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ABSTRACT 

The nature of underreporting terrorism in developing countries is often acknowledged but poorly 

understood.  Focusing on India, we triangulate terrorist attacks captured across three media-

based datasets (GTD, SATP, WITS) against official police records from Andhra Pradesh. Results 

suggest that media-based datasets capture the geographic prevalence of terrorism yet severely 

underestimate the frequency of violence, biasing towards lethal bombings. Considerable 

variation is present for attacks targeting specific classes or types of actors. Similar to other 

crimes, the results suggest that existing terrorism databases represent a select version of violence 

in these countries, discounting the prevalence and regularity of non-lethal violent activity. 

 

Keywords: event data; terrorism; media bias; data quality; triangulation    
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1. INTRODUCTION 

Over the past decade, one of the most widely-used methods of empirical analysis on 

insurgency, political violence, and terrorism is the collection and coding of events from open-

media sources.  A number of datasets on political violence have become publicly available, 

allowing researchers to apply statistical methodologies to identify the correlates, causal factors, 

and consequences of political violence.   

For all of the empirical advances in the study of political violence and insurgency, little is 

known about the potential sources for error in existing media-based datasets.  A majority of 

studies use a single data source of events, which contain potential biases that alter the number, 

type, and classification of events available for analysis.1  Some events are viewed as more 

“newsworthy” and thus are more likely to be reported2, including large, significant events3 with 

police presence4 in proximity to a news agency5 and located in an urban area away from most 

types of land-based or rural conflicts.6  Failure to account for these biases can present political 

violence as primarily lethal attacks in urban areas conducted by major non-state actors.7  In the 

few studies where multiple sources are used, they are often integrated with little consideration 

regarding the type and nature of data collection which produced the original set of events.8  In 

these cases, events are not equivalent across samples, but are productions imbued with social and 

political considerations about what is and is not an “event.” 

To address these concerns, we examine how the data collection process can alter or shade 

the representation of political violence at the local level, and the implications that has for 

research in this area.  This study compares the representative level of a specific type of political 

violence (terrorist attacks) captured across three media-based datasets against official police 

records, a source often missing from studies on terrorism and political violence.  This is a good 
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case study for how international datasets engage with domestic terrorism. The nature of Naxal 

insurgency is widespread and longstanding enough to be of serious national concern in India, a 

democratic country with free and open multi-lingual media. Andhra Pradesh, one of several 

Indian states that have been grappling with Naxal insurgency, has the most detailed records of 

‘Naxal related cases’ compiled at the state level9. Using the Naxalite conflict in Andhra Pradesh 

as our context, we find that although media-based datasets capture the geographic prevalence of 

political violence, they tend to severely underestimate the intensity of conflict at the local level 

and bias the representation by favoring lethal attacks and those involving explosives.  In 

addition, there is considerable variation across datasets regarding specific classes or types of 

actors targeted by political violence, often influenced by the process in which an attack is 

sourced, collected and adjudicated.   

The paper is structured as follows: The first section discusses the nature of data collection 

during conflict in both media-based and official datasets. The next two sections describe the 

research questions, context and background of the Naxal insurgency within Andhra Pradesh. The 

subsequent two sections focus on the data and methodology adopted, followed by the results and 

reasons for the variation between media-based datasets and official data sources.  The final 

sections include a discussion of the implications and recommendations for future research using 

media-based datasets.   

 

2. NATURE OF DATA COLLECTION ON TERRORISM 

2.1 Media-Sourced Attack Databases 

The past two decades have witnessed a sea change in the global accessibility of news on 

conflict and violence.  Previously the purview of government efforts like the Foreign Broadcast 
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Information Service (FBIS), the diffusion of the Internet now provides constant viewership to 

conflicts worldwide through news and social media.  This availability has enabled the emergence 

of several international event-level databases which quantify terrorism.  Databases such as the 

Global Terrorism Database (GTD), the International Terrorism: Attributes of Terrorist Events 

(ITERATE) dataset on transnational terrorism, the Worldwide Incident Terrorism System 

(WITS), the RAND Database of Worldwide Terrorism Incidents (RDWTI), and others have 

developed multiple perspectives on terrorism, each with their strengths and weaknesses. Across 

the empirical study of terrorism, the post-9/11 swell of research has relied primarily on the 

ITERATE or GTD datasets for their analyses, often used, “without questioning their underlying 

definitions, coding consistency or contrasts.”10  Key contrasts, such as the differentiation 

between domestic and transnational terrorism, have shaped research findings in substantive 

ways11, yet little comparative work exists to identify how these multiple views of terrorism relate 

to each other and to conditions “on the ground.”   

The challenging nature of collecting event-level data on terrorism has meant that most 

databases rely on print or electronic media for terrorism reports. While terrorist attacks are more 

likely to be reported in the media than other types of criminal activity12, Schmid13 identified four 

problems with most terrorism databases. First, each database suffers from the inherent 

difficulties involved with working definitions of terrorism and terrorist acts. Wider situational, 

contextual and political factors determine whether certain acts will be perceived as terrorism or 

not by various audiences.  Where one dataset will include terrorist attacks against military targets 

[GTD], others will exclude those as acts of insurgency [ITERATE].  Stringent inclusion criteria 

can also contribute to the exclusion of unclear attacks, such as those without independent 

confirmation or with conflicting reports, from the set of attacks.   
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Second, even if a working definition of terrorism is adopted, it is often inconsistently 

applied at different points of time for a variety of reasons.  Some of these include changing 

political contexts surrounding specific organizations and their intersection with political 

violence.14  For example, until recently, the European Union would not recognize the military 

wing of Hizballah as a designated terrorist organization, even though the United States designed 

them in 1997.  It wasn’t until a bombing in Bulgaria in 2012 was linked to the group that the EU 

would consider changing their designation. Other errors can arise from operationalizing difficult 

theoretical concepts in limited information environments (like media sources) or from the 

inconsistent application of definitions by the research teams themselves.15  Definitions which 

distinguish terrorist acts targeting civilians from guerrilla attacks targeting military personnel16 

are often challenged in determining whether attacks against police forces constitute terrorism or 

insurgency, especially given the wide variance in centralization and militarization of police 

across countries. 

Third, media reporting is not always objective; it is often politicized and biased regarding 

what is “newsworthy.”17 Political pressure can suppress some attacks from being widely 

reported, while in other cases relatively smaller attacks in distant nations may not reach a 

threshold for significance.18  More importantly, the likelihood of an attack being reported could 

rely on whether other relevant attacks are reported nearby (which can vary from season to 

season), editor or reporter bias, and whether the news agency has the necessary resources to 

cover the attack.   

Finally, only a few media-based databases collect data on domestic terrorist attacks, 

especially in less-developed nations. Media-based databases such as the GTD and WITS include 

domestic terrorist attacks in developing countries but draw mainly upon electronic and print 
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media reports reported in widely-disseminated national newspapers or international English-

language sources.  In many countries, including India, the likelihood of an attack being picked up 

by the national media would depend upon the location and seriousness of the attack and the 

interest of the local media in reporting it.19  Attacks that are reported in smaller, local vernacular 

press are unlikely to be identified and subsequently included in many international databases. 

