). The sam-
pler runs up to a time horizon T > 0 via the synthesis of I = 
T/h� leapfrog steps, so we define
ψ I

h to be the synthesis of I mappings ψh . The dynamics in (10) preserve the total energy and are
invariant for the density exp{−H(x, v; M)}, but their discretized version requires an accept/reject
correction. The full method is shown in Algorithm 2, with Px denoting the projection on x . The
proof that Algorithm 2 gives a Markov chain which preserves �N (x) is based on ψ I

h being
volume-preserving and having the symmetricity property ψ I

h (xI ,−vI )= (x0,−v0), as with the
exact solver of the Hamiltonian equations; see, for example, Duane et al. (1987). For α, β > 0
we denote by α ∧ β their minimum.

Algorithm 2. Standard hybrid Monte Carlo algorithm, with target �N (x)=�N (Z , θ)
in (6).

(i) Start with an initial value x (0) ∈ R
2N+q and set k = 0.

(ii) Given x (k), sample v(k) ∼ N (0,M−1) and propose x� =Px ψ
I
h (x

(k), v(k)).
(iii) Calculate a = 1 ∧ exp[H(x (k), v(k); M)− H{ψ I

h (x
(k), v(k)); M}].

(iv) Set x (k+1) = x� with probability a; otherwise set x (k+1) = x (k).
(v) Set k → k + 1 and go to (ii).

Remark 1. The index t of the Hamiltonian equations must not be confused with the index t
of the diffusion processes in the models of interest. When applied here, each hybrid Monte Carlo
step updates a complete sample path, so the t-index for paths can be regarded as a space direction.

3·2. Advanced hybrid Monte Carlo algorithm

Algorithm 2 provides an inappropriate proposal x� for increasing N (Beskos et al., 2011),
with the acceptance probability approaching 0, when h and T are fixed. Beskos et al. (2013b)
suggested that controlling the acceptance probability requires a step size of h = O(N−1/4).
Advanced hybrid Monte Carlo simulation avoids this degeneracy by employing a modified
leapfrog scheme that yields better performance in high dimensions.

Remark 2. Choice of the mass matrix M as in (9) is critical for the final algorithm. Our
choosing I2N for the upper-left block of M is motivated by the prior for Z . We will see in § 3·3
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816 A. BESKOS, J. DUREAU AND K. KALOGEROPOULOS

that this choice also ensures the well-posedness of the algorithm as N → ∞. A posteriori, we
have found that the information in the data spreads fairly uniformly over Z1, . . . , Z2N , so I2N

seems a sensible choice also under the posterior distribution. For the choice of the diagonal A, in
the numerical work we used the inverse of the marginal posterior variances of θ as estimated by
preliminary runs. More automated choices could involve adaptive Markov chain Monte Carlo or
Riemannian manifold approaches (Girolami & Calderhead, 2011) using the Fisher information.

Remark 3. The development below is closely related to the approach taken by Beskos et al.
(2011), who illustrated the mesh-free mixing property of the algorithm in the context of distri-
butions of diffusion paths driven by Brownian motion. In this paper, the algorithm is extended to
treat also the model parameters and the different set-up with a product of standard Gaussians as
the high-dimensional Gaussian reference measure.

We develop the method as follows. The Hamiltonian equations (10) are now split into two
parts:

dx/dt = 0, dv/dt = −M−1∇�(x), (12)

dx/dt = v, dv/dt = −(z, 0)T, (13)

where the ordinary differential equations (12) and (13) can both be solved analytically. We obtain
a numerical integrator for (10) by synthesizing the steps of (12) and (13). We define the solution
operators of (12) and (13) to be

�t (x, v)=
{

x, v − t M−1∇�(x)
}
, (14)

�̃t (x, v)=
[{cos(t) z + sin(t) vz, θ + tvθ }, {− sin(t) z + cos(t) vz, vθ }

]
. (15)

The numerical integrator for (10) is

�h =�h/2 ◦ �̃h ◦�h/2 (16)

for small h > 0. As with the standard hybrid Monte Carlo algorithm, we synthesize I = 
T/h�
leapfrog steps�h and denote the complete mapping by� I

h . Notice that�h is volume-preserving
and that, for (xh, vh)=�h(x0, v0), the symmetricity property �h(xh,−vh)= (x0,−v0) holds.
Owing to these properties, the acceptance probability has the same expression as for the standard
hybrid Monte Carlo algorithm. The full method is shown in Algorithm 3.

Algorithm 3. Advanced hybrid Monte Carlo algorithm, with target �N (x)=�N (Z , θ)
in (6).

