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Abstract

Malaria is one of the three most serious diseases worldwide, affecting millions each year, mainly

in the tropics where the most serious illnesses are caused by Plasmodium falciparum. This the-

sis is concerned with the automatic analysis of images of microscope slides of Giemsa stained

thin-films of such malaria infected blood so as to segment red-blood cells (RBCs) from the

background plasma, to accurately and reliably count the cells, identify those that were infected

with a parasite, and thus to determine the degree of infection or parasitemia. Unsupervised

techniques were used throughout owing to the difficulty of obtaining large quantities of training

data annotated by experts, in particular for total RBC counts. The first two aims were met by op-

timisation of Fisher discriminants. For RBC segmentation, a well-known iterative thresholding

method due originally to Otsu (1979) was used for scalar features such as the image intensity

and a novel extension of the algorithm developed for multi-dimensional, colour data. Perfor-

mance of the algorithms was evaluated and compared via ROC analysis and their convergence

properties studied. Ways of characterising the variability of the image data and, if necessary of

mitigating it, were discussed in theory. The size distribution of the objects segmented in this

way indicated that optimisation of a Fisher discriminant could be further used for classifying

objects as small artefacts, singlet RBCs, doublets, or triplets etc. of adjoining cells provided

optimisation was via a global search. Application of constraints on the relationships between

the sizes of singlet and multiplet RBCs led to a number of tests that enabled clusters of cells to

be reliably identified and accurate total RBC counts to be made. Development of an application

to make such counts could be very useful both in research laboratories and in improving treat-

ment of malaria. Unfortunately, the very small number of pixels belonging to parasite infections

mean that it is difficult to segment parasite objects and thus to identify infected RBCs and to

determine the parasitemia. Preliminary attempts to do so by similar, unsupervised means us-

ing Fischer discriminants, even when applied in a hierarchical manner, though suggestive that it

may ultimately be possible to develop such a system remain on the evidence currently available,

inconclusive. Appendices give details of material from old texts no longer easily accessible.
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acute angle α in degrees between them for each of three illustrative images,

numbers: 1, 4 and 45 shown in figure 5.1. Eigenvalues of the within-class

covariance matrix and their eigenvectors are shown in the remainder of the table

together with the acute angles θ between each eigenvector and µ(2)− µ(1). . . 131

6.1 Recursive application of the Otsu algorithm to the 4-connected objects obtained

from the three images: numbers 1, 4 and 45 shown in figure 5.1 interpreted via

intensity and colour-based segmentation of putative RBC objects. . . . . . . . 156



List of Tables XXI

6.2 Data for the interpretation of the three images shown in figure 5.1 via intensity

and colour-based segmentation of putative RBC objects shown in figures 6.3

and 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 Extrema of the between-class variances of image object areas at the second level

of recursion for the intensity and colour-based interpretations of image 45. . . . 164

6.4 Interpretation of images 4 and 45 at the second level when the between-class

variances have multiple extrema and the thresholds T2 are set to correspond to

the largest maxima of σ2
B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5 Reliable cell counts for images 1, 4 and 45 compared to counts made by the au-

thor as described in the text. In this table whenever there were multiple maxima

in the between-class variance for setting the threshold T2 for classification of

image objects according to their areas, T2 was set to correspond to the largest

maxima of σ2
B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.1 Outcomes for the non-trivial choices of using a covariance matrix as the weight

matrix W given the choice of covariance matrix S in D.3. . . . . . . . . . . . . 220



Chapter 1

Introduction

The work described in this thesis arose from a collaboration with staff at the National Institute

for Medical Research (NIMR) at Mill Hill in London where there have been several research

groups studying various aspects of malarial infection. In humans, malaria may be caused by

any one of five different species of parasitic protozoans that invade red-blood cells. Depending

on the parasite species and on the age, health, well-being, clinical history of the patient, and the

complications that may develop, malaria may have a range of effects from debilitating fevers

to death. It is one of the world’s most serious human diseases with an impact mainly in the

poorer regions of the world in the tropics where the anophelene mosquito responsible for its

transmission between victims proliferates. Since control of the mosquito by mass application

of pesticides and other environmentally invasive procedures has become unacceptable malaria

is a disease in urgent need of the development of improved clinical diagnosis and care and, more

importantly, of rapid diagnostic tests and of a suitable vaccine. There is therefore much study in

laboratories worldwide, including at the NIMR, of the fundamental host-parasite interactions.

Though the long term aim remains the development of procedures that may be applied in the

field in the detection, treatment and prevention of malarial infection, there is much to be gained

from the development of processes that assist laboratory research.

It was the latter that provided the motivation for the work in this thesis; namely to develop

image processing and computer vision algorithms that would relieve laboratory researchers

of the time-consuming and tedious manual work required to determine the parasitemia of in-

fected blood samples cultured in the laboratory. This manual inspection of thin-films of stained

blood samples under a microscope and counting the relative numbers of infected and healthy

red-blood cells (RBCs) is according to NIMR staff the gold-standard for determining the para-

sitemia or degree of infection [66, 177].

This is a much less ambitious aim than, for example, development of computer vision

systems for the diagnosis of malaria from microscope slide images [176, 151], but one that
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because it utilizes images taken under more controlled conditions and avoids some of the most

difficult classification problems [175] is more achievable and, if successful, would have a more

immediate impact as no lengthy medical approval is required. The determination of the degree

of parsitemia of such laboratory blood samples is thus not only a useful objective it its own

right but could also be instructive and provide much valuable experience and feed-back for the

development of systems to be used in the field.

1.1 Problem statement

The basic requirement for development of a computer vision system for determining the par-

sitemia of laboratory samples is, as in the manual process, to count the relative numbers of

infected and healthy RBCs. There are various ways in which this might be achieved [165] in

an automatic system, but typically this requires discrimination of RBCs from the background

plasma, white-blood cells, platelets and distracting artefacts, a decision as to whether each indi-

vidual RBC is infected by a malaria parasite or not, and a processes for counting the number of

each type of cell. This is the approach adopted in this thesis. It begins with – and is dependent

on – detection and labelling of the pixels belonging to RBCs, irrespective of whether they are

infected or healthy, in a segmentation process.

Segmentation is a classic problem in image processing and computer vision. It is discussed

in most text books, both in image processing [87, 139, 68] and in computer vision [89, 183,

60] though there are often differences in approach. A wide variety of techniques are used in

both kinds of applications ranging from hand crafted algorithms based on user evaluation or

interaction, model-based methods, and machine learning.

Model-based approaches, including the construction of models of the object of interest, the

imaging geometry and photometry [51, 100], models of the object’s shape and appearance [30]

and models of the effect of changing viewpoint [35, 206] are popular in computer vision re-

search and applications. The application of machine learning methods has also become more

popular recently both in image processing and in computer vision. This is a result of increased

computer power, improved learning algorithms and improved statistical methods [14]. Of par-

ticular note is the application of capacity-controlled supervised machine learning algorithms

such as those based on the support vector machine technology [137, 4]. Capacity control com-

bats the need for the huge numbers of training examples that would otherwise be required owing

to the very-high dimensionality of the pixel space of an image. Multi-resolution, pyramid and

wavelet transform filtering methods are often employed to reduce the dimensionality and have

the additional benefits of introducing the spatial coherence between neighbouring pixels in an



1.1. Problem statement 3

image and thereby making the statistics of the filtered images predictable [172, 70]. Reduc-

ing the resolution also helps combat the computational complexity of such supervised machine

learning algorithms.

More recently, deep learning techniques which can automatically generate appropriate in-

termediate representations of image data, in particular for object recognition have been very

effective [107]. Though such systems require less training data than older approaches would

have even when capacity controlled, large training data-sets nevertheless seem to be required

and it is often necessary to use specialised hardware (graphics accelerators) for its implementa-

tion.

Principal component analysis [92] is a very effective way of reducing the dimensionality of

the image representation in particular when applied to specific types of object as by Cootes and

Taylor [31] or, when incorporating hidden landmark point variables as in the flexible appearance

methods, also developed by Cootes and Taylor [30]. The characteristics of an object or class

of objects may then often be learnt from a few hundred or thousand examples, even when the

object has internal degrees of freedom, as in the expression of a face [38].

In spite of these advances, an unavoidable disadvantage of such supervised learning ap-

proaches is the requirement for manual interaction to obtain training data. Even though an

initial system may be constructed from a small training set to be used as a tool for assisting

manual labelling of a large training set [31], acquiring training sets can be time consuming

and laborious. Furthermore, if the training data is to be accurate, segmentation of the training

images should be carried out by an expert. Their time is often a scarce resource and different

experts may not always agree [193].

In machine learning terms in unsupervised methods labels are assigned according to a cri-

terion that reflects the underlying characteristics of the problem. In image processing this often

amounts to the choice of a predicate according to which segmentation is to be carried out and is

most common in the clustering of pixels in a colour space. The choice of colour space involving

a linear or non-linear transformation of the image data, clustering criterion, initialisation and

the algorithm employed are all important in the design of such systems. Often unsupervised

algorithms are based on statistical criteria which may be parametric, as in the application of

Gaussian mixture models in colour image segmentation, or non-parametric when a statistical

criterion may be used that reflects overall properties of the pixel data. Amongst the latter is

the classical Fisher discriminant or linear discriminant analysis (LDA) according to which one

seeks a labelling or classification of image pixels that maximises the ratio of a between-class

variance to a within-class variance [54, 46]. When applied to a one-dimensional feature space,
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such as pixel intensity, this leads to the Otsu algorithm whose implementation [89] seems rather

better known than its origin [131].

In distinction to the approaches adopted by others, in particular at the University of West-

minster [176, 175, 177, 154, 153, 155, 156, 151, 165], we have been exploring the application

of such methods to address the segmentation of RBCs in images taken from thin-film slides of

stained blood samples and detection of which cells are infected. In so doing we have developed

and studied in detail a novel segmentation algorithm based on a combination of application of

a multi-dimensional Fisher discriminant and the Otsu algorithm. This Fisher-Otsu algorithm

seems especially well suited to the segmentation of pixels belonging to RBCs and, given such a

segmentation, can be very effective when employed to count RBCs, especially when employed

with a range of internal checks on the algorithm’s performance. Unfortunately, in the prelimi-

nary work described here, it was less successful for the detection of stained pixels indicative of

the infection of individual RBCs. Segmentation and counting of RBCs and detection of those

containing stained pixels indicative of parasite infection are the fundamental steps whose solu-

tion is required in order to determine the degree of parasitemia of a sample. Before describing

our work, we first give some further background on malaria and in particular on the thin-film

blood slides images that are used throughout this thesis.

1.2 Background

Malaria parasites are micro-organisms that belong to the genus plasmodium. There are more

than 100 species of plasmodium, which can infect many animals such as reptiles, birds, and

various mammals. Only five species of plasmodium infect humans in nature, although there are

some other species which can, exceptionally or under experimental conditions, infect humans.

The five species which infect humans are: Plasmodium malariae, P. ovale, P. vivax, P. falci-

parum and recently, P. knowlesi. The first two species are less frequently encountered, while

the fourth one is the only species that can cause severe, potentially fatal malaria [58].

A definite diagnosis of malaria infection is established by finding parasites in the blood

[66]. The main component of blood is a yellowish fluid, called plasma. A great portion of the

plasma is composed of water, a medium that facilitates the circulation of the many indispensable

factors of which blood is composed. A cubic millimetre of human blood contains about 5

million red corpuscles called erythrocytes (but which we shall, as above, simply call red-blood

cells, or RBCs for short); 5,000 to 10,000 white corpuscles (or white-blood cells – WBCs for

short) called leucocytes; and 200,000 to 300,000 platelets properly called thrombocytes. The

blood also carries many salts and organic substances in solution [37].
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Even with all the serological and immunological techniques available and under devel-

opment probably the only certain way of currently diagnosing malaria is by microscopical

examination of the blood. This has been the case in the last century [66] and despite all the

advancements in molecular biology still appears to be the case [177]. Microscopic examination

is the most reliable test for malaria.

Malaria biomedical research work focuses on two species: humans and mice. Mice are

often employed in the laboratory as genetic models because of the similarities between sections

of human and mouse DNA [134]. Trager and Jensen [181] were the first to successfully culture

red-blood cell stages of malaria. Two kinds of slides may be prepared for microscopic examina-

tion of blood samples, “thin” and “thick”. When working in the laboratory, scientists prefer to

make thin slides. These are produced by putting a single, small drop of blood onto a microscope

slide and smearing it along the length of the slide with the edge of (say) another slide. In a thin

slide, one thus sees only a single layer of mostly just red blood cells which are usually stained

so that malarial DNA is visible as a distinctive colouration (figure 1.1). Red blood cells have no

DNA and are thus not stained. The process most often used is Giesma staining which gives a

purple colour to the malarial DNA. In the field both kinds of slides are prepared: thick as well

as thin: thick to detect parasites, and thin for species identification.

A thick slide or smear is just a drop of blood on the microscope slide which, as noted above,

are often not adequate for species identification of malaria parasites because cells overlap in the

field of view and are difficult to distinguish, or are lysed – i.e. the cell membranes are disrupted.

If a thick slide is positive for malaria parasites, a thin slide should be used for identifying the

species of malaria infection and for quantitative work such as counting the fraction of infected

cells and thus determining the severity of infection.

In the laboratory, thin-film slides may also be used for determining the stage of the malaria

parasite’s lifecycle but this quite difficult classification task was not one of our objectives. De-

termining the stage of the lifecycle is important in laboratory work because cultured samples

of infected blood can be synchronous or asynchronous. Synchronous slides contain malaria

parasites all at the same stage of the lifecycle. The malaria parasite undergoes three main stages

during its infection of red blood cells. In this erythocytic cycle each parasite starts as a small

ring stage with delicate cytoplasm plus one or two small chromatin dots and other occasional

ornamental forms, followed by trophozoites of compact cytoplasm and dark pigment, which

mature into schizonts with dark pigment which clump in one mass [58]. Figure 1.2 shows a

more detailed and complete schema of the life cycle of malaria. Life cycle stages within the hu-

man liver and within the mosquito are included together with the ‘off-shoot’ of the erythrocytic
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Figure 1.1: An example image of part of a thin-film microscope slide showing healthy RBCs

and RBCs infected with malaria parasites. The parasites have been Giesma stained and appear

dark blue/purple. This 1300 × 1030 pixel, 24-bit colour image courtesy of the NIMR taken

at 1000 times magnification is typical of those used in this thesis with ∼ 100 − 150 RBCs of

diameter ∼ 70− 80 pixels visible of which a few % may be infected.

cycle in which gametocytes are formed. The part of interest to our work is the erythrocytic

cycle in which the parasite resides within the RBCs. Different stages of the malaria parasite

lifecycle can be observed in a single asynchronous slide.

In this thesis, we focus on working towards development of a system to measure the de-

gree of infection by malaria parasites using a colour image of a thin slide of laboratory cultured

malarial blood taken using a microscope in order to evaluate the parasitemia of the blood, (i.e.

to count the number of parasites per number of red blood cells). A manual analysis of slides

is tiring, time-consuming and requires expert technical staff. Our task is thus to automate the

counting processes and any detection, segmentation, classification, labelling and other pro-

cesses that may be required. It must be noted that while for a human detection, classification

and counting are concurrent process they are usually separate processes in a machine vision

system.

1.3 Aims and Objectives

The ultimate goal of our work is thus to contribute to the development, implemention and

evaluation of an automatic system for the detection, location, identification, characterisation,

and counting of red-blood cells in images of thin-film slides produced in the laboratory. By

identification and characterisation in the above we mean determination of whether a cell is

healthy or infected. Ideally, such a system would operate without error and with total reliability.

It is, of course, extremely unlikely – in fact almost certainly impossible – that such a perfect,
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Figure 1.2: Schema of the Life Cycle of Malaria, from [58]. The three stages in the parasite

erythrocytic life-cycle within the RBCs are illustrated towards the bottom right of the diagram.

We note further for future reference that the degree of infection or parasitemia is defined using

the number of parasites in asexual stage malaria, i.e. in the erythrocytic cycle.
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ideal system could be developed. In practice, therefore it is necessary to establish a set of

performance criteria according to the requirements of the users and of the medical applications

in which the system might be utilised.

1.3.1 Central hypothesis

The main hypothesis statement of our research may be given as follows:

To contribute to development of an image processing/computer vision system for

determining the parasitaemia of malarial infected samples of human blood used in

laboratory biomedical research from images of microscope slides of thin-films.

To build such a system and be confident it will meet laboratory requirements, we must be

able to evaluate its performance on suitable test data and, in principle, be able reliably to predict

its performance on images that may be taken in the future when the system is used in practice.

For these purposes, images of slides in which the blood cells have been detected, located, clas-

sified and counted, all by a human expert or experts are required. Such annotated images may

then be used in development of the algorithms and techniques to be used, in training (if required

in a supervised system) and testing to determine the best algorithms and their optimal parame-

ter settings, the overall system’s expected performance and characterisation, and validation to

verify that the expected performance is obtained. If required, such data could also be used in

acceptance testing, normally used in commercial work to demonstrate that a pattern recognition

system meets the contractual requirements of a customer or end user. In a system to be used

in the laboratory a similar route would be required prior to its use as a tool. Such validation

and acceptance testing may be regarded as analogous to clinical or more likely, to pre-clinical

trials1. Such procedures require lots of data annotated by an expert or experts though cross-

validation [99] and bootstrap techniques and, possibly, Bayesian statistical methods to integrate

over the distribution of system parameters [14] may be used to improve the efficiency of data

utilisation. Furthermore, in order to carry out such work efficiently, to make the best use of the

available time of expert malaria researchers and, more importantly, to enable one to carry out

the required research and development effectively, software tools are required for image capture

and recording of experimental protocols and the image capture conditions, for annotation and

storage of the images in a database, their retrieval, manipulation, processing etc..

1Full-blown clinical trials are very extensive, have to be carried out according to strict medical standards and are

usually expensive and time-consuming.
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1.3.2 Sub-hypotheses

The central hypothesis above is very broad and has been addressed via a number of specific

sub-hypotheses, all involving completely automatic algorithms:

(i) The detection of pixels belonging to red-blood cells, irrespective of whether they are

healthy or infected by a malaria parasite, can be automated by use of an unsupervised

classification algorithm applied globally to the whole of a thin-film microscope slide

image.

(ii) The pixels detected in (i) may be grouped within individual RBCs and the locations of

the cells within the image determined.

(iii) The grouped objects in (ii) may be counted in order to determine the number of RBCs in

the image.

(iv) The pixels detected in (i) may be further processed by a second application of a similar

unsupervised classification algorithm to detect those belonging to parts of RBCs infected

by malaria parasites and used to indicate whether a RBC is infected or healthy.

(v) The outputs from (iii) and (iv) may be combined to determine the parasitemia of a blood

sample to an accuracy and with a reliability that should meet the requirements of biomed-

ical researchers and is competitive with results published by others in the literature.

There are a number of points relating to each of these sub-hypotheses that require clarifi-

cation.

1.3.3 Detection of pixels belonging to red-blood cells (i)

The first point to emphasize is that this refers to classification of individual pixels as belonging

to the image of RBCs (or parts of RBCs) or not. The hypothesis makes it clear that it is im-

material whether the RBC is infected or not and does not make any reference to classification

of pixels deemed not to belong to the image of a RBC or part of a RBC. It is thus a two-class

problem with the RBCs regarded as image ‘foreground’ or objects of interest and the rest of the

image as ‘background’. The ‘excluded’ pixels in the background are most likely to belong to

the image of the blood plasma but could also belong to white-blood cells (WBCs), to platelets

or to image artefacts, for example created by the staining process. In the wild, other bodies

might be encountered in the blood including other parasites that may infect people living in

tropical areas but this is not likely in the laboratory research samples of interest to us. Similarly,

in the laboratory samples used in the current stage of malaria research we do not encounter
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RBCs affected by other diseases. Our problem is thus much easier than it might be in a field

application and we do not have to concern ourselves with, for example, the possibility of some

RBCs being severely distorted in shape owing to conditions such as sickle-cell anaemia. We

also thus refer to RBCs that have not been infected by malaria parasites as ‘healthy’.

In addition, we should note that there is no reference to sub-parts of the RBCs, in particular

their boundaries. Close inspection, for example of the image in figure 1.3, reveals that in many

of our images one can often discern the outer membrane of the RBCs as a ring-shaped region

that is lighter than the cell body and distinct from the background. It is not specified whether this

boundary membrane is to be regarded as part of the cell or not. In principle it might be best if

pixels on the boundaries of the RBCs were regarded as excluded from the cells or as a third class

distinct from the foreground body of the cells and the background. However, as can be seen in

figure 1.1 the parasite infections of interest for determination of the parasitemia are confined

within RBCs. Thus, in practice within the approach we have followed, the point is largely

irrelevant though we do need to keep an eye on the extent to which it may affect performance.

More pertinently, in particular for an evaluation of performance at the level of classification of

individual pixels [169], we do need to be aware of the fact that pixels on region boundaries

will be mixed. If we include the RBC boundary membranes there are then in principle five

or six classes to which pixels may be assigned: RBC body, RBC boundary, background, and

mixed RBC body and boundary plus mixed RBC boundary and background, and depending

on the width of the boundary membrane, possibly also mixed pixels spanning the RBC body,

boundary and background (figure 1.3).

A second point to note is that the hypothesis refers to an unsupervised classification al-

gorithm. Unlike a supervised system, such an algorithm does not require training data which

has been labelled by a human expert or in which the classification may be determined by other

means. Unsupervised systems are thus more convenient than supervised systems but care has

to be taken to characterise the range of data over which an unsupervised algorithm will pro-

duce good results and, if appropriate, the settings or adaptation of any parameters required and

initialisation conditions.

Thirdly, it is to be noted that the algorithm is to be applied globally over the whole of

an image and that no pre-processing of the images is mentioned. Global application of an

algorithm, in particular of decision thresholds is a point to bear in mind, especially as previous

research using data similar to ours (and some of it from the same source at the NIMR) has

questioned whether such global approaches can work because of variation in the intensity across

an image caused by non-uniformity of the microscope illumination [176, 175]. We will propose
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Figure 1.3: A memorable segmentation in which RBC boundaries were partially detected.

how one might examine and characterise the extent of such variation within an image and the

extent and likely effect of variations, in particular of colour and intensity, between images.

The latter may be affected by many things including the camera used as well as the microscope

illumination and the details of the staining process and thin-film preparation. We note in passing

that Tek [176, 175] points out that a Kohler illumination set up [170] of the microscope can and

should be used to avoid significantly non-uniform illumination but that this is often neglected

by researchers who are not expert in microscope optics because adaptation of the human eye

to variations in the local illumination mean the problem is not perceived. Non-uniformity of

the staining and in the procedure for making a thin-film slide may cause similar effects, though

they are mitigated by the fact that, though our images are quite large (1300× 1030 RGB pixels,

figure 1.1), the magnification of 1000 times is such that the field of view is only a fraction of

the area of a microscope slide.

In fact, the magnification of the microscope images is such that many (thousands of) im-

ages could be taken per slide. Design and implementation of the systems required to automate

and control the image acquisition would thus also need to be addressed for the ultimate, auto-

matic laboratory (or field) applications. This would require control of microscope focus and x-y

table movement and, given the huge amount of data that might otherwise be created, a strategy

for characterising suitable fields of view and for selecting sample fields [176, 175]. A half-way

house for our laboratory research application might be to retain user control of the image acqui-
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sition – which thereby would have a degree of expert quality control – but to target the tedious

(and therefore for a human, often error-prone) manual image analysis currently required for the

determination of parasitemia. This is the situation most relevant to our work.

Two other issues implicit in the hypothesis are the possible effect of the density and distri-

bution of RBCs within the images.

Finally, we note that the hypothesis makes no mention of the level of performance required.

Its performance is important as the output of this first algorithm would be used in other parts

of the system but, provided the performance is adequate to enable the overall determination

of the parasitemia (say) to be sufficiently accurate, it is not of fundamental interest. However,

following the precedent set by Southall et al [169] in systematically evaluating the intermediate

algorithms and system components as well as its final output, and as our discussion of the issues

regarding mixed pixels indicates, we shall evaluate this first step separately. We shall also try to

ensure that the reasons underlying the performance of each step in the algorithm are understood

and, where possible, characterise the robustness of the performance (chapter 5).

1.3.4 Pixel grouping within RBCs (ii) and counting the grouped RBC objects (iii)

The points that require clarification here include the extent to which it is necessary to group

pixels within individual cells as opposed to clusters of two or more cells that are adjoining in

the segmentation produced by the first step. This may occur because the cells are touching or

because of poor performance of the first stage algorithm. In practice we need to discuss how

a poor segmentation is recognised and, more importantly, to specify what is done to deal with

touching RBCs which, as previous works have noted [154], will be a problem to be overcome

if cells counts are to be accurate. The details are given in chapter 6. In addition we also have

to decide what to do about cells that do not lie entirely within the image so as not unduly to

perturb determination of the parasitemia and, in accord with our strategy to evaluate each of the

intermediate steps, to permit a fair assessment of the performance. Although there is nothing

on the way to evaluating the parasitemia for which the location of individual cells is explicitly

required, it is convenient to have a record of the RBC locations for interrogation of the images,

for use in understanding subsequent processing steps, display of results and for the testing of

alternative approaches.

Finally, we note in particular that the locations of the RBCs are required in order to evaluate

in detail whether each individual cell has been detected. In principle we would like to assess the

true-positive rate or sensitivity of RBC detection, and its false-positive rate or (one minus the)

specificity. Deciding whether cells have been correctly or incorrectly detected requires knowl-
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edge of their locations and has to confront the question of what accuracy of location is required

for a detection to be regarded as correct. This is a long-standing problem in the evaluation of

computer vision algorithms familiar for example in early work on the detection of localised

features such as edges or corners. An overall evaluation of the cell count however doesn’t re-

quire such information but is less informative about algorithm performance as false positives

and false negatives may cancel. A detailed evaluation also conveys greater understanding of

the behaviour of the system and (hopefully) conveys greater confidence in the performance to

be expected in practice. In addition, we also note that whilst it is easy to count the number of

cells incorrectly detected as false-positives, it is more difficult to determine the false positive

rate as the number of confusing negative objects in an image is not well-defined or known. This

situation is encountered in many classification tasks not only in computer vision, but also in

other areas as diverse as text mining [36].

1.3.5 Detection of infected RBCs (iv) and determination of parasitaemia (v)

The main point of clarification or emphasis here is that since we do not attempt to identify

either the parasite species or stage of the erythrocyte life cycle (recall figure 1.2) an accurate

segmentation of the stained pixels belonging to areas of the image corresponding to the presence

of parasites within RBCs is not required. All we need is to gather sufficient evidence to classify

each cell as infected or healthy. Similar issues have been considered by Ross et al [151] in the

development of their system designed to detect whether results from the analysis of an image

(or images) of a blood slide indicate whether a patient is healthy or infected. The species and

life cycle stage are usually known under the controlled conditions in which samples are cultured

in laboratory research (page 6).

Secondly, that a similar unsupervised classification algorithm to that developed in (i) is

applied only to the pixels detected in the first stage as belonging to RBCs in order to detect

pixels corresponding to parasites. There are two reasons why we can do this and two as to why

we choose to do it. The first of the two that enable us to proceed in this manner is that the

definition of parasitemia depends only on the fraction of RBCs infected by the parasite within

the erythrocyte life cycle where the parasites are always within RBCs. The second of these two

reasons is that since RBCs have no DNA of their own only the parasite can be stained within

a RBC. The first of the two reasons as to why we choose to process only the pixels output

from the first stage algorithm as belonging to RBCs is that pixels belonging to image regions

corresponding to stained parasite comprise only a very small fraction of an image. They are

thus a minority class far outnumbered by pixels belonging to the foreground RBCs and very far
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outnumbered by pixels belonging to the image background ‘plasma’. Secondly, a multi-class

version of our Fisher-Otsu algorithm has not been developed so there is no alternative to using a

hierarchical classification architecture if we wish ultimately to use this algorithm to distinguish

more than two classes.

Finally we note that the count of the overall number of RBCs together with the decision as

to whether each cell is healthy or infected with a parasite obviously provide sufficient informa-

tion to calculate the parasitemia or degree of infection. The main questions remaining are: the

way we should evaluate this final outcome and its reliability; whether the results would meet the

requirements of potential laboratory research users and are competitive with results published

by others in the literature [165]; the accuracy and reliability that therefore could be expected

were the approach we have followed to be developed into an application; and any further work

required in order to produce such an application.