Despite these problems, many have argued that newspaper sources remain a reasonably complete 

and continuous source for data collection, assuming that the variance provided by press bias is 

stable within and across sources.20  More importantly, to draw inference on the nature of 

terrorism, users of these databases assume that any missing data on terrorist attacks is randomly 

distributed and not the product of the data collection process.   

 

2.2 Official Data 

A second potential source of data on terrorist activity, albeit underutilized, is official data 

collected by government counterterrorism or law enforcement agencies.  Often collected by 

states with a long history of terrorism (Turkey, Israel, Colombia, and the United States21), these 

countries have established both systematic and/or ad hoc frameworks for identifying, analyzing, 

and reporting terrorist-related activity; frameworks with considerable within- and between-

country variation.  These datasets have been used to analyze the spatial distribution of 

terrorism22, build geographic profiles of offenders23, and assess the deterrent effect of arresting 

terrorists24. These sources could also provide rich detail on specific plots or attacks drawn from 

extensive investigations or court records that are never reported by media, providing an 

alternative perspective of terrorism as mediated through official channels.25   
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While useful, three specific limitations of official data stand out.26  First, definitions of 

terrorism are often overloaded by emotional and political implications with little agreement 

between agencies and individuals.27 Second, the police can often attribute non-violent or other 

criminal actions arising from non-ideological motives committed by known terrorist 

organizations as terrorist acts. These types of non-terrorist acts, including extortion and assault, 

could be used for personal gain and/or to instill fear or terror in a target population, rendering it 

difficult to distinguish the purely acquisitive or personal crimes from terrorism in some official 

data collection efforts. It has also been suggested that while police archives are a good alternative 

to media-based datasets, they also project their own biased view of offender and offense.28 On 

the other hand, previous research by Chermak and colleagues29 comparing official data with 

open source data on homicides committed by right wing extremists in the USA indicated that the 

official data compiled by the FBI (responsible for investigating all domestic terrorist attacks) is 

the smallest, as their definition of terrorism is the most restrictive as compared to datasets 

complied by watch-group listings, scholars and others based on open sources. Thus, we might 

expect official databases to be expansive or narrow, depending upon the inclusion criteria.  

A third problem is that the difficult prosecutorial challenges presented by terrorism 

investigations could force formal criminal complaints that are for other-than-terrorism crimes.  

For example, in India most acts of terrorism recorded by the police are charged under relevant 

sections of other criminal laws, such as the Indian Penal Code of 1861, the Arms Act of 1959, 

and the Explosive Substances Act of 1908, and are part of the overall crime figures reported in 

the annual Crime in India reports published by the National Crime Records Bureau. Only a few 

states maintain a separate database of all Naxal-related offences, with little coordination between 

the states and a national dataset on Naxal-related offenses.  
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Beyond these specific concerns, official data on terrorist-related activity also suffers from 

the traditionally accepted deficiencies of official crime data: victim reporting behavior30, police 

operational norms, legislative changes31, changes in formal recording rules and politicization of 

crime32, all of which affects how and what is recorded as crime.33 These findings were replicated 

in New York by Green and colleagues’34, who found that gay advocacy groups recorded much 

higher numbers of anti-gay hate crimes than the police for the same geographic area.  The 

authors speculate that this was probably because of either different reporting standards or 

varying levels of commitment to recording hate crime. These factors suggest that official data 

also suffers from the “dark figure of unrecorded and unreported crimes”35 which could distort the 

validity of research findings supported by official data.36 

 Despite these problems, Barranco and Wisler37 suggest that a strong candidate for 

improving the validity of media-based data is to compare against official data recorded by the 

police. Using the example of “public demonstrations,” they argue that since events like public 

demonstrations are the objects of administrative regulation, they are more likely to be recorded. 

Similarly McCarthy and colleagues38, studying demonstrations in Washington between 1982 and 

1991, found that the vast majority of demonstrations were ignored by the media, leaving only the 

largest ones covered.  As a political conflict progresses, the use of violence may become routine, 

fatiguing the press into covering only the most severe events.39 The inherently administrative 

character of the state when policing terrorism provides an alternative source which may capture a 

broader range of violence than available through open media sources, although the extent to 

which these two sources differ remains understudied.  
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3. RESEARCH QUESTIONS 

Overall, we are interested in examining potential issues of selection bias within three 

publically-available databases on terrorism: the Global Terrorism Database (GTD), the 

Worldwide Incident Tracking System (WITS), and the South Asia Terrorism Portal (SATP).  

Several of these sources have provided the basis for quantitative analyses previously40, yet to 

date there have been no studies comparing the quality of data collection among all three.41  Some 

studies which try to improve the quality of data analysis integrate or combine multiple datasets to 

acquire the broadest account of data on a specific conflict, yet utilize media sources which rely 

on select information migrating into the public sphere.  We compare the three collections of 

terrorist attacks, as well as a combined version of all three, against a fourth source of event data 

(official police records), which the literature suggests may contain more or fewer recorded 

attacks than media-based data sources. 

First, we focus on the nature and type of events which constitute each of the datasets, as 

well as the differences between them.  The data from media sources draw from information 

filtered and processed through media exposure, with each dataset providing a different lens on 

the phenomena. While some collections rely on local vernacular newspapers, others use a 

combination of national and international sources, both of which can produce considerably 

different perspective on the quantity of terrorism recorded. Inclusion criteria regarding the 

validity of sources can also influence what attacks are captured, with some collections using 

more stringent requirements on the reputational quality of a source.  Understanding how the 

number of cases reported across these databases varies can provide a baseline perspective about 

the nature of terrorism captured within each dataset. 
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Second, we examine whether this variation is spatially or temporally patterned.  Each of 

these datasets is the result of a collection schema that is carried out over time, and each can have 

important variation regarding where and how often cases are collected. Third, we are interested 

in the typological variation among attacks reported across the four sources, and where these 

facets of terrorism diverge. Are media-based collections more likely to contain certain types of 

terrorist attacks (bombings, fatal attacks), and do differences in the environmental context of an 

attack (the distance from the capital, ruggedness, etc.) affect the likelihood of attacks being 

reported?  Even though many studies of conflict employ structural factors (like poverty) as 

controls42, little research as examined whether attacks in these areas are less likely to be reported.  

Variation in reporting based on ecological factors surrounding an attack can have substantial 

impacts on theories of political violence, as it may overestimate the relationship between certain 

geographic or demographic factors and the prevalence of insurgency. 