(i) Start with an initial value x (0) ∼ ⊗2N
i=1 N (0, 1)× p(θ) and set k = 0.

(ii) Given x (k), sample v(k) ∼ N (0,M−1) and propose x� =Px �
I
h (x

(k), v(k)).

(iii) Calculate a = 1 ∧ exp[H(x (k), v(k); M)− H{� I
h (x

(k), v(k)); M}].
(iv) Set x (k+1) = x� with probability a; otherwise set x (k+1) = x (k).
(v) Set k → k + 1 and go to (ii).

3·3. Advanced hybrid Monte Carlo algorithm with N → ∞.

An important property of the advanced method is its mesh-free mixing time. As N increases
while h and T are held fixed, the convergence/mixing properties of the Markov chain do not dete-
riorate. To illustrate this, we show that there is a well-defined algorithm in the limit as N → ∞.
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Inference for stochastic differential equations 817

Remark 4. We follow closely the arguments in Beskos et al. (2013a), with the differences
discussed in Remark 3. We include here a proof of the well-posedness of the advanced hybrid
Monte Carlo algorithm in the case where the state space is infinite-dimensional, as it cannot be
deduced directly from Beskos et al. (2013a). The proof provides insight into the algorithm, for
instance highlighting those aspects that lead to mesh-free mixing.

Let ∇z denote the vector of partial derivatives over the z-component, so that ∇x = (∇z,∇θ )T.
Here z ∈ R

∞, and the distribution of interest corresponds to �N in (6) as N → ∞, denoted by
� and defined on the infinite-dimensional space H= R

∞ × R
q via the change of measure

d�

d{⊗∞
i=1 N (0, 1)× Lebq}(Z , θ | Y )∝ exp{−�(Z , θ)} (17)

for a function � : H→ R. We also need the vector of partial derivatives ∇� : H→H. We have
the velocity v = (vz, vθ ) ∈H, and the matrix M , specified in (9) for finite dimensions, has the
infinite-dimensional identity matrix I∞ in its upper-left block instead of I2N ; that is, M : H→
H is the linear operator (z, θ)T �→ M(z, θ)T = (z, Aθ)T. Accordingly, �h/2, �̃h, �h : H × H→
H × H are defined as in (14)–(16) with domain and range of values over the infinite-dimensional
vector space H.

We consider the joint location-velocity law on (x, v), Q(dx, dv)=�(dx)⊗ N (0,M−1)(dv).
The main idea is that �h in (16) projects (x0, v0)∼ Q to (xh, vh) having a distribution abso-
lutely continuous with respect to Q, an attribute that implies existence of a nonzero acceptance
probability when N = ∞, under conditions on ∇�. This is clear for �̃h in (15), as it applies a
rotation in the (z, vz) space which is invariant for

∏∞
i=1 N (0, 1)⊗ ∏∞

i=1 N (0, 1); thus the over-
all step preserves absolute continuity of Q(dx, dv). Then, for step �h/2 in (14), the gradient
∇z�(z, θ) must lie in the so-called Cameron–Martin space of

∏∞
i=1 N (0, 1) for the transla-

tion v �→ v − (h/2)M−1∇�(x) to preserve absolute continuity of the v-marginal Q(dv). This
Cameron–Martin space is the space of squared summable infinite vectors, which we denote by
�2 (Da Prato & Zabczyk, 1992, ch. 2). In contrast, for the standard hybrid Monte Carlo algorithm
one can consider even the case of �(x) being a constant, so that ∇�≡ 0, to see that, immedi-
ately from the first step in the leapfrog update in (11), an input sample from the target Q gets
projected to a variable that has singular law with respect to Q when N = ∞, and therefore has
zero acceptance probability.

For a rigorous result, we first define a reference measure on the (x, v) space,

Q0 = Q0(dx, dv)=
{ ∞∏

i=1

N (0, 1)⊗ Lebq

}
(dx)⊗ N (0,M−1)(dv),

so that the joint target is Q(dx, dv)∝ exp{−�(x)} Q0(dx, dv). We also consider the sequence
of probability measures on H × H defined by Q(i) = Q ◦�−i

h (i = 1, . . . , I ), corresponding to
the push-forward projection of Q via the leapfrog steps. For given (x0, v0), we write (xi , vi )=
� i

h(x0, v0). The difference in energy �H(x0, v0) appearing in the statement of Proposition 1
below is still defined as�H(x0, v0)= H(xI , vI ; M)− H(x0, v0; M) for the energy function in
(8), with the obvious extension to R