1.3.6 General comments

Further context is of course required from a review of the relevant literature to be given in

chapters 2, 3 and 4 but the above hypotheses and comments set much of the scene for the work

described in this thesis. A few more general, additional comments may be made here however.

The first is, as mentioned in the last paragraphs above, that our approach is based on a

hierarchical classification system. Such an approach of course means that the performances of

later stages in the hierarchy are limited by the performances of stages that preceded them. It is

therefore particularly important that segmentation of pixels belonging to RBCs in the first stage

(i) (subsection 1.3.3) is accurate and reliable and that failures can be detected.

The second is that we haven’t mentioned computational or hardware requirements. As

will be seen, our main Fisher-Otsu algorithm is iterative, so the former could as usual be dealt

with by consideration of the computational complexity of the main operations required and the

convergence characteristics of the algorithm. The ways in which it can fail and the detection

of such failures should also be considered. As for platform requirements, there are almost

none. At the time of writing, desktop workstations, personal computers and laptops have all for

some ten years or more had the memory, storage and processor capacities to deal routinely with

image data of megapixel size. For the research carried out in this thesis there has thus been no

emphasis or consideration of matters such as data transfer, storage or efficient coding other than

to avoid obvious poor scaling of the main operational steps. For convenience and to enable the

greatest attention to be given to the methods developed, Matlab has thus been used throughout.

Nor would the target biomedical research users care greatly about detailed computational and
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memory requirements issues. For them the main concern is to reduce the human effort required

to complete a tedious task and to know that any such computer application will produce outputs

of sufficient accuracy and reliability within a reasonable time which could be anything from

minutes to hours on reasonably standard PC platforms. If necessary, they would be prepared to

use multi-processor systems to speed-up the calculations [50].

1.4 Achievements and Contributions

In this section we summarise what the work carried out in the course of our studies has achieved

and what contributions have, and may in the future, be made.

1.4.1 Achievements

Our main achievement is the unsupervised Fisher-Otsu algorithm developed initially for the

first step of segmenting pixels belonging to RBCs. This algorithm is based on a combination

of two well-established techniques both of which utilise a linear Fisher discriminant. The first

is the classical use of the Fisher discriminant [54] to reduce the dimensionality of the RGB

colour space by determination of the most discriminating feature vector as described in pat-

tern recognition textbooks and review articles (see for example:Duda and Hart [45], Duda, Hart

and Stork [46], Devijver and Kittler [43], Kittler [97] in the collection edited by Fu, and Ser-

gios Theodoriois and Konstantinos Koutroumbas [178]) and resources such as CVOnline: Vi-

sion Geometry and Mathematics (http://homepages.inf.ed.ac.uk/rbf/CVonline/geom.htm), and

of course Wikipedia (http://en.wikipedia.org/wiki/Linear discriminant analysis). We use the

Fisher discriminant to project the data onto the most discriminating direction in the RGB colour

space to generate a one-dimensional feature space to which the second ingredient, the Otsu al-

gorithm [131], which is itself a consequence of application of the Fisher discriminant as we

shall see in chapter 4 and in detail in appendix A, is applied. In our Fisher-Otsu algorithm these

two steps are applied iteratively in alternation. The resulting algorithm which to the best of our

knowledge is novel seems very well suited to segmentation of the pixels in our problem. Its

development is described in chapter 4 together with its use for the segmentation of RBC image

pixels.

From this, flow two achievements:

(i) An understanding of the algorithm with an exploration and characterisation of its conver-

gence and robustness, the latter involving in particular an analysis of the effect of affine

transformations of the RGB colour space on the algorithm (chapter 5).

(ii) Development of procedures for the grouping of RBC pixels into objects corresponding to
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individual RBCs and clusters of contiguous RBCs and counting the number of cells these

objects represent. The grouping procedures involve for the most part standard techniques

but the counting, using a further application of the Otsu algorithm in conjunction with a

number of internal cross checks is, to the best of our knowledge, original. Evaluation of

the counting indicates it is both robust and reliable (chapter 6).

Furthermore, we propose, but have not implemented or evaluated:

(iii) Ways to characterise image data variability and the extent to which such variability,

whether intra-image or inter-image, may be modelled by means of affine transformations

of the RGB colour space to which the Fisher-Otsu algorithm is expected to be largely

insensitive (chapter 6).

Finally, we have carried out a preliminary exploration of:

(iv) Further applications of the Fisher-Otsu algorithm to pixels segmented as belonging to

healthy RBCs for the detection of pixels that belong to stained parasites.

(v) Using the detection of stained parasite pixels to identify RBCs that are infected and thus

counting the numbers of infected and healthy RBCs as would be required for determina-

tion of the degree of parasitemia (chapter 6).

We may thus say that sub-hypotheses (i), (ii) and (iii) have been achieved and, given our

limited preliminary investigations, that (iv) and (v) have been explored and remain as possibili-

ties that further work might show were achievable by the approaches described in this thesis to

accuracies useful to medical researchers.

1.4.2 Contributions

The main contribution arising from this thesis work is publication of the Fisher-Otsu algorithm

[23]. This happened at an early stage of the research – hence the different name (Otsu3D) used

there – in particular before we had developed a good understanding of the algorithm’s behaviour

and before much had been done to characterise its convergence and robustness or to explore its

failures. In fact there were no failures of the algorithm as first constructed for the RBC pixel

segmentation and initialised via use of PCA. From the outset however we always evaluated

its performance and thus, for example, in [23] compared the algorithm with well-established

alternative ways of using the Otsu procedure.

Given the deeper and more complete understanding we now have and that a system has

been developed for the segmentation of RBCs and clusters of contiguous RBCs and for counting



1.5. Structure of the Thesis 17

the number of cells such objects in an image, it seems that there is potential perhaps for two

further publications:

• one in the computer vision / pattern recognition literature on the Fisher-Otsu algorithm

and its behaviour as illustrated by the RBC pixel segmentation and its hierarchical appli-

cation for the detection of stained pixels belonging to parasites; plus

• a paper in the biomedical literature on the automatic counting of RBCs in thin-film mi-

croscope slide images.

1.5 Structure of the Thesis

The structure of the bulk of the remainder of this thesis is implicit in the cross-references in

the achievements section 1.4.1 above. These indicate that chapters 4, 5, and 6 will in turn de-

scribe: development of the Fisher-Otsu algorithm; its use for segmentation of pixels belonging

to RBCs; its convergence and robustness together with a discussion as to how variability of the

data might be characterised; counting RBCs; and preliminary work on parasite detection and

classification of individual RBCs as healthy or infected. In the final chapter 7 we discuss and

summarise the conclusions to be drawn from our research and, as also indicated above, discuss

what directions for further research our work prompts and what future work might be carried

out.

As we shall see, the three most important elements needed for such research to be under-

taken effectively and efficiently are: the provision of suitable data in sufficient quantities; the

evaluation methodology or strategy; and the programs and software tools required to facilitate

development of the algorithms and procedures, their testing, and assessment. Tools are also

required for characterisation of the image data and its variability so that, given an understand-

ing of how and why the algorithms work and how they may fail and failures be detected, the

approach developed might, if desired, be applied in practice with confidence by biomedical

researchers.

In chapter 2, we review the literature most relevant to the processing of images of thin

slides of blood samples. This review opens with a discussion of general aspects of the problem

based on papers on closely related topics, such as the processing of such images of blood slides

for the diagnosis of leukaemia. We then use this background information to focus on discussion

of a series of papers on the processing of microscope images of thin-film blood slides for the

detection and characterisation of malarial infection. Of particular interest is work from 2000 to

2010 by the group at the University of Westminster: by Di Ruberto et al [154, 153, 155, 156] on
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the detection of red blood cells infected by malarial parasites in thin-slide images, similar work

by Rao et al [146, 147, 148, 149], and most recently by Tek [175] and Tek et al [176]. We then

introduce and review other work relevant to our research, in particular two papers published

in 2006 on systems developed for counting malarial infected cells [165] and on the diagnosis

and classification of malaria on thin blood smears [151]. More recent image analysis work on

the ‘reading’ of malaria blood slides (as it is called) is briefly discussed in the epilogue to the

final chapter (chapter 7, section 7.3). We also briefly review the mostly ‘standard’ but fiddly

techniques used to group pixels segmented as belonging to RBCs into individual cells and for

counting the number of cells present in an image. Finally, a number of potential alternative

techniques and approaches are briefly discussed, in particular in chapter 3 some modelling

methods that we tested but found difficult to make work well.

Background and review of the pattern recognition theory on Fisher’s linear discriminant

and its application to histogram-based segmentation of images which leads to the well-known

algorithm [89] first developed by Otsu [131] is mostly deferred to chapter 4 where these two

techniques are brought together in development of the algorithm that is our main, core contri-

bution.

With the comments in the section on achievements 1.4.1, the above set the scene or context

for our research.



Chapter 2

Literature Review

In this chapter we review literature most relevant to processing of microscope images of thin-

film slides of blood samples in malaria applications. We have already noted in the introductory

chapter that our objectives are quite limited and that the images we shall be using are not very

variable. The fundamental image processing/computer vision task to be carried out is segmen-

tation, in particular of pixels belonging to RBCs and subsequently of stained pixels belonging

to malarial parasites within RBCs. Grouping of pixels into objects representing RBCs, count-

ing the number of cells such objects represent and deciding whether the cells are infected or

healthy are also important. As we shall see, we thus do not require access to a large area of

computer vision and image processing research and some of the techniques we have used are

quite standard. It is nevertheless useful to set the context a little wider and to include in this

review chapter brief discussion of:

(i) the processing of other biomedical imagery where it impinges on our research and/or on

malarial applications,

in addition to more specific items on:

(ii) pre-processing techniques that may be used to reduce the range of image variation (lim-

ited though that may be) together with thresholding, the most commonly used image

processing technique for segmentation in this and many other biomedical applications;

(iii) work by others on the processing of images of thin-film microscope slides for the detec-

tion and characterisation of malarial infection, including techniques required in order to

build on the segmentation processes and finally obtain estimates of the degree of para-

sitemia;

(iv) classification techniques, feature selection, and, briefly, the use of neural network and

other “black-box” classifiers and classifier combinations;
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(v) performance measures, their limitations and practical application, in particular of the

ROC, (receiver operating characteristic) curve to the problem; and

(vi) the fitting of deformable geometric models and templates, in particular the work of Liu

and Sclaroff from around 1997 to 2001 which was applied to a similar problem in the

processing of images of red blood cells in thin-film microscope slides and, again briefly,

evolutionary search and optimisation techniques used in such approaches.

The items are numbered above to correspond with the main sections to follow in this

chapter. Before embarking on those sections, we note that, in particular re (iii) above, a very

useful review has recently been published by Tek et al [176]. Though that review is aimed at

the automated diagnosis or screening of malarial infection it covers much of the background

specific to processing of microscope images of blood thin-film slides, and in particular the

decade of work by the group at the University of Westminster. The chapter concludes with a

brief summary and mention of the flexible modelling approach to be discussed in chapter 3.

2.1 Biomedical image processing

To provide greater background and a wider context for the processing of 2D-images of thin-

film microscope slides of malarial infected blood, we begin with a brief discussion of general

aspects of biomedical image processing based on papers on closely related topics, such as the

processing of such images of blood slides for the diagnosis of leukaemia. As the “2D” above

indicates the processing of 3D medical images such as those produced by X-ray CT, MRI,

SPECT, PET etc. and of time-varying, video sequences (of whatever dimension) are excluded

from our discussion. In fact most microscope images of biological samples are considerably

more challenging than our blood thin-film images as the example in figure 2.1 shows. Though

for a different application and though their aim of a fully automated cell analysis and diagnosis

of leukemia was not yet reached Hengen, Spoor and Pandit [79] covered in their work many

important steps in the image acquisition and pre-processing of microscope slide images of blood

(and in their case, bone marrow) smears (see figures 2.2 and 2.3). Indeed the focus of their next

phase of work is described to be on classification by using features such as the mesh structure of

the cells, the shape of cell and nucleus or the colour and granularity of the cytoplasm. Classifier

choice is also not an easy step and, like many working on the processing of biomedical images,

they have proposed a wide range of classification techniques including: a statistically optimal

classifier with the presumption of a probability density of features (Bayes classification and

special forms of maximum likelihood classification); classification by means of neural nets and
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Figure 2.1: Example biomedical image courtesy of Dr. Marco Loddo at the Wolfson Institute

for Biomedical Research, UCL. The image is of a stained, thin section of cancerous tissue.

The aim is to count the numbers of healthy (purple) and diseased (brown-stained) cells. It can

be seen from comparison with figure 1.1 that this is a much more difficult application than

ours, amongst other things because of the background of connective tissue which is much more

complicated than the background blood plasma in our case.
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Figure 2.2: A blood smear image copied from the reference given in the text.

Figure 2.3: A bone marrow smear image copied from the reference given in the text.

by support vector machines (SVMs); and minimum distance classification. We shall review

classification techniques in section 2.4 below. Results were described as still pending, but a

further conclusion that may be drawn from this work is that consideration of such a range

of classifiers does not seem untypical in biomedical image analysis. A quick scan of similar

biomedical image processing literature confirms this – see for example [188, 129, 189]. Many

are applications to dermatology, for example for skin cancer detection, and to white blood-cell

analysis, for example in leukaemia studies.

In fact, control and automation of image acquisition for our application is discussed in

the review by Tek et al [176] mentioned at the beginning of this chapter. Though automation

would be the ultimate requirement for laboratory (or field) applications it raises many issues,

such as how to control focus and in particular the x − y movements of the microscope slide

required to capture the thousands of fields of view needed to tessellate, or at least reliably to

sample, the slide smear (see [165] and [175, 176] and c.f. [194]). Fortunately, such issues are

not relevant for our work in which, as mentioned in the opening chapter, we assume images
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are provided by biological researchers. The main issues for our work are variations in intensity

and colour within and between images together with small variations in magnification which

might change the apparent size of RBCs by (say)± ∼ 10% , numbers of RBCs and the fraction

of RBCs which are infected. Such small variations in magnification, numbers of RBCs and

the fraction of infected RBCs are intrinsic characteristics of the application with which we

have to cope. However, variations in intensity and colour within and between images, together

with large variations in magnification are extrinsic characteristics that would ideally either be

eliminated by the capture process (e.g. by controlled, multispectral imaging techniques [71] or

by standardisation of the imaging [200] and illumination [170]. Tek gives further details in his

paper [176] and in his thesis [175]. We discuss in the next section some of the standard pre-

processing techniques that may be used to reduce such extrinsic variations and we shall return

to the issue of these extrinsic variations in chapter 5. We also note in passing that provision of

public data sets, in particular if they were large-scale and sufficiently representative of thin-film

microscope slide images of malarial infected blood [119] would also alleviate the problem – a

point noted in our paper [23]. Before discussing image pre-processing, we end this section by

noting that even images of blood samples in which red-blood-cells are the objects of interest

often present more difficult application problems than ours. For example, Liu and Sclaroff seek

to classify the shape of red blood cells in order to diagnose certain pathologies.

2.2 Image pre-processing and processing

Although image pre-processing does not usually increase image information content [168] (an

obvious exception would be, for example, when model-based image processing is used to en-

hance or restore a poor quality, noisy or degraded image), image pre-processing can be useful

in applications such as ours (and in biomedical applications in general) in order to reduce the

variability owing to different factors such as changes in laboratory conditions, preparation of

slides, staining and microscope view settings. For example, to deal with variability of acquired

images two methods were investigated by Hengen et al. [79]: a prior and posterior standard-

ization. The prior standardization was a simple check of the intensity and saturation of a piece

of the image background to indicate whether the illumination is intense enough and altering

the microscope settings accordingly. Both selection of the background region and alteration of

the microscope setting were manual. The posterior standardization was applied to the intensity

histogram. For an ideal, balanced camera the intensity of each pixel may simply be represented

as

I(x, y) = R(x, y) +G(x, y) +B(x, y) (2.1)
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where R,G,B are the red, green and blue channels of the colour image and (x, y) denote the

pixel locations. Images contain unevenly distributed grey values owing to their specialized con-

tent. Since images of stained thin-film microscope slides of blood and (in the paper by Hengen

et al) bone marrow contain only a small number of different components, the resulting intensity

values of the histograms of such images usually lie within a small range. Histogram equaliza-

tion is a method for stretching the contrast of such images by uniformly redistributing the grey

values [89]. This can result in a striking contrast improvement that makes otherwise hidden

features visible to a human observer and can make manual threshold selection easier and more

effective – i.e. to give a better segmentation of the image content. Depending on the algorithms

used, histogram equalisation or other transformations of the grey-levels (or colour attribute val-

ues if thresholds are applied to each of the colour channels) may also lead to improved results

in an automatic system.

A very simple form of image standardization is to “scale” the image grey-levels or colour

values. This is a linear transformation. Slightly more general is an affine transformation which

in addition to the scaling includes a constant additive bias value. The problem with such trans-

formations is that the transformed values may under- or over-flow the 0 − 255 allowed range

and that the resulting histogram also has gaps between occupied grey-level sample bins. This

problem, caused by quantisation of the grey-levels (or colour values) also occurs in histogram

equalisation. Better methods stretch the histogram while filling all bins. A simple procedure

would be a random redistribution of the pixels from occupied sample bins to neighbouring un-

occupied sample bins [89]. Such methods may also be applied to pixels whose transformed

values fall outside the allowed 0− 255 range . A range-limited adaptive histogram equalisation

due to Karel [95] is used as a pre-processing step in the paper by Sio et al. aimed at the determi-

nation of parasitemia from cell-counts [165]. This paper is reviewed in detail below in section

2.3.4. Hengen et al. [79] chose to spread the histogram in such a way that the minimum value

of the grey-levels is retained while the value at which the minimum preceding the background

peak occurs is spread to the maximum grey-level value of 255, in effect cutting off the peak of

the histogram and thus eliminating the background. This can be viewed as a method for sepa-

rating the darker foreground from brighter background. It is noticeable that, although Hengen

et al may have used a manually chosen value to select the minimum in the grey-level histogram

immediately below the background peak, it would be straightforward to develop an algorithm

to do this automatically. The paper however does not state clearly whether this was the case or

not.
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2.2.1 Colour transformations

In his work on the detection of malarial infection Tek [175, 177] also used separate transfor-

mations for foreground (RBC) and background (blood plasma) regions. In a manner somewhat

similar to that of Hengen et al, the transformed background level for each colour channel was

scaled to a maximum of 255 whilst in the foreground each channel was scaled to match the

average of the foreground levels in twelve reference images selected by malaria researchers

at the NIMR. Using the maximum value of 255 leads to some problems with overflow of the

transformed pixel attributes and it would seem that the spatial inhomogeneity of the transforma-

tion may introduce artefacts at the boundary of the RBCs. The latter is particularly dependent

on the quality of the initial foreground-background segmentation and might be alleviated by

iteration of the segmentation and transformation processes. Examples are given in Tek’s thesis

though such iteration is not used in his application. Tek notes that the quality of the foreground-

background segmentation may be strongly affected by non-uniformity of the background image

intensity especially if global thresholding techniques are used. This is usually caused by fail-

ure to notice poor illumination of the microscope slides and thus to adjust it accordingly, for

example by use of a standard Kohler illumination setting [170]. If a reference image of the

illuminant alone (i.e. with a blank slide) is available the lighting may be corrected by image

subtraction. As such an image is not usually available Tek uses a segmentation method based

on morphological top hats to adapt to such image non-uniformities.

Though our Fisher-Otsu algorithm is a global thresholding technique we have not encoun-

tered the kinds of difficulties Tek describes, perhaps because we use a smaller data set comprised

only of images supplied by malarial researchers at the NIMR. However, image non-uniformity

is an important consideration especially as it may also result from the staining process and

be affected by the thin-film slide preparation procedure. The caveat mentioned above on the

spatially inhomogeneous transformations used by Tek may be overcome by alignment of the

average image colours (or of the colours of each pixel in a LMS sense), or better by alignment

of image histograms since the latter is not sensitive to the details of spatial distribution of the

image content, the position of individual RBCs etc..

Histogram alignment has been studied by Senanayake and Alexander [162]. They consider

the general aspects of such alignment but with particular emphasis on the alignment of feature

points in the histograms using a variety of image transformations from simple shifts and scal-

ing of each colour channel to non-linear, third order transformations of each colour attribute.

An important conclusion from their work is that affine transformation of each colour channel

usually gives the best results in terms of alignment quality, robustness, numerical stability and
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algorithm complexity. It is also notable that provided the ‘range’ and ‘gap’ problems noted

above are appropriately dealt with1 all such transformations form a group so they may be in-

verted, compounded, iterated etc. as required and thus form a natural, simple way of removing

such extrinsic variations in the image data in a manner similar, for example, to the way Eu-

clidean and similarity transformations are used in flexible shape and appearance modelling (see

for example [33, 34]).

In fact, in flexible appearance and more especially texture or patch modelling [32], his-

togram equalisation or the mapping of image histograms to a reference is often used. Since cu-

mulative density functions are monotonic such transformations will be invertible etc. and thus

represent the most general group of non-parametric global image transformations that might

be used. They are thus potential candidates – along with the affine and other parametric trans-

formations – for implementation of a kind of transfer learning technique in which images are

mapped as closely as possible into examples on which the algorithms to be used are known to

work well. However, these transformations will suffer from the problems due to the choice of

histogram sample bins noted above and, in view of this and the conclusions of Senanayake and

Alexander, have not been pursued in our work.

The remaining types of colour transformations in the literature include grey-world and

colour constancy [5, 6] both of which are mentioned in the context of the malaria applica-

tion by Tek [175] although reference to the most sophisticated type of ‘comprehensive’ colour

constancy algorithms [53] is overlooked. However, many of these algorithms do not seem well-

suited to the application and may, given the restricted nature of the image content, not work

well in practice. Moreover, at most all that the malarial application requires is a way of reduc-

ing the variation between images to the point where the algorithms and systems developed may

be expected to work well rather than a strict colour constancy that is illumination and camera

independent. For this reason, we consider in detail in chapter 5 the extent to which our Fisher-

Otsu segmentation algorithm is robust to variations in the images and in particular invariant

under affine colour transformations.

We noted above that there may be variations within images due to the staining process and

the thin-film slide preparation procedure. Similarly there may be variations between images.

Whilst the colour correction of pathological images for different staining-condition slides has

been studied [1], given that all our data is sourced from biological researchers at the NIMR

well-practised in such techniques it does not seem necessary to give this special consideration

1For example, by using ‘continuous’ real values instead of integers in the range 0−255 and allowing transformed

values to be negative or to exceed 255.
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and we assume it would be encompassed sufficiently well by monitoring of non-uniformities

within the images and within the affine image colour transformations and the robustness of our

Fisher-Otsu algorithm. Similarly, Tek does not give it further special consideration in his work.

As a final point we note that Partida [132] in his MSc thesis demonstrated the effective-

ness of grey-level and colour image pre-processing in the malaria application where the overall

performance of his system was considerably improved by using a set of normalized and colour

tuned images. Normalisation was carried out with respect to the number of pixels having each

colour value, resulting in what is often known as the grey-world transformation [53] whilst the

colour tuning was carried out via a transformation which made the colour of uninfected cells

and parasites more uniform among all images. We stress, however, that the effectiveness of this

particular pre-processing is dependent on the classification procedure used (i.e. on the features

selected, choice of classifier – in this case an SVM (support vector machine), on the training

process etc.) and that its usefulness cannot be generalised to other approaches. The most we

can say is that if pre-processing is needed to reduce the range of image variability so as better

to match those images on which the algorithms were developed and the algorithms do not have

the flexibility to adapt to other circumstances, it may be expected to be useful. Tek’s work

[175, 165] provides an example.

2.2.2 Image processing - segmentation by thresholding

There is a variety of segmentation methods in the image processing literature and text books but

one simple way a segmentation can be produced is by thresholding. In its simplest form applied

to grey-scale images, thresholding produces a binary image by labelling each pixel in or out of

the region of interest by comparison of the grey-level with a threshold. If colour imagery is used,

a threshold may be applied to the overall intensity I(x, y) = R(x, y) + G(x, y) + B(x, y), to

the pixel’s red attribute valuesR(x, y), or to theG orB values. In particular, although the grey-

level image was used for segmentation in the malaria thin-film image work at the University

of Westminster by Rao, the green channel was used for extraction of stained objects and the

difference B − R for detecting mature parasites [146]. Other convenient attributes that can

be computed from the RGB colour signal may be used such as the chromaticities or the hue

and saturation (c.f. the work of Hengen et al [79]). As might be expected, thresholding using

colour attributes often works better than thresholding on the grey-level intensity, especially

in applications where it is desired to produce a segmentation into regions similar to those a

human would designate. Automatic thresholding analyses the grey value distribution in an

image, usually by using a histogram of the grey values (or of the colour attributes), and uses
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knowledge about the characteristics of the application to select the most appropriate threshold

[89]. Automatic thresholding also helps overcome the difficulty of simultaneously choosing

several thresholds when the values in each colour channel are to be separately analysed and the

results combined.

In principle, a good way to choose a threshold is to separate the distributions of some

property values characteristic of the populations of each type of object or image component

to be distinguished [168]. An example which as we shall see later maximizes the between-

class variance of the grey-levels – a measure of the separation of the class conditioned mean

grey-levels – is provided by the following iterative algorithm [89] originally due to Otsu [131]:

1. Select an initial threshold T , usually chosen as the average intensity µ of the image if no

other information is available.

2. Segment the image into two regions using T , i.e. under an ideal scenario separate the

histogram into two peaks.

3. Calculate the mean grey values µ(1) and µ(2) of the regions, i.e. separately for each of

the two parts of the histogram.

4. Calculate a new threshold T = (µ(1) + µ(2))/2.

5. Repeat from 2 until the means µ(1) and µ(2) do not change.

Since the algorithm lies at the heart of our work a full discussion of it will be given in chap-

ter 4. A derivation of it, including generalisation to the multi-category case, and its relationship

to the Fisher discrimminant is given in appendix A.

If more than two classes are required, multiple thresholds may be used, for example on the

grey-level intensity as in the multi-class version of the Otsu algorithm described in appendix A.

However, such an approach may be insufficiently sensitive to minority classes so a sequential

application in a tree-structured, hierarchical classification system is more usual. The latter is

the thresholding approach adopted in the malaria work of Ross al. [151], except that the thresh-

olding is applied to the green channel for detection of pixels belonging to RBCs (erythocytes)

followed by detection of pixels belonging to parasites.

In addition, whatever thresholding algorithm is used, thresholding usually does not take

into account the spatial characteristics of groups of neighbouring pixels of an image. In some

circumstances, in particular when trying to segment objects of a very variable and distributed

(filamentary) shape as for example the stained nuclear material in an infected blood cell, this can
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be an advantage but when segmenting compact objects such as the red blood cells themselves,

ignoring the spatial structure may be a disadvantage. Nevertheless, we stress that a segmentation

based on inappropriate spatial information, such as a poorly chosen or poorly parameterised

Markov random field [15] is likely to make systematic errors and produce worse results than

one which uses no spatial information.

Work by [44], though for a very different application to TV video imagery, tried to extend

the thresholding method from grey-level to colour images. Their proposed RGB thresholding

method can be summarised as:

1. Apply a grey-level thresholding method to each of the R, G, B colour channels. The

chosen grey-level thresholding method was Otsu’s method. This results in eight clusters.

2. Calculate the mean for each class (i.e. cluster).

3. Calculate the within-class variance and the between-class variance for each class.

4. Two classes can be merged if either of their within-class variances is greater than or equal

to the between-class variance.

The above is repeated until only two classes remain. Though attractive this procedure may not

always result in maximizing the Fisher discriminant, say, of the final two classes.

This paper also illustrates two other points. First that manual manipulation of several

thresholds may be tricky so automatic procedures become more attractive in such situations. If

manual processing is essential, colour transformations for example to HSV , Hue-Saturation-

Value, may be used to reduce the dimensionality of the feature-space and the number of thresh-

olds required. Tek [175] does just this in his thesis to determine ground-truth segmentations

of the RBCs and of the stained pixels. Second it illustrates the problem of over-segmentation

in which the image is broken-up into too many, often small and fragmentary, regions. As in

the algorithm summarised above region growing processes are frequently subsequently used to

try to fix such problems. Similarly, under-segmentation in particular when multiple objects are

included within a single segmented region can be a problem. A variety of methods are used

to split such regions, many of them, as we shall see in the malaria work reviewed in the next

section, tailored to the specifics of the application. Combined split and merge techniques may

be used to tackle both problems. However, it is difficult to design such processes that will ef-

fectively fix segmentation errors without introducing further errors of their own. In general it is

better if possible to design an accurate initial segmentation.
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Finally, we recall Tek’s critique of global thresholding. As we mentioned in section 1.3.3

Tek ascribes the problem to non-uniform illumination and, in general, uses morphological top-

hats to overcome it which leads to a kind of locally adaptive thresholding. Other kinds of locally

adaptive thresholding, for example utilising a parametrically defined spatially varying thresh-

old function, have been used in other applications also to overcome problems caused by non-

uniform illumination [169]. The Fisher-Otsu algorithm we have developed is applied globally

to each of our images but such problems do not seem to trouble us. As already indicated we ad-

vocate monitoring this problem and checking for such non-uniform effects within our images.