We address these three questions by examining the recorded prevalence and quality of 

terrorist attacks within a rural land-based conflict in a developing country: the Maoist insurgency 

in Andhra Pradesh.43  We utilize records from 2005 to 2009, a period in which all four datasets 

maintain coverage of terrorist attacks within the region.  Additionally, the period under review is 

sufficiently past the initiation of the Maoist conflict in Andhra Pradesh, and therefore should 

maximize the likelihood of coverage by media sources.  This is especially true as the nature of 

the conflict in Andhra Pradesh became more central to the mission of the state government, and 

the publicity surrounding the counterterrorism efforts in the state drew national attention.44 
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4. THE MAOIST CONFLICT IN ANDHRA PRADESH 

In 2006, Prime Minister Manmohan Singh declared the Naxal movement, increasingly 

referred to as left wing extremism (LWE) or Maoism, as the ‘single largest internal security 

threat’ that India has faced.45  The Maoist movement has a long history in Andhra Pradesh, 

fueled by a number of grievances against the state, including: lack of land reforms, labor 

exploitation, lack of governance, lack of development and employment opportunities, state-

sponsored exploitation of natural resources at the expense of tribal populations, deepening caste 

and economic inequalities, and lack of access to justice.46  Initially starting as a Communist 

struggle against feudal rule in the 1940s, the movement morphed into an agrarian uprising over 

land reforms in the 1960s.  While tempered during the 1970s, the Communist movement began 

to regain strength in the early 1980s, spawning several splinter groups, including the People’s 

War Group (PWG) in Andhra Pradesh, and the Maoist Communist Centre (MCC) in Bihar.47 The 

PWG was committed to armed struggle against the state, including kidnapping, extortions, and 

the killing of civilians and political leaders.48 The late 1980s saw a dramatic escalation of 

conflict after the PWG decided to target the state directly through attacks on the police, 

inaugurating a campaign of violence which still continues currently.49 This cyclical upsurge of 

insurgent and counterinsurgent violence led to substantial casualties for security forces, who 

have responded with severe state repression, brutal search and cordon operations, torture, 

beatings and displacement of populations.50  Eventually, the government adopted a development-

focused approach to erode popular support for the Naxals as well.51  

The 2004 merger of the PWG and the MCC to form the Communist Party of India 

(Maoist) ushered in a new phase in the Naxalite Movement, which assumed a pan-India form 

with a centralized leadership under unified command and control.  At the time, the Andhra 
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Pradesh government called for a six-month hiatus in the conflict to conduct peace talks. 

However, since peace talks broke down in early 2005, the state has been uncompromising in its 

opposition of the Maoists.  Using a number of the strategies previously mentioned, the 

government of Andhra Pradesh has been mostly successful in reducing the frequency of Naxalite 

violence within the state, evidenced by declining fatalities of security forces as well as civilians. 

Andhra Pradesh police have been actively involved in a rising number of arrests and surrenders 

of Naxals, including prominent leaders, which have weakened the movement considerably.52  

Towards the end of 2009 the state witnessed a surge of Naxal activities in the districts of 

the Telangana region in a bid to regain their stronghold in these areas, but with limited success.53 

As of 2014, active Naxal presence is largely confined to two districts - a sea change from the 

situation in 2005 when nearly all of the 28 districts in Andhra Pradesh were considered to be 

highly or moderately affected.54  While the situation continues to cause grave concern, the total 

number of casualties (civilians and security forces) associated with the movement has been 

declining nationally from 1005 in 2010 to 415 in 2012; and in Andhra Pradesh from 24 in 2010 

to 13 in 2012.55   

5. DATA AND METHODOLOGY 

Given the strengths and weaknesses of terrorism data discussed above, researchers have 

long recognized the need for using multiple data sources to triangulate the phenomena under 

study.56  To examine the salience of data collection procedures on the identification of political 

violence in India, we chose four event-level datasets that capture this information relevant to the 

Maoist conflict from 2005 to 2009.  One of the sources are existing data collections is readily 

available for scholars (GTD), one source was previously available and used in a number of 

previous studies (WITS), one source requires the extraction of data from semi-unstructured text 
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(SATP), while a fourth source comes from official records (Andhra Pradesh Police).57  Table 1 

provides a summary of these definition criteria and scope of data collection effort across the four 

datasets. 

Table 1 about here 

5.1 Global Terrorism Database (GTD) 

Described elsewhere58, the GTD consists of data on terrorist attacks collected from open 

media sources, including wire services (FBIS and Reuters, among others), U.S. and foreign 

government reports, and U.S. and foreign newspapers (including the New York Times, the 

British Financial Times, the Christian Science Monitor, the Washington Post, the Washington 

Times, and the Wall Street Journal).  It defines terrorism as “the threatened or actual use of 

illegal force and violence by a non-state actor to attain a political, economic, religious, or social 

goal through fear, coercion, or intimidation.”59  The GTD has utilized a similar basic coding 

scheme during the entire 41 years of data collection. Compared to other media-based databases, 

from its inception GTD has tracked the kind of domestic terrorist attacks that have characterized 

localized conflicts like the Maoists in India. Yet a comparison against other sources of terrorist 

activity remains lacking.  Relevant to this discussion, the GTD also includes attacks against the 

military and police, actions that are sometimes classified in other media-based databases as 

insurgent actions and distinct from terrorist attacks.  

 

5.2 Worldwide Incident Tracking System (WITS) 

 Begun in 2004, WITS was a database of terrorist attacks collected by the National 

Counterterrorism Center in the United States.  Initially collected for the US Government’s yearly 

Country Reports on Terrorism, WITS contains information on a number of variables related to 
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specific terrorist attacks, including attack types and weapons used.  According to their 

documentation, a terrorist attack is one where “groups or individuals acting on political 

motivation deliberately or recklessly attack civilians / non-combatants or their property and the 

attack does not fall into another special category of political violence, such as crime, rioting, or 

tribal violence.”60  Unlike GTD, WITS does not release information on the perpetrator of the 

attack; rather they provide general classifications of perpetrator ideologies (Islamic Extremist, 

Environmental, Tribal, etc.).61 

One limitation of both the GTD and WITS is the requirement of intentionality as a 

criterion for inclusion in the database.  Specifically, there has to be no evidence in the attack that 

the attack was started by someone other than the group committing the attack.  “Clashes” 

between security forces and terrorist organizations, common in a number of insurgent 

environments, do not satisfy this requirement, as it would be difficult to distinguish who initiated 

the attack.  While some of these “clashes” may actually have been extrajudicial killings initiated 

by the security forces, otherwise known as “police encounters” within India62, the limited 

information on attacks contained within many media-based sources in these areas restricts the 

ability of the researcher to succinctly identify these cases.  What is presented provides at best a 

conservative estimate of the actual group-initiated violence in these areas.   