∞ of the inner product involved. Even if H(x0, v0; M)=
∞ with probability 1, the difference �H(x0, v0) does not explode, as implied by the analytic
expression for �H(x0, v0) given in the proof of Proposition 1 in the Appendix. We denote the
indicator function by I, so that IE = 1 if a given statement E is true and 0 otherwise.
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818 A. BESKOS, J. DUREAU AND K. KALOGEROPOULOS

PROPOSITION 1. Assume that ∇z�(z, θ) ∈ �2 almost surely under
∏∞

i=1 N (0, 1)⊗ p(dθ).
Then:

(i) Q(I ) is absolutely continuous with respect to Q0, with probability density

dQ(I )

dQ0
(xI , vI )= exp{�H(x0, v0)−�(xI )};

(ii) the Markov chain with transition dynamics for current position x0 ∈H,

x ′ = IU�a(x0,v0) xI + IU>a(x0,v0)x0,

where U ∼ Un[0, 1] and the noise is v0 ∼ ∏∞
i=1 N (0, 1)⊗ Nq(0, A−1), has invariant

distribution �(dx) as in (17).

The proof is given in the Appendix.

Remark 5. The condition ∇z�(z, θ) ∈ �2 relates to the fact that the data have a finite amount
of information about Z , so the sensitivity of the likelihood for each individual Zi can be small
for large N . We have not pursued this further analytically, as Proposition 1 already highlights the
structurally important mesh-free property of the method.

4. FRACTIONAL STOCHASTIC VOLATILITY MODELS

4·1. Data and model

To illustrate the application of Algorithm 3, we return to the fractional stochastic volatility
models. Starting from (2) and (3), we henceforth work with Ut = log(St ) and use Itô’s formula
to rewrite the equations in terms of Ut and Xt . We also extend the model to allow correlation
between dUt and dXt :

dUt =
{
μ− σS(Xt )

2/2
}

dt + σS(Xt )
{
(1 − ρ2)1/2 dWt + ρ dB H

t

}
,

dXt = bX (Xt , ζ ) dt + σX (Xt , ζ ) dB H
t , 0 � t � �,

(18)

for a parameter ρ ∈ (−1, 1); so henceforth θ = (μ, ζ, H, ρ, x0) ∈ R
q with q = p + 4. We set

H ∈ (0, 1), thus allowing for medium-range dependence, in contrast to previous works, which
typically restricted attention to H ∈ (1/2, 1). Given the observations Y from the log-price process
in (4), there is a well-defined likelihood p(Y | B H , θ). Conditionally on the latent driving noise
B H , the log-price process U is Markovian. From the specification of the model, we have that

Yk | Yk−1, B H , θ ∼ N
{

mk(B
H , θ), �k(B

H , θ)
}

(k = 1, . . . , n), (19)

where Y0 ≡ U0 is assumed fixed, with mean and variance parameters

mk(B
H , θ)= Yk−1 +

∫ tk

tk−1

{
μ− σS(Xt )

2/2
}

dt + ρ

∫ tk

tk−1

σS(Xt ) dB H
t ,

�k(B
H , θ)= (1 − ρ2)

∫ tk

tk−1

σS(Xt )
2 dt.

From (19), it is trivial to write down a complete expression for the likelihood p(Y | B H , θ).
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Inference for stochastic differential equations 819

Recalling the mapping Z �→ (B H
δ , . . . , B H

Nδ) from the Davies and Harte method described in
§ 2, for N � 1 and discretization step δ = �/N , the expression for p(Y | B H , θ) in continuous
time will provide an expression for pN (Y | Z , θ) in discrete time upon consideration of a numer-
ical scheme. In § 2·3 we described the Doss–Sussmann interpretation of the stochastic volatility
model; in the Supplementary Material we present in detail the corresponding numerical scheme.
Expressions for pN (Y | Z , θ) and the derivatives ∇Z log pN (Y | Z , θ) and ∇θ log pN (Y | Z , θ)
required by the Hamiltonian methods are in the Supplementary Material.