We also note that our approach could if necessary be used in a locally adaptive,‘windowed’

manner.

2.3 Work on malarial thin-film slide images

Images of malaria infected thin-film microscope blood slides may exhibit a range of appear-

ances which makes them not easily interpretable, whether by a human being or by machine.

This may be due to poor image quality, eye fatigue of the expert if a human interpreter, or

the subtle nature of the findings required, in particular if the aim is to determine the infecting

malarial species and/or the stage of the parasites’ development [176, 175].

As described in the introduction and previously, our aim is to provide the research which

could underpin building an automatic system to replace the expert counting of RBCs for the

determination of parasitemia in the laboratory. Image processing holds the possibility of devel-

oping such a system and thereby improving the quality, speed and especially, the consistency of

the analyses and simultaneously of reducing cost. Ultimately, there is the possibility of replac-

ing human observers in hospital work or clinicians in the field. Although there is no effective

system for the automatic detection of malaria that is sufficiently accurate, is robust to noise and

behaves reproducibly, scales linearly, and runs for example on a personal computer, attempts be-

gan to be made from around 2000 to develop such systems for the analysis of malarial infection.

We focus in this section in particular on the decade of work at the University of Westminster.

2.3.1 Work at the University of Westminster

Research at the University of Westminster has been carried out in the main in collaboration with

the NIMR in the course of three PhD studies by Di Ruberto, Rao and, most recently, by Tek. In

all of this work the ultimate aim is the computer diagnosis of malaria (CDM) [176]. The work

by Tek is the most sophisticated, extensive and complete, addressing the ambitious and difficult

aim of identifying the type of malarial infection and the stage of the parasite development within

the RBCs. In all three of the above studies, in distinction to our work, there is an emphasis on
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the use of morphological image processing techniques. Since such methods are not central to

our work, we do not review here the details of such processing techniques used in each study

but focus on what was achieved and the limitations of the work.

The experimental results of Di Ruberto et al. in their first publication [154] were limited

to a single image. They displayed the result of applying the different steps of the system. Their

figure, shown here as figure 2.4, however, is not of good quality and does not immediately make

it clear precisely what they managed to do. The results of the second publication [153] were

again limited to a single image and are similarly difficult to interpret. They did state, however,

that: “Equally good results have been achieved on images with different magnification and

exposure.”. Unfortunately, there was no quantification as to what was meant by “equally good”

and the figure they displayed (shown here as figure 2.5) was again hard to view. In their later

publications [155, 156], they presented numerical results of processing 12 images of malarial

blood. Each image was analysed by two biologists and the system developed. Counts of red

blood cells and of immature trophozoites, mature trophozoites, and schizonts (the three stages

in the parasite life-cycle within RBCs shown in figure 1.2) were noted. It was observed that the

counting results of the two biologists were more different from each other than the counts of the

system from either of them. They concluded that their system provided a “good compromise

between the two experienced users”.

The image used to describe their results was scanned from a colour photograph of stained

malarial rodent blood. They also treated the different stages of infections of a particular parasite

species the identity of which was not indicated 2. The system described in [155] included the

two systems from the earlier publications [154, 153], i.e. for cell segmentation and detection

of parasites and also had a third step which involved classification of parasites by analysing

the shape of the putative parasite regions after skeletonization or sequential thinning. In their

final paper [156] a sample image object was used as a prototype. The system was then required

to search the image and retrieve those objects whose colour distribution was globally similar

to that of the query object. Though quite different, the two methods of parasite detection by

shape analysis and by image search and retrieval were compared and shown to produce, as far

as one can tell, very similar and it would seem identical results. Given such very similar results,

no attempt was made to combine the decisions of the two seemingly very different detection

systems and thereby obtain improved performance. This is useful early work, in particular in

our context re the counting of cells to which we shall return later in section 2.3.4 and chapter 6.

2This is important because knowledge of the malarial species is required in order to identify the stage of devel-

opment of the parasite. Nor was it specified if different species were present.
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Figure 2.4: The initial sample image to the left and the final output of the system described by

Di Ruberto et al. [154] shown to the right.

Figure 2.5: The initial sample image to the left and the final output of the system described by

Di Ruberto et al. [153] shown to the right.

However, in this early work it is clear that evaluation and validation has to be more rigorous.

It is also clear from the discrepancies in the analyses by the two biologists that identifying the

stages of development is a difficult task .

Within the context of the computer diagnosis of malaria early work at the University of

Westminster, appears to have set the strategy of ‘detecting stained objects’ which was contin-

ued in the work of the second research student, K. N. R. Mohano Rao. Rao used the detection

of stained-objects as markers for a ‘deductive’ segmentation approach in which foreground and

background regions were segmented, foreground regions were used to obtain individual RBCs

and the RBCs finally analysed for the presence of parasites. Since white-blood cells (WBCs)

contain DNA they will also (along with other possibly invasive cells and some artefacts) ap-

pear as stained-objects. Unfortunately, the presence of WBCs which are very much larger than

RBCs was neglected when area granulometry was used to separate the detected objects by size

resulting in the possibility of over-segmented WBC regions appearing as imposters for RBCs.

The use of area granulometry [147] in preference to a fixed structuring element so that de-

formed RBCs would not be overlooked may have exacerbated this over-segmentation. A later

publication [148] used an iterative segmentation algorithm based on the distance transforma-

tion to detect under-segmented clusters of touching or over-lapping RBCs and over-segmented

regions by comparison of the area of each region to the average area of regions representing
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individual RBCs. The latter was obtained from the main peak of the area granulometry. Unfor-

tunately, according to Tek [175] this may not in Rao’s work have prevented regions resulting

from over-segmented WBCs being mistaken for RBCs.

Tek himself also makes extensive use of area granulometry and gives a good review of the

technique and indicates an efficient way of calculating it [125]. This is a technique we could

ourselves have used, for example for calculating the size of regions representing individual

RBCs from the initial segmentation resulting from our Fisher-Otsu algorithm. However, since

such size segmentation relies essentially on a 1-D histogram, a simpler (and intriguing) possi-

bility was to apply Otsu’s algorithm to it. As we shall see in chapter 6 a procedure using such a

histogram can be made to work very well.

We noted above that identifying the stages of development is a difficult task even for ex-

perts. Indeed, in his later work, Tek [175] argues from the heuristic rules used by human

observers that knowledge of the malarial species is required in order to identify the stage of

development of the parasite – and vice-versa, i.e. for the diagnosis of the type of infection. In

machine vision terms the two tasks may thus be expected to be linked in a multi-way classifi-

cation. Tek therefore considered various classification strategies, the most extensive of which

involved twenty classes3. Such a system is difficult not only to build but also to evaluate with

lots of data required in order reliably to construct the full, 20 × 20 confusion matrix (see also

section 2.5.2). Tek therefore also evaluated the performance of his system when used to per-

form less detailed classifications. The parasite/non-parasite classifier described earlier by Tek

in [177] achieved 74% sensitivity when evaluated based on the acceptance of a single observa-

tion of a stained parasite component as sufficient evidence for infection. The paper itself states:

“in a real diagnosis scenario a blood slide could provide thousands of stained objects”.

Using neural network classifiers, Nicholas Ross et al. [151] achieved 85.13% sensitivity

for parasite detection. For species identification, they managed 57% sensitivity for Plasmodium

falciparum, 64% for P. vivax, 85% for P. oval and 29% for P. malariae. Since Ross et al. were

interested in the diagnosis of malaria from thin-film slide blood smears, they presented a prob-

abilistic model for estimation of the reliability of the diagnosis of malaria infection of a patient

from the detection of parasites in the microscope image. This is an important consideration –

and one relevant to similar issues in our aim of determining the parasitemia of laboratory sam-

3The reader may note that 20 is more than the product of the 4 different species known at the time to infect

humans and, since Tek includes the gametocytes (cf. figure 1.2), the 4 stages of parasite development. Tek, who

segments a ‘hierarchy of stained objects’ rather than RBCs, includes also classes for: white-blood cells, platelets,

artefacts and incomplete samples.
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ples – but we note Tek’s comment that thick-film slides provide a much more sensitive means

of determining the presence or absence of malarial infection [176, 175]. A related issue, dis-

cussed also by Tek in his paper and thesis, arises from the fact that only a small fraction of the

RBCs may be infected. The positive predicted value (PPV) [176] thus becomes a very impor-

tant consideration in building a system that is sufficiently sensitive and reliable. Essentially,

PPV indicates the probability of a patient being infected given that parasites have been found in

the classification of the blood sample. This is especially important in the field where it is highly

desirable to detect infection in its early stages when the physical symptoms might not be severe

and could be mistaken for flu or other mild illnesses. Again, we need to be aware of similar

considerations for laboratory samples which may have a low-level of infection.

2.3.2 Morphology

Morphological operations are used extensively in all of the Westminster work reviewed above.

These operations are logical transformations based on comparison of pixel neighbourhoods

with a template [89] for processing image region shapes or, as we have mentioned above, in

some more advanced algorithms, areas. They are most often used on binary images (binary

morphology) but, with suitable extensions of the definition of the structuring element and, in

some cases 4 use of grey-level supremum and infimum functions can also be applied to grey-

level or even to colour imagery.

The first use of such morphological processing by the Westminster group was in a se-

ries of papers [154, 153, 155, 156] by Di Ruberto, Dempster, Khan and Jarra5. In the first

publication [154] they proposed a system to segment the different cells in images of malarial

Giemsa stained blood slides using size information. Size was evaluated using granulometries.

A granulometry function can be obtained by a series of openings with increasing structuring

element size. The granulometry function is simply a map between each structuring element

size and the number of pixels removed during that opening operation. It is an efficient and well-

tried way of evaluating the size of image objects. Their second publication [153], in the same

conference proceedings as the first, was directed at the detection of parasites using size and

colour information extracted by analysing the hue-saturation-value transformed image. They

used granulometry for size then regional maxima to detect nuclei of the parasites. A regional

maximum is a connected component set of constant level from which it is impossible to reach

a point with higher level without descending. As noted above, the third paper [155] described

a system that classified parasites by analysing the shape of the putative parasite regions after

4When the structuring elements are what is sometimes known as “cylindrical”.
5Jarra was a member of staff at the NIMR who also collaborated with us, for example in [23].
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skeletonization or sequential thinning.

As reflected in the title of his thesis [146] the use of morphological image processing

operations was the focus of Rao’s work which, as noted above, introduced the use of area

granulometry and of a modified distance transform to tackle under- and over-segmentation and

culminated in the system described in [149]. Tek built on the work of the preceding students and

gives a thorough review of their work in his thesis [175]. Like Di Ruberto and Rao, Tek made

extensive use of morphological processing techniques which are reviewed in some detail in his

thesis and more briefly, somewhat as an explanatory glossary for non-experts, in the supplemen-

tary material to the culminating publication [176]. In addition to pointing out the efficient, fast

implementation of area granulometry [147], Tek contributed a new minimum area watershed

used in conjunction with area granulometry to provide an initial segmentation of foreground

regions from the morphological gradient image and a new marker extraction method based on

use of the Radon transform to calculate the centres of labelled regions obtained from the initial

segmentation. The centres were used as control markers in a watershed transform used for the

final segmentation. Since, unless they are lysed (broken-down) the size of individual RBCs does

not vary much [199] and since, unless affected by other diseases such as sickle-cell anaemia,

RBCs are roughly circular, these processes help combat under- and over-segmentation. Tek

used manual marking of RBC centres obtained from the ground-truth segmentation to evalu-

ate the performance of his segmentation approach and to show that it was superior to Rao’s

approach based on area top-hats and a distance transform. This is illustrated in Table 2.1 repro-

duced from Table 4.1 of Tek’s thesis but with the methods re-named. A modification in which

all stained objects were detected first and excluded from the marker extraction by the Radon

transform further improved the performance of Tek’s algorithms as shown in the last row of the

table.

Method % correct % missed % under % over & redundant

Rao’s approach 86.9 6.4 6.6 5.5

Tek’s approach 90.8 6.2 2.9 4.2

Tek’s modified approach 91.1 5.6 3.3 3.8

Table 2.1: Results reproduced from Table 4.1 of Tek’s thesis showing the percentages of RBCs

correctly segmented, those which were ‘missed’ or not detected, those which were under-

segmented, and spurious results from over-segmentation of a RBC or from a redundant seg-

mentation of an object as a RBC where none exists. The evaluation was carried out with respect

to a ground truth obtained by manual thresholding. Details may be found in Tek’s thesis [175].
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We note that Tek has normalised the results so that the first three numerical columns of

Table 2.1 approximately sum to 100% with the middle column representing the false-negative

rate, i.e. the fraction of RBCs not detected, and the sum of the first and third columns the

true-positive rate, i.e. the fraction of RBCs cells detected, irrespective of whether they were

individual RBCs or clusters of two or more touching or overlapping cells. The final column

indicates all labelled regions that did not correspond to manually marked RBCs. Such regions

may correspond to pieces of over-segmented RBCs or to redundant artefacts which usually

appear as small blobs.

The approaches used by the Westminster group, in particular as exemplified by the most

recent work by Tek, seem to be the most sophisticated applications of morphological operations

in the processing of malarial images. For example, though others such as Ross et al [151] use

granulometry and the pattern spectrum, they do so only for disc-shaped structuring elements

and do not use efficient algorithms or area granulometry. In general, morphological operations

are of course widely used in malaria (and other biomedical image analysis) applications e.g.

[156, 146] for example, for distance transforms, filling and watershed algorithms, and for me-

dian filtering [151]. Simple binary morphological closings and openings are used respectively

to fill in holes in foreground regions (such as isolated pixels inside a foreground region clas-

sified as not belonging to the region) and to eliminate noise (isolated pixels in the background

which have been selected as belonging to the foreground but are not in fact part of an object of

interest). This is possible in the malaria application because objects of interest such as RBCs

are known to be compact and of a certain (minimum) size. The use of such techniques, how-

ever as noted by Ross et al, is more problematic when applied to the segmentation of stained

pixels. For example, though such techniques may usefully eliminate isolated pixel artefacts

in the background plasma, they may eliminate very small objects representing very immature

parasites and could affect the detailed shape of the parasite region which can be very important

in identification of the type of infection.

2.3.3 Region growing

Simple segmentation processes such as thresholding, like many others [168], label individual

pixels as belonging to the foreground objects of interest or to the background. In order to count

or in general otherwise manipulate the objects of interest it is necessary to group neighbouring

pixels in the foreground belonging to one object and label them as a single entity. The classic

means of doing so in image processing is by connected components labelling. Region growing

is a technique for extracting an image region that is connected based on some predefined criteria
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[136]. These criteria can be based on intensity information and/or edges in the image [77]. Con-

nected components labelling is a special case of a region growing algorithm that we shall use.

In general, region growing is seldom used alone but usually within a set of image processing

operations as demonstrated in the work of Hengen, Spoor and Pandit [79] for the diagnosis of

leukaemia. This was because they had to deal with some of the thresholding and region grow-

ing techniques’ drawbacks. In their work, the thresholding could lead to under-segmentation,

in particular with blood cells that happened to touch being segmented as a single object. In

general, region growing can be sensitive to noise, causing extracted regions to have holes or

to be disconnected when they should be connected, whilst regions that should remain separate

might become connected. Hengen et al. address these problems, in particular the clustering

of neighbouring red blood cells into a single object by using a distance transform implemented

efficiently by means of morphological processing operations.

Though most works on malaria applications try to identify objects which represent individ-

ual RBCs, often by the use of granulometry, it is particularly important to do so and to separate,

or at least detect, clusters of two or more adjoining cells if one wishes to determine the par-

asitemia. For example, the MalariaCount system developed by Sio et al. [165] incorporated

a clump splitting method proposed by Kumar et al. [101] to detect concavities in foreground

regions which would be caused by the touching of adjacent RBCs. Similarly, Halim et al. in

their work on estimating malaria parasitemia [73] had also to address this issue. Since they

used a template-matching approach this involved consideration of the simultaneous matching

of a group of RBC templates to an image region. As mentioned above, we shall in chapter 6

use optimisation of a Fisher discriminant to detect clusters of adjoining cells and count them

appropriately.

2.3.4 Counting

After segmentation the labelling and thus counting of separate foreground objects is straightfor-

ward. Counting the number of RBCs is more difficult and as indicated above requires dealing

with under and over-segmentation of the RBC foreground objects. However, segmentation er-

rors are not the only difficulty because, as noted in section 1.3.3, the field of view of each image

covers only a small fraction of the microscope slide smear and thus it is almost inevitable that

there will be some RBCs near the periphery of the image which are only partly visible. Many

such examples can be seen in figures 2.4 and 2.5 from the work of Di Ruberto et al and also

in figure 1.1 from our own work. As the density of RBCs is higher in the work of Di Ruberto

et al, there are more cells intersecting the image boundary in their images than in ours. The
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potential for error in cell counts due to such effects is thus less in our work but, with ∼ 100

RBCs in each 1.3 Mpixel image and, more importantly, often many fewer infected cells this

could significantly affect computation of the parasitemia. In particular in our 1300×1000 pixel

images with cells typically of diameter 81 pixels, ∼ 27% of the image area lies in such border

regions where a cell may be only partially visible. If half the cells in such border areas were

independently incorrectly counted, the parasitemia could itself be in error by up to ∼ 19%.

There is little mention of such effects in the literature as most work is directed primarily

toward the development of computer vision techniques for the detection of malarial infection

and determination of the parasite species. Cell counts, when they are made, are often incidental

and for other purposes: for example in the work of Tek [175] to characterise the variation in cell

density from image to image. Partida’s work [132] provides another example where cell counts

were made but were not the aim. However, when the aim is to count cells and to determine

the parasitemia it is usually essential that effects at the image borders are considered and steps

taken to overcome them. Thus, Sio et al [165] programmed the software of the MalariaCount

system to exclude all cells touching the periphery of the image and in their analysis of a very

large number of over 15000 RBCs were able to obtain results for the parasitemia well-correlated

with those determined from manual counts over a wide range of parasitemia from below 1%

to above 10% though the parasitemia was systematically under-estimated. For example, in one

culture treated with chloroquine the under-estimation was by ∼ 6% but in another treated with

febrifugine it was only ∼ 0.2%. There is no discussion of this difference and analysis of it

would require access to the raw machine and manual counts which are not given in the paper

or in supporting supplementary information, but it was noted that the greatest difference in the

parasitemia (2.04 ± 2.86%) occurred when cells were poorly separated whilst 0.25 ± 0.18%

was achieved when cells were well-separated.

In the paper by Halim et al [73], in which the aim is to estimate the parasitemia, there is

no mention of such effects. However, we note firstly that use of a template-matching technique

with a threshold on the cross-correlation (or it would seem, on the correlation coefficient) of

∼ 0.65 − 0.70 suggests that the system should be able to reject RBCs which are significantly

outside the field of view though this cannot be verified from the pictures given in the paper. Sec-

ondly, the fact that parasite detection is only carried out within regions of successfully detected

RBCs means that counts of the number of infected cells will not be independent of the total cell

counts and correlation of the two counts will reduce errors in the estimate of the parasitemia. It

thus appears that this system may not be badly affected by the presence of cells at the border

of the image which are only partially visible. In general, however, if accurate cell counts are
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required it seems best explicitly to mitigate such effects at the image borders wherever possi-

ble, for example, by excluding all cells touching the image boundary as in the the MalariaCount

system.

2.4 Classifiers

Counting the number of healthy and infected RBCs in order to determine the parasitemia as

above pre-supposes classification and labelling of cells as healthy or infected. An appropriate

review of classification techniques and classifiers is thus required. In fact, in pattern recognition

terms, algorithms such as thresholding classify each pixel on the basis of a set of characteristics

or properties. These may be as simple as a pixel’s grey-level, or more complicated properties

such as histograms, colour co-occurrence matrices, moments and other shape measurements

which may be calculated over the whole region to which a pixel belongs.

In general, classifier methods are pattern recognition techniques that seek to partition a

feature space derived, in our application, from the image. The techniques may be unsupervised,

and thus data driven, such as in the Otsu algorithm or maximisation of a Fisher discriminant

function, or supervised when data with known labels may be used to train the system and set

the classifier parameters, in particular, any decision thresholds [159]. A feature space is the

range space of any function of the image, with the most common feature space being the image

intensities themselves [136]. Training data for classifiers that are supervised is usually obtained

from images that have been manually segmented, if possible by application experts, and then

used as references for developing the system, i.e. the classifier(s), to be used for automatically

segmenting new data. Since the automatic system is to be applied to previously unseen data,

it is important in developing such classifier systems that they do not over-fit or adapt too well

to the training data. Such over-fitting is likely if the classifier’s performance is optimised over

the training data alone – known as “empirical risk minimisation” [190]. In order to obtain

good performance on previously unseen data, the classifier must generalise well. One way of

ensuring this is by using “structural risk minimisation” [190] for the optimisation by imposing a

classification margin, or gap separating the classes, and thereby limiting the classifier’s capacity

and preventing it from reacting to unimportant or chance peculiarities in the training data.

There are a number of ways in which a classifier may be developed in a supervised ap-

proach. A simple way is to construct a nearest-neighbour classifier, in which each pixel (say)

is assigned to the same class as that of the training data with the closest intensity (say). The

k-nearest-neighbour classifier is a generalization of this approach in which the pixel is classi-

fied into the same class as the majority of those of the k-closest training data. The k-nearest-
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neighbour classifier is considered a non-parametric classifier because it makes no underlying

assumption about the statistical structure of the data, in particular as to the functional form

of the class conditioned distributions. A fortiori there is no assumption as to the form of the

decision surfaces by which the classes are separated.

A commonly used parametric classifier is the maximum-likelihood or Bayes classifier. It

assumes that the pixel intensities are independent samples from a mixture of probability distri-

butions, usually assumed to be Gaussian. Classification of new data is obtained by assigning

each pixel to the class with the highest posterior probability. If the class conditioned distribu-

tions are known the Bayes classifier makes the fewest classification errors. If the data from

each class is assumed to be normally distributed, the decision surface for a binary classification

will be a quadric. Since fitting quadrics is well-known to be unstable unless the data gives very

good coverage it is not surprising that developing such a classifier which will generalise well

and perform satisfactorily on new, unseen data is difficult. Furthermore, the higher the dimen-

sionality d of the feature space the worse this problem becomes as the number of degrees of

freedom inherent in the mean vectors and covariance matrices (d(d+ 3)/2 per class) indicates.

The best results are thus often obtained by imposing special assumptions such as equality of the

class-conditioned covariance matrices which makes the decision surfaces linear and therefore

much less prone to over-fitting to training data. Such constraints also limit the capacity of the

classifier by reducing the number of degrees of freedom.

Recent work by Boray Tek [177] utilised a Bayesian pixel classifier to mark stained pixels.

The stained pixels were further processed to extract features (histogram, Hu moments [83], rel-

ative shape measurements [175], colour auto-correlogram [85]). A distance weighted k-nearest

neighbour classifier [94] was then trained with these extracted features in order to construct a

parasite/non-parasite classifier.

A disadvantage of the supervised approach to classifier development is the requirement of

manual interaction to obtain training data. Training sets can be acquired for each image that

requires segmenting, but this can be time consuming and laborious and, if the training data is

to be accurate, should be carried out by an expert with the requisite clinical knowledge. Good

training data is therefore often difficult to obtain, especially in large quantities annotated by an

expert, as is well-illustrated by the publications to date on the malaria application. Our approach

based on unsupervised techniques will enable us to avoid such problems whilst collaboration

with the NIMR will enable us to address this deficiency when labelled data has to be used, for

example for performance evaluation.
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2.4.1 Feature selection

It can be seen from the above that having lots of features input to a classifier is not necessarily

the best way to proceed. Certainly it is vital to include features which distinguish the classes

of interest but the inclusion of irrelevant features that carry little or no discriminating power

is likely to lead to a classifier that generalises less well. Judicious feature selection is thus

often of great importance. Features may be selected by systematically adding them one by

one and monitoring the resulting classifier performance (called forward feature selection, see

for example [178]) or by similarly deleting them one by one (backward feature selection). A

combination of such strategies may be used in a mixed approach. Collectively, these are known

as “wrapper” techniques since the feature selection is carried out in a process that is aiming to

optimise the performance of the classifier. Since such feature selection in general is a hard, NP

problem, in principle any preferred applicable optimisation algorithm could be used to obtain

an approximate solution – see section 2.6.1.

Alternatively, the feature selection might be attempted by use of a proxy measure whose

optimisation it is believed will improve the classification performance [97]. One of the most

popular of such techniques is PCA, but unfortunately PCA is designed to select the most com-

pact description of the data as a whole rather than a description that is most discriminating for

the classes of interest. A better proxy is thus the Fisher discriminant which is based on a mea-

sure of class separations. It may be optimised via a generalised eigenproblem that defines a

sequence of the most discriminating features. This is also known as “linear discriminant analy-

sis” or LDA. When combined with similar optimisation of a classifier based on such a selection

of features this approach is central to our extension of the Otsu algorithm as will be discussed

in chapter 4. We only note here that the Fisher discriminant and any resulting classifier based

on the feature selection can, if desired, be optimised on a set of training data in a supervised

manner.

In modern machine learning which focuses on the use of linear, capacity controlled clas-

sifiers such as the support vector machine or SVM via “structural risk minimisation” feature

selection and optimisation takes the form of kernel design and optimisation, a technique that

enables a set of non-linear feature mappings to be used in a mathematically well-defined manner

and is computationally efficient [39]. In general, kernel design is a hard NP problem but thanks

to the protection of the capacity limited classifiers against over-learning, standard recipes may

usually be followed with good outcomes. Such kernel methods may be applied to non-linear

generalisations of PCA (kPCA [160]) and to LDA (KDA [126]) though the latter seems not to

lead to a procedure that is computationally efficient.
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Finally, we note that from a pattern recognition perspective, image pre-processing and

processing algorithms used to transform the input to a classifier should be regarded as feature

selection and optimisation processes. These are usually designed either on an intuitive basis

or, again according to optimisation of a proxy measure. Thus, we may seek to improve the

image appearance to the eye of a human observer, either an expert or non-expert (though the

former is obviously preferable), or to extract features such as edges and regions that are simi-

larly intuitively appealing or which, like the filter design in the Canny edge detector, optimise

a proxy measure [24, 135]. The ultimate test, of course, is whether such processes lead to a

system that works well when the features are input to a particular classifier. In this sense, the

pre-processing, image processing and choice of classifier design should be regarded as a single

optimal design problem. In this context, image standardisation, either during the acquisition or

by post-processing after acquisition, but particularly the latter, should also be regarded as fea-

ture optimisation processes. They could also be regarded as a simple type of transfer learning

in which what works well on a set of test or development data for one purpose – optimisation

of the acquisition, appearance, proxy quality measures etc. – is applied to all subsequent data

for the classification.

2.4.2 Neural Networks

Neural networks [7] were originally developed to mimic biological learning [78], although

there is now a well-established extensive literature containing mathematical analyses of the be-

haviour, performance and construction of a variety of neural network systems and architectures

(see for example the book by Bishop and references therein [14]). These texts often describe the

relationship of neural networks to pattern recognition problems without reference to biological

systems (see for example the book by Duda, Hart and Stork [46]). In addition, much progress

has been made in the last 15-20 years on understanding the capacity of neural network based

decision classifiers and on developing learning algorithms that, in the supervised case, carry out

structural risk minimisation rather than empirical risk minimisation [190]. Together with the

development of kernel-based methods, which by use of the representer theorem and the theory

of reproducing Hilbert space systems enable the understanding and analysis of linear classifiers

to be applied to non-linear classifiers [39], such systems have recently become widespread with

many successful applications. Traditionally, learning in neural networks is achieved through the

adaptation of weights assigned to the connections between nodes in a multi-layer perceptron by

use of the back-propagation algorithm [157]. Thanks to the simplicity and success of this al-

gorithm, for some time now (at least until the development of the SVM and kernel methods,
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and possibly still) neural networks have been the default, “black-box”, method for constructing

classifiers in many applications. They are thus widely used in medical imaging with the weights

determined by using training data labelled by an expert or experts.