 

5.3 South Asia Terrorism Portal (SATP) 

A third set of data relevant to the Maoist conflict in India comes from the South Asia 

Terrorism Portal. A product of the Institute for Conflict Management (ICM) in New Delhi, the 

SATP reviews a large number of national and local newspapers, government and non-

government publications, and other web-based media sources for reports on violence, 
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insurgency, and terrorism across a number of violent conflicts in India and other South Asian 

countries.63  It is a source of information for a variety of data collection efforts which use it as 

either a primary source of data collection64 or as a secondary “seed” source to provide 

preliminary information on attacks that can be corroborated with additional primary source 

media.65   

Event-level information within SATP is reported in a semi-unstructured list which 

describes the action conducted, geographic information on where the event occurred, and the 

date of those actions.  Data on these events do not reside in a structured format for analysis. 

Researchers interested in using this information must recode the data manually.  The list of 

events contain a much broader array of information, including violent attacks against combatants 

as well as statements made by terrorist organizations and arrests of key leaders.  These lists are 

usually grouped by an aggregate location or group conducting the action, and multiple lists can 

contain information on the same event.  Additionally, SATP appears to be conflict-focused, 

containing considerable variation by date and location.  For some conflicts, consistent 

information is available beginning in 2000 or 2001; for others (like insurgent violence in Assam, 

India) SATP provides information back to 1992.   

 

5.4 Andhra Pradesh Police 

To complement the three media-based data collections, and to provide a more detailed set 

of Naxal terrorist events in Andhra Pradesh, the fourth dataset examined was received from the 

Andhra Pradesh Police. This database includes every reported event of Naxal related-violence or 

threat recorded in individual police stations across the state. The State Intelligence Bureau has 

access to all recorded crimes at the state level and compiles a state-wide database of Naxal-
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related events as they are recorded.  It does not distinguish between ideological and non-

ideological events, but includes all events where the alleged perpetrators are known or suspected 

of being Naxalites. As mentioned above, these might include crimes committed by alleged 

Naxalites for personal causes, and this more expanded inclusion criterion implies that more, 

rather than fewer, events are captured by this data set compared to other sources.  Brief facts of 

the case in the original data were coded to construct categories similar to the above datasets. It 

includes events that would not ordinarily qualify as a terrorist attack under the criteria set by 

GTD or WITS. However, it is extremely instructive in illustrating the types of events considered 

to be related to Naxal insurgency by the local law enforcement agency.  

As police-recorded data, these data suffer from all the traditionally accepted deficiencies 

that official police data suffers from as discussed above. The original Andhra Pradesh police data 

demonstrates changing modes in recording practices which could skew inferences about trends 

and patterns.66 Although  official data provided by the Andhra Pradesh police may contain some 

variations in the coding strategy across time, the systematic and comprehensive efforts they 

undertook to collate this data at the state level provides a unique opportunity to utilize official, 

event-level data collected  during an insurgency.   

 

5.5 Methodology 

To examine the potential sources of selection bias and case reporting variation among 

these four sources, we employed a four-phase process. First, we conducted a case-by-case 

definitional alignment between each of the data collections. To maintain uniformity of definition 

between datasets, and to focus on terrorist attacks by Naxalites, we applied the GTD criteria to 

all four datasets and removed any events which were neither terrorist in definition nor leftist in 
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ideological motivation (see Table 1).  Across all four sources, only those cases which identified 

Naxal actors proactively committing a violent attack to further a political, social, or economic 

goal were included, with differences noted in the analysis.  Project coders were trained by two of 

the authors who have multi-year experience coding GTD data, and each attack was coded 

according to the established criteria and subsequently reviewed by one of the authors to ensure 

consistency in coding.  

Second, using a combination of descriptions and case attributes, we were able to 

triangulate cases among the various sources.  This allows us to identify those cases which 

overlapped across all four sources, as well as those attacks which were unique to each data 

collection.  Each comparison was initially conducted by a project coder and then reviewed by 

one of the authors to ensure accuracy in the case matching process.  Search windows 14 days 

before and after a particular attack were used, as dates for specific attacks can vary considerably 

when comparing media and police sources.  In addition, coders erred on the side of inclusion 

when key details (such as target or number killed, for example) were vague in one of the two 

matched attacks, providing a conservative estimate of the number of attacks excluded from 

media-based datasets.  Contrasting details between two nearly similar attacks, such as distinctly 

different targets or attack types, did not meet the threshold for matching and were not linked 

within the collection effort.  For example, considering two attacks in the same district on the 

same day, if both had the same target type but one reported a death and another didn’t, then 

ceterus paribus, they were matched.  If these two attacks were reported as one targeting physical 

infrastructure and one targeting civilians in a marketplace, then the contrasting details would 

render them unmatched. 
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Third, we employed descriptive analysis to identify potential variations in case reporting 

across the sources.  Both spatial and temporal aspects of variation in case reporting are 

considered, as well as differentiation across various attack characteristics (fatal attacks, 

bombings, etc.).  Finally, to examine whether environmental or structural factors influence the 

likelihood that an attack would be found within the media-based collections, we test a number of 

hypothesis in predicting the likelihood using logit models to compare cases from WITS, SATP, 

GTD, and an integrated dataset containing all unique cases from the media-based databases 

against cases from the police.67  

 

6. RESULTS 

There was considerable variation in the number of events (both terrorist attacks and other 

types) across the datasets.  The largest collection of events within Andhra Pradesh was the 

reports from the Andhra Pradesh Police, which documented a total of 1,436 left-wing extremism 

events between 2005 and 2009. During the same period, WITS recorded 296 events (all terrorist 

attacks), SATP recorded 229 events (a mixture of terrorist attacks and other events), and the GTD 

recorded 24 (all terrorist attacks).  A review of these identified a number of events, especially 

within the police data, which would not meet a common definition of a terrorist attack, including 

lootings, extortions of local civilians, and other violent acts without political motivation.  

Applying the definition alignment mentioned previously, Table 2 presents our final count of 

terrorist attacks for the four datasets, which netted a total of 806 attacks in the police data, 

followed by WITS with 296 attacks, SATP with 197 attacks, and GTD with 24 attacks.  

Table 2 about here 
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Once a common definition of left-wing terrorism was applied at the event-level across all 

four datasets, we conducted a case-by-case comparison to triangulate overlapping attacks 

between the collections.  Using the police data as a starting point and using descriptions and case 

attributes to triangulate, between 85 and 90 percent of cases across the datasets were matched to 

cases in the police data68.  Across those cases in the media-based datasets that were not found in 

the police data, several key patterns emerge.  First, the lethality of an attack had little consistent 

influence on its omission from the police data.  In some cases (SATP), the majority of missing 

attacks were fatal (10 of 17 attacks), while in other cases (WITS and GTD), the proportion that 

were fatal was considerably lower (43 percent, or 14 of 32 attacks, within WITS; 33 percent, or 1 

of 3 attacks, within GTD).  Second, for both WITS and SATP, there was an overrepresentation of 

missing cases in Khammam district, where Naxal fighting was particularly heavy.  Although 

attacks in Khammam constitute 16 percent of total terrorist attacks within the police data, they 

represent over 25 percent of non-matched attacks within SATP, WITS, and GTD, suggesting that 

police data may also suffer from some of the same limitations of reporting within heavily 

affected locations that face media sources.  Third, while attacks in 2008 or 2009 represent 14 

percent of all attacks within the police data, they constitute 38 percent of missing attacks (12 out 

of 32) within WITS, 64 percent of missing attacks (11 out of 17) within SATP, and 100 percent 

of missing attacks (3 out of 3) within GTD.  Thus, there could be an exhaustion effect within 

official data, where event capture lessens as the duration of administrative data collection is 

lengthened.   