The methodology provided in this paper allows us to handle data from different sources and
on different scales, with little additional effort. To illustrate this, we analyse two extended sets
of data that contain additional information over just using daily observations of Ut . The first
extension treats volatility proxies, constructed from option prices, as direct observations on Xt ,
as in Aı̈t-Sahalia & Kimmel (2007), Jones (2003) and Stramer & Bognar (2011). Aı̈t-Sahalia &
Kimmel (2007) used two proxies from the VIX index. First, they considered a simple unadjusted
proxy that uses VIX data to directly obtain σS(Xt ) and therefore Xt . Second, an adjusted inte-
grated volatility proxy is considered, assuming that the pricing measure has a linear drift; see Aı̈t-
Sahalia & Kimmel (2007, § 5.1). The integrated volatility proxy was also used by Jones (2003)
and Stramer & Bognar (2011) to provide observations of σS(Xt ), where additional measurement
error is incorporated into the model. We take the simpler approach and use the unadjusted volatil-
ity proxy as a noisy measurement device for σS(Xt ), for two reasons. First, our focus is mainly on
exploring the behaviour of our algorithm in a different observation regime, so we want to avoid
additional subject-specific considerations, such as assumptions on the pricing measure. Second,
the difference between the two approaches is often negligible; see, for example, the simulation
experiments in Aı̈t-Sahalia & Kimmel (2007) for the Heston model. The approaches of Jones
(2003) and Stramer & Bognar (2011) can still be incorporated into our framework. More gener-
ally, the combination of option and asset prices must be investigated further even in the context
of standard Brownian motion.

Following the above discussion, we denote the additional noisy observations from VIX proxies
by Y x

k and assume that they provide information on Xtk via

Y x
k = Xtk + εk (k = 1, . . . , n), (20)

where the εk are independent N (0, τ 2) variates. We refer to the dataset consisting of observations
Y as type A and the dataset consisting of Y and Y x as type B. The second extension builds on the
type B dataset and incorporates intraday observations on Y , thus encompassing two observation
frequency regimes; this is referred to as type C.

The parameter τ controls the weight placed on the volatility proxies in order to form a weighted
averaged volatility measurement that combines information from asset and option prices. Hence
we treat τ as a user-specified parameter. In the following numerical examples, we set τ = 0·05
based on estimates from a preliminary run of the full model applied to the S&P 500/VIX
time series. In the Supplementary Material we give pN (Y | Z , θ), ∇Z log pN (Y | Z , θ) and
∇θ log pN (Y | Z , θ) only for the type A case, but it is straightforward to include terms due to
the extra data in (20).

4·2. Illustration on simulated data

We apply our method to the model of Comte & Renault (1998), also considered in
Chronopoulou & Viens (2012a,b), but we further include an extension for correlated noise as
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Fig. 1. Traceplots from 2 × 104 iterations of the advanced hybrid Monte Carlo algorithm for dataset Sim-A. True
parameter values are as in Table 1 with H = 0·3. The execution time was about 5 h using Matlab code.

in (18); that is, we have

dUt = {
μ− exp(Xt )/2

}
dt + exp(Xt/2)

{
(1 − ρ2)1/2 dWt + ρ dB H

t

}
,

dXt = κ(μX − Xt ) dt + σX dB H
t .

(21)

Similar to related work, the model is completed with priors; see, for example, an unpublished
2010 Washington University technical report by S. Chib. The prior for μX is normal, with
95% credible interval spanning the range from the minimum to the maximum volatility val-
ues over the entire period under consideration. The prior for σ 2

X is an inverse gamma distri-
bution with shape and scale parameters α= 2 and β = α × 0·03 × 2521/2. Vague priors are
chosen for the remaining parameters: Un(0, 1) and Un(−1, 1) for H and ρ, and N (0, 106)

for μ.
We first apply Algorithm 3 to simulated data. We generated 250 observations from model

(21), corresponding roughly to a year of data. We considered two datasets: Sim-A, with 250
daily observations on St only, as in (4); and Sim-B, with additional daily observations on Xt for
the same time period, contaminated with measurement error as in (20). We consider H = 0·3,
0·5 and 0·7, and use a discretization step δ = 0·1 for the Euler approximation of the path of Z ,
resulting in 2N = 2 × 250 × 10 = 5000. The true values of the parameters were chosen to be
similar to those in previous analyses of the S&P 500/VIX indices based on standard Markov
models (Aı̈t-Sahalia & Kimmel, 2007) and to those we found from the data analysis in § 4·3.
The Hamiltonian integration horizon was set to T = 0·9 for Sim-A and T = 1·5 for Sim-B. The
number of leapfrog steps was tuned, ranging from 10 to 50, to achieve an average acceptance rate
between 70% and 80% across the different simulated datasets.

Figures 1 and 2 show traceplots for H = 0·3; the plots for H = 0·5 and H = 0·7 are similar. The
mixing of the chain appears to be quite good, considering the complexity of the model. Table 1
shows posterior estimates obtained from running the advanced hybrid Monte Carlo algorithm on
datasets Sim-A and Sim-B.
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Fig. 2. Traceplots as in Fig. 1 but for dataset Sim-B, with true parameter values as in Table 1 and H = 0·3. The
execution time was about 7 h, due to using 50 leapfrog steps, whereas the algorithm for Sim-A used 30 leapfrog

steps.