During the course of this thesis work there has been an upsurge of interest in the use of

neural networks in image analysis, in particular for object recognition (see for example the

recent review [107] and references therein). This has come about from the combination of two

techniques: the use of convolution neural nets (CNNs), and construction of networks with many

layers. The former are used to form local feature detectors and, in combination with the latter,

to group these in ways insensitive to location and orientation. According to [107] this enables

the construction of representations appropriate for object discrimination with the learning of

the many weights required facilitated in a ‘structural’ manner, layer by layer. In spite of this, as

noted in the introduction, large training datasets seem nevertheless to be required and graphics

accelerator hardware is often used in implementations. Apart from the apparent requirement

for large training datasets, the technique would seem well-suited to medical applications.

The use of neural networks was demonstrated by Ross et al. [151] for the classification

of malaria. In their system, RBCs were first segmented from the plasma background by thesh-

olding the image intensity and those with parasitic infections subsequently detected by setting

a second, locally determined threshold within each of the RBC regions following application

of morphological operations to remove spurious small objects and to fill holes in RBC objects.

The local thresholding was combined with a global threshold by taking the union of the thresh-

olded images and the result used as a marker image for morphological processing like that used

by Di Ruberto et al though with a different series of morphological operations used to separate

individual infected RBCs from clusters of cells. A three-layer multi-layer perceptron network

was then used to establish whether a cell is infected or not from features describing the colour

and texture of the possible parasite regions. The dimensionality of the feature space was re-

duced by using PCA to eliminate features that described less than 0.1% of the variation in the

dataset. Finally if a cell was determined to be infected, a second similar three-layer network but

with four output units, one for each type of parasite, was used to assign the species of malarial

infection. Again, PCA was used to reduce the dimensionality of the feature set. Resilient back-

propagation with training stopped when the error of a test/validation set began to increase was

used in order to reduce over-fitting problems. A good aspect of this paper was the use, where

possible – i.e. for samples of P. falciparum infection, of holdout data for the assessment of the

system’s performance (i.e. data used neither as the training nor as the test/validation set in adap-

tation of the neural network weights). Unfortunately, insufficient samples of other species of
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infected blood cells were available to enable data on them to be held out of the weight adaptation

process and the available samples were divided 50/50 between training and test/validation sets.

A total of 350 images were used for the training and test phases with approximately 950 possi-

bly infected erythrocytes (red blood cells). This 50/50 split into training and testing/validation

data is a classical approach to the development of a neural network classifier. Nowadays it is

likely that repeated 50/50 splits of the data taken, as far as any structure in the data allows, at

random would be utilised in order to try to obtain greater accuracy and make better use of the

available data. Alternatively, it is likely that n-fold cross-validation would be used with, follow-

ing Kohavi [99] and depending on any structure in the data, n typically chosen to be∼ 10−20.

Again, repeated selection of the data-folds may be made to improve accuracy and make better

use of the available data.

2.4.3 Combining classifiers

The paper by Ross et al is also interesting because it utilises a number of classifier combina-

tions. The basic architecture comprises two, two-stage tree classifiers which we will discuss

further below. First however we recall that, as described above, subsequent to the detection

of RBC pixels by the first stage intensity thresholding, the union of further local and global

thresholding operations was used by Ross et al to indicate pixels potentially indicative of para-

sitic infections. This is itself a classifier combination though not represented explicitly as such

in figure 2.6. In fact, this kind of pixel-wise combination is quite popular in image processing

and, as noted in section 2.2.2, is frequently used to combine the outputs of separate thresholding

operations on each of the colour channels or other attributes of an image. The main weakness

of such methods is that the logical combination of outputs seems usually to be ad hoc or at best

chosen after relatively little exploration and experimentation without any systematic attempt at

optimising the system. For example, in Rao’s research [146] the grey-level image was used

for segmentation, the green channel to extract stained objects, whilst stained mature parasites

were obtained from images formed of blue and red (or green) channel differences. The choice

of attributes and number of possible combinations may seem daunting although it is sometimes

possible [23] to choose an optimal combination of the outputs of separate thresholds applied to

each of the R, G, B colour channels for RBC segmentation. In their work on video processing

[44] described in section 2.2.2 Du, Chang, and Thouin also sought an optimal combination of

outputs from the colour channels though they only considered pair-wise merging according to

a variance criterion.

As noted above and sketched in figure 2.6 the first two-stage tree classifier in the system
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Figure 2.6: An extension of figure 10 from Ross et al showing the two-stage tree-classifier

architecture used for the cell and infected region segmentation by pixel thresholding which

provide inputs to the second two-stage neural net architecture used to determine whether a cell

is infected and, if so, the malarial species.

developed by Ross et al uses intensity thresholding to segment RBCs and, within them, to

detect pixels that may indicate parasite infestation, whilst the second utilise features calculated

from those pixels in two three-layer neural networks to determine whether a cell is infected

or not and, if it is, the parasite species. Since Ross et al are not interested in determining the

parasitemia (for which they would have also to segment individual healthy RBCs), they can use

the tree-structured architecture sketched above in which only information from the right-hand,

positive decision channel of each classifier is passed forward for subsequent processing. This

has the benefit of simplicity and importantly allows classifiers of greater sensitivity but reduced

specificity to be used on data that has been filtered by preceding processes, e.g. for the detection

of infected pixels and for the determination of malarial species. However, the performance of

each stage in such an architecture is limited by the performance of the preceding stages – in

this case since those preceding stages are always binary classifiers, by their true-positive and

false-negative rates. At the pixel level, we can see that morphological operations are inserted

after each classifier to improve these rates and thus the overall system performance.

The design of an optimal system would not only trade-off the limitations imposed on each

subsequent stage by the filtering of preceding stages against the increased sensitivity of the

classifiers that can be used but also relax the tree-structure in order to allow more complex de-

cisions to be taken in a richer context. For example, according to Tek [175] classification of the

parasite species should be carried out simultaneously with determination of the stage of parasite

development in order to help avoid confusing parasite species that at different stages of their
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development can exhibit some similar features. Such systems are obviously more complicated

than those with a tree-structured or other fixed architecture and their design and optimisation

requires the application of powerful algorithms, even when the individual classifiers are treated

as fixed in a so-called, multi-classifier system [98]. Thus, for example, genetic algorithms have

been used to optimise the combination of classifiers in a voting system [166] whilst genetic

programming has been used to search for and to optimise the combination rules for classifiers

operating on different feature sets [105] and of different types of classifiers [105] with applica-

tion to the early stages of drug discovery [104].

More recently, genetic programming has been used successfully to develop multi-stage,

2D computer vision systems for detection and classification for a number of applications using

a toolbox within which both the individual classifiers and the combination architecture can be

evolved [128].

2.5 Performance measures

We noted in the previous section that the performance of a binary classifier could be charac-

terised by its true-positive and false-negative rates. The terms “positive” and “negative” are

used in an abstract manner to distinguish the two types of decision possible whenever a binary,

two-way classification is to be made with “positive” usually denoting the class of greater in-

terest. In our context of the analysis of thin-film microscope slides of malarial infected blood

“positive” means, for example, that a cell is infected and a true positive decision thus means

the cell is correctly identified as infected by the classifier. In such cases TP is the number of

true-positive decisions made by the classifier. Alternatively, if the task is to determine the type

of infection, “positive” may mean infection with a particular malaria parasite species such as P.

falciparum and “negative” that the infection is caused by one of the other species. FN is the

number of false negative outcomes produced by the classifier, i.e. negative, but incorrect deci-

sions. Similarly, FP is the number of false positive outcomes, i.e. cases which were negative

but incorrectly identified as positive by the classifier, and TN is the number of true negative

outcomes. Since the number of cases or examples that were actually positive, P say, is fixed

TP + FN = P . Similarly, if the number of negative cases is actually N , TN + FP = N .

The performance of a binary classifier may be characterised by one of the TP , FN pair

and one of TN and FP . Usually, TP and FP are chosen, and their rates, i.e. tpr = TP/P

and fpr = FP/N plotted as an ROC (receiver operating characteristic) curve within the unit

square to describe the classifier’s performance. An idealised ROC curve constructed from two

classes characterised by a single feature (such as the image intensity) is sketched in figure 2.7.
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Figure 2.7: An idealised ROC curve from [19] produced when the decision threshold is varied

to try to separate two classes characterised by a single feature whose one-dimensional normal

distributions for each class overlap.

Sometimes sensitivity, se = tpr and specificity sp = 1 − fpr = tnr = TN/N are used

as alternatives and, less frequently, the false positive and false negative rates. In particular,

selection of an operating point on the ROC represents a particular trade-off between the two

types of correct and two types of erroneous decisions that can be made [43]. Ideally the classifier

would make no errors with TP = P and FP = 0, but this is not achievable. An especially

useful property of the ROC curve is that the area under the curve is the Wilcoxon (or Mann-

Whitney) statistic and that it may be used as a measure of the performance of the classifier

over all possible prior distributions, choices of decision parameters, and the range of possible

trade-offs between the values ascribed to the correct decisions and losses associated with the

incorrect ones [43, 46, 17, 57]. When combining the decisions of binary classifiers, a convex

hull of the individual classifier ROCs elegantly defines the best possible performance that may

be obtained in general and is known as the Maximum Realisable ROC or MRROC [161]. As

the work of Southall et al [169] exemplifies, the MRROC may be used even when the classifier

combination involves several adjustable parameters. Importantly, only when the decisions of

the individual classifiers are logically combined or knowledge of the rationale underlying the

decisions or other information, such as the confidence of the decisions (or a proxy for it), is

used can the MMROC be bettered [49, 105]. Similarly, concavities in an ROC may be repaired

to give performance beyond the MMROC only when certain dependency conditions are met

[56, 49].

As Swets [174] indicates, the ROC is an extremely useful tool for characterising and
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analysing the performance of a binary classifier though it must be remembered that such a

characterisation is only complete and, in particular comparison of classifiers possible, when

a measure of the variances is available. Methods have thus been developed in medical appli-

cations for averaging ROCs and for obtaining variance estimates from these averages (see for

example [49] for a discussion of vertical averaging – which may be used when tp is a function

of fp and the latter is under experimental control – and of threshold averaging), or via bootstrap

techniques (for example, outlined in the appendix of [127]). These methods of course require

access to labelled (ground-truth) data sets which, by their nature, must always be finite. Con-

fidence bounds on the ROC curve and the area under it may be obtained from such estimates

[75, 76] but, unlike the area under the area under the ROC, these confidence bounds depend

on the underlying class-conditioned distributions. In medical applications, these are usually

approximated as normal. Unfortunately, this is a level of sophistication rarely, if ever, to date

achieved in image processing and computer vision research where presentation of individual

ROC curves is the norm. In addition, there are several factors which limit the use of the ROC

in our application.

2.5.1 Limitations

The first and most obvious limitation is that our malaria application is not a two-class problem.

At the very least, if we ignore the stage of the parasite life cycle and the type of parasite or as

in laboratory work these are known a priori, image pixels belong to one of three classes: back-

ground, RBC or stained parasite. In addition, in many cases the RBC membranes are visible (re-

call figure 1.3) so there should be at least four classes. Furthermore, some pixels will necessar-

ily have a mixed origin giving rise to the possibility of a further three (background+membrane,

membrane+RBC, RBC+parasite) or, depending on the resolution, more classes. Even if the

presence of such mixed pixels is not acknowledged in the classification it can be important to

allow for them in assessing the system’s accuracy. If ignored they will give rise to systematic

errors in the accuracy estimates [169]. Finally, as already noted the image background may not

be solely plasma but also contain WBCs and various artefacts which may reduce performance

even if we do not wish to distinguish them6.

Extension of the ROC concept to a multi-class problem with say, C classes is, in principle,

straightforward. Recall that when there are C classes an ideal Bayes classifier would assign an

example with feature vector x to class I say according to whichever of the posterior probabilities

P (J |x) was the greatest [43]. Since the operating point of such a classifier can be biased by

6See for example [46]; if there are several possible outcomes a multi-category classifier should be used or incon-

sistent (and therefore, sub-optimal) decisions may be made.
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weighting each of the probabilities P (J |x) by some positive scalar φ(J) which acts roughly in

a manner analogous to the inverse of a (positive) threshold T (J) for each class, it can be seen

that the classifier has C − 1 degrees of freedom [103]7. The key to generalising the ROC is that

these C − 1 degrees of freedom may conveniently be represented on a surface in the space of

the C correct classification outcomes characterised by the rates tr(J). In the familiar two-class

case this would mean plotting tpr against tnr rather than fpr, but this is a trivial change since

tnr = 1−fpr and the resulting curve is just a plot of sensitivity se against specificity sp which

some prefer to use in any case. The area under this surface may then be used as an indicator of

classifier performance, bounded above by one and below by 1/C! for a random classifier. As in

the two-class case, a convex hull construction may similarly be used to construct a maximum

realisable performance surface. There are, however, two important differences to the familiar

two-class case. The first is that for C > 2 there is no counterpart to the equivalence of the area

under an ROC to the Wilcoxon statistic.

Second, when C > 2 the performance of the classifier is no longer completely charac-

terised by specification of an operating point in terms of the values of the C correct decision

rates tr(J). In particular, for each given tr(J), there remain C − 1 incorrect decision rates,

nr(I|J) with I 6= J ), say, which may take any values satisfying the constraint [103]:

tr(J) = 1−
∑
I

nr(I|J). (2.2)

When there are two classes, specifying an operating point on the ROC via given tpr and

tnr determines the decision rates for all four possible outcomes but the incorrect decision rates

are no longer completely specified by an equivalent procedure if C > 2. At each operating

point a complete characterisation of the classifier’s performance requires specification of the

C(C − 1) off-diagonal elements of the confusion rate matrix ξIJ = nr(I|J). The diagonal

elements which are the correct decision rates ξII = tr(J) are then determined via relationship

2.2 [103]. Thus, when tuning classifier performance, unless the costs of the incorrect decisions

λ(I|J), I 6= J (and values of the correct decisions, λ(J |J)) are known8 [43], the best that

can be done when C > 2 is to Pareto optimize the off-diagonal elements of the confusion

matrix nr(I|J) to the point where a decrease in any one of the off-diagonal elements nr(I|J)

would necessarily lead to an increase in one or more of the other nr(I|J) [52]. Such a Pareto

7The argument is equally valid in practice for a classifier which bases its decisions on some imperfect estimate

PD(J |x) of P (J |x).
8Given there are C2 such costs and values it would be rare for them to be known, even approximately when

C > 2.
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optimal solution is said to dominate other solutions. The situation is thus more complicated

than the simple trade-off between the false-positive and false-negative rates in the two-class

case. Fieldsend and Everson describe an evolutionary algorithm for finding Pareto-optimal

misclassification rates as the decision vector comprised of the classifier parameters such as the

weights φ(J) and the costs λ(I|J) are varied. The resulting set of solutions are said to define

the Pareto front in the C(C − 1)-dimensional misclassification rate space. Furthermore it is

suggested that the volume of the C(C − 1)-dimensional hypercube dominated by solutions on

the Pareto front could be used as a scalar measure of the classifier’s performance. Fieldsend and

Everson point out that projections of points from the Pareto front do not (necessarily) form a

surface in the C-dimensional tr(J) space. Thus, they do not necessarily lie on the ROC surface

as described here for the multiclass case though they could be used to construct an MMROC

surface. Finally, we note that multi-objective evolutionary algorithms were first introduced for

optimising binary decision problems in medical imaging by [3] and [102].

There are many classification problems such as the extraction of facts of a particular scien-

tific interest from text [36] where the number of actual negative examples (facts of no relevance

to the given scientific context), N , may not be known and very difficult or even impossible

to obtain. In image processing problems where for example a binary classification is carried

out at the pixel level it is it easy to determine N essentially from the total number of pixels

minus P and thus straightforward to construct an ROC although obtaining ground-truth data is

time-consuming and tedious. Classification at the object level may thus be more attractive and,

in many cases, is more closely related to application requirements [169]. However, in general,

classification at the object level in image processing applications raises two issues: the difficulty

of enumerating the negative instances and of determining the correspondence between ground-

truth data and the output of a classifier – a problem that, amongst other things, is bedevilled by

questions of location accuracy and resolution, well-known for example in attempts to evaluate

the performance of edge detectors from ROC curves [59].

For the identification of RBCs in the malaria application Tek [175] describes how the

latter may be overcome to some extent by marking the centres of RBCs as the ground truth

and adopting the conventions used to generate the results reproduced in table 2.1. According

to Tek’s thesis: a ‘hit’ or correct outcome is recorded whenever an image region labelled as

an RBC by the image processing system contains just one such centre, a ‘miss’ is recorded if

a marker lies in the background region, a labelled region containing more than one ground-

truth marker is recorded as under-segmented, whilst remaining labelled regions in the image

processing output are regarded as over & redundant segmentations. Whilst this is a well-defined
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procedure, as discussed in section 2.3.2 it does not unequivocally define which outputs should

be regarded as ‘true-positives’ and which should be regarded as ‘false positives’. Even if this

ambiguity were sorted-out it would still not be possible to define a false-positive rate fpr as

determination of N , the actual number of negative instances presented to the classifier, is not

possible. The number of connected collections of pixels in the image that are not RBCs is

undefined – and probably un-definable. Tek thus does not give any ROC curves describing the

performance of this aspect of his system. The best that can then be done in order to characterise

the system’s performance is to use the sensitivity or recall rate, se = TP/(TP + FN) = tpr

(usually referred to in this context as the recall rate, rr) and the precision rate, pr = TP/(TP+

FP ), neither of which requires knowledge of the number of actual negative examples, N .

This is precisely what Ross et al did. Unfortunately, precision-recall curves have none of the

nice properties of ROC curves. For example, though they lie in a unit square they do not

necessarily pass through any of the vertices of the square, there is nothing with properties

equivalent or similar to those of the area under the ROC, and precision-recall curves are sensitive

to the relative abundances of the classes and thus to the weighting assigned to each class by the

parameterisation of the classifier.

As noted earlier (section 2.3.1) when dealing with multi-class problems Tek [175] uses

confusion matrices whose elements are just the counts of the numbers of correct and of the

various types of incorrect outputs of the system. Since Tek attempts to identify both the malarial

species and stage in the life cycle together with various objects (WBCs, platelets, artefacts and

incomplete objects) that may have been included in the segmentation of stained-objects the

confusion matrices are rather large (20 × 20) and thus the statistical significance of many of

the off-diagonal scores is low – especially as the classes are very unbalanced. This is typical

of performance analysis of multi-class problems but at least the problem of unknown incorrect

decision rates is avoided. More significance can be attached to the scores when classification

of the life-cycle stage is ignored and just the species identification considered in smaller 4 × 4

confusion matrices.

2.5.2 Practical uses of the ROC curve and other performance measures

The above may seem rather pessimistic but there are a number of very important ways in which

ROC curves may nevertheless be used in practice in malaria image processing applications.

We have already seen one – characterising the performance of a segmentation process at the

pixel level. A second follows from the fact that in the stages of the malaria parasite life-cycle

relevant to determination of the degree of infection or parasitemia, the parasite is wholly within
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a red-blood cell. In this case, modulo the issues associated with cells in border regions of the

image (section 2.5.1), the numbers of healthy and infected cells can be determined by expert

observation and thus P and N are known, the rates tpr and fpr may be determined, and an

ROC calculated. Tek [175] thus uses ROCs to characterise the performance of his system at

both these levels; in particular detecting stained pixels and in “stained-object extraction” used

in identifying healthy and infected RBCs. In both cases, Tek uses ROC analysis to help with

feature selection and in the latter case also with choosing the most appropriate type of classifier

to use. In both these cases, the decisions are dichotomous.

Since they are based on rates, ROC curves are insensitive to class abundances and to the

decision costs and values. Flach [57] has thus proposed to extend the conventional two-class

ROC to a third dimension so that the effect of class imbalances and of the relative decision

costs and values are apparent. This is an interesting proposal but would take us too far afield

here. The important point for us is that the conventional ROC enables the developer to focus

on regions of the decision space that may be important because of such effects. For example,

the part of the ROC where fp is very low is important when the number of negative cases far

exceeds the number of positives and the slope of the ROC should be large so that the classifier

may approach the ideal of high specificity, sp = 1−fp and high sensitivity se = tp. Since these

requirements are in conflict and, as Fawcett points out [49] the performance of the conjunction

and disjunction of two classifiers may, if they are independent, be expected to lie outside their

convex hull, this is a good reason for combining classifiers.

This kind of reasoning also suggests that it may be advantageous to chain “conservative”

classifiers in a sequential multi-classifier architecture but such chaining violates the indepen-

dence assumption. Fawcett thus points out that the resulting combined classifier may have

very different performance characteristics to any of the component classifiers – a fact which

itself suggests such combinations may be worth exploring in practice. The results obtained by

Southall and Buxton in their agricultural application bear this out [169] as does the increas-

ingly widespread use of a ‘forest’ of decision trees in which each binary decision is based on a

single feature [98, 133]. Since the individual classifiers are binary, their performances may be

individually tuned using ROC analysis [169].

We have mentioned in passing in previous sections (e.g. 2.3.1) and above other terms for

measuring performance such as the precision rate and its equivalent, the positive predicted value

ppv = TP/(TP+FP ) = pr. Tek utilises a variety of such measures [175] including: negative

predicted value npv = TN/(TN + FN), the accuracy rate accr = (TP + TN)/(TP +

FP + TN + FN) = (TP + TN)/(P +N), and the skew insensitive accuracy rate accr∗ =
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(se + sp)/2 which is less sensitive to class imbalances. Another measure given by Fawcett

[49] is the F − measure = 2/(1/pr + 1/rr). Finally we note that some authors use the

Gini-coefficient G which is a popular measure in many applications where the distribution of

samples is asymmetric or far from normal (see for example the Wikipedia article [197]). For

binary classification tasks, G is related to the area under the ROC, G = 2 ∗ AUC − 1 (see

for example [74] and also [52])9. It indicates how well the classifier does in comparison to

random guessing and is of course independent of the class abundances. Finally, we note that

the ROC provides more information than a net accuracy rate since it characterises both tpr and

fpr whilst the effect of erroneous positive and negative decisions may cancel in the calculation

of a net accuracy rate. This could be of importance in the estimation of parasitemia.

Although not relevant to our aims, we note that a good aspect of the paper [151] was the

attempt to use probability theory to estimate the performance of the system on a blood sample

when a large number, in our notation P +N , of red-blood cells is examined and the objective is

to decide whether the blood sample is from a patient infected with malaria or not. Unfortunately,

the attempt by Ross et al relied on the assumption that the identification of just one infected cell

would suffice to classify a whole sample as infected. If the true-positive rate tpr were one

such a conclusion would be valid, but when false negative decisions may be made, this is not

so. A more sophisticated probabilistic analysis is required in which, for example, a confidence

estimate is placed on the decision for the whole sample and the classification accuracy for a

single cell used to estimate how many cells must be examined, or positive outcomes reported,

etc, in order to reach the requirement [123].

2.6 Geometric and template fitting

Thresholding is the common segmentation scheme. However, there exist many other alternative

methods. Garrido and Pérez [64] presented an automatic method using deformable templates.

Their templates were built from geometric primitives, in particular ellipses, to represent the

shape of the boundary of the cell, fitted to the location of cell boundary pixels obtained by edge

detection. Traditionally, edge based segmentation has been divided into two independent stages:

edge detection and edge linking. However, a one-way flow of information may yield wrong

results because of error propagation due to the fact that information lost at one step cannot

be recovered later and accumulation of false information obtained at an earlier step. Hence,

9Though the former’s “simple generalisation” by averaging the area under the ROCs between all pairs of classes

seems to us, unnecessarily complicated and the latter define an ROC in the C(C−1) dimensional space of incorrect

outcomes.
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Garrido et al. proposed a new methodology, dividing the process into three parts: obtaining

evidence about cell locations, calculating an elliptical approximation of these locations, and

refining cell boundaries using locally deforming models. Visual inspection of their experimental

results appears to show that their approach is quite robust but time consuming.

The segmentation performance can be greatly improved by incorporating prior knowledge

about the specific type of images being processed. Jiang and Yang [90] also introduced an

elliptical cell contour model to describe the boundary of the cells transforming the cell im-

age segmentation problem into an optimization problem. They used images with fairly well

separated cells. The results achieved were robust but with no indication of run time.

A better way of building and using flexible templates was developed by Liu and Sclaroff

in a series of papers and laboratory reports from around 1997 to 2001 (see for example:

[111, 112, 113, 110, 114]). They used region-based template models which may be bent,

stretched, sheared, and tapered by means of linear (affine) and quadratic geometric transfor-

mations. The ‘first’ four degrees of freedom of the affine transformation determining the posi-

tion, orientation and size of the template were usually left free whilst the remaining parameters

a were constrained to belong to a prior distribution p(a|J) for objects belonging to class J

as we have previously labelled them. These distributions were assumed to be normal so that

−log(p(a|J)) took the form of an energy term, Edeform, quadratic in the deformation param-

eters a. The distribution p(a|J) was learnt during a supervised training stage, typically using

∼ 50 − 100 image objects. If necessary, PCA was used to reduce the dimensionality of the

deformation parameters a in order to avoid over-fitting.

Since their approach was region-based, Liu and Sclaroff used standard region-merging

techniques which they referred to [10, 28] in order to produce an initial segmentation. This

segmentation was used both for model training – corrected by hand where necessary – and in

applications where the objective is to detect instances of the objects of interest in previously

unseen images. The template model was deformed to match each region-grouping hypothesis i

by minimising an energy cost function E(i) comprised of a weighted sum of: a colour energy,

Ecolour equal to the norm of the colour covariance for pixels within the region grouping; an

energy, Earea, computed from the region/template overlap; and Edeform. This energy E(i)

was minimised by a downhill simplex method, accelerated if necessary by a multi-scale ap-

proach. Selection of candidate region-grouping hypotheses was subject to local adjacency and

edge-strength constraints. The final segmentation was then optimised for global consistency by

minimisation of a global cost function constructed from the weighted sum of the E(i) plus a

penalty term proportional to the number of region-groupings in the segmentation [111, 112].
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A best-first greedy algorithm, simulated annealing and a highest confidence first (HCF) algo-

rithm [27, 93] were used for the optimisation with the HCF algorithm chosen as giving the best

trade-off of performance and computational time.

Liu and Sclaroff initially developed and tested their approach using simple geometric

shapes [111], images of fruit (in which the objects of interest are bananas), images of leaves

and a set of synthetic fish images. They were able to obtain good results on the assumption that

the initial region-based techniques over-segmented the images. Application to finding RBCs in

microscope (thin-)slide images where RBC counting and morphology (i.e. their shape) are im-

portant indices for diagnosing certain pathologies, however, showed that their initial approach

was inadequate in two respects. In their application, as is frequently the case in malaria appli-

cations:

(i) neighbouring RBCs may touch and sometimes overlap slightly and thus, as we have seen,

may be under-segmented, and

(ii) computations were time consuming and thus application to the detection of a large num-

ber of RBCs in an image was unsatisfactory (cf. also the similar lengthy computations in

the MalariaCount system [165]).

The final three articles referred to above addressed these two problems: first by using the

quality of the template fitting to region-groupings to develop a split and merge technique [113],

and second by using index-trees to speed-up the template-fitting [110] which was typically

taking 90% of the computer time and subsequently [114] to speed-up and extend object retrieval.

There are many important details in the three articles including, for example, in the template

fitting:

1. the use of perceptual constraints to select hypotheses for the splitting of under-segmented

regions – which may be compared to Kumar’s clump-splitting technique used by Sio et

al [165] as discussed in section 2.3.3;

2. comparison of the fitting energies E(i) for competing grouping hypotheses i before and

after splitting – which may be compared with the way template-matching was used also

by Halim et al [73] as also discussed in section 2.3.3;

3. recursive splitting and a final use of the HCF algorithm to re-merge any regions which

global consistency indicated should not have been split;

4. evaluation of the split and merge approach by computing the detection rates and the mean

of template fitting costs E(i).
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In the development and use of the index trees, notable points included:

1. the eventual use of two index trees [114], one for the image segmentation introduced in

[110], and one for similarity-based retrieval. Both could be pre-computed off-line and

the retrieval tree obtained by re-organising the segmentation tree;

2. subtle changes to the weightings used in the fitting and global consistency energies which

were finally defined in [114] as:

E(i) = αEcolor + (1− α)[(1− β)Earea + βEdeform], (2.3)

E = (1− γ)
n∑
i=1

riE(i) + γn; (2.4)

3. use of hierarchical clustering based on normalised central moment shape features to con-

struct the segmentation index tree from a uniform sampling in the bounded deformation

parameter space;

4. use of a three-layer neural net to provide a mapping from the feature space of seven

central moments to the template-fitting cost E(i) (or more simply, Earea), in particular

at leaf nodes of the tree in order to preserve accuracy;

5. development of an image query system to retrieve shapes of particular interest by com-

puting histograms of the shape deformation parameters;

6. evaluation by means of precision-recall curves computed for the retrieval of eight types of

RBC clustered and classified according to their shape as normal, elliptical, etc. and com-

parison with previous methods of retrieval based on colour histograms and the integration

of colour and shape information [88];

7. development of an interactive tool and GUI [114].