In the process of triangulation, however, new information was introduced on a number of 

cases; information which would change whether the case met the criteria for terrorism mentioned 

previously.  For example, an attack on July 10th, 2005 in SATP mentioned that CPI (M) Janshakti 
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cadres abducted two employees of a transport company in the district of Khammam.  However 

when we compared that attack to police data, we found that those abductions were solely for 

ransom, which does not meet the criteria of terrorism applied in this study, and the attack was 

subsequently dropped from the comparison. To provide a conservative estimate of the number of 

terrorist attacks which match across the datasets, we removed those cases from the overall 

analysis which were no longer classified as terrorist attacks based on the new information.  This 

removed another two attacks from GTD, six attacks from SATP, and 12 attacks from WITS.   

 

6.1 Temporal Variation 

To examine temporal variation in matching between the three media-based datasets and 

the police data, Table 3 below presents the total number of attacks in each source for years 

between 2005 and 2009.  The number of terrorist attacks in 2005 was substantially higher in all 

four datasets, reflecting the increased counterterrorism efforts of the Andhra Pradesh government 

in subsequent years. Factoring in the declining rate of terrorism across the years, there was 

considerable variation in the number of terrorist attacks which could be matched to attacks in the 

police data. From 2005 to 2009, as terrorism decreased in the state, both SATP and GTD 

increased their coverage of attacks.  For GTD, there was a considerable increase in 2008 and 

2009 which coincided with a change in data collection strategy.69  In contrast, there was a 

considerable decline from 2005 to 2006 in both matched attacks (from 162 attacks to 18 attacks) 

as well as total attacks (from 193 attacks to 21 attacks) within the WITS data.  Interestingly 

enough, starting in 2007 their count of attacks in Andhra Pradesh closely resembles the count of 

attacks within SATP data as well, which corresponds to a possible shift in data collection strategy 

which included SATP as a source for their data.  Overall, while the three media-based datasets 
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represented only a share of the total attacks reported within the police data, the temporal trends 

of the three datasets were roughly similar across the periods, suggesting that differences may be 

one of magnitude rather than type of attack (see Figure 1). 

Table 3 about here 

Figure 1 about here 

6.2 Variation by Type of Attack 

When case comparisons are conducted by type of attack, two patterns clearly emerge.  

First, fatal attacks are overrepresented in media-based data collection efforts.  Nearly half of all 

fatal terrorist attacks reported by the police were also reported by WITS, while 40 percent of the 

fatal attacks were reported by SATP.  Disaggregated by number of individuals killed in the 

attack, the pattern is more apparent. Most of the terrorist attacks with at least 2 individuals killed 

are found within the media-based datasets, which suggests that the most lethal attacks are 

consistently filtered into the media. Among attacks with only one fatality reported by the police, 

each of the datasets exhibited considerable variation, ranging from two percent of attacks in the 

GTD to 48 percent covered in WITS.  Regardless of the variation between datasets in reporting 

fatal attacks, the percent of non-fatal attacks reported is substantially low, ranging from 1 to 19 

percent of the attacks reported by the police, suggesting that the landscape of terrorism reported 

in media-based data collections may over-represent the average lethality of an attack, especially 

in situations where the overall frequency of terrorist attacks (lethal and non-lethal) is much 

higher.   

 Second, this overrepresentation may be limited only to specific types of attacks that could 

attract substantial media attention. For example, bombings by left-wing terrorists in Andhra 

Pradesh are not sizably more represented within each dataset than other types of attacks. When 
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the bombing results in a fatality, however, the likelihood that it will be recorded in media-based 

datasets increases dramatically. Of the nine fatal terrorist bombings in Andhra Pradesh from 

2005-2009 reported in the police data, WITS recorded seven, SATP recorded eight, and GTD 

recorded four attacks respectively. Furthermore, when considering various types of targets of 

attacks, we see that roughly 20 to 40 percent of police-reported attacks were recorded in WITS or 

SATP.  The GTD was distinct in their lower reported rate of terrorist attacks targeting local 

political leaders, security forces70, or political party activists.   

 

6.3 Spatial Variation 

 Finally, we consider whether variation exists in the geographic distribution of reported 

attacks.  Comparing total, fatal, and bombing attacks across administrative districts71 in Figure 2, 

we see that terrorist attacks reported by the police are distributed throughout the majority of 

Andhra Pradesh, representing the broad nature of terrorist activity among the Maoists during this 

period.  Fatal attacks were concentrated in a smaller number of districts, while bombings 

occurred most often in Vishakapatnum, Khamam, and Warangal districts in the center and east of 

the state.  Comparing across datasets, we find that WITS, SATP, and the police data all report a 

number of the same districts as top location for terrorist activity.  For example, two of the top 

three districts in each dataset were Khammam and Vishakapatnum, consistent with the conflict 

over land rights in forested areas central to the ideology of the Maoists in these two districts.72  

In contrast, both WITS and SATP underrepresent terrorist attacks in several other districts, 

including Karimnagar (3 percent of WITS and 4 percent of SATP cases, respectively) compared 

to attacks reported by the police (9 percent). This district in particular served as the site of an 

important strategic development in the counterterrorism efforts against the Maoists in Andhra 
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Pradesh73, and underrepresenting the level of terrorist violence in the district would hinder efforts 

to identify successful outcomes of experimental policies like the one implemented.  

Nevertheless, while there were geographic variations in the proportion of terrorist attacks in one 

district compared to another, with noted exceptions the differences across datasets geographically 

were one of magnitude within-district rather than variation between districts.74 

Figure 2 about here 

6.4 Predicting the Likelihood of Reporting 

 We find a moderate yet substantive level of variation in reporting terrorist attacks across 

the media-based datasets when compared to official records maintained by the State Police. To 

parse the specific leverage that these variations simultaneously exert, we employ logistic 

regression models to examine the odds that different types of variation would have on the 

likelihood of matched attacks being reported in each of the datasets.  Beyond the types of 

variation listed above, we included a number of predictors which may influence the nature of 

newspaper coverage or readership in each district where an attack occurred.  These factors 

include the district-level percent of population 1) in scheduled castes or tribes; 2) living below 

the poverty line; and 3) with at least a middle school education. We also include a number of 

environmental factors at the district-level traditionally associated with the occurrence of 

insurgency or conflict, including 4) the percent of the land area with greater than 6 percent slope 

(ruggedness); 5) the percent of land area covered with forests (forest area); and 6) the logged 

distance between the center of the district and the state capital of Hyderabad. Finally, we 

examine whether previous attacks in a district draw media attention to that location, which may 

increase the likelihood of a subsequent attack being captured by a media-based dataset, by 
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including a measure of 7) whether there was an attack in the same district within 30 days prior to 

the attack under study (previous attack).   