Table 1. Posterior summary statistics for model (21) for datasets Sim-A and Sim-B; the statis-
tics shown are the estimates of the 2·5 and 97·5 percentiles, the mean and the median as

obtained from the advanced hybrid Monte Carlo algorithm (Algorithm 3)

Dataset Sim-A Dataset Sim-B
Dataset Parameter True value 2·5% 97·5% Mean Median 2·5% 97·5% Mean Median

H = 0·3 μ 0·25 0·18 0·76 0·46 0·46 0·01 0·55 0·28 0·28
ρ −0·75 −0·69 −0·12 −0·40 −0·40 −0·75 −0·57 −0·67 −0·67
κ 4·00 1·13 12·15 3·79 2·79 1·01 7·40 3·22 2·74
μX −5·00 −5·62 −3·44 −4·46 −4·42 −5·85 −3·74 −4·95 −4·98
H 0·30 0·20 0·44 0·30 0·30 0·18 0·32 0·27 0·28
σX 2·00 0·90 3·90 1·95 1·78 1·45 2·07 1·75 1·75
X0 −5·00 −5·05 −4·07 −4·59 −4·60 −5·08 −4·87 −4·97 −4·97

H = 0·5 μ 0·25 0·01 0·99 0·48 0·470 −0·14 0·39 0·14 0·15
ρ −0·75 −0·91 −0·13 −0·60 −0·62 −0·88 −0·75 −0·82 −0·82
κ 4·00 1·33 19·94 7·38 6·24 2·49 6·53 3·96 3·75
μX −5·00 −5·41 −3·94 −4·83 −4·90 −5·90 −3·87 −4·71 −4·61
H 0·50 0·29 0·74 0·50 0·49 0·48 0·55 0·52 0·52
σX 2·00 0·83 4·60 2·29 2·14 1·74 2·53 2·10 2·09
X0 −5·00 −5·75 −4·56 −5·15 −5·13 −5·04 −4·87 −4·96 −4·96

H = 0·7 μ 0·25 0·19 0·38 0·28 0·28 −0·09 0·39 0·15 0·14
ρ −0·75 −0·78 −0·25 −0·60 −0·62 −0·79 −0·68 −0·72 −0·73
κ 4·00 1·13 12·12 4·89 4·31 2·18 15·57 6·82 7·97
μX −5·00 −5·65 −4·93 −5·38 −5·42 −5·52 −4·38 −5·02 −5·00
H 0·70 0·47 0·80 0·61 0·59 0·62 0·83 0·74 0·73
σX 2·00 0·90 3·15 1·72 1·61 1·22 5·33 2·92 3·04
X0 −5·00 −5·47 −4·88 −5·07 −5·03 −5·15 −4·97 −5·06 −5·06

The results for dataset Sim-A in Table 1 show reasonable agreement between the posterior
distribution and the true parameter values. Several of the credible intervals are wide, reflecting
the small amount of information in Sim-A for particular parameters. In the case of medium-range
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memory with H < 0·3, the 95% credible interval is [0·20, 0·44]. When H = 0·5 or 0·7, the cred-
ible intervals are wider. In particular, for H = 0·7, this may suggest that the data do not provide
substantial evidence of long-range memory. In such cases, one option is to consider richer datasets
such as Sim-B where, as can be seen from Table 1, the credible interval is tighter and does not
contain 0·5. Another option, which does not involve using volatility proxies, is to consider a
longer or more frequently observed time series using intraday data. For example, rerunning the
algorithm with a denser version of the Sim-A dataset containing two equispaced observations
per day yields a 95% credible interval of [0·58, 0·74] for H . The posterior distribution for Sim-B
is more informative for all parameters and provides accurate estimates of H . The 95% credible
interval for H is below 0·5 when H = 0·3 and above 0·5 when H = 0·7.

4·3. Real data from S&P 500 and VIX time series

Dataset A consists of S&P 500 values only, i.e., discrete-time observations of U . We consid-
ered daily S&P 500 values from 5 March 2007 to 5 March 2008, before the Bear Stearns closure,
and from 15 September 2008 to 15 September 2009, after the Lehman Brothers closure.

Dataset B is as dataset A but with daily VIX values for the same periods added.
Dataset C is as dataset B but with intraday observations of S&P 500 added; for each day we

extracted three equispaced observations from 8:30 to 15:00.
Table 2 shows posterior estimates obtained from our algorithm for datasets A, B and C. The

integration horizon T was set to 0·9, 1·5 and 1·5 for datasets A, B and C, respectively, and the
numbers of leapfrog steps were chosen to achieve acceptance probabilities between 0·7 and 0·8.