In the final article, examples were given of the retrieval of normal, elliptical (indicative

of ovalocytes which may range in general from slightly egg-shaped to rod or pencil forms),

helmet, sickle, and teardrop RBCs. The system could cope with multiple touching objects and

a small amount of overlap of RBCs. It was also an impressive achievement in 2001 to build

such a system with a response time that was sufficiently quick for it to be used to assist users

in finding RBCs in previously unseen microscope images. It is possible an even faster system

capable of handling more complicated queries in larger images could be developed using mod-

ern evolutional optimisation algorithms such as differential evolution (DE) or a self organizing
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migrating algorithm (SOMA) which have been shown to be effective in object detection by

flexible template matching and better than a simplex optimisation [207]. It is also notable that

Zografos used pixel-wise matching of an object’s colour, a prior on the object size or scale,

and took care to ensure a proper Bayesian statistical interpretation of the whole image. This

requires including not only foreground objects as Liu and Sclaroff do in the definition of the

global consistency energy, E (equation 2.4), but also the background as pointed out by Sullivan

and Blake et al [172].

2.6.1 Evolutionary search

Conventional local search minimization techniques are time consuming and tend to converge to

whichever local minimum they first encounter. The key requirement of any global optimization

method is that it should be able to avoid entrapment in local minima and continue the search to

give a near-optimal final solution whatever the initial conditions. Hence, Jiang and Yang devel-

oped an efficient optimization algorithm by combining evolution into tabu search to develop a

method which not only has the ability to find the global optimum, but also retains advantages

of both tabu search and genetic or evolutionary algorithms [90].

Genetic algorithms have, in fact, been used some time ago for flexible template loca-

tion and fitting in image processing and computer vision, in particular in one of the early

active shape model (ASM) papers by Cootes and Taylor [82]. Although, modern evolution-

ary algorithms such as differential evolution (DE) and SOMA (self organizing migratory al-

gorithm) mentioned in the previous section, [130, 171, 204, 203] have been used for some

difficult, high-dimensional, template-based object detection, location and recognition problems

[22, 207], multi-resolution techniques usually based on the use of image pyramids are much

more common and, in particular are routinely used in the ASM model of Cootes and Taylor

[32]. However, we note that such multi-resolution techniques are not guaranteed to converge

to a global optimum and frequently may need good initialisation. Furthermore, our problem

has the peculiarity, for example when we need to detect healthy red blood cells, of there being

many objects of interest in the image when problems of the kind noted in [22] may arise (see

section 3.3). The index tree approach of Liu and Sclaroff discussed in detail above offers an

interesting potential solution.

Finally, we recall that Giemsa staining gives the parasites a characteristic blue colour.

Use of colour information should therefore not be overlooked, perhaps even when trying to

locate healthy cells, and methods based on colour histograms (and bihistograms) [173, 120,

191] might therefore be useful, for example in order to provide starting points for a multi-
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resolution algorithm, or perhaps for a hybrid multi-resolution/evolutionary method. If colour-

based techniques are to be used, selection of colour attributes, use of chromaticity, and colour

space normalisation and transformations, such as the grey-world transformation, comprehensive

normalisation of Finlayson et al, and Procrustes colour alignment are again all possibly relevant.

However, to be useful such algorithms would need to detect objects with a high tpr and low

fnr and, unfortunately, the former is rarely given in publications and, as noted in section 1.3.4,

the latter inaccessible. Furthermore, the rather low values of the precision and retrieval rates

(given for example in the experimental comparisons carried out by [114]) with the colour and

shape method of Jain and Vailaya [88] do not generate confidence that such an approach would

be likely to be successful.

2.7 Summary and Conclusions

As indicated in the opening sentence, in this chapter we have reviewed literature relevant to the

processing of microscope images of thin-film slides of blood samples in malaria applications.

This has included a brief discussion some wider aspects of the processing of other thin-film

microscope images from other biological applications to set the context, a section on image

pre-processing and low-level processing – the latter in particular for segmentation by threshold-

ing which will be most relevant for the approach we have explored in greatest depth. A separate

section was dedicated to work on malarial thin-film slides with subsections on work carried

out over several years by the group at the University of Westminster (2.3.1) and on the mor-

phological and region-based segmentation techniques used extensively by them, and by others

(2.3.2). Since we are ultimately interested in determining the parasitemia or degree of infection

determined as the fraction of RBCs which are infected, a subsection (2.3.4) was included on

counting the number of RBCs and the number of those that are deemed to be infected.

This was followed by a review of classification techniques with subsections on feature-

selection, the use of neural network classifiers in malaria detection, and on combining classifiers

as several decisions are usually required in the detection of RBCs and as to whether parasites are

present or not. Characterisation of a classifier or, more generally, of any system’s performance

is vital and a number of measures were reviewed in the next section. This began with and

concentrated on the familiar ROC curve and included its limitations, some discussion of its

extensions to multi-class problems (as the malaria problem always properly is), and its practical

use in such problems. The final section described geometric and template-fitting approaches, in

particular the extensive work by Liu and Sclaroff which included and eventually focussed on a

closely related application for the detection of RBCs and characterisation of their shape as an
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indication of certain pathologies. Since model-based approaches involve a search for a best-

fitting model or template or optimisation of model parameters a brief review of evolutionary

search methods was included.

The main conclusions from the above may be summarised as:

(i) Computer vision researchers need to be aware of the potential variability of microscope

images of biological thin-film samples, both between images from different laboratories,

from different slides, from different parts of the same slide and even within one image.

Where possible images should be provided by expert biological users and standardised

as far as possible to avoid extraneous, extrinsic variability.

(ii) The intrinsic variability and complexity of many microscope images of thin-film biolog-

ical samples can nevertheless be very high (recall for example the image reproduced in

figure 2.1) and even though in some applications (recall figures 2.2 and 2.3) the complex-

ity and variability is not so high and in particular in our malaria application it is even less,

it is nevertheless apparent that reliable, automatic processing is likely to be quite difficult.

(iii) In this context, the processing of Giemsa stained thin-film slides for malaria applications

seems to be one of the simplest such problems. In particular, RBCs usually have both

a characteristic colour and shape, especially if they are healthy. However, there are still

a number of difficulties to be overcome in the accurate segmentation and detection of

RBCs: there may be some extrinsic and intrinsic variability in their appearance, they

may touch each other and even in thin-film images occasionally overlap a little, they may

not be completely visible within the field of view, and they may be confused with white-

blood cells and other artefacts, in particular if the latter are not properly segmented from

the background blood-plasma.

(iv) The characteristic colour and shape, in particular of healthy RBCs, means that model-

based techniques may be used to detect them. The work of Liu and Sclaroff seems to

be the most successful and well-developed model-based approach. However, the way

they took shape variation, which is essential in their application for diagnosis of certain

pathologies (not including malaria) , into account seems unnecessarily complicated given

the flexible shape and appearance modelling techniques already developed by that time

(∼ 1997− 2001) by Cootes and Taylor and their colleagues.

(v) The appearance, and especially the size and shape, of a malarial parasite in a Giemsa

stained thin-film slides is highly variable. As noted by Tek in his thesis and review article
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this depends on the malarial species and on the stage of development of the parasite in

a manner that can only properly be addressed as a complicated multi-class classification

problem. The only general simplifications are that the Giemsa stain produces a very char-

acteristic dark blue colour from the parasite DNA (whilst healthy RBCs of course do not

contain any DNA) and that the infection is inside the cell and almost always due to only

one parasite. In our application concerned with determining the degree of parasitemia of

laboratory samples for research purposes we have the additional simplifications that the

infecting species and stage of its life cycle are usually known.

(vi) The variability in the appearance, size and shape of the parasite within infected RBCs

makes a model-based approach difficult. In common with most work on the processing

of microscope images of thin-film biological samples, neural nets have thus often been

used to detect infected cells though the choice of features to be used is then a problem.

One of the best pieces of work is by Tek with a great deal of detail given in his thesis.

Another good piece of work was by Ross et al. Our review has thus included a section

on classifiers with subsections on feature selection, neural networks and, since most of

the systems developed for the malaria problem used some type of sequential classifier

combination architecture, on combining classifiers.

(vii) The performance of any computer vision system must be assessed and characterised in

some manner. Performance measures, in particular use of the ROC (receiver-operating

characteristic) curve were therefore included as a separate section in this review chapter

with subsections on their limitations and practical use in the malaria problem. An inter-

esting aspect of this was the possible extension of the ROC curve to higher-dimensional

multi-classifier problems. Though this was largely an aside, it is evident that awareness

of these issues and of recent extensions seems very relevant to much medical (and other)

image processing and computer vision.

(viii) In order to construct an ROC curve (or surface), labelled ‘ground-truth’ data is (usually10)

required. Since provision of reliable ‘ground-truth’ data requires images to be annotated

by an expert such data is rarely available in medical applications where an expert’s time

is scarce and expensive. Since such data is needed also for the training of neural network

or other supervised classification systems and should be used independently in a holdout

10It seems that the EM algorithm may not only be used to combine estimates of ‘ground-truth’ from different

experts, but also to enable a ‘ground truth’ to be established as an optimal consensus and thus to avoid the need for

access to a definitive expert at all. See for example [72].
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or cross-validation manner for performance evaluation, its scarcity becomes even more

of a problem when these approaches are adopted.

(ix) Apart from some counts of healthy and infected RBCs in some of the early parts of

Tek’s work [175] the two main early works on determining the parasitemia of malarial

infections are the Malariacount system developed by Sio et al ([165]) and the template-

matching system of Halim et al) [73]. Under good conditions when RBCs were well

separated the former achieved an accuracy of better than one percent in the parasitemia

(section 2.3.4) whilst the latter ultimately achieved precision and recall rates of 92% and

95% respectively.

(x) Much of the image processing of thin-film slide images in the malaria application has

been on detecting whether the sample is infected or not and, if infected, by which malarial

species. This is not only a difficult problem as indicated in item (v) but also seems

a somewhat odd thing to do for, as Tek points out, thick-film slides are a much more

sensitive indicator of the presence or absence of malarial infection and, because they

contain many layers of over-lapping RBCs, would require rather different processing

techniques.

It might seem there are two major omissions from this review chapter. The first, in par-

ticular from (iv) above is discussion of the flexible modelling techniques developed by Cootes

and Taylor and their co-workers at the University of Manchester. This is such an important and

obvious approach for the detection of RBCs that a considerable amount of preliminary work

was, as will be described in the next chapter, carried out to investigate its application to the

malaria problem. Owing to the variability in the appearance of parasites this approach was not

expected to be easily applicable to the modelling of infected cells but as we shall see, at least

for the simplest kinds of patch models considered, this approach also did not work very well

work even for the detection of healthy RBCs.

Given this failure and the difficulties noted above of characterising the appearance of par-

asite infections and of using supervised techniques to train classifiers, our main approach was

thus to use an unsupervised method based on optimisation of Fisher’s dscriminant and Otsu’s al-

gorithm [131] for the detection of healthy and infected RBCs. This approach, described in [22]

relies on minimal modelling of cells’ appearance – namely on their colour in Giemsa stained

thin-film slides. The second major omission from this review chapter is therefore discussion of

these well-established techniques and related clustering methods. This is deferred to chapter 4

where description of our use of this approach commences.



Chapter 3

Preliminary Work – Flexible Modelling

This chapter mainly describes how we explored the use of flexible modelling techniques de-

veloped by Cootes and Taylor for the detection of RBCs in our malaria problem. As noted

under item (iv) in the concluding section 2.7 of the previous review chapter and as can be seen

in figures 1.1 and 1.3, RBCs appear approximately circular in our microscope images, are ap-

proximately the same size and are often of a similar colour, though the latter can vary somewhat

especially if a cell is infected with a parasite. The simplest model developed by Cootes and Tay-

lor is one in which principal component analysis (PCA) is applied pixel by pixel to a window or

small patch of the image just big enough to contain a RBC as the object of interest. This kind

of model was first used by the Manchester group in [31] for a PCB inspection application and

described as a statistical grey-level model though, following Cootes’ notes [29] and in keeping

with the conventions used by Cootes and Taylor, we shall refer to such a model as a “flexible

patch model” or FPM and to its use for finding objects of interest in unseen (new) images as an

“active patch model” or APM.

This kind of model seems to have first appeared in modern pattern recognition, computer

vision and image processing literature when it was applied to face recognition by Sirovich and

Kirby [167, 96] and to have become popular when Pentland and Turk [186, 185] showed that a

face recognition system developed using such an approach could out-perform the feature-based

techniques that had previously dominated the field. In face recognition, following Turk and

Pentland, such models are often referred to as “eigenfaces”. They quickly supplanted feature

based methods [16] and have themselves been further developed using a variety of statistical

pattern recognition techniques including: probabilistic principal component analysis (pPCA)

[180]; linear discriminant analysis (LDA) leading to the technique known as “Fisherfaces” [8]

and also pLDA [86, 143]; the use of non-linear kernel methods, and of graphical models [14].

For details, see the reviews by Chellappa al [205, 26] and especially the recent book by Prince

[142]. Much useful information can also be obtained from a number of Wikipedia articles, in
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particular that on “Eigenfaces” [196] and other on-line resources such as CVonline [55].

In the following sections we first review PCA prior to briefly describing the flexible patch

model (FPM) and how it may used as an active patch model (APM) to find and locate objects

of interest in unseen, new images. We review PCA as a linear modelling approach before

discussing flexible patch models in the context of our malaria problem. Particular attention is

given to the modelling of healthy RBCs to which the FPM seems best suited and its application

as an active patch model or APM to new image data. A number of conclusions are drawn which

suggest that building detailed models is not the best way to address the malaria problem.

3.1 PCA – A Linear Modelling Approach

One way to introduce PCA is to consider a bilinear model in which a d-component signal or

data variable, x = {x1 · · ·xd} is represented as:

x = 〈x〉+

d∑
k=1

p(k)b(k, x) (3.1)

where 〈x〉 is the mean of x.

This model is underdetermined. If we write 3.1 in matrix form as

x = 〈x〉+ Pb (3.2)

then the d× d matrix P whose columns are the modes p(k) and the vector b of components can

both be transformed by inserting a non-singular matrix T and its inverse T−1 in 3.2:

x = 〈x〉+ PTT−1b (3.3)

There are thus d2 degrees of freedom undefined in 3.1. To make the model well-determined

we need to impose auxiliary conditions such as:

(i) normalisation pT (k)p(k) = 1 k = 1 · · · d (3.4)

(ii) orthogonality pT (k)p(k′) = 0 k′ < k (3.5)

(iii) uncorrelatedness 〈b(k)b(k′)〉 = 0 k′ < k. (3.6)

The total number of constraints above is

d+
1

2
d(d− 1) +

1

2
d(d− 1) = d2 (3.7)

so the model is then well-determined.
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To show that the model then leads to PCA with the modes p(k) defined as eigenvectors we

consider the d× d covariance matrix

S = 〈(x− 〈x〉)(x− 〈x〉)T 〉 (3.8)

= 〈
∑
kk′

p(k)b(k)b(k′)pT (k′)〉

=
∑
kk′

p(k)〈b(k)b(k′)〉pT (k′)

=
∑
k′

p(k′)〈b2(k′)〉pT (k′).

On using 3.4 and 3.5 we see that

Sp(k) = 〈b2(k)〉p(k) (3.9)

which is an eigenvalue-eigenvector problem:

Sp(k) = λ(k)p(k) (3.10)

with

λ(k) = 〈b2(k)〉. (3.11)

It is convenient to note:

(i) The modes p(k) depend only on averages of the data so we were able to take them outside

the expectation 〈· · · 〉 in 3.8 above.

(ii) It follows from application of 3.4 and 3.5 to 3.1 that the components:

b(k, x) = pT (k)(x− 〈x〉). (3.12)

3.1.1 Alternative approaches

The outcome would be the same if the modes p(k) were defined a priori as the eigensolutions

of 3.10 when, since S is a real symmetric matrix, we may always choose a set of orthonormal

eigenvectors satisfying 3.4 and 3.5. Thus, in such an approach we immediately have 3.12 above

and, since the coefficients b(k, x) are scalars it follows that:

〈b(k, x)b(k′, x)〉 = pT (k)〈(x− 〈x〉)(x− 〈x〉)T 〉p(k′)

= pT (k)Sp(k′)

= λ(k)δkk′ . (3.13)

The un-correlatedness of the components 3.6 is then a consequence of the definition of the p(k).
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3.1.2 The modes

Whichever approach is adopted, the p(k) are often referred to in image processing and computer

vision as modes of variation (or ‘modes’ for short). In statistics the b(k, x) are often referred to

as the principal components (PCs for short) whilst the p(k) are usually referred to as the vector

of coefficients or loadings (see e.g. chapter 1 of [92]). We will not use the latter terminology for

the p(k) but, whilst we may use the term ‘PCs’ as above, following Cootes and Taylor’s tutorial

[32] we may occasionally also refer to the b(k, x) as ‘parameters’.

The orthogonality of the modes 3.5 is very important since it means each makes a contri-

bution to the data

x(k) = 〈x〉+ p(k)b(k, x) (3.14)

which is unaffected by the contributions of the other modes. In particular:

〈[x(k)− 〈x〉]2〉 = 〈b(k, x)2〉 = λ(k) (3.15)

and we may say that

〈b(k, x)2〉 = σ2(k) = λ(k) (3.16)

is the variance of the k′th mode.

3.1.3 Spectral decomposition of the covariance matrix

It follows from subsection 3.1.2 and the orthonormality of the modes 3.4 and 3.5 that the total

variance

σ2
T = tr(S) = 〈[x− 〈x〉]2〉 =

d∑
k=1

〈[x(k)− 〈x〉]2〉 =

d∑
k=1

〈b(k, x)2〉

=
d∑

k=1

σ2(k) =
d∑

k=1

λ(k).

(3.17)

Furthermore, S being a covariance matrix is positive semi-definite. Its eigenvalues λ(k)

are therefore non-negative and may be ordered in a non-increasing sequence with the first1

labelled λ(1) and the last λ(d). Thus, if it is unique, the first mode p(1) describes the direction

in the d-dimensional signal space in which the variance is the greatest. Similarly, if it is unique,

the second mode p(2) describes the direction in the subspace orthogonal to p(1) in which the

remaining variance is greatest – and so on. Jolliffe (chapter 1) describes this as the ‘standard

derivation’ of PCA and points out (chapter 2) that it “emphasizes that the PCs explain succinctly,

as much as possible” of the total variance, σ2
T . As Jolliffe also points out (chapter 2) a similar

statement can be made about the whole of the covariance matrix S.
1And if, as is usually the case, it is unique, the largest.
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To see this, recall from matrix algebra that if we construct the d × d matrix P whose

columns are the eigenvectors p(k) as in 3.2 and let Λ = diag{λ(1), · · ·λ(d)} be the diagonal

matrix whose elements are the eigenvalues λ(k) in the usual non-increasing order, then since P

is an orthogonal matrix, the covariance

S = PΛP T =
d∑

k=1

λ(k)p(k)pT (k). (3.18)

Equation 3.18 is known as the spectral decomposition of the covariance matrix.

Finally, we note there are a number of criteria that are optimised by PCA. Jolliffe (chapter

2) describes several such properties, both algebraic and geometric, and gives references to a

variety of other optimality properties, including of entropy and information measures.

3.1.4 Dimensionality reduction

The above 3.17 and 3.18 strongly motivate the application of PCA in dimensionality reduction

when a subset of the PCs, k = 1, · · · t (say) with (hopefully t << d) may be used to describe

most of the data variation encountered in a problem more succinctly and transparently (i.e.

intelligibly) than the original signal or data variables x. This immediately raises the question

of how to choose the number of modes t that will suffice. How rapidly the eigenvalues λ(k)

decrease as k increases and their magnitudes are obviously important considerations but, as we

shall see in section 3.2.4, are by no means the whole story.

We also note that the d-modes p(k), k = 1, · · · d span the space of the d-dimensional data

x. They form an orthonormal basis and any signal or datum x may be represented by the modes

as in 3.1 and 3.2 without error. If the number of modes is reduced this will no longer be the

case.

3.1.5 Calculating the modes and PCs

As Jolliffe notes, the advent of electronic computers and especially the availability of reliable

and efficient matrix eigensolvers (and related and other procedures – see later sections 3.2.2 and

3.1.6) made carrying out PCA practicable and the technique is now very widely used. In par-

ticular, since the mid-1990s when personal computers became sufficiently powerful routinely

to process images, it has been very frequently used in image processing and computer vision –

a trend accelerated by its early success in face recognition and by the flexible modelling tech-

niques developed from around that time by Cootes and Taylor at the University of Manchester.

The problem nowadays is not computational but obtaining an estimate of the correlation

matrix from which to calculate the PCs and coefficients by standard numerical matrix proce-

dures. In particular, the fact that S may be so easily estimated by a version of 3.8 for a finite
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sample dataset of, say, n observations, x(j), j = 1, · · ·n:

S = 〈[x(j)− 〈x〉j ][x(j)− 〈x〉j ]T 〉j (3.19)

where

〈x〉j =
1

n

n∑
j=1

x (3.20)

denotes a sample average, often obscures a few relevant points.

First, 3.19 is a maximum likelihood estimate of S (Jolliffe, section 3.7.1) and, though as

usual for an MLE asymptotically correct, is biased slightly too small by a factor n/(n − 1)

(Jolliffe, section 3.1) if, as assumed in 3.20, the mean 〈x〉 is not known a priori. This difference

is usually negligible, trivial and of little other than theoretical interest especially as we shall

often effectively work with an un-normalised version of S (Jolliffe section 3.1).

Second, it should be emphasized that the data set {x(j)} used to provide an estimate of the

covariance must properly be regarded as a training set. It must therefore be representative of

the population and free from contamination. It is important therefore to be aware of ‘structure’

or ‘pattern’ in the data (Jolliffe, section 3.8) and the data should be free of outliers which can

have a disproportionate effect on the PCs (cf. Jolliffe, section 10.4 where robust estimation

of principal components is discussed). The only safe way to ensure training data is free from

outliers is to have an expert select it manually. This can be an expensive and time consuming

process, especially in medical applications where experts’ time is a scarce resource. The provi-

sion of sufficient quantities of good-quality training data is thus often one of the most difficult

problems in such applications. As we have already noted in the opening chapters this is the case

in the development of computer vision systems for processing malaria thin-film slide images

and, as in Tek’s work [175], one often finds training data is provided by the computer vision

researchers themselves acting as a semi-expert. While likely to be okay for the identification of

RBCs, this is a more doubtful procedure when it is necessary to identify infected RBCs and es-

pecially if identification of the infecting species and stage of the parasite life-cycle is required.

Whether carried out by an expert or a computer vision researcher as semi-expert, it is important

to streamline the work as much as possible by provision of software and a suitable GUI so that

the manual role is mainly one of checking [175, 176, 110]. In favourable circumstances, the

provision of annotated training data might be ‘boot-strapped’ with the system development as

in the early work by the Manchester group in [31] for a PCB inspection application.

In general, as Golub and van Loan (1996, section 7.2, [67]) say, the eigenvalues of a real,

symmetric matrix (which is necessarily normal2) are not “extremely sensitive” to perturbations.
2A matrix M is normal if MMT −MTM = 0.
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However, this is not true of the eigenvectors (of a real, symmetric matrix or any other normal

matrix) belonging to an eigenvalue which is degenerate or to two or more eigenvalues which

are nearly degenerate. Fundamentally, this sensitivity arises because the eigenvectors belonging

to a degenerate eigenvalue are not uniquely defined, even up to the usual sign (or more gener-

ally phase) ambiguity, and form an orthonormal set that may be in any orientation within an

invariant subspace. For the large eigenvalues labelled in our convention by low values of k such

degeneracies or near degeneracies are unlikely unless, for example, the data is structured (e.g.

due to some underlying symmetry of the application). However, the situation is completely dif-

ferent for the eigensolutions labelled by high values of k when the eigenvalues are likely to be

small, similar to each other and close to or even zero3. The last may only happen when S is rank

deficient which usually occurs when insufficient training data is used in 3.19 with n < d. In

this case the eigenvectors p(k) belonging to λ(k) = 0 may be chosen at random in any manner

consistent with the orthonormality constraint.

In general therefore, we may expect eigenvectors p(k) labelled by high values of k to look

like random noise and to be sensitive to the selection of the data used in the training set and to

any perturbations that may inadvertently have crept into it. Both are good reasons for ignoring

such ‘high’ PCs and for using PCA for dimensionality reduction using only t < d modes and

for treating as noise the unexplained variation:

xun =
d∑

k=t+1

p(k)b(k, x). (3.21)

3.1.6 Probabilistic PCA and other models

If the noise is assumed to have an isotropic normal distribution with variance σ2 we arrive at the

probabilistic PCA (pPCA) model of Tipping and Bishop [180] in which equation 3.1 is replaced

by

x = 〈x〉+
t∑

k=1

p(k)b(k, x) + ε (3.22)

where

〈ε2〉 = σ2 =
1

d− t

d∑
k=t+1

λ(k) =
1

d− t

d∑
k=t+1

〈b(k, x)2〉. (3.23)

According to Tipping and Bishop equation 3.23 is, like all other quantities in the model, a

maximum likelihood estimate of the noise level σ2. In matrix-vector form equation 3.22 may

be written as:

x = 〈x〉+ Pb+ ε (3.24)

3All magnitude measures may, for example, be taken relative to tr(S) or some other matrix norm.



3.2. Flexible Patch Models in the malaria application 69

where P is the d × t rectangular matrix whose columns are formed from the first t modes

p(k), k = 1 · · · t and projects into the space of the explained variation. It is important to note

that this is essentially a best-fit model and that, because the noise is assumed to be isotropic, no

signal or datum x is now assumed to be represented exactly by the modes p(k), k = 1 · · · t even

in the space of the explained variation.

Roweis [152] introduced a slightly more general model in which the error covariance ma-

trix 〈εεT 〉 may be allowed to take any form. In both works Roweis and Tipping and Bishop

describe how an EM algorithm [42] may be used to fit these models to a dataset. Roweis em-

phasizes the computational advantages of using an EM algorithm of complexity O(dnt) when

the dimensionality d of the data or the number of training examples n is very high (and most es-

pecially when both are high, but see section 3.2.2). Jolliffe [92], section 3.9, gives other reasons

for the introduction of the probabilistic PCA model; in particular that a Bayesian treatment of

the model [180] may facilitate determination of the number of modes required, t (see also [11]

and [12] and that use of the EM algorithm allows extension to the imputation of missing data

values and to data drawn from mixtures of distributions).

Formally, the matrix-vector form of pPCA appears similar to factor analysis, though the

constraints or assumptions used to make factor analysis unique differ from those, (i) – (iii), that

we used in section 3.1. Joliffe (chapter 7) describes the differences and stresses (section 7.5)

that whilst PCA concentrates on explaining the diagonal elements of the covariance matrix S

(recall maximisation of the variances in section 3.1.3), factor analysis, unless specific factors

are introduced, concentrates on finding common factors relating two or more components of

the data variables x, i.e. on explaining the off-diagonal elements of S.

3.2 Flexible Patch Models in the malaria application

In a flexible patch model the image intensities or, more usually nowadays, colours x are rep-

resented pixel-by-pixel by an equation of the form 3.1 over a region of fixed size and shape.

A rectangular region of P × Q pixels is most often used in patch models, but in our malarial

application, a square region with P = Q = 81 can be used to enclose individual RBCs which

are usually approximately circular and do not vary much in size (figure 3.1). Use of a bounding

box rather than an inscribed grid as in Cootes’s illustration of the patch model for face recogni-

tion [29] means that in addition to pixels belonging to the RBC a fraction ∼ 20% of the pixels

in these square regions lie in the background which is usually blood plasma. The variation

of such pixels whether due, for example: to small variations in RBC size or deviation from a

circular shape, to RBCs touching each other or an artefact in the plasma, or to variation in the
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Figure 3.1: A blood smear image in which 81×81 pixel bounding boxes have been placed over

a number of RBCs.

appearance of the background plasma, will be included in the patch model.