 Additionally, there have been several recent efforts to merge data from SATP and GTD or 

WITS together into an integrated dataset for hypothesis testing.75  The hope has been to create a 

comprehensive dataset which captures more of the variation in violence at the attack level, with 

multiple independent sources contributing cases which are not captured in the other databases.  

Merging data drawn from different sources and through different collection protocols could also 

amplify potential sources of bias rather than address them. To evaluate the veracity of this claim, 

we combined unique attacks drawn from SATP, GTD or WITS into a single dataset, and 

examined whether the factors above influenced variations in this dataset compared to police 

records.  

Table 4 about here 

The results confirm that compared to police data, several of the descriptive patterns of 

variation among the datasets also increase the odds of reporting in a media-based dataset 

considerably. Table 4 includes odds ratios from logistic regression models76 with year dummies 

at the dataset level in which a binary variable for reporting in a dataset (0 = non-reported, 1 = 

reported) is regressed against specific types of attacks, as well as environmental and geographic 

factors.  Compared to other types of attacks in the police data, fatal attacks were more than six 

times as likely to be reported in a media-based dataset as non-fatal attacks, strongly suggesting 

their over-representation in these collections. Additionally, bombings were nearly three times as 

likely to be reported in a media-based dataset as other types of attacks for all but the GTD. 

Considering environmental variation in attack reporting, we find that as the percentage of 

ruggedness in a district increases in Andhra Pradesh, there is a greater likelihood that the attack 
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will end up in WITS or SATP. Contrasted to the level of ruggedness within a district, we find that 

attacks in heavily forested areas have a lower likelihood of being captured in at least one of the 

databases (WITS).  Particularly for the WITS dataset, as attacks occur in a specific district, they 

also increase the odds that subsequent attacks within 30 days will be recorded within the data. 

In addition, several predictors influenced the likelihood of reporting for one dataset but 

not the other, highlighting the role that production strategies within each of the datasets can 

influence inclusion. Attacks which targeted local officials (including village leaders), attacks 

against political party activists, and attacks which targeted police or security forces were more 

likely to be reported in SATP than other types of attacks. The primary governmental 

representatives targeted by the Naxalites in Andhra Pradesh during the study period were the 

police, with over 130 attacks across the five years.  Given the use of local media outlets and 

newsletters by staff at SATP, it is reasonable to assume that these types of sources would favor 

reporting on attacks against local officials or party members since these types of attacks will be 

of more interest to local readers who favor local newspapers and newsletters.  In contrast, attacks 

against state officials and leaders were more likely to be recorded within both WITS and GTD, 

as these types of attacks tend to draw regional and even national coverage in sources used by 

these data collection efforts. 

Finally, testing a strategy of data integration of all the unique cases within the three 

datasets we find that bombings, fatal attacks, those where the proportion of scheduled 

populations is high, and those which occur in rugged areas would be more likely to be reported 

in an integrated media-based dataset than other types of attacks. By complimenting the data 

collection strengths of each of the underlying datasets, the results suggest that integrated 

approaches obscure the over-representation of several specific types of attacks relevant to local 
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conflict dynamics, including attacks against local officials, police/security forces, and political 

party activists. Overall, results from the integrated dataset were not qualitatively different than 

results obtained from either the WITS or the SATP data, except for magnitude. While WITS 

reported 256 matched attacks, SATP reported 174 attacks, and GTD reported 19 attacks, the 

integrated dataset contained 293 unique terrorist attacks across the three datasets. This only 

accounted for roughly 36% of the total reported attacks contained in the police records, and only 

a 14 percent increase in the number of attacks as compared to WITS.   

 

7. DISCUSSION 

7.1 What Remains Missing from Media-Based Datasets on Terrorism 

The results above suggest that within the local dynamics of the Naxal insurgency of 

Andhra Pradesh, media-based datasets of terrorist attacks fail to capture a substantial amount of 

those attacks.  At best, almost two-thirds of terrorist attacks recorded by the police (513 attacks) 

were missing from any of the three datasets evaluated here.  While many of these attacks were 

not lethal, they included strategies and tactics similar to terrorist campaigns in Ireland or Spain, 

including the killing of suspected police informants and the destruction of infrastructure and 

government property.  For example, Naxals in nine separate occasions used explosives or arson 

to destroy telephone infrastructure within a two-year period, none of which were captured by the 

media-based datasets.  In addition, over 100 attacks involved the violent targeting of business 

owners selling liquor, election workers manning polls, contractors working construction sites, 

and civilians violating other Naxal proscriptions, only 18 of which were captured by media-

based datasets. Such attacks resonate with the local populace and law enforcement, and their 

exclusion means media-based datasets may underestimate the frequency at which violent 
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organizations use terrorism at the local-level to coerce a population and government.  Often these 

attacks are not reported in national or international English media, the primary source for most 

media-based datasets.  

7.2 The Broader Context of Terrorism within an Insurgency 

Beyond missing terrorist attacks, the results from our comparison highlight additional 

types of events often excluded from media-based datasets on terrorism.  Official data collection 

efforts regularly contain a broader array of actions than datasets focused on terrorism.  Nearly 40 

percent of the original Naxal events categorized as aggressive acts by the police in Andhra 

Pradesh (631 events) fell outside the common definitions of terrorism used in this study, 

highlighting the wider ecology of aggression in which terrorist attacks can be found.  Of these, 

almost half (297 events) refer to cases of extortion or looting committed by Naxal actors using 

threat or force to raise funds for their political arm. While these events were excluded from our 

analysis due to their primary economic motive (akin to common robbery), police interviewed by 

the second author in 2011 in Andhra Pradesh reported little operational differentiation between 

these acts and other forms of violent aggression by Naxals.  According to them, these crimes do 

provide a window into how insurgency affects local residents, suggesting that the requirements 

for political motive embedded within datasets on terrorism may be difficult to determine in the 

context of violent domestic conflicts.  

Alongside purely economic crimes committed by Naxal actors, another fifty percent (321 

events) of the excluded events recorded in the police data refer to ‘exchanges of fire’ between 

Naxalites and security forces.  Difficulties in determining whether the non-state actor 

intentionally committed and/or planned the attack led to their exclusion from this comparison 

against media-based terrorist attacks, although the fog of war can often cloud the documentation 
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of ‘who shot first’ within internal conflicts.  Naxalite documents clearly indicate paramilitary and 

security forces to be legitimate targets in the revolutionary war and specifically mention “wiping 

out the enemy in vulnerable areas.”77 On the other hand, the police have been known to target 

Naxals under the pseudonym of these ‘exchange of fire’ events.78 In these circumstances, the 

exclusion of ‘exchange of fire’ events to fit within conventional definitions of terrorism may 

mask the broader interchange of violence between the state and violent organizations which are 

prevalent within insurgencies. 