The primary purpose of this analysis was to illustrate application of the algorithm in vari-
ous observation regimes, so we do not attempt to draw strong conclusions from the results. Both
extensions of the fractional stochastic volatility model considered in this paper, allowing H < 0·5
and ρ |= 0, seem to provide useful additions. In all cases, the concentration of the posterior distri-
bution of H below 0·5 suggests medium-range dependence, in agreement with the results of an
unpublished 2014 City University of New York manuscript by J. Gatheral. Moreover, the value of
ρ is negative in all cases, suggesting the presence of a leverage effect. Our modelling and infer-
ential framework provides a useful tool for further investigation of the S&P 500 index in other
time periods, with different types of datasets and over various time scales.

4·4. Comparison of different hybrid Monte Carlo schemes

The results in § § 4·2 and 4·3 were obtained by updating jointly the latent path and parameters
with the advanced hybrid Monte Carlo method in Algorithm 3, labelled Scheme 1 in Table 3. In
this subsection we compare this Markov chain Monte Carlo scheme with four variants. Scheme 2
is the Gibbs counterpart of Scheme 1. Scheme 3 performs joint updates of paths and parameters,
like Scheme 1, but according to the standard hybrid Monte Carlo method, Algorithm 2. Schemes 4
and 5 are the same as Schemes 1 and 3, respectively, but with a smaller time discretization step.
In each case, the same mass matrix was used, of the form (9). The integration horizon was fixed
at T = 0·9 and T = 1·5 for datasets Sim-A and Sim-B, respectively, and the acceptance prob-
ability was between 0·7 and 0·8, based on previous experience. The time discretization step of
the differential equations was set to δ = 0·1 for Schemes 1, 2 and 3, whereas for Schemes 4 and
5 it was set to δ = 0·01 to illustrate the behaviour of the standard and advanced hybrid Monte
Carlo algorithms at finer resolution. Comparisons of the sampling efficiency were made by look-
ing at the minimum effective sample sizes (Geyer, 1992) over θ and z, denoted by minθ (ESS),
minz(ESS) and minθ,z(ESS); these quantities were computed from the lagged autocorrelations of
the traceplots, and link to the percentage of the total number of Monte Carlo draws that can be
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Table 2. Posterior summary statistics for model (21) for datasets A, B and C

Parameters
Dataset μ ρ κ μX H σX X0

A 05/03/07–05/03/08 2·5% −0·28 −0·77 3·33 −5·31 0·13 0·39 −6·07
(before Bear 97·5% 0·19 −0·13 60·37 −4·27 0·40 1·42 −5·37
Stearns closure) Mean −0·02 −0·47 26·03 −4·79 0·30 0·75 −5·71

Median −0·01 −0·48 24·67 −4·78 0·31 0·70 −5·71

15/09/08–15/09/09 2·5% −0·26 −0·73 1·06 −4·34 0·17 0·72 −4·84
(after Lehman 97·5% 0·47 −0·19 27·26 −2·93 0·46 3·56 −3·94
Brothers closure) Mean 0·10 −0·49 8·07 −3·63 0·36 1·61 −4·39

Median 0·10 −0·49 5·83 −3·61 0·38 1·42 −4·39

B 05/03/07–05/03/08 2·5% −0·12 −0·75 1·81 −5·28 0·25 0·59 −5·84
(before Bear 97·5% 0·27 −0·50 7·46 −4·44 0·33 0·90 −5·65
Stearns closure) Mean 0·07 −0·62 4·47 −4·93 0·29 0·72 −5·74

Median 0·03 −0·62 4·47 −4·95 0·29 0·72 −5·74

15/09/08–15/09/09 2·5% 0·08 −0·48 1·01 −4·50 0·34 0·60 −4·26
(after Lehman 97·5% 0·23 −0·19 2·13 −2·93 0·42 0·84 −4·08
Brothers closure) Mean 0·08 −0·49 1·35 −3·63 0·38 0·71 −4·17

Median 0·08 −0·49 1·27 −3·61 0·38 0·71 −4·17

C 05/03/07–05/03/08 2·5% −0·14 −0·56 1·10 −5·54 0·26 0·68 −5·80
(before Bear 97·5% 0·32 −0·27 4·14 −4·61 0·35 0·93 −5·61
Stearns closure) Mean 0·10 −0·42 2·07 −5·07 0·31 0·80 −5·71