This obvious weakness of the model in comparison for example to a flexible appearance

model is offset by its simplicity. In particular, no landmarks are required to define the boundary

of a RBC. Furthermore, our patch model was especially simple as we did not find it necessary

to place the bounding boxes with sub-pixel accuracy or to vary their size and thereby avoided

the need to interpolate intensities or colour attributes between pixel centres [29]. In addition,

for greatest simplicity, we concatenated the pixel RGB colour values directly into a vector x of

dimension d = 3PQ without making use of any linear (strictly, affine) colour transformation

or histogram equalisation procedure to allow for global variations due to microscope illumina-

tion or staining effects as discussed in section 1.3.3. Any such variations thus also became an

intrinsic part of our patch model.

3.2.1 Selection of a training set of healthy RBCs

A GUI was developed to facilitate selection of RBCs in an image, placing of bounding-boxes

over them, and extraction of the vector x of pixel values via a raster scan. Even with such a

tool, creation of a training set with over 3PQ = 19683 examples would have been tedious

and difficult. Fortunately, as is typically the case in image processing and computer vision

applications [20] the patch has many fewer degrees of freedom and a much smaller number of

training examples n may be used. Pixel values within the RBC (especially if it is healthy) are

highly correlated, as to a lesser extent are pixel values from the small parts of the patch outside
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Figure 3.2: A montage of the training set x(j) of 100 patches each containing a healthy RBC

and, on the right their mean 〈x〉j .

the cell especially if they are plasma background. A training set of 100 patches each containing

a healthy RBC was therefore constructed using the GUI (figure 3.2). It can be seen from their

different colours that the healthy RBC were selected from several of the images in our dataset.

3.2.2 Use of the SVD

In principle, the long vectors x(j) of dimension d = 3PQ could be used to construct a huge

3PQ×3PQ = 19683×19683 covariance matrix S as in 3.19 and its eigensolutions calculated.

However this is unnecessary. A covariance matrix S is a very special kind of real, symmetric

matrix and the eigensolutions required can, in such cases where d > n, be generated much

more efficiently. To see this, we first form a d×n data matrix X whose columns are comprised

of the deviations of each of the training samples x(j) from the mean:

xij = xi(j)− 〈xi〉j . (3.25)

The covariance matrix may thus be written from 3.19 and 3.20 as S = 1
nXX

T and equa-

tion 3.10 for the modes p(k) and eigenvalues λ(k) as:

Sp(k) =
1

n
XXT p(k) = λ(k)p(k). (3.26)

Pre-multiplication of 3.26 by XT yields

XTXXT p(k) = nλ(k)XT p(k). (3.27)

From this it can be seen that effectively we have only to solve an eigen-equation of much lower

dimensionality (n× n) defined by the number of training samples n:

XTXq(k) = nλ(k)q(k) (3.28)
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where we have introduced the vector:

q(k) ∝ XT p(k). (3.29)

Moreover, provided λ(k) 6= 0 the first n modes p(k) may in principle be obtained, up to

normalisation, from the q(k):

p(k) ∝ 1

nλ(k)
Xq(k) provided λ(k) 6= 0. (3.30)

The remaining d − n modes p(k) for k > n (and any that it may turn out for smaller k also

have zero eigenvalue) are degenerate with zero eigenvalue λ(k) = 0 and could be constructed

from the orthogonality requirement 3.5, but as discussed in section 3.1.5 these are uninteresting

as they represent noise.

Obviously, solving 3.28 requires much less computational effort (and storage) than solv-

ing 3.10 – even if in the latter case only n modes p(k) were calculated. However, there is a

simpler, yet more direct route; namely to recognize that 3.29 and 3.30 form a singular value

decomposition or SVD pair [67] which we write as:

XT p(k) =
√
nσ(k)q(k) (3.31)

Xq(k) =
√
nσ(k)p(k)

so that σ2(k) = λ(k) is the variance of the k′th mode as defined in 3.10 and 3.11. In matrix

form, the SVD is usually written as [67]:

XQ = PΣXTP = QΣT (3.32)

where P and Q are respectively d×d and n×n orthogonal matrices and, in our case following

3.31:

Σ = diag{σ(1), σ(2), · · ·σ(m)} (3.33)

with m = min{n, d}, and

σ(1) ≥ σ(2) ≥ · · ·σ(r) > σ(r + 1) = σ(r + 2) = · · ·σ(m) = 0 (3.34)

where r ≤ m is the rank of X . In our case with n < d, m = n. We shall often ignore the
√
n factors in equations 3.31 above which – as noted in section 3.1.5 – is equivalent to working

with an un-normalised version of S.

Finally, we note that in imaging applications such as ours when n < d equations 3.1 and

3.2 can no longer be exact unless the high modes p(k) with k > n are included. Since these

modes belonging to eigenvalues λ(k) = 0 represent noise this would seem to be a good reason

for preferring the probabilistic pPCA model mentioned in section 3.1.6.
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Figure 3.3: The variances (y-axis) obtained from the SVD of the un-normalised data matrix X

for the training set of 100 healthy RBC image patches shown in figure 3.2 as a function of the

mode number (x-axis).

3.2.3 Modes for representing healthy RBCs

Matlab was used to calculate modes p(k) by SVD of the d× n data matrix X constructed from

the n = 100 healthy RBCs selected as a training set as described in section 3.2.1. The standard

deviations λ(k) = σ(k)2 decrease rapidly as k increases as shown in figure 3.3 with a small

number of modes accounting for most of the total variation σ2
T = tr(S).

It is useful to display the modes p(k) as image patches

x(k) = 〈x〉+ α(k)p(k) (3.35)

with the pre-factor α(k) chosen so that the variation of each mode is visible. Figure 3.4 contains

a montage of the modes displayed in this manner. If desired, α(k) may be chosen proportional

to σ(k) to show the relative strengths of the modes.

It is immediately apparent from figure 3.4 that image patches corresponding to modes

with low values of k are highly structured especially around the almost circular cell boundaries

and show distinctive colouration. In modes with higher values of k the boundary variation
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Figure 3.4: The modes p(k) displayed as image patches x(k) as described in the text. First

column, top to bottom: p(1) · · · p(10); second column: p(11) · · · p(20); etc. to p(100).
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Figure 3.5: Selected modes p(k) for k = 1, 2, 4, 8, 16, 32, 64, 80, 96 displayed (top-left to

bottom-right) as image patches x(k) as described in the text and the caption to figure 3.4 with

alongside each histograms of the elements of the mode pi(k) (upper) and of the pixel values

xi(k) (lower).

becomes increasingly distorted and noisy, until eventually at high k the whole mode becomes

quite noise-like in appearance. This is reinforced by histograms of the elements pi(k) and of

the pixel values xi(k) shown alongside selected modes in figure 3.5. For the first few modes

the histograms are structured (and in particular all the pi(k) for the lowest mode k = 1 have

the same sign), but they rapidly (e.g. for k ≥ 10) become symmetrical and to look like zero-

mean Gaussian distributions. It is notable that the histograms begin to look Gaussian for much

smaller values of k than the patches themselves look like noise. This seems to be due to the

structure of the cell boundary though there is also other structure, for example in the centre of a

cell, in some modes.
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3.2.4 Choosing the number of useful modes t

In image processing and computer vision it has become customary following Cootes and Taylor

[32] to use t modes which explain a fraction f of the total variance, i.e. such that:

t∑
k=1

σ(k)2 ≥ f σ2
T >

t−1∑
k=1

σ(k)2 (3.36)

with f chosen as appropriate for the application, but often in the range 0.7− 0.95. Choosing a

value f dependent on the application may be regarded either as an advantage or as a disadvan-

tage but it is clear that once a value for f has been chosen the procedure is straightforward to

apply. It is undoubtedly a convenient ‘rule of thumb’ but opting immediately to use it ignores

that fact that a whole chapter of Jolliffe’s book (chapter 6) is devoted to this question and that

much work has been done by statistical researchers to try to provide an answer. Those interested

are referred to Jolliffe’s chapter for details but brief consideration of several of the approaches

described is worthwhile.

The underlying aim in choosing t is to use only modes that describe interesting, significant

variations in the data and to ignore modes which describe uninteresting variations such as noise

or artefacts peculiar to the particular training sample used. This is consistent with the remarks

made in previous sections about the modes with high k. However in a pattern recognition

application choosing t is less straightforward than it might otherwise seem. Discriminating

characteristics may be quite subtle and easily lost if too many of the high modes with k > t are

rejected.

In chapter 6 of [92] Jolliffe presents several ‘rules of thumb’, describes attempts to develop

statistical tests that may be used to calculate t, and discusses briefly partial correlation, ‘boot-

strap’ and cross-validation methods. Many of the statistical methods are criticised as based on

over-simplistic (often Gaussian) assumptions, for often being more appropriate to factor anal-

ysis than PCA, and for being unreliable in that they can fail in certain circumstances (i.e. may

lead to the rejection of significant, important modes) and frequently produce estimates of t

which are unrealistically large or unrealistically small. Bootstrap and cross-validation methods

tend to be based on low-rank approximations to the data matrix X or to the covariance matrix

S (recall the spectral decomposition of equation 3.18). With the possible exception of some

jackknife methods, these are too complicated and computationally intensive to be useful, as

well as still being potentially unreliable and in some cases more applicable to factor analysis

than PCA. In practical applications it seems we are left with the ‘rules’ of thumb.

The first rule is to choose the number of modes t that explain a fraction f of the total variance

as in 3.36 above. If an independent estimate of the noise level σ2 is available, this could be
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improved by adopting the probabilistic, pPCA, point of view and choosing t such that the aver-

age of the unexplained variation over the rejected modes with k = t + 1, · · ·n when n ≤ d is

consistent with the expected noise level of a patch , σ2
P , i.e. such that:

n∑
k=t+1

σ(k)2 ≤ (n− t)σ2
p <

n∑
k=t

σ(k)2. (3.37)

In imaging applications, it would be ideal to estimate the noise level of a patch σ2
P from

images taken at different times but otherwise of exactly the same scene. Unfortunately such

images are rarely available, even in applications where successive images in a video sequence

may be taken, so other estimates have to be used as a fallback. For example, in the malaria

application one could try to estimate σ2
P from the background, plasma region but even if done

manually this is not ideal as the background itself must be modelled satisfactorily and imaging

noise may have multiplicative characteristics rather than being purely additive.

The second rule discussed by Jolliffe focuses on the magnitudes of the variances of the PCs,

i.e. on the magnitudes of the eigenvalues λ(k) = σ(k)2. A simple approach following Kaiser’s

rule for PCA of correlation matrices would be to choose the cut-off λc for the PCs to be retained

according to the average of the eigenvalues, λ̄. For a full rank covariance matrix S this average

would be:

λ̄ =
1

d

d∑
k=1

λ(k) =
1

d
tr(S) (3.38)

but if S is rank-deficient with rank r < d (and, in particular in image processing and computer

vision when rank r ≤ n << d) it could be argued that it would be preferable to take:

λ̄ =
1

r

r∑
k=1

λ(k) =
1

r

r∑
k=1

σ2(k) =
1

r
tr(S). (3.39)

Jolliffe [92] and [91] suggests that a lower cut-off at λc = 0.7λ̄ may be more appropriate

in order to avoid 3.38 or 3.39 selecting too few PCs which, given the rapid decrease of the λ(k)

with k shown in figure 3.3, seems likely in our application.

Finally, we note that Jolliffe mentions the “broken-stick” model in which the arbitrary

cut-off λc = 0.7λ̄ above is replaced by (for a full rank matrix S):

λc =
λ̄

d

d∑
k=t

1

k
(3.40)

with λ̄ as in 3.38. It represents a kind of ‘parallel analysis’ (see below) in which the λ(k) are

being compared with the expected magnitude of the t th largest segment obtained were tr(S)

broken at random into d segments. If S is of rank r < d it would seem reasonable to replace d

by r in equation 3.40 and to use equation 3.39 instead of equation 3.38.
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The third rule is concerned with the rate of decrease of the λ(k) as k increases and requires

judgement of when λ(k) − λ(k + 1) stops being large. This depends on both the relative

magnitudes of λ(k) − λ(k + 1) and its predecessor λ(k − 1) − λ(k) and on their absolute

values. It is obviously motivated by the fact that as we have seen the λ(k) are expected to

become almost constant at high k if they represent noise, but this doesn’t specify how to decide

when λ(k) − λ(k + 1) is not large. Regarding a plot of λ(k) against k as a ‘scree-graph’ and

looking for the ‘knee’ on the curve where it stops being steep can be highly subjective, although

for graphs like that shown in figure 3.3 it is possible that most researchers might choose a similar

cut-off t.

One way of making this less subjective and even of potentially automating it, is to look for

the point on the curve where its slope is equal to the slope of the chord (λ(1)−λ(r))/(r−1) or,

more simply and more conservatively since more modes would be retained, to λ(1)/d. Should

these yield values of t explaining similar fractions of the total variance one might be confident

that a reasonable cut-off had been specified. If there are several points where the slope is equal

to the chord a conservative choice to take the largest resulting t can be made. Another way

would be to carry out a ‘parallel analysis’ of the eigenvalues of a (suitably defined) random

matrix and to compare the two.

Other methods described by Jolliffe include testing the hypothesis that successive eigenval-

ues are equal commencing with the last two that are non-zero (Bartlett’s test) or its reverse

commencing with the two largest eigenvalues (Jackson’s test), cross validation (and bootstrap)

methods, and a partial correlation test. Cross-validation, bootstrap and jackknife approaches

are essentially looking at how well the retained modes can approximate data that was not in the

training set. This is a reasonable criterion, but unfortunately the goodness of fit has itself to be

specified and we are returned to the kind of issues that confronted the first rule and, except for

some jackknife methods (see Jolliffe [92], section 6.1.5), are confronted with vastly more com-

putational work. Similarly, the level of significance has to be specified in methods that utilise

hypothesis testing. The only other method Jolliffe discusses (section 6.1.6) which avoids this

kind of difficulty is Velicer’s partial correlation criterion in which one looks for a minimum of

the average V of a particular squared partial correlation measure.

Unfortunately, Jolliffe describes Velicer’s method as most suited to factor analysis of cor-

relation matrices rather than to PCA. It would seem therefore that only the first three rules

described above are worthy of much consideration, with the first having the obvious merit of

being the simplest. It is also the most widely used in computer vision and image processing

applications and, though it would seem interesting to explore the other two, is the only rule
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used in this work.

3.3 Active patch model or APM

In this section we review how the PCA flexible patch model (FPM) may be used as an active

patch model (APM for short) in our malaria application. Cootes covers similar ground in his

presentation [29] though we do not need to utilise all the steps Cootes describes, in particular

since we have made no attempt to align the training data in colour space nor to align RBCs

spatially to sub-pixel accuracy. The procedure is based on the same principles used in many

of the Cootes and Taylor flexible models and their corresponding ‘active’ models, from the

original FSM and ASM for shape, the FTM and ATM for texture (usually used within a mean

shape), to the FAM and AAM for appearance [32].

In essence, in the active modus operandi the model is used to find an instance or instances

of the object of interest in an image. This is of course most useful when the images are of

previously ‘unseen’ objects and ‘hits’ representing possible instances of the object of interest

declared where the fit to the underlying image patch is good even though, as noted in section

2.6, this is not a statistically correct approach [172].

3.3.1 Fitting the APM to image data

In this section we explore how well the model, constructed from the most significant modes as

discussed above, fits or describes image data. In principle the patch model should be scanned

across an entire image and the goodness of fit recorded for each position of the centre (say) of

the patch. However, as described by Buxton and Zografos [22] this would result in a very large,

complicated error surface so, in order to focus in detail on what happens, the centre of the APM

was scanned over a 31× 31 pixel square resulting in a search window 111× 111 pixels centred

on a RBC or some other selected part of an image. The sum of squared error of fit of the APM

to the image data within this window was calculated according to:

ε2PCA = [x− 〈x〉 −
t∑

k=1

p(k)b(k, x)]2 = (x− 〈x〉)2 −
t∑

k=1

b(k, x)2 (3.41)

and displayed as a surface over the 31×31 pixel search square using Matlab (figure 3.6). In 3.41

we note that x, 〈x〉 and the modes p(k) are long vectors of dimension d. The scalar products

thus automatically imply a sum over all pixels in the patch and over the colour channels. The

mean 〈x〉 is estimated as in 3.20.

A RBC used in training was chosen so that there were no others or artefacts nearby in the

image. The squared error (SE) surface shown in figure 3.6 thus has the expected bowl-shape

with a minimum at the centre of the search square when the model template lies precisely over
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the cell in the image. However, this minimum is rather broad so setting a threshold on the error

would lead to many ‘hits’ for the possible location of the cell as shown in figure 3.6 (d). The cell

selected and the model fit to it at the correct location is shown in figure 3.7 (a). Two other RBCs

not used in training were similarly chosen, one from an image that contained other cells which

were used in constructing the training set and one from an image not used at all in training. The

error surfaces for these cells are shown in figure 3.6 (b) and (c) with the corresponding cells

and the model fits to them in figure 3.7 (b) and (c). These images and the quantitative results in

figure 3.6 illustrate that the model fits the training data and other healthy RBCs with little error.

In particular, the results in (b) and (c) in figures 3.6 and 3.7 are similar to those obtained with

an isolated cell used in training (see (a) in the figures) though the SE is roughly twice as large

for an isolated cell in an image that was not used for training (figure 3.6 (c)).

The results in figure 3.6(d) indicate that non-maximal suppression would be needed to

locate the cell to pixel accuracy whilst interpolation could be used to obtain the location to sub-

pixel accuracy. However, before an APM could be used in this way to detect and locate healthy

RBCs in an image, we need to know how it performs when located over other regions of an

image, in particular the background. Figure 3.8 (a) and (b) show respectively the error surfaces

as the APM is scanned over windows placed in background (plasma) regions of an image used

in training and one not used in training whilst (c) shows the error surface when the model was

scanned over a window centred on a part of a cell.

The results are qualitatively different. None of the error surfaces in figure 3.8 have well-

defined, bowl-shaped minima like those in figure 3.6. For the background regions they are also

quantitatively different with a range of errors from ∼ 80 − 85 for the background region from

a training image and ∼ 130− 135, for a background region from an image not used in training.

It was because of the former that the threshold in figure 3.6 (d) was chosen as ∼ 80 but it is

apparent that this threshold is below the minimum in figure 3.6 (c) obtained for the best fit of

the APM to a healthy RBC in an image that was not used in construction of the training set. The

APM used in this manner would thus not be able reliably to detect RBCs and would generate

many false negatives (i.e. many cells would be missed). Raising the threshold to reduce the

false negative rate would generate many false positives.

It is an open question whether introducing a colour alignment step in the model building

and in application of the active model would improve matters. Aspects of the colouration of

each image would then become extrinsic to the flexible model and fitting the active model would

have additional degrees of freedom. The flexible model itself would thus become more specific

– making it more likely that a suitably discriminating threshold might be found – but the
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(a) (b)

(c) (d)

Figure 3.6: (a) The SE surface obtained when the FPM is scanned as a flexible template or APM

across a window centred on a RBC selected for training; (b) the surface obtained when the APM

was scanned across an isolated cell in an image used in training but where the cell itself was

not selected as a member of the training set; and (c) the surface obtained when the APM was

scanned across an isolated cell from an image not used in training. (d), the same error surface

as in (a) showing the many ‘hits’ for the possible location of the cell resulting when a threshold

∼ 80 is chosen.

(a) (b) (c)

Figure 3.7: (a): Left: the cell from the training set used to construct the error surface shown

in figure 3.6(a) and, right, the model fit to it. (b): As in (a) but with a cell not selected in the

training (left) and the model fit to it (right) corresponding to figure 3.6(b). (c): Similarly for the

cell used in figure 3.6(c) and the model fit to it. Note the lighter background.
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(a)

(b)

(c)

Figure 3.8: The SE surfaces obtained when the APM is scanned across a window centred on:

(a) a background region of an image used in training; (b) on a background region of an image

not used in training, and (c) on a region containing a part of a cell from an image not used in

training.
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(a) (b) (c)

Figure 3.9: (a): Left: A background, plasma region taken from an image used in training used

to construct the error surface shown in figure 3.8(a) and, right, the model fit to it when the patch

was accurately located over this region. (b): As in (a) but from an image not used in training

corresponding to the error surface in 3.8(b). (c): Similarly for a region that contained part of a

cell from an image not used in training corresponding to the error surface in 3.8(c).

danger of over-fitting the model and extrinsic parameters in the active modus operandi would

be increased which might reduce the discriminating power and increase the false positive rate.

It can be seen from figure 3.9 that the active model ‘hallucinates’ the appearance of a RBC when

there is really no cell present in the input region. This may be expected to happen whenever the

mean colour levels within a patch x̄ are different from the average colour over the patch of the

model mean ¯〈x〉 because, as noted in section 3.2.3, all components of the first mode p(1) are of

the same sign and thus

b(1, x) = p(1)T (x− 〈x〉) (3.42)

will be non-zero. It can be seen from figure 3.10 that extending the FPM to include a locally

adaptive additive colour bias with the principal components given by:

b(k, x) = p(k)T [x− 〈x〉 − (x̄− ¯〈x〉)] (3.43)

may slightly reduce the tendency of the active model to ‘hallucinate’ RBCs in a background

region but does not eliminate the effect entirely. In the above x̄ denotes the colour averaged

over the patch and ¯〈x〉 denotes it averaged also over the training set.

The ‘bottom-line’ is that the active model is adaptive and may be expected to share the

tendency of such models to adapt and fit well to background regions of an image as noted by

Buxton and Zografos [22]. In fact, according to Buxton and Zografos an adaptive template

model will only grossly fail to fit well to an image patch if the patch contains some features

not corresponding to the object of interest. They point out this is most likely when the patch in

the input image includes part of an object of interest and parts of other things, background or

other objects, and will generate a ‘rim’ in the error surface where the model fits poorly around

the correct location of an object. This effect is consistent with the results above. The largest

errors in the background regions (∼ 85 or ∼ 135 depending on whether they are from images



3.3. Active patch model or APM 84

(a) (b)

Figure 3.10: (a): The model fit to the plasma region shown in figure 3.9(a) when a locally

adaptive additive colour bias was included. (b): As in (a) but with the background plasma

region from figure 3.9(b). It can be seen that the colours are slightly different in the two cases.

used in training or not) are much smaller than the largest errors (∼ 400 − 450 and ∼ 700

respectively) in figure 3.6 (a)– (c) whereas these latter errors are comparable to those in figure

3.8(c). This is borne out by the error surfaces obtained when the APM is scanned over larger

regions surrounding healthy RBCs as shown in figure 3.11.

3.3.2 The likelihood of an APM

Principal component analysis – in particular as it has been introduced and utilised in this thesis

– need make no assumptions about the statistical properties of the data or of the modes p(k) or,

apart from the requirement that they are uncorrelated, of the PCs b(k). We may thus introduce

whatever statistical assumptions are appropriate (or are convenient simplifications or idealisa-

tions). One of the most widely used is that the significant PCs used in the model with 1 ≤ k ≤ t

are normally distributed according to:

p(b) =
t∏

k=1

1√
2πσ(k)2

e
− b(k)2

2σ(k)2 (3.44)

where b represents these PCs as a t component vector. As usual the variances are given by

the eigenvalues of the covariance matrix S calculated in training (recall equations 3.9 – 3.11).

We note that for use in 3.44 the eigensolutions must be calculated from a properly normalised

covariance matrix or its equivalent. Since the PCs are given by 3.10, 3.44 amounts to assuming

that the modelled parts of the data x are normally distributed but, of course unlike the PCs,

correlated. We also note that 3.44 says nothing about the distribution of the high PCs with

k > t not retained in the model. Thanks to the fact that each PC may, according to 3.12, be

computed independently of all other PCs we are free to assume that outside the model subspace

they are, for example, normally distributed as noise4.
4In image processing and computer vision where the number of training examples is usually considerably less
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Figure 3.11: The SE surface over a larger search region around a healthy RBC. A nearby RBC

causes the second dip on the right of the surface and the col between it and the imit on the left.
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Figure 3.12: From top left to bottom right: histograms of selected PCs, b(k, x) for k =

1, 2, 4, 8, 16, 32, 64, 80, 96 computed according to equation 3.12 for 100 images x from the

training set. Also shown is a fit of a normal distribution to each of the histograms.

The results in figure 3.12 illustrate that, apart from the first few modes with low k, the

assumption that the PCs of our FPM are multivariate normal seems to be quite good. Although

the distributions are sometimes rather asymmetric, the average of each is, as required by 3.12

always zero.

In addition, we show in figure 3.13 scatter-plots of pairs of PCs calculated for the cell

patches used in training which show that the components, both at low k and high k seem to

be independent – as required by the multi-normal distribution 3.44 in addition to their being

uncorrelated which is guaranteed by the PCA process.

When fitting an APM to data it is important not only that the fit is good with a small error,

but also that the model thereby inferred is not one that, according (say) to 3.44 would be very

unlikely. In terms of the data variables x an unlikely model is one that, within the t-dimensional

than d it may not be assumed that all the PCs are normally distributed according to a version of 3.44 in which t is

replaced by d.
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(a) (b)

Figure 3.13: Scatter-plots of pairs of PCs calculated for the set of cell image patches used in

training for: (a) two low values of k, b(1) and b(2); and (b) for two high values of k, b(50) and

b(90).

model subspace, isn’t like the examples selected for training. 3.44 thus reflects the model

specificity which may be tested by generating samples from the distribution and calculating a

measure of their distance from the training examples5.

The values generated by a normal distribution – especially if it is not low-dimensional –

are often very small so it is convenient to consider the negative of the model log-likelihood:

Lm =
t∑

k=1

{
b(k)2

2σ(k)2
+

1

2
log(2πσ(k)2)

}
. (3.45)

The last term does not depend on the data x to which an APM is being fitted so for the purpose

of assessing the likelihood of the model inferred from the data we may use a weighted sum of

squares of the PCs:

L(b) =
t∑

k=1

b(k)2

2σ(k)2
. (3.46)

Since the variances σ(k)2 = λ(k) decrease rapidly as k increases it is apparent that a fitted

model will be unlikely unless the PCs for moderately high k (but of course not greater than t) are

correspondingly small. It is plausible therefore to set a threshold on L(b) to reject models that

would be unlikely and in particular when the model, like our FPM, can be adaptive to help reject

spurious fits to bland data in the background of an image. Since only log-likelihoods relative

to the threshold are required for this purpose, we note that variances calculated from training

data matrices that have not been normalised may be used (recall section 3.2.2). Examples of

5Such a procedure is recommended by Cootes and Taylor who calculate a distance from the sample to the nearest

example in the training set.
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such likelihood surfaces are shown in figure 3.14. In the figure (a), (b) and (c) correspond to the

SE surfaces shown in figure 3.6 whilst (d) shows a generous threshold on the likelihoods that

is well above their minimum values of ∼ 7 near to the correct cell locations. Further examples

for other image regions in the plasma background and containing part of a RBC are shown in

figure 3.15. These correspond to the SE surfaces in figure 3.8. It can be seen that the threshold

of ∼ 42 illustrated in figure 3.14(d) would reject each of these model fits as unlikely.

3.3.3 MAP estimates

In a Bayesian framework 3.44 represents the prior probability of a patch model characterised

by the PCs b(k), k = 1 · · · t. In such a framework a model should be sought which best explains

the fit to a datum x a posteriori by:

max
b
{p(b|x)} . (3.47)

Since

p(b|x)p(x) = p(x|b)p(b) (3.48)

and the distribution of the data p(x) is independent of the model, 3.47 is equivalent to:

max
b
{p(x|b)p(b)} . (3.49)

p(x|b) is just the probability of observing the noise εPCA defined by 3.41 which may be

modelled as normal:

p(x|b) = p(εPCA) =
1

(2πσ2)
(d−t)

2

e
−ε2PCA

2σ2 . (3.50)

In 3.50 we have been careful to remember that, in PCA with the PCs determined by 3.12,

the model always fits a datum perfectly in the model subspace and that εPCA lies entirely in the

remaining d− t dimensions.