7.3 Implications for Future Research on Terrorism 

Our results suggest that media-based datasets on terrorism exhibit considerable variation 

in their coverage of domestic terrorist attacks in developing countries.  When compared to 

official data sources, terrorist attacks within media-based datasets are disproportionately lethal 

and explosive, underrepresenting a considerable range of violent, politically-motivated activity 

which meet their criteria for inclusion.  These biases in sample selection can have substantive 

consequences for the internal and external validity of research on terrorism79, requiring scholars 

to rigorously consider these variations in their research design.80   

Our findings indicate that although previous studies have cautioned against the use of 

official police data in terrorism research because it might be restrictive81, using official police 

data can be rewarding, albeit when used with caution. All data are biased along some dimension, 

and the presence of attacks within the media-based datasets that were not found within the 

official data suggests that these biases must also be addressed when using official data.  Police 

data suffer from some of the same reporting limitations in heavily-contested areas which face 

media sources, and the increasing likelihood of missing cases in later years of data collection 

suggest that researchers using official data need to consider the role that administrative 
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exhaustion can exert with official data collection efforts.  Moreover, the broader array of events 

captured within official data requires additional scrutiny, depending on the question being 

answered.  One recommendation is that researchers in areas of domestic terrorism could foster 

mutually beneficial relationships with concerned law enforcement agencies to access official data 

sources which might not be open access. Further, they can use this data, along with qualitative 

studies on terrorism, to consider whether and how the larger open source terrorism databases 

capture or reflect the nature, shape and manifestation of a broader insurgency and its impact on 

the local populace.  These efforts should not proceed without skepticism of inclusion criteria and 

reporting practices for these official data, as the misuse of official data can bias inference as 

much as the under-reported open source data.   

Our research also indicates that the more rugged the terrain, the more likely it is that the 

attack will be included in the media-based database.82 One explanation is that in rugged areas, 

given their difficult terrain and lower population density, terrorist attacks are more infrequent and 

therefore more “newsworthy.” This has important implications, since many studies of insurgency 

find increased levels of conflict in more rugged areas.83  If these studies use data collected from 

open media sources, the initial findings from a single conflict here suggest that they are more 

likely to capture attacks in rugged regions. Thus, the relationship between terrain and conflict 

intensity may be a product of the data collection strategy rather than an underlying causal factor. 

Relevant to the Naxal conflict, our research also revealed that attacks in forested areas are 

less likely to be included in the media-based databases as compared to less-forested areas. One 

explanation for this may be “media exhaustion” resulting from the continual and routine 

occurrence of Naxal conflict in these areas.  Grievances resulting from land reform disputes 

between the Naxals and the Indian government provide the central narrative for which Naxal 
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violence has been committed, and districts which are heavily forested also hold the primary 

relevance for the Naxal political strategy.  We suggest that the ‘mundane’ nature of terrorism in 

these regions (threats, beatings, or destruction of government property) leaves fewer and fewer 

unique cases of terrorism reducing the likelihood of reporting.  Other explanations for low 

reporting include lack of media access to these more remote locations, or the general instability 

within the district, which may prevent reporters from filing on these attacks or coerce their 

silence out of fear for reprisals.   

Another reason for low reporting is the fact that these forest areas are Maoist strongholds 

and so it is possible that they might have greater control on media coverage – especially 

reporting attacks that might reduce their popularity and eventually lead their core supporters to 

move away. Some accounts suggest that by highlighting the targeting of local infrastructure and 

individuals, popular support for Naxals in Andhra Pradesh was substantially reduced.84 Even 

though the purpose of terrorism is to draw attention to their cause through violence85, we suggest 

that Naxals might prefer to censor media reporting of their activities as part of a broader media 

management campaign, especially if they involved ‘mundane’ attacks against civilians. The very 

fact that the terrorist attacks are plentiful, ‘mundane,’ and not reported in the media means that 

the actual extent of ‘terror’ on the ground is not properly reflected where analysis rely on media-

based datasets alone. 

A final implication is that the substantial exclusion of terrorist attacks (and even those 

that fall on the definitional fringe) limits the ability to examine the true impact of 

counterterrorism or counterinsurgency efforts at the local level.86  What appears as a successful 

counterterrorism effort (by reducing the number of fatal attacks in a given year) may actually 

hide the subsequent tactical transference by violent organizations towards softer targets which 
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don’t attract as much extra-local attention.  Failure to capture these less-lethal attacks can 

provide a false basis for selecting between counterterrorism strategies, ultimately influencing the 

ability to build an evidence-based framework for counterterrorism.   

8. CONCLUSION 

Our research suggests that studies on domestic terrorism which use data drawn from 

media sources may be biased due to an inconsistency between the occurrence of terrorism and its 

reporting within media sources. Even when the definition of terrorism is standardized across 

different datasets which draw from different media sources, the results may represent only a part 

of the actual universe of terrorist attacks. However, we are not suggesting that government data 

should be the gold standard by which scholars should evaluate their datasets. Not only do few 

countries maintain such datasets, but even when they exist, scholars are rarely given access to 

such information.  Moreover in countries like India, the security forces remain under substantial 

political influences87, leaving it entirely possible that terrorism may be over- or undercounted in 

government records.  This might be especially true of the period for which the data were 

analyzed, as it was a very important phase in the State’s effort to curb insurgency in the region 

and it is possible that this affected how the data were recorded. Where possible, to overcome this 

limitation multiple sources available to researchers should be used to triangulate results across 

the various data collections. And sometimes (like in this case) the integrated dataset may still not 

be fully representative to the kinds of terrorist-related activity on the ground.  In those cases, it is 

advisable for researchers to proceed with caution, especially while making predictions and policy 

recommendations based on available media-based data.  
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Future studies should also consider the mechanism by which events are covered, 

reported, editorialized and subsequently picked up by media-based datasets. This may be 

especially true for places where media reporting is either difficult due to contextual factors (like 

restricted access to conflict areas) or where electronic media presence remains limited. Creating 

an ‘error profile’, which Chermak and colleagues find “identifies possible sources within the data 

collection methodology that may bias the results through non-sampling errors”88 for each of the 

media-based datasets would provide a surer footing for future efforts to understand the causes 

and correlates of terrorism, especially if the collection managers themselves developed these 

profiles drawn from a nuanced understanding of their specific dataset.    
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 Table 1. Definitional Differences between Datasets 

*2004 data was limited in production; 2005 represented the first full year of data collection

Dataset 

Method of Data 

Collection Source Criteria for Inclusion 

Events 

other than 

terrorism? 

Perpetrators 

other than 

Naxal? 