Median 0·10 −0·43 1·86 −5·10 0·32 0·81 −5·71

15/09/08–15/09/09 2·5% −0·59 −0·48 1·21 −4·11 0·28 0·45 −4·32
(after Lehman 97·5% −0·33 −0·30 2·31 −3·37 0·37 0·74 −4·08
Brothers closure) Mean −0·47 −0·39 1·54 −3·75 0·33 0·59 −4·20

Median −0·47 −0·39 1·46 −3·74 0·33 0·58 −4·21

Table 3. Relative efficiency of five versions of hybrid Monte Carlo schemes on datasets
Sim-A and Sim-B

Dataset Sampler minθ (ESS) minz(ESS) Leapfrogs Time (s)
minθ,z(ESS)

time
Rel.

minθ,z(ESS)

time
(%) (%)

Sim-A Scheme 1 1·47 3·95 10 0·87 1·70 9·98
Scheme 2 0·15 4·05 10 0·88 0·17 1·00
Scheme 3 1·15 1·20 10 0·88 1·33 7·81
Scheme 4 1·48 4·35 10 1·27 1·17 4·39
Scheme 5 1·35 3·50 40 5·06 0·27 1·00

Sim-B Scheme 1 3·19 8·81 50 3·35 0·95 5·32
Scheme 2 0·60 5·00 50 3·41 0·18 1·00
Scheme 3 1·20 3·40 50 3·35 0·36 2·00
Scheme 4 1·94 8·40 50 6·13 0·32 3·76
Scheme 5 1·03 6·95 100 12·26 0·08 1·00

considered as independent samples from the posterior. The computing time per iteration was also
recorded.

The schemes were run on the datasets Sim-A and Sim-B with H = 0·3; see Table 3. We first
compare Schemes 1 and 2; on Sim-A and Sim-B, Scheme 1 was 9·98 and 5·32 times more effi-
cient, respectively, illustrating the effect of strong posterior dependence between Z and θ . This
dependence is introduced by the data, since Z and θ are independent a priori. The comparison
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also illustrates the gain provided by the advanced hybrid Monte Carlo algorithm. In line with the
associated theory, this gain increases as the discretization step δ becomes smaller, as Scheme 4 is
4·39 and 3·76 times more efficient than Scheme 5 on the Sim-A and Sim-B datasets, respectively.

5. DISCUSSION

Our method performs reasonably well and provides one of the few options, as far as we know,
for routine Bayesian likelihood-based estimation for partially observed diffusions driven by frac-
tional noise. Current computational capabilities and algorithmic improvements allow practition-
ers to experiment with non-Markovian model structures of the class considered in this paper in
generic nonlinear contexts.

It is of interest to investigate the implications of the fractional model in option pricing for
H < 0·5. The joint estimation of physical and pricing measures based on asset and option prices
can be studied in more depth, for both white and fractional noise. Moreover, the samples from
the joint posterior of H and the other model parameters can be used to incorporate parameter
uncertainty into the option pricing procedure. The posterior samples can also be used for Bayesian
hypothesis testing, although this may require the marginal likelihood. Also, models with time-
varying H are worth investigating when considering long time series. The Davies and Harte
method, applied to blocks of periods of constant H given a stream of standard normal variates,
would typically create discontinuities in conditional likelihoods, so a different and sequential
method could turn out to be more appropriate in this context.

Another direction for investigation involves combining the algorithm in this paper, which
focuses on computational robustness in high dimensions, with recent Riemannian manifold meth-
ods (Girolami & Calderhead, 2011), which automate the specification of the mass matrix and
perform efficient Hamiltonian transitions on distributions with highly irregular contours.

Looking to general Gaussian processes beyond fractional Brownian motion, our method can
also be applied to models in which the latent variables correspond to general stationary Gaussian
processes, as the initial Davies and Harte transform and all other steps in the development of
our method can be carried out in this context. For instance, a potential area of application is to
Gaussian prior models for infinite-dimensional spatial processes.

We have assumed existence of a nontrivial Lebesgue density for observations given the latent
diffusion path and parameters; however, this is not the case when data correspond to direct obser-
vations of the process, where one needs to work with Girsanov densities for diffusion bridges.
The 2013 Harvard University technical report by M. Lysy and H. S. Pillai looks at this set-up.