The negative log-likelihood corresponding to p(x|b)p(b) in 3.49 is thus:

L =
ε2PCA
2σ2

+
(d− t)

2
log(2πσ2) +

t∑
k=1

{
b(k)2

2σ(k)2
+

1

2
log(2πσ(k)2)

}
. (3.51)

According to 3.51 the maximum likelihood estimate for the noise level is:

σ2 =
1

d− t
〈ε2PCA〉j . (3.52)

This is similar to the maximum likelihood estimate of the noise level that should be made in

a probabilistic principal component analysis, pPCA (recall equation 3.23), but is not consistent

when the rank r of the covariance matrix S used in training is less than d. In particular if
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(a) (b)

(c) (d)

Figure 3.14: The likelihood surfaces L(b) obtained when the FPM is scanned as a flexible

template or APM across a window centred on a RBC as described in figure 3.6. (a) for a RBC

selected for training; (b) the surface obtained when the APM was scanned across an isolated

cell in an image used in training but where the cell itself was not selected as a member of

the training set; and (c) the surface obtained when the APM was scanned across an isolated

cell from an image not used in training. (d), the same error surface as in (a) showing that the

likelihood at the correct cell location is well below a threshold of ∼ 42 – as they are also in (b)

and (c).
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(a)

(b)

(c)

Figure 3.15: The likelihood surfaces obtained when the APM is scanned across a window cen-

tred on other image regions as in figure 3.8. Centred: (a) on a background region of an image

used in training; (b) on a background region of an image not used in training, and (c) on a region

containing a part of a cell from an image not used in training.
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r = n < d as is usually the case in image processing and computer vision, we would set the

noise level:

σ2 =
1

n− t
〈ε2PCA〉j =

1

n− t
σ2
U (3.53)

where σ2
U is the unexplained variation. Once the noise level σ2 has been determined either from

training as above or from alternative experimental observations, a MAP estimate of the extent

to which an APM explains a datum x may be characterised by the negative log-likelihood (cf.

3.46):

L(x|b) =
ε2PCA
2σ2

+

t∑
k=1

b(k)2

2σ(k)2
. (3.54)

In a Bayesian framework, a threshold can then be set on L(x|b) in order to select data x

which may be explained with confidence by the FPM. There is only a single decision parameter

in this approach so it is important that the noise level σ2 is set correctly so as to weight the

fitting error and model likelihoods appropriately. If the noise level is not known, we could

regard it as a second decision parameter and thereby effectively recover the freedom to set

thresholds independently on the fitting error εPCA2 and on the model likelihood L(b) given in

3.46. Using σ2 in this manner however is clumsy and invites misinterpretation since the noise

level is a parameter that should properly be set by a maximum likelihood estimate or some other

expectation estimate.

3.4 Conclusions

Exploring the application of the flexible modelling approach developed by Cootes and Taylor

by using the simplest patch model as an FPM and APM has been instructive and has revealed

some details about the approach that are often ignored or underplayed, in particular:

(i) The extent to which the PCA approach does not (and sometimes does) depend on specific

assumptions about the manner in which the data and other quantities such as the modes

and PCs are statistically distributed.

(ii) The importance of using training data that is representative and uncontaminated by out-

liers.

(iii) How there are several ways in which the number t of significant modes retained in the

model may be chosen. In general, we saw that it is difficult in principle to recommend

one way in preference to the others, except possibly on the grounds of simplicity, whilst

in practice it might best if two or more were to lead to similar choices for t.
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(iv) There are consistency problems when the covariance matrix S used in training is not of

full rank. This is often the case in image processing and computer vision applications

when it is possible (and often necessary) to use a training set containing many fewer

examples n than the dimensionality d of the data so that the rank r of S, r = n < d. In

particular, these problems make it difficult consistently to estimate the noise level from

the unexplained variance σ2
U . These problems might be resolved by using probabilistic

principle component analysis as described by Tipping and Bishop [180] but at the cost of

losing the simple projection formula 3.12 for the PCs, b(k).

(v) That flexible models are adaptive and thus when used in the active manner as a flexible

template seems to be subject to the difficulties noted by Buxton and Zografos [22] and

may ‘hallucinate’ the presence of objects of interest in background regions of an image.

It is therefore particularly important when utilising such models to ensure that the ac-

tive model inferred from data is reasonable, as for example, characterised by a model

likelihood measure.

(vi) The importance of including an alignment step to allow for extrinsic variations that should

not be incorporated in the model. In model building this leads to the need for inclusion of

a Procrustes alignment procedure [32, 69]. This improves model specificity by reducing

its variance. However, fitting an active model then becomes more complicated, in general

requiring a non-linear optimisation, and with greater danger of over-fitting.

It is clear from the exploration that the simple flexible patch model is not adequate for the

malaria application. In particular:

(i) Procrustes colour alignment should be included in order to allow for extrinsic variations

in the colouration of the microscope slide images, both from image to image and, as noted

in chapter 2, sections 2.2.1 and 2.6.1 and by Tek [175], within each image.

(ii) The fact that there are often parts of other RBCs in the corners of the square patches

covered by the patch in the APM does not seem per se to be disastrous. The results

in 3.1.5 indicate that the APM works fairly well even though in constructing the FPM

patches were specifically chosen for training that did not include such effects.

(iii) However, the presence of nearby cells seems to be the major reason why RBCs are often

misshapen and, with the FPM constructed from a training set containing mostly well-

shaped (i.e. circular) cells, the APM often failed to fit well to misshapen RBCs. It is
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possible that better results may have been obtained if misshapen RBCs (with the almost

inevitable presence of parts of nearby cells in the corners of the patches) had been in-

cluded in the training set.

(iv) In light of (ii) and (iii) above, it would seem inappropriate to use a flexible appearance

model (FAM) and active appearance model (AAM) in the malaria application. The vari-

ation in RBC shape that we have seen and the work of Liu and Sclaroff reviewed in the

previous chapter, section 2.6, though in a different application of microscope slide blood

smear images, supports this conclusion. Though selection of RBCs and delineation of

cell boundaries are not tasks requiring medical expertise, construction of a training set

would then be very time consuming. Apart from a very few, insignificant preliminary

experiments we were therefore unable to pursue such an approach.

(v) It seems from the results of the above exploration that our very simple flexible patch mod-

elling based only on including healthy RBCs in the training set could be used to detect

and locate both healthy and infected cells – at least unless the infection is large and fills a

significant fraction of the cell as it can do in the later stages of the life cycle just before the

cell is disrupted. In principle it would seem better to build separate models of healthy and

infected cells but this would raise several problems, including: (a) the number of infected

cells is much smaller than the number of healthy cells, so constructing a training set is

more difficult; (b) at least three (or if artefacts were included four) way classification de-

cisions would then in principle be required; (c) infections are very variable in shape and

extent, especially at different stages of their life cycle; (d) identification of infected cells

(and in particular the stage of their life-cycle) can be quite difficult and often requires

medical expertise for a tedious and time-consuming task.

Whilst it would seem that many of both sets of issues above could be addressed by us-

ing more sophisticated flexible models, and even if necessary by going beyond PCA by using

probabilistic (pPCA) and/or kernel approaches or mixture pPCA [179] three fundamental dif-

ficulties would remain. First the large amounts of time required to select suitable training data

especially if expert medical knowledge is required. Second, infections vary greatly in appear-

ance and may occur anywhere within a cell – both of which seriously complicate building a

flexible model and utilising it as an active model. Third, as noted in the review chapter in the

context of the possible use of Markov random field models for segmentation (section 2.2.2),

using more complicated models may lead to increased systematic errors.
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The ideal situation would thus seem to be to employ an unsupervised approach that relies

only on very general, simple modelling. It is to such an approach that we turn in the following

chapters.



Chapter 4

Discrimination – An Unsupervised Approach

We saw in the previous chapter that a model-based approach was unable to lead to a satisfactory

system for the segmentation of RBCs and parasite infections. Although the patch-based flexible

modelling system investigated in detail is the most simplistic of the family of flexible models,

we nevertheless concluded that more sophisticated modelling approaches were also unlikely

to be successful. Furthermore such models require training data that is tedious (and generally

more onerous the more complicated the model) and difficult to obtain especially in a medical

research application where experts’ time is often a scarce resource – and different experts may

not always agree (but see [193]). In the review of chapter 2, section 2.4.3, we were critical of

the use of complicated models and also of the chaining of several image-processing operations

as exemplified by the work of the Westminster group as such approaches are likely to be sen-

sitive to the careful tuning of parameters (in particular thresholds) and to require back-tracking

operations in an attempt to correct errors inevitably incurred in previous steps. As noted at the

end of the previous chapter it would appear therefore that an approach is required that relies on

a simple underlying model, utilises a small number of image processing steps and, moreover,

does not require extensive training or the tuning of many image-processing parameters.

4.1 Unsupervised discrimination

As noted in chapter 2, section 2.5.1, if we ignore so-called mixed pixels and the boundary

membranes of RBCs the fundamental task is to determine whether the pixels of a microscope

slide image originate from the plasma background (including white blood cells and possible

artefacts), the body of a RBC, or from a malarial parasite. This is a discrimination task. It

is unsupervised if pixel labels are assigned according to a criterion or criteria that reflect the

underlying characteristics of the problem which can be formulated and evaluated without ref-

erence to any training data that has already been labelled. There is thus no machine learning of

appropriate values of thresholds or other parameters. It is also usually the case that, with the



4.1. Unsupervised discrimination 96

notable and frequent exception of the number of categories or classes, C, there are few, if any,

other parameters to be set manually by the user.

In image processing, an unsupervised approach often amounts to the choice of a predicate

according to which discrimination is to be carried out and is most common in the clustering

of pixels in a colour space. Often unsupervised algorithms are based on statistical criteria

which may be parametric, as in the application of Gaussian mixture models in colour image

segmentation in which case they lead both to a set of parameter estimates and a pixel labelling

or segmentation, or non-parametric when a statistical criterion may be used that reflects overall

properties of the pixel data. Amongst the latter is the classical Fisher discriminant according

to which one seeks a labelling or classification of image pixels that maximises the ratio of a

between-class variance to a within-class variance [45, 46].

4.1.1 Fisher’s Discriminant and Otsu’s algorithm

When applied to a one-dimensional feature space, such as pixel intensity, use of Fisher’s dis-

criminant leads to the Otsu algorithm whose implementation seems rather better known [89]

than its origin [131]. We therefore briefly review this as outlined in [23] with some extra details

and explanations.

Suppose we have a one-dimensional feature space, such as the intensity of the pixels in

an image or the signal in a particular channel of a colour image, denoted for convenience by x.

Suppose further that we wish to classify the pixels as belonging to foreground or background

(say), which might be the red-blood cells and plasma respectively in the analysis of thin-film

slides. According to Fisher, we should then seek to maximise the ratio of the between-class

variance σ2
B to the within-class variance σ2

W by choosing a threshold, T , i.e.

max
T

{
σ2
B

σ2
W

}
. (4.1)

Since, as we shall shortly see,

σ2
T = σ2

B + σ2
W , (4.2)

and σ2
T , the total variance, is constant for a given data sample x(i), i = 1 · · ·n or distribution

p(x):

σ2
T =

1

n

n∑
i=1

(x(i)− µ)2 =

∫
dxp(x)(x− µ)2 (4.3)

with mean µ, equation 4.1 is equivalent to:

max
T

{
σ2
B

σ2
T

}
⇔ max

T

{
σ2
B

}
. (4.4)
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Figure 4.1: Sketch of a multi-modal histogram comprised of data from a mixture of two classes

which are to be discriminated by means of a threshold T .

In practice the distribution p(x) is unknown so we estimate it from the histogram h(x) by

assuming for n samples that

p(x) =
1

n
h(x). (4.5)

Since, after thresholding, values of x above or below T will be assigned to the foreground

or background classes respectively (or vice-versa) as shown in figure 4.1, it is useful to introduce

the indicator density,

z(x|J) = p(x) for TJ−1 ≤ x ≤ TJ (4.6)

where J = 1, 2 stands for the two classes. T1 is the threshold T , and T0 and T2 are the upper

and lower limits of the values of the feature variable, x, often 0 and 255 in image processing

applications. Note that we refer to z(x|J) as an indicator density since, after thresholding,

values of x in the foreground and background are distinct, whereas the conditional densities

of the foreground and background, p(x|foreground) and p(x|background) say, may allow

foreground and background values of x to overlap. Such overlap would be allowed in a mixture

model in which we would set

p(x) =
∑
J

p(x|J)P (J) (4.7)

with class conditional densities p(x|J) and mixing probabilities P (J). With a thresholding

procedure such overlap is not allowed and is, of course, a source of classification errors.

It is useful to introduce an indicator variable Z(J) for each class produced by the thresh-

olding, defined as

Z(J) =

∫
dxz(x|J). (4.8)
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z(x|J)/Z(J) then behaves as a class-conditioned probability density with:∑
J

Z(J) = 1 (4.9)

which is consistent with 4.6 and 4.8. The means of the data distributed above and below thresh-

old may then, for example, be represented as

µ(J) =
1

Z(J)

∫
dxz(x|J)x (4.10)

and we may write the between-class variance as:

σ2
B =

∑
J

Z(J)(µ(J)− µ)2 (4.11)

which is equivalent in the two-class case to the possibly more familiar:

σ2
B = Z(1)Z(2)(µ(1)− µ(2))2. (4.12)

The variance of class J conditioned on the thresholding, σ(J)2 is

σ(J)2 =
1

Z(J)

∫
dxz(x|J)(x− µ(J))2, (4.13)

and thus,

σ2
W =

∑
J

Z(J)σ(J)2 =
∑
J

∫
dxz(x|J)(x− µ(J))2. (4.14)

It can now be seen that relationship 4.2 follows from equations 4.14 and 4.11 and that to

maximise Fisher’s discriminant 4.1 we need only maximise the between-class variance, σ2
B as

in 4.4. Differentiation of equation 4.11 leads immediately to

∂σ2
B

∂T
=
∑
J

∂Z(J)

∂T
(µ(J)− µ)2 + 2

∑
J

Z(J)(µ(J)− µ)
∂µ(J)

∂T
(4.15)

from which we see that we need to evaluate the derivatives of the indicator variables Z(J) for

each class and of the means 4.10. Calculating these derivatives is facilitated by noting that we

may write 4.6 as:

z(x|J) = [ϑ(x− TJ−1)− ϑ(x− TJ)]p(x) (4.16)

where θ is the step function, zero for x < 0 and one for x > 0.

When there are two classes, it is then straightforward to show that:

∂Z(1)

∂T
= p(T ),

∂Z(2)

∂T
= −p(T ), (4.17)

and
∂µ(1)

∂T
=
p(T )

Z(1)
[T − µ(1)],

∂µ(2)

∂T
=
−p(T )

Z(2)
[T − µ(2)]. (4.18)
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Collecting the above results and carrying out a few further manipulations then shows that

differentiation of the between-class variance, σ2
B , finally yields

∂σ2
B

∂T
= p(T )[µ(1)− µ(2)][2T − (µ(1) + µ(2))]. (4.19)

It can be seen from 4.19 that the between-class variance, and hence for problems charac-

terised by a single feature variable x, the Fisher discriminant 4.1 will be extremal if p(T ) = 0,

or µ(1) = µ(2), or

T =
1

2
(µ(1) + µ(2)). (4.20)

Obviously, if µ(1) = µ(2), σ2
B is zero and is minimised. Choosing a threshold T at a

“gap” in a histogram where p(T ) vanishes is a familiar segmentation procedure, but one that

can rarely be used rigorously in practice. Of more interest is the third condition expressed

by equation 4.20. Since the means µ(1) and µ(2) depend on the choice of T this is a self

consistent equation for T whose iterative solution generates Otsu’s algorithm. It is usually

initialised by choosing a starting value for the threshold equal to the mean µ and in practice

converges quickly in a few iterations (3 − 4). This algorithm is particularly useful since it is a

data-driven, unsupervised procedure.

Finally, we note that if the threshold T is varied freely from a low to a high value, an ROC

curve may be constructed for what is effectively a type of least mean square (MSE) classifier.

This relationship is discussed in [45] and [46] (see sections 5.8.2 in both). To obtain complete

correspondence with the Otsu algorithm above, the MSE classifier may be chosen to:

min
T

{
1

n

n∑
i=1

[y(i)− w(i)x(i)− T ]2

}
(4.21)

where

y(i) =


n
n(1) if x(i) ∈ class C(1)

−n
n(2) if x(i) ∈ class C(2)

(4.22)

and n(1) and n(2) are the actual numbers of examples in each class. Unlike the conventional

MSE classifier [45, 46] we weight the features x(i) according to:

w(i) = |y(i)| (4.23)

so that the threshold T that minimises 4.21 is that defined by the Otsu algorithm 4.20 rather

than simply being the sample mean µ [45, 46].



4.1. Unsupervised discrimination 100

(a) (b)

(c) (d)

Figure 4.2: An example thin-film microscope slide image (a) used to illustrate use of the Otsu

algorithm for segmentation (b) of RBCs from the pixel intensities. A one-ninth part of the

image is shown enlarged (c) together with the corresponding segmentation (d).
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Figure 4.3: Application of the Otsu algorithm to the intensity histogram of the whole image of

figure 4.2. The algorithm converged rapidly in 3 iterations to a threshold T = 196 as shown.

4.1.2 Intensity-based RBC segmentation

An example is shown in figure 4.3 in which the above Otsu algorithm was applied to the inten-

sity histogram of the image displayed in figure 4.2.

In the segmentations pixels with intensities below threshold and labelled as foreground

are set to white whilst those above threshold labelled as background are set to black. For the

most part foreground pixels correspond to RBCs. Some of the RBCs are infected by malarial

parasites which are darker than the RBCs near to which there are often small clusters of bright

pixels. There are thus occasionally a few isolated pixels and some other very small groups of

pixels labelled as background within some RBCs. Similarly there are some isolated pixels and

small groups of pixels below threshold and set to white outside of any of the RBCs. These

usually seem to be caused by artefacts in the plasma. Given that the result was obtained auto-

matically without any manual tuning of parameters the segmentation appears to be remarkably

good. This outcome was typical of a number of experiments carried out which will be discussed

together with similar results obtained by using individual colour channels in the next section.
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4.1.3 Thresholding single colour channels

In this section we use the Otsu algorithm for the independent thresholding of the red, green and

blue channels. As for the intensity-based segmentation described above the thin-film micro-

scope slide images, having been taken by clinical researchers who optimised the microscope

and illumination settings for human inspection of the slides, were not pre-processed or stan-

dardised, for example, by histogram equalisation. Typical results obtained with the thresholds

produced by the application of the Otsu algorithm are shown in figure 4.4. It is notable that

there is signal in each colour channel so use of a colour transformation such as the HSV repre-

sentation used in [79] may be useful (see also chapter 2, section 2.2.1).

ROC curves were calculated from comparison of the results obtained when the threshold

was systematically varied from a low to a high value with a hand-segmented ground truth. A

typical ROC resulting from processing the green channel is shown in figure 4.5 together with

that obtained from the previous, intensity-based segmentation. The foreground (red-blood cells)

is regarded as the positive class. The hand segmentation had to be carried out with great care

as not only the red-blood cells are visible, but also the cell membranes, (see figure 4.2), and the

latter excluded from the foreground. This was extremely time consuming so it was carried out

on one complete 1300 × 1030 image and on one ninth of each of eight other similar images

divided into 3 × 3 arrays of sub-images. The latter were used to provide a means of assessing

performance across a set of 100 images in which human red-blood cells are infected with P.

falciparum. These images vary considerably in their appearance (for example the mean colour

varied from (125, 124, 153) to (223, 212, 236) and in the density of red-blood cells from 109 to

250 per image). Six examples are shown in figure 4.8. The image which was annotated in toto

was similarly divided into nine sub-images to provide a means of assessing variation within an

image. The 17 ROC curves produced from the green channels of these 17 image patches are

shown in figure 4.6 whilst the 9 ROC curves showing the intra-image variation are displayed in

figure 4.7 (a) with the 9 showing the inter-image variation at (b). It can be seen there is more

inter-image variation than intra-image variation, but little variation in the results in either case.

We shall return to discussion of this in the next chapter 5.

The ROC curves produced from the intensity and from the green channel of the image

patch shown in figure 4.2 were shown above in figure 4.5. Similar ROC curves obtained from

the red and blue channels of the whole image are shown superimposed on the ROC curves

obtained from the intensity and from the green channel in figure 4.9.

The areas A under the ROC curves obtained from the intensity and from the red, green

and blue channels of the whole image are given in table 4.1. The lower area under the ROC
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Figure 4.4: Left: histograms and thresholds obtained by application of the Otsu algorithm to the

red (top), green (middle) and blue (bottom) channels of a thin-film slide image, together with

right: examples of the resulting segmentations. The same portion of the image is displayed on

the right as in figure 4.2 with foreground pixels below threshold set to white and those above

threshold in the background black.
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Figure 4.5: A typical ROC curve showing the variation of the true-positive rate tpr (y-axis) as

a function of the false-positive rate fpr (x-axis) obtained from the intensity of the sub-image

shown in figure 4.2 (left) and similarly from the green channel (right).

Figure 4.6: ROC curves showing the variation of the true-positive rate tpr (y-axis) as a function

of the false-positive rate fpr (x-axis) obtained from the intensity of the sub-image shown in

figure 4.2 (back) and from the green channel (second from the back) with the 17 curves obtained

from the green channels of the sub-image patches as described in the text superimposed.
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(a) (b)

Figure 4.7: The 17 ROC curves showing the variation of the true-positive rate tpr (y-axis) as

a function of the false-positive rate fpr (x-axis) superimposed in figure 4.6 split into the 9

showing intra-image variation (a) and the 9 showing inter-image variation (b).

I R G B

A 0.9848 0.9760 0.9860 0.9813

tpr 0.9604 0.9523 0.9777 0.9294

fpr 0.0297 0.0345 0.0450 0.0203

ε 0.0693 0.0821 0.0673 0.0909

Table 4.1: Classification performance obtained from the whole image shown in figure 4.2 (a)

by thresholding the intensity, red, green and blue channels denoted I, R, G, B respectively.

indicates the red channel is slightly less discriminating than the green or blue, whilst the green

channel produces a slightly better ROC than those obtained with the blue channel or intensity.

The operating points produced by the Otsu algorithm also vary. That in the green channel

gives the highest true-positive rate tpr, the red channel gives a fairly good balance of the two

types of error, whilst the blue channel gives a very low false positive rate fpr but its error

rate ε = 1 − tpr + fpr is the highest and the operating point is further from the ideal of

tpr = 1, fpr = 0 than those in the other colour channels. Segmentation based on the intensity

is competitive with those obtained from the colour channels and, at the Otsu operating point,

apart from the green channel gives a slightly lower error rate.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Six of the 100 images of thin-film slides of human malarial infected blood including:

(a) the image annotated in toto and (b) one of the eight partially annotated images, plus four

others (c) – (f) chosen to illustrate the variation in colour, (c) and (d), and in RBC density, (e)

and (f). Images (c) – (f) were not used in generating the ROC curves described in the text.
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Figure 4.9: ROC curves showing the variation of the true-positive rate tpr (y-axis) as a function

of the false-positive rate fpr (x-axis) obtained from the red and blue channels of the whole

image shown in figure 4.2 superimposed on the ROCs obtained from the intensity and from the

green channel (back). The latter are almost coincident.

4.1.4 A multi-class generalisation

In reviewing the Otsu algorithm above, we have developed a notation that enables us to gener-

alise to a multi-class problem in which the histogram is to be segmented into C classes by use

of several thresholds TJ for J = 1 . . . C − 1 as sketched in figure 4.10.

The derivation is given in appendix A. The result is that

∂σ2
B

∂TJ
= p(TJ)[µ(J)− µ(J + 1)][2TJ − (µ(J) + µ(J + 1))] (4.24)

which may be interpreted in a similar manner to equation 4.19. In particular we obtain a multi-

class version of Otsu’s algorithm for the thresholds TJ from the set of C − 1 self-consistent

conditions:

TJ =
1

2
(µ(J) + µ(J + 1)). (4.25)

Initialisation may be by equally spacing the thresholds over the range [T0, TC ], where T0 is the

lower and TC the upper limit of the values taken by x. Convergence in the multi-class case is

much less certain than with a single threshold, though experiments with illustrative distributions

indicate it can be a useful procedure. In practice, the available histogram data may be smoothed,

for example by using a Gaussian mixture model for curve fitting and a powerful optimisation

algorithm such as a particle swarm method used [202]. In fact, as pointed out in appendix B
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Figure 4.10: Sketch of a multi-modal histogram comprised of data from three classes which are

to be discriminated by means of two thresholds T1 and T2.

it is straightforward to obtain formulae for the Hessian of second derivatives with respect to

the thresholds. This opens up the possibility of a variety of implementations, ranging from

multi-dimensional Newton-Raphson and Levenberg-Marquardt methods to conjugate gradients

[141]. Alternatively, modern stochastic methods such as differential evolution and SOMA (Self

Organising Migratory Algorithm) [203] could be used. Finally, it is easy to envisage the appli-

cation of continuation methods and, given the close similarity to mixture models, development

of EM-like algorithms.

This is an interesting generalisation but, it must be emphasized, one that is restricted to

problems where there is a one-dimensional feature space x. Higher dimensional problems

are much more complicated and perhaps for this reason not discussed much in standard texts

[45, 46].

4.2 Using all three colour channels

The fact that there is signal in each colour channel indicates that all three should be utilised.

One way would be to combine the outputs obtained separately from each colour channel in some

kind of multi-classifier system. Another would be to develop an extension of Otsu’s algorithm

that can deal with multi-dimensional feature vectors x. We consider these in turn in this section.

4.2.1 Combining outputs from the colour channels – 3 × 1D segmentation

Since there are only the three classifiers based on the red, green and blue channels to be com-

bined the sophistication of general-purpose multi-classifier combination methods [98], such as

the genetic programming techniques developed by Langdon and Buxton [105], is not needed.

Nor have we implemented the EM approach developed by Warfield et al [193] or merging

methods more familiar in image processing applications [44]. Preliminary experiments indi-
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cated that the latter did not work well so, noting that there are only 162 relevant in-equivalent

partitions of the eight possible outcomes of using independent thresholds on each colour chan-

nel1, we carried out an exhaustive search for the best combinations that gave the highest value

of σ2
B(R) + σ2

B(G) + σ2
B(B) across the three colour channels.

The combination of the individual colour channel classifiers was tested over 142 images –

the 100 images in which human red-blood cells are infected with P. falciparum used in section

4.1.3 plus a further 25 similar images and 17 images of malarial infected mouse blood. The

most frequent optimal combination of the colour channels was that pixels belonging to the red-

blood cells were detected in all three colour channels (54 of the 142 images), with detection in

at least one channel the second most frequent optimal combination (32 times), and detection in

at least two channels the third (22 times).

The results for the whole image shown in figure 4.2 are summarised by the maximum real-

isable ROC (MRROC) curve [161] shown in figure 4.11. The values of tpr and fpr plotted are

those obtained as required by the MRROC construction from the convex hull of the operating

points generated by application of the best classifier combination over the whole image.

4.2.2 Multi-dimensional extensions of Fisher’s discriminant

Although the results obtained by thresholding the colour channels singly or in combination are

all quite good, in this approach, as in many other multi-classifier systems, the types of classifiers

to be combined are defined from the outset. In particular the geometry of the decision surfaces

is constrained, in this case when we threshold on the individual colour channels for each of

them to be normal to the axis of a primary colour. It would seem better to retain as much

freedom as possible in choosing the decision surface. This we can do, within the context of a

linear model, by utilising a multi-dimensional version of the Fisher linear discriminant. Several

alternatives expressed in terms of the between-class covariance SB and within-class covariance

SW are given in the literature (see for example: [45, 43, 97, 178, 46]). The covariances are

analogous to the variances σ2
B , σ2

W and σ2
T introduced in section 4.1.1 and may be written as:

SB =
∑
J

n(J)

n
(x(i)− µ(J))(x(i)− µ(J))T (4.26)

SW =
∑
J

n(J)

n
S(J) (4.27)

where

µ(J) =
1

n(J)

∑
i∈J

x(i) (4.28)

1There are 162 = 8C1 + 8C2 + 8C3 + 8C4 in-equivalent partitions. Note that: 8C5 ≡ 8C3, 8C6 ≡ 8C2 and
8C7 ≡ 8C1.
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Figure 4.11: The MRROC showing the variation of the true-positive rate tpr (y-axis) as a

function of the false-positive rate fpr (x-axis) generated as described in the text shown super-

imposed on the ROC curves for the intensity-based segmentation and that obtained from the

green channel as in figure 4.9.
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are the class-conditioned means,

S(J) =
1

n(J)

∑
i∈J

(x(i)− µ(J))(x(i)− µ(J))T (4.29)

are the class-conditioned covariances, and n(J) the number of samples in class J . The class-

conditioned means sum to the sample mean µ in the usual manner:

µ =
∑
J

n(J)

n
µ(J), (4.30)

the total covariance

ST =
1

n

n∑
i=1

(x(i)− µ)(x(i)− µ)T (4.31)

and, corresponding to 4.2:

SB + SW = ST . (4.32)

The generalised forms of the Fisher discriminant expressed in terms of SB and SW include

three criteria which, following [43] (section 6.6) we shall write as:

D2 =
tr(ATSBA)

tr(ATSWA)
(4.33)

D3 = tr
{

(ATSWA)−1(ATSBA)
}

(4.34)

D4 =
det
∣∣ATSBA∣∣

det |ATSWA|
(4.35)

where A is a rectangular matrix whose d-dimensional columns define the feature space gener-

ated by optimising the various discriminants. There is only one criterion based on determinants

because it follows from the properties of determinants that the last, 4.35, is equivalent to

D4 = det
∣∣(ATSWA)−1(ATSBA)

∣∣ . (4.36)

Both types of criterion measure aspects of the ‘size’ of the between-class scatter or covariance

in comparison to that of the within-class scatter or covariance. In particular, we note that the

determinant criterion D4 compares the squares of their volumes in the feature space defined by

the columns of the matrix A [46].