Global Terrorism 

Database 

 

1970-current 

Until 2007: 

retrospective 

 

Since 2008: 

prospective 

Media articles: 

 national and 

international 

until 2011;  

 local articles 

added 

starting in 

2012 

For an attack to be included in the GTD all of the following (3) 

attributes must be present: 

1. Attack must be intentional—result of conscious calculation 

on the part of the perpetrator 

2. Attack must entail some level of violence 

3. There must be sub-national perpetrators (GTD limits itself 

to non-state terrorism) 

In addition, at least 2 of the following criteria must be present before 

an attack can be included: 

4. The act must be aimed at attaining a political, economic, 

religious or social goal. In terms of economic goals, the 

exclusive pursuit of profit does not satisfy this criterion 

5. There must be evidence of an intention to coerce intimidate 

or convey some other message to a larger audience (or 

audiences) than the immediate victims 

6. The act must be outside the context of legitimate warfare 

activities 

No Yes 

Worldwide Incident 

Tracking System 

 

2004*-2011 

 

Prospective Media articles: 

national and 

international 

Events which meet the definition criteria of 22 U.S.C.§2656f(d)(2), 

in which “groups or individuals acting on political motivation 

deliberately or recklessly attack civilians / non-combatants or their 

property and the attack does not fall into another special category of 

political violence, such as crime, rioting, or tribal violence.” 

No Yes 

South Asia 

Terrorism Portal 

 

1992-current 

 

Prospective Media articles: 

local and regional 

Reports drawn from open sources of attacks, clashes, encounters, and 

/ or statements made by either non-state violent organizations within 

South Asia or by governments targeting these organizations.  Data is 

unstructured, so other than association with a specific group (like 

Naxals), there is no additional inclusion criteria. 

Yes Yes 

Andhra Pradesh 

Police Data 

 

2000-2010 

Prospective Citizen reports; 

Police reports 

Reported events by citizens to local police stations, who then report 

to District Crime Bureaus, and then reported to State Intelligence 

Bureau task force for Naxal-related events.  Key inclusion is whether 

event is Naxal-related, and the collection contains terrorist attacks, 

clashes, threats, extortions, kidnappings for ransom, and other events 

involving known or suspected Naxal-related groups or individuals. 

Yes No 
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Table 2. Dataset Descriptives 

 

Police Data WITS SATP GTD 

# of Events (attacks and other) 1,436 296 229 24 

# of Events Meeting Terrorism 

Criteria (attacks) 
806 296 197 24 

# of Terrorist Attacks Matched 

to Police Data 
806 264 180 21 

# of Matched Terrorist Attacks 

After Triangulation 
806 256 174 19 

      % of Terrorist Attacks 

      Reported in Police Data 
100% 32% 22% 2% 

# of Terrorist Attacks 

Unmatched 
0 32 17 3 

      % of Terrorist Attacks  

     Unmatched 
0 11% 9% 13% 
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Table 3.  Variation in Attack Matching by Year, Type, and Target of Attack 

    Police Data WITS SATP GTD 

    # # % # % # % 

Total Matched Attacks 806 256 32% 174 22% 19 2% 

  2005 451 168 37% 69 15% 4 1% 

  2006 144 18 13% 31 22% 2 1% 

  2007 98 36 37% 37 38% 1 1% 

  2008 65 21 32% 21 32% 5 8% 

  2009 48 13 27% 16 33% 7 15% 

           

Fatal Attacks 309 160 52% 123 40% 12 4% 

  1 killed 284 141 50% 104 37% 6 2% 

  2 killed 14 8 57% 8 57% 1 7% 

  3 killed 7 7 100% 7 100% 3 43% 

  4 killed 1 1 100% 1 100% 1 100% 

  5+ killed 3 3 100% 3 100% 1 33% 

Non-Fatal Attacks 497 96 19% 51 10% 7 1% 

           

Bombings 133 52 39% 31 23% 5 4% 

  Non-Fatal 124 45 36% 23 19% 1 1% 

  Fatal 9 7 78% 8 89% 4 44% 

Non-Bombings 670 204 30% 143 21% 14 2% 

           

Type of Target        

  State Leaders / Officials 18 10 56% 5 28% 4 22% 

  Village Leaders / Officials 42 20 48% 14 33% 2 5% 

  Political Party Activists 77 32 42% 26 34% 2 3% 

  Police / Security Forces 136 52 38% 40 29% 8 6% 

  Other Targets 533 142 27% 89 17% 3 1% 
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Table 4. Logistic regression models predicting reporting in datasets 

  WITS SATP GTD+ Integrated Dataset 

Predictor OR S.E. OR S.E. OR S.E. OR S.E. 

Fatal Attack 6.53*** (1.33) 9.36*** (-2.32) 5.20*** (-3.11) 6.87*** (-1.33) 

Bombing 2.81*** (0.77) 2.73*** (-0.80) 3.29*** (-2.37) 3.31*** (-0.81) 

Targeted Police and / or Security Forces 1.30*** (0.34) 2.15*** (-0.56) 4.98*** (-3.00) 1.53*** (-0.36) 

Targeted State Leaders or Officials 3.79*** (2.22) 0.93*** (-0.51) 9.67*** (-8.39) 2.05*** (-1.15) 

Targeted Village Leaders or Officials 1.72*** (0.70) 2.38*** (-1.01) 3.55*** (-3.13) 1.89*** (-0.71) 

Targeted Political Party Activists 1.48*** (0.47) 2.46*** (-0.70) 2.26*** (-1.78) 1.36*** (-0.39) 

% of Pop in Scheduled Caste / Tribe 1.09*** (0.03) 1.03*** (-0.03) 1.07*** (-0.09) 1.07*** (-0.03) 

% of Pop with Below Poverty Line Card 0.98*** (0.02) 1.02*** (-0.02) 0.97*** (-0.05) 0.98*** (-0.02) 

% of Pop with at least Middle School Education 0.99*** (0.04) 0.96*** (-0.05) 1.02*** (-0.13) 0.98*** (-0.04) 

% of District with greater than 6% Slope 1.05*** (0.01) 1.03*** (-0.02) 1.03*** (-0.04) 1.05*** (-0.01) 

% of District covered with Forest 0.92*** (0.02) 0.97*** (-0.02) 0.92*** (-0.05) 0.94*** (-0.02) 

Distance to Capital (logged) 1.34*** (1.01) 1.19*** (-0.99) 1.31*** (-3.16) 0.91*** (-0.67) 

Previous Attack w/in 30 days in Same District 1.66*** (0.42) 1.64*** (-0.45) 0.83*** (-0.48) 1.61*** (-0.39) 

Number of observations 806 806 806 806 

Adjusted R2 0.202 0.210 + 0.182 

notes:  *** p<0.001, ** p<0.01, * p<0.05 

            + GTD model run with Penalized Maximum Likelihood Estimations; no Adjusted R2 provided 

            OR = Odds Ratio  
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Figure 1. Quarterly Trends in Data Reporting and Matching, by dataset, 2005-2009. 

 

 

  



39 
 

Figure 2. Spatial Variation in Reported Terrorist Attacks, by Dataset and Type of Attack 
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