Finally, another application would be to parametric inference for generalized Langevin equa-
tions with fractional noise, which arise as models in physics and biology (Kou & Xie, 2004).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online presents the likelihood pN (Y | Z , θ)
and the derivatives ∇Z pN (Y | Z , θ) and ∇θ log pN (Y | Z , θ) required by the Hamiltonian meth-
ods, for the stochastic volatility class of models in (18) under observation regime (4).
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APPENDIX

Proof of Proposition 1

The proof that standard hybrid Monte Carlo preserves QN (x, v)= exp{−H(x, v; M)}, with H as in
(8), is based on the volume preservation of ψ I

h . That is, for the reference measure QN ,0 ≡ Leb4N+2q we
have QN ,0 ◦ ψ−I

h ≡ QN ,0, enabling a simple change of variables when integrating (Duane et al., 1987). In
infinite dimensions, a similar equality for Q0 does not hold, so instead we adopt a probabilistic approach.
To prove (i), we obtain a recursive formula for the densities dQ(i)/dQ0 (i = 1, . . . , I ). We set

C = M−1 =
(

I∞ 0
0 A−1

)

with A = diag(a1, . . . , aq). We also set g(x)= −C1/2 ∇�(x) for x ∈H. From the definition of �h in
(16), we have Q(i) = Q(i−1) ◦�−1

h/2 ◦ �̃−1
h ◦�−1

h/2. The map �h/2(x, v)= {x, v − (h/2) C ∇�(x)} keeps
x fixed and translates v. The assumption ∇z�(z, θ) ∈ �2 implies that −(h/2) C ∇�(x) is an element in the
Cameron–Martin space of the v-marginal under Q0, this marginal being

∏∞
i=1 N (0, 1)⊗ N (0, A−1). So,

from standard theory for Gaussian laws on general spaces (Da Prato & Zabczyk, 1992, Proposition 2.20),
we have that Q0 ◦�−1

h/2 and Q0 are absolutely continuous with respect to each other, with density

G(x, v)= exp

{〈
h

2
g(x), C−1/2v

〉
− 1

2

∣∣∣∣h

2
g(x)

∣∣∣∣
2
}
. (A1)

The assumption ∇z�(z, θ) ∈ �2 guarantees that all inner products appearing in (A1) are finite. Recall that
�2 denotes the space of squared summable infinite vectors. Hence,

dQ(i)

dQ0
(xi , vi )=

d{Q(i−1) ◦�−1
h/2 ◦ �̃−1

h ◦�−1
h/2}

dQ0
(xi , vi )

= d{Q(i−1) ◦�−1
h/2 ◦ �̃−1

h ◦�−1
h/2}

d{Q0 ◦�−1
h/2}

(xi , vi )× d{Q0 ◦�−1
h/2}

dQ0
(xi , vi )

= d{Q(i−1) ◦�−1
h/2 ◦ �̃−1

h }
dQ0

{
�−1

h/2(xi , vi )
} × G(xi , vi ). (A2)

We have Q0 ◦ �̃−1
h ≡ Q0, as �̃h rotates the infinite-dimensional products of independent standard Gaus-

sians for the z- and vz-components of Q0 and translates the Lebesgue measure for the θ -component; thus
overall �̃h preserves Q0. We also have (�̃−1

h ◦�−1
h/2)(xi , vi )≡�h/2(xi−1, vi−1), so

d{Q(i−1) ◦�−1
h/2 ◦ �̃−1

h }
dQ0

{
�−1

h/2(xi , vi )
} = d{Q(i−1) ◦�−1

h/2 ◦ �̃−1
h }

d{Q0 ◦ �̃−1
h }

{
�−1

h/2(xi , vi )
}

= d{Q(i−1) ◦�−1
h/2}

dQ0

{
�h/2(xi−1, vi−1)

}

= dQ(i−1)

dQ0
(xi−1, vi−1)× G{�h/2(xi−1, vi−1)},

where for the last equation we divided and multiplied by Q0 ◦�−1
h/2, as in the calculations in (A2), and

made use of (A1). Hence, recalling the explicit expression for �h/2, overall we have that

dQ(i)

dQ0
(xi , vi )= dQ(i−1)

dQ0
(xi−1, vi−1)× G(xi , vi )× G

{
xi−1, vi−1 + h

2
C1/2g(xi−1)

}
.
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From here one can follow precisely the steps in Beskos et al. (2013a, § 3.4) to obtain, for L = C−1,

log

[
G(xi , vi )G

{
xi−1, vi−1 + h

2
C1/2g(xi−1)

}]

= 1

2
〈xi , Lxi 〉 + 1

2
〈vi , Lvi 〉 − 1

2
〈xi−1, Lxi−1〉 − 1

2
〈vi−1, Lvi−1〉.

Thus, due to the cancellations upon summing, we have obtained the expression for (dQ(I )/dQ0)(xI , vI )

given in statement (i) of Proposition 1.
Given (i), the proof of (ii) follows precisely as in the proof of Theorem 3.1 in Beskos et al. (2013a).
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