Other forms leading to equivalent results may be found when the total covariance ST is

used instead of one of the other matrices. In particular, Devijver and Kittler [43] discuss a fourth

criterion

D1 = tr
{
AT (SB + SW )A

}
(4.37)

which may be re-written ultimately in terms of the total covariance ST as:

D1 = tr
{
ATSTA

}
= tr

{
(AAT )ST

}
. (4.38)
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This criterion must be supplemented by other constraints, such as normalisation of the columns

of A, in order to avoid the trivial solution that D1 is zero as discussed in [43] section 6.6.1 (and

see also appendix D where, for completeness, we summarise some aspects of this old and now

rather inaccessible literature2). It is also worth noting that 4.38 does not simplify any further

when the feature space defined by the columns ofA is of lower dimension than d, the dimension

of the original feature space x so that AAT is a projection operator. This reminds us that for

similar reasons, 4.33, 4.34 and 4.35 also do not in general simplify.

4.2.3 Generalised eigensolutions

Criterion D2 may be optimised quite easily by differentiation with respect to the components

ai(k) of the columns a(k) of A (appendix C) leading to a generalised matrix eigenequation:

SBa(k) = λ(k)SWa(k) (4.39)

and the conclusion that

max{D2} =
tr
{
a(k)TSBa(k)

}
tr {a(k)SWa(k)}

= λ(k). (4.40)

It thus follows from the definition of D2 that the generalised eigenvalues λ(k) of 4.39

are positive. Since SB is of rank rB there are rB eigensolutions which we may thus label in

non-increasing order with:

λ(1) ≥ λ(2) ≥ · · ·λ(rB) > 0. (4.41)

Maximisation of D2 thus generates a hierarchy of feature vectors a(k) where a(1) defines

the most discriminating direction in the original feature space x, a(2) defines the next most

discriminating direction and so on. This linear discriminant analysis or LDA is reminiscent

of PCA but it must be remembered that it is designed to serve the very different purpose of

discrimination as opposed to data description. Mathematically, we note that the feature vectors

a(k) may not completely span the feature space x since rB ≤ C − 1. Also, they are not in

general orthogonal as may be seen by writing 4.39 as:

S−1
W SBa(k) = λ(k)a(k) (4.42)

and noting that the matrix SW−1SB in general is not real symmetric. Apart from this, 4.42 is

of limited use as in general it will generate d− rB spurious eigenvalues equal to zero and, since

SW
−1SB will not in general be normal3, it cannot be guaranteed to possess a complete set of d

eigenvectors.
2The book [43] is long out of print and other sources tend to give much less detail.
3A normal matrix M satisfies MMT −MTM = 0.
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Differentiation of D3 is more complicated (appendix C) but nonetheless straightforward

and leads to the same generalised matrix eigenequation 4.39 as above, but in matrix form

SBA = SWAΛ (4.43)

where Λ is the rB×rB diagonal matrix of the generalised eigenvalues λ(k), and the conclusion

that:

max{D3} = tr(Λ) =

rB∑
k=1

λ(k). (4.44)

In this case the whole of the space of new discriminating features defined by the a(k) is

generated immediately though we may of course use as many or as few as we choose.

Differentiation of D4 is described by [45] (page 120) as “not easy” and by [46] (page 123)

as “tricky”. The trick required [43] (appendix B.3, pages 437-439) is that the derivative of the

determinant of a matrix, M say, with respect to its matrix elements, may be written as:

∂|M |
∂M

= adj(M) = |M |M−1. (4.45)

Given 4.45 the differentiation is still complicated (appendix C) but leads eventually once again

to the generalised eigenequation 4.43 and the conclusion that:

max{D4} = |Λ| =
rB∏
k=1

λ(k). (4.46)

4.2.4 A multi-dimensional extension of Otsu’s algorithm – Otsu 3D

For a two-class problem, when SB is rank one, A is a vector and the complications of the previ-

ous two sections disappear. Moreover, given the special form of the between-class covariance

corresponding to 4.12

SB =
n(1)n(2)

n2
(µ(1)− µ(2))(µ(1)− µ(2))T (4.47)

it is apparent that solution of the generalised eigenequation 4.39 leads to a single vector:

a ∝ S−1
W (µ(2)− µ(1)) (4.48)

which defines the most discriminating direction in the feature space x.

To locate the optimal position of the decision surface, we also need to know how close to

locate it to µ(1) or µ(2). This is essentially the one-dimensional problem of finding the optimal

thresholding of the histogram of feature vectors projected onto a which may be solved by use

of the Otsu algorithm.
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For a two-class problem we thus have a very simple generalisation of the Otsu algorithm

in which we iteratively re-compute the most discriminating direction a and the threshold defin-

ing the location of the decision plane. To initialise the algorithm, we may carry out PCA to

determine the direction of greatest variance in the data and take this as our first approximation

to a, project the data onto this direction and apply Otsu’s algorithm [23]. The resulting segmen-

tation into two classes is used to construct the class-conditioned means µ(1) and µ(2) and the

covariance matrix SW for the next iteration and so on.

It is easy to envisage several ways in which the algorithm may be refined – for example,

by an alternative initialisation and by carrying out an ‘early’ recalculation of the discriminating

direction a after each just one iteration of the Otsu thresholding procedure. Here we instead

follow [23] and turn to application to the RBC segmentation problem, pausing first only to note

that, though generalisation to more than two classes by using the multi-thresholding version

of Otsu’s algorithm discussed in section 4.1.4 is straightforward, it seems unfortunately to be

difficult to devise a generalisation that could utilise several discriminating vectors a(k).

4.2.5 Application to colour image segmentation

Application of the above multi-dimensional extension of Otsu’s algorithm to segmentation of

the red-blood cells in images of thin-film slides is straightforward and leads to very pleasing

results such as those illustrated in figures 4.12 and 4.13. Putative RBC pixels displayed as the

white foreground in the figures were selected automatically as the minority class. Visualisation

of the vector a (computed from the whole image) as iteration proceeds indicates considerable

change from the direction of principal variance used to initialise the process. This arises because

there are more pixels belonging to the blood plasma background than to the foreground of the

red-blood cells, resulting in the distribution in colour space being weighted towards the top of

the pixel distribution and the initial decision surface being similarly displaced towards this point

as shown in figure 4.14. This configuration produces an imperfect segmentation as illustrated

in the figure.

As iteration proceeds (figures 4.15 and 4.16) the decision surface swings around until it

is slicing the distribution of pixel colours more longitudinally than laterally as shown in figure

4.16. This was somewhat surprising, but even though the segmentation is poor at this stage,

the orientation of the decision surface continues to change and the procedure finally produces a

very good segmentation as depicted in figure 4.14. Convergence of the direction of a and of the

segmentation is quite rapid in 15 iterations.

Once the direction of vector a and the segmentation have settled down, it is easy to produce
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Figure 4.12: The colour image shown originally in monochrome in figure 4.2 (top) alongside the

final segmentation produced by applying the Otsu 3D algorithm. Its pixel distribution is shown

by occupancy of the RGB triplets in colour space (middle) with (bottom) the final decision

surface separating foreground, putative RBC pixels (red) from the background (blue).
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Figure 4.13: Detail from figure 4.12 showing (left) the segmentation produced by applying

the Otsu 3D algorithm to the bottom-left portion of the colour image (right) displayed in

monochrome in figure 4.2.

a final ROC curve for segmentation of the image as shown in figure 4.17. The area under the

ROC curve, operating point, and error rate are given in table 4.2. The results are very similar to

those obtained from combination of the outputs of the separate thresholding on the three colour

channels and also similar to the best obtained with a single colour channel (green) shown in

table 4.1. The computation time is small (2 secs for processing a 1300 × 1030 image on a

Pentium M 1.8 GHz processor using a Matlab implementation. This is only a small multiple

of the time required for the one-dimensional thresholding, unlike the search for the optimal

combination described in section 4.2 which was computationally intensive and took 57 secs on

the same machine.

To assess how well the various algorithms cope with variability within and between images

we used the subdivision of one image into nine regions as described in section 4.1.3 and similar

regions extracted from eight other images. Areas under the ROC curves, the operating points

selected by the Otsu algorithms, and corresponding error rates were calculated. There was little

variation within the selected image shown in figure 4.2 that was analysed in detail but, as we

might expect from the fact the mean colour of the images varied by almost a factor of two,

greater variation between images. Results, averaged over the selected regions from the nine

images are summarized in the last column of table 4.3. On average, performance of the 3D

extension of the Otsu algorithm is usually a little better than was obtained on the image shown

in figure 4.2, in particular with a higher value of tpr. The error rates are a little lower and the

two types of error somewhat better balanced. Evidently the image (figure 4.2) analysed in detail

was somewhat atypical.
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Figure 4.14: Bottom left: the initial decision surface in 3D obtained from the first iteration

initialised by PCA. The decision surface is superimposed on the pixel distribution in RGB

colour space shown by occupancy of the RGB triplets as in figure 4.12 but in this case in

red for pixels belonging to the background and blue for pixels belonging to foreground, i.e.

supposedly to RBCs. Top: the corresponding segmentation. Bottom right: the ROC curve

obtained by varying the threshold on the distribution projected onto the initial feature vector a

obtained from PCA.

3× 1D 3D

A 0.9858 0.9863

tpr 0.9574 0.9669

fpr 0.0324 0.0345

ε 0.0750 0.0676

Table 4.2: Performance of the system obtained by combination of the separately thresholded

colour channels (3×1D) and of the multi-dimensional extension of the Otsu algorithm (3D).
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Figure 4.15: As in figure 4.14 but showing an intermediate segmentation obtained after 5 itera-

tions (top) together with its decision surface (bottom left) and the ROC curve produced at this

stage (bottom right).

R G B 3× 1D 3D

A 0.9880 0.9917 0.9929 0.9928 0.9930

tpr 0.9700 0.9808 0.9740 0.9768 0.9777

fpr 0.0345 0.0364 0.0270 0.0327 0.0274

ε 0.0646 0.0556 0.0530 0.0560 0.0497

Table 4.3: Performance measures evaluated by averaging over the seventeen selected one-ninth

regions from nine different images as described in the text for thresholding algorithms applied

to each of the separate colour channels (R,G,B); for the optimal combination of these algorithms

(3× 1D); and for the multi-dimensional extension of Otsu’s algorithm (3D).
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Figure 4.16: As in figure 4.15 but after 10 iterations when the orientation of the decision surface

is changing most rapidly. The final decision surface is shown in figure 4.12.
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Figure 4.17: The ROC curve showing the variation of the true-positive rate tpr (y-axis) as a

function of the false-positive rate fpr (x-axis) obtained by varying the threshold on the dis-

tribution projected onto the final feature vector a produced on convergence of the 3D Otsu

algorithm applied to the whole colour image in figure 4.12 (front-most) superimposed on the

ROC curves shown in figure 4.9 obtained by application of the Otsu algorithm in 1D to the

intensity (back), green, red and blue (front) channels, respectively.
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4.2.6 Sequential application to a multi-class problem

We mentioned in section 4.1.3 that, as can be seen from figure 4.2, careful inspection of the

images reveals that the red-blood cell membrane is visible as distinct from the body of the

cell and the background plasma. Also, some of the red blood cells are infected by malarial

parasites and display structures within them where the malarial DNA has been Giemsa stained

a dark-blue colour. These structures have a complicated and somewhat variable shape which,

as discussed in the review chapter 2 section 2.3.1, to the expert observer indicates the type of

infection and stage of the parasite’s life-cycle [175, 176].

Unfortunately, as noted in section 4.2.4, we don’t have a multi-class version of our 3D

extension of the Otsu algorithm which might enable us to produce an algorithm that segmented

these structures as well as pixels belonging to the body of the RBCs. An alternative that would

seem well-suited to detection of parasite infections whose spatial structure can be very variable

but which must be inside a RBC is sequential, hierarchical or recursive application of the multi-

dimensional extension of the Otsu algorithm. This will be discussed in chapter 6. Here we

limit ourselves to a preliminary observation illustrating that sequential application of the multi-

dimensional extension of the Otsu algorithm described above can produce very interesting re-

sults, in particular a segmentation of the RBC membrane. Having used the multi-dimensional

extension of the Otsu algorithm to produce a colour image segmentation of the image shown

in figure 1.3 in chapter 1, we re-ran the process once on the background class and once on the

foreground class and then once again on each of the two segmentation classes obtained from the

foreground class to produce six final segmentation classes. Merging the minority class from the

segmentation of the background with one of the four leaf classes obtained from the foreground

in a tree-structured classifier combination as sketched in figure 4.18 produced a very good seg-

mentation of the red-blood cell membrane (figure 4.19, top). However, such a pleasing result

was rarely obtained with other images and seems to be sensitive to the image colour, contrast

and content (RBC density). For example, carrying out this procedure on the image shown in

figure 4.2 produced the rather mixed, difficult to interpret and somewhat disappointing results

also shown in figure 4.19 (bottom).

4.3 Summary, discussion and conclusions

Having seen in the previous chapter that model-based approaches were unlikely to meet our

needs, in this chapter the search for alternatives focused on some well-established image pro-

cessing and pattern recognition techniques that depend only on very general underlying models

and, since they are unsupervised, do not require training.
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Figure 4.18: Tree structure illustrating sequential application of the Otsu 3D algorithm and

merging of the outputs which detected the cell membranes shown in figure 4.19.

Figure 4.19: Segmentation of the red-blood cells, cell boundaries and background plasma ob-

tained by sequential application of the Otsu 3D algorithm, shown superimposed on the grey-

level image (top). A similar procedure on the image shown in figure 4.2 produced a rather

different result (bottom).
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(i) The Otsu algorithm for thresholding an image from its histogram was reviewed as an

unsupervised procedure, with emphasis on its relationship to Fisher’s discriminant ex-

pressed as maximisation of the ratio of the between-class variance to the within-class

variance, σ2
B/σ

2
W , equation 4.1. Since this relationship is often not mentioned even in

image processing and computer vision texts that discuss the algorithm (section 3.8.2 of

[164] and chapter 7 of [135] are exceptions – though neither gives the derivation as

presented here) a derivation of Otsu’s algorithm by maximisation of the Fisher discrim-

inant was given in section 4.1.1 following the treatment in [23] with further detail in

appendix A. Discussion included a multi-class (i.e. a multi-threshold) version of the al-

gorithm.

(ii) This very simple algorithm was then used for the identification of pixels belonging to

the red blood cells in images of thin-film microscope slides of laboratory samples of

malarial infected blood. Segmentation of images from a set of 142 1300 × 1030 24-bit

RGB images was illustrated by using the intensity and also carried out by independently

thresholding each of the colour channels. The latter revealed that each colour channel

carried information useful for segmentation of foreground pixels belonging to RBCs from

the background plasma.

(iii) It was noted in section 4.1.1 that maximising the Fisher discriminant could also be re-

garded as a way of selecting the threshold in a kind of least mean square (MSE) classifier.

Results were thus characterised by constructing an ROC curve for this classifier by vary-

ing the threshold T and computing the area under the curve in addition to noting the tpr,

fpr and error rates ε at the operating point (i.e. at the threshold) obtained from the Otsu

algorithm. Though there were some differences, all measures indicated that quite good

segmentations could be obtained whichever of the red, green or blue colour channels or

intensity was used.

(iv) Results from all three colour channels were combined by selecting the combination

which, at their Otsu thresholds, maximized the sum of the between-class variance ob-

tained from each individual colour channel. Maximum realisable ROC curves (MRROC)

were then used to assess performance of the resulting classifier combination together

with, as above, the appropriate true-positive, false-positive and error rates. Using all

three colour channels in this manner in general led to slightly improved performance

though the particular combination delivering the best performance varied from image to

image.
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(v) In order to relax constraints on the form of the decision surfaces when combining outputs

from the colour channels as above, multi-dimensional versions of the Fisher discriminant

used in the literature for the generation of optimally discriminating features in LDA were

used to propose a multi-dimensional extension of the Otsu algorithm for the discrimina-

tion of two classes. This algorithm was applied to the same set of thin-film colour images

and performance analysed in a similar manner to the above.

(vi) Performance evaluation required laborious labelling of the pixels by hand using the tools

described in previous chapters. Just one 1300×1030 image was thus annotated in full. It

was divided into a 3× 3 grid of sub-images in order to provide a means of characterising

variation within an image, whilst one-ninth sub-regions of eight other images were sim-

ilarly annotated in order to study variation between images. There was little variation in

performance within or across images. All algorithms performed well with average error

rates of less than 6.5% with the multi-dimensional algorithms just superior to the best of

the results obtained on a single channel.

(vii) We were unable to develop a multi-class version of the multi-dimensional extension

of Otsu’s algorithm. However, it was noted that sequential application of the multi-

dimensional extension of the Otsu algorithm produced interesting results, as illustrated

for example by detection in one image of the boundary membranes separating RBCs

from the blood plasma. Though this particular result was difficult to reproduce on other

images, it suggests that sequential application of the Otsu 3D algorithm may be useful in

other contexts, in particular the detection of malarial parasites within RBCs.

Useful though the multi-dimension extension to Otsu’s algorithm thus appears to be, we

have yet to study it theoretically. For example: we cannot be sure it converges, though it

appears to do so in practice, and to do so quickly. Also, though there was little variation in

performance of the algorithm across the set of images investigated it is not clear why this was

so and whether optimizing the colour representation or standardizing the images might lead to

improved performance. We thus need a deeper understanding as to why the technique works so

well. These issues will be explored in the next chapter. Here we note that a particular strength

of the approach is that it is a data driven, unsupervised technique and that it does not assume

any particular structure of the image objects. This is very attractive as the red-blood cells do not

assume perfect geometrical shapes, such as circles or ellipses, and the parasite stains exhibit

a complicated and somewhat variable shape. The extent to which the parasite shape can be

modelled remains unknown and we note once again our belief that it is better to have a very
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simple model than to use a more complicated but incorrect or inadequate model.

Finally, we note that the algorithms and systems developed must be thoroughly tested and

evaluated if they are to find medical application, for example in research laboratories where

reliable, accurate automatic determination of the degree of parasitemia would be very useful

and would free medical researchers from a tedious, routine, but necessary task. The techniques

required are mostly in place, including ROC and MRROC analyses and classifier combination

techniques. If desired, ROC methods could be extended to multi-class problems as described

in section 2.4.3 though this is not a paramount or urgent requirement for determination of the

parasitemia given that the malarial parasites of interest for the calculation are only to be found

inside RBCs and the required classifications may be carried out sequentially. Of great im-

portance, however, is the provision of well-characterised or standardised data. This is a time

consuming and labour intensive task. We have built a small database of annotated thin-film slide

images of malarial infected blood for the research presented in this thesis. For a world-wide

problem as important as malaria, however, and in particular for the development of techniques

which could aid the detection and diagnosis of malarial infections in the field [176] it would be

beneficial if a centralised, freely available database were prepared.

In summary, this chapter describes an important first step in the development of a system

for the analysis of thin-film microscope slides for the determination of malarial parasitemia,

– a multi-dimensional extension to Otsu’s algorithm that works well for the segmentation of

RBCs. There is also scope to apply the algorithm sequentially for application to the detection

of parasite infections inside the RBC. The latter, as indicated above, will be discussed in chapter

6 together with the determination of the degree of parasitemia. First, in the next chapter, we

turn to a more detailed analysis of the algorithm itself.



Chapter 5

Analysis of the Otsu 3D algorithm

In the previous chapter we developed a multi-dimensional extension to Otsu’s algorithm, which

we called the Otsu 3D algorithm, and explored its application to the segmentation of RBCs

in microscope images of malarial infected thin-film blood slides. The algorithm proved quite

effective. In this chapter our aim is to obtain a deeper understanding of the algorithm per se, its

behaviour, and why it proved effective for RBC segmentation. In particular, in the following we

consider the algorithm’s relationship to clustering techniques, its convergence and its invariance

properties, and how image data variability might be characterised. Pending implementation of

such a quantitative approach, the three images shown in figure 5.1 will largely be used in this

and the following chapter as illustrative examples.

5.1 Clustering

In pattern recognition, clustering is often discussed together with unsupervised learning ap-

proaches or as synonymous with such approaches (see respectively for example: [45, 46] and

[178] chapters 11-16). In addition there are many whole books devoted to ‘Clustering’ and

‘Cluster Analysis’ (see for example [47] which is in its fifth edition) and an extensive Wikipedia

page [195] containing many links to other pages and to applications. The Wikipedia page says

“there are possibly over 100 published clustering algorithms” many of which it describes under

various headings such as: “Connectivity based clustering (hierarchical clustering), Centroid-

based clustering, Distribution-based clustering, Density-based clustering” and “Recent devel-

opments”. There is also a section on “Evaluation of clustering results” (which the page notes

“sometimes is referred to as cluster validation”) that contains many clustering quality measures.

Some quality measures are described as ‘indices’ to be used in an ‘internal evaluation’ when,

in the spirit of unsupervised learning there is no ground truth labelling of the clusters, but many

are based on quantities such as true-positive and false-positive rates familiar from the charac-

terisation of classifier performance which can only be used in an ‘external evaluation’ when
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[1]

[4]

[45]

Figure 5.1: Three images, respectively numbers 1 (top), 4 (middle) and 45 (bottom) used as

illustrative examples.
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ground truth data is available.

To discuss all of this literature would take us too far afield. It is still growing, in partic-

ular in areas such as robust clustering when the signal data may be contaminated by outliers

and when estimation of the appropriate number of clusters to use is required (see for example

[80] and [81]). In the context of our work, the important distinctions are between heuristic

approaches and those based on statistical models which, as usual, may be either parametric

or non-parametric. Parametric models include Gaussian mixture models which, as noted in

section 4.1 are much used in colour image segmentation, whilst non-parametric statistical parti-

tioning methods are often based on minimisation of the trace or determinant of a pooled within-

cluster (or class) scatter or covariance matrix such as SW . According to [63] methods based on

SW may be regarded either as heuristically motivated or as maximum likelihood estimators of

well-defined statistical models.

5.1.1 C-means clustering

Known widely as k-means clustering1 the aim in this approach is to assign data x(i), i = 1 · · ·n

to classes or clusters J = 1 · · ·C so as to:

min

{
DE =

C∑
J=1

∑
i∈J

[x(i)− µ(J)]2

}
(5.1)

where, as usual, µ(J) are the class-conditioned or ‘cluster’ means:

µ(J) =
1

n(J)

∑
i∈J

x(i). (5.2)

It is evident that this criterion is based on a Euclidean measure of the distance within each

cluster and self-consistently assigns each datum x(i) to the cluster whose mean is nearest to

x(i). Not only might we consider such a particular measure based on a Euclidean distance better

replaced by one using Mahanalobis distances based on class-conditioned matrices S(J) but, in

cluster analysis in general, the whole issue of the use and type of a distance or dissimilarity

measure, of a similarity measure, or of more general connectivity measures arises. Duda, Hart

and Stork [46], section 10.6 contains a useful discussion of such questions which are also well

exemplified by the organisation of the Wikipedia pages ([195]).

Since there are approximately Cn/C! ways of partitioning n examples into C such sub-

sets2 the minimisation 5.1 is NP-hard and approximate methods are required in practice. The

usual approach is to adjust the cluster membership iteratively which, as [46] describes, may be
1For consistency, we shall refer to this as C-means clustering as our aim is to produce C clusters corresponding

to C classes; cf. [46] section 10.4.3, page 526.
2See for example [46], section 10.8, who also give the exact number as the solution of problem 18 to chapter 10.
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implemented either in batch or sequential mode. The basic procedure is a greedy, ‘hill-climbing’

algorithm and usually converges quite quickly with a complexity O(ndC) per iteration. Find-

ing the optimal clustering is not guaranteed so in practice the algorithm is often run multiple

times from random initialisations. However, given the large number of distinct clusterings, this

may often fail to find the optimum or even a consensus as to the best estimate of the optimum

especially if clusters in the data are not very distinct or obvious. Alternatively, solutions with

C − 1 clusters may be used to initialise the procedure in a hierarchical manner ([46, 117]) or

one of the hierarchical clustering algorithms used to provide a starting point though these may

have a higher complexity [46]. The hierarchical algorithms may involve either ‘merging’ or

‘splitting’ clusters and are very like those used for segmentation in image processing discussed

in section 2.3.3. The properties of the iterative algorithms have been widely discussed in the lit-

erature, in particular in signal processing where the common version is often known as Lloyd’s

algorithm or the LBG algorithm for vector quantisation [115, 108] and may be found in prob-

abilistic, soft or fuzzy versions (see for example [178], chapter 14 and references therein). In

pattern recognition it is sometimes known as the ‘isodata’ algorithm [43].

5.1.2 The Otsu algorithm and C-means clustering in 1D

Criterion 5.1 is just the within-class variance:

σ2
W = tr(SW ) (5.3)

so it is easily seen that minimisation 5.1 is equivalent to maximising the between-class variance

σ2
B = tr(SB). We should thus expect C-means clustering to be closely related to the Otsu

algorithms discussed in the previous chapter – and in fact in a one-dimensional feature space

it is immediately obvious that they are designed to optimise equivalent criteria. Moreover, in a

one-dimensional feature space the Otsu algorithm with thresholds

TJ =
1

2
(µ(J) + µ(J + 1)) (5.4)

is precisely equivalent to self-consistently assigning each datum x(i) to the class or cluster

defined by the nearest mean µ(J). We thus see that the C-class Otsu algorithm and a C-means

algorithm are carrying out the same processes and, from the same initialisation, will produce

identical results.

5.1.3 The Otsu algorithm and C-means clustering in 3D

When the feature space is multi-dimensional our Otsu 3D algorithm has only been developed for

the two class case so comparison with a 2-means algorithm is all that is required. As indicated in
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the Wikipedia pages [195] and noted above, theC-means algorithm separates data into Voronoi-

cells centred on each of the cluster (or class) means µ(J). The cluster boundary produced

by the 2-means algorithm is thus always perpendicular to the line joining the cluster means,

µ(2) − µ(1). However, this is not the case for our Otsu 3D algorithm where the boundary is

normal to the optimal feature vector

a ∝ S−1
W (µ(2)− µ(1)). (5.5)

Furthermore , its location is determined in the second stage of our 3D algorithm by application

of the one-dimensional Otsu algorithm to the histogram of the data projected onto this direction.

As we have seen, the second step is equivalent to using a 2-means algorithm on the histogram

so differences between the two algorithms (2-means and our Otsu 3D) will arise from the effect

of the matrix inverse SW−1. Unless SW is isotropic, the two algorithms will thus produce

different outcomes even when both converge to their desired optima.

5.1.4 Effect of the within-class covariance

To characterise the effect of the within-class covariance matrix SW obtained on convergence of

the Otsu 3D algorithm for the segmentation of the images shown in figure 5.1 the acute angle α

between the optimal feature vector a and µ(2)− µ(1) was calculated:

cos(α) =
(|µ(2)− µ(1))TS−1

W (µ(2)− µ(1))|
|µ(2)− µ(1)||S−1

W (µ(2)− µ(1))|
. (5.6)

Results are given in the first three rows of table 5.1. The angle α shows how much the factor

S−1
W in 5.5 makes the normal to the decision surface deviate from the direction µ(2) − µ(1) it

would have taken in a C-means clustering algorithm given these class labels. It can be seen that

this deviation varies considerably, from around 30 deg in images 1 and 45 to just over 60 deg in

image 4, but is never insignificant.

The eigenvalues and eigenvectors of the within-class covariance SW for each of these

images are also shown in table 5.1 together with the acute angles each makes with µ(2)−µ(1).

It can be seen that SW is highly anisotropic in each case, in particular for image 4 where the

principal eigenvalue accounts for 98% of the variance but only around 70 − 80% for the other

two images. The within-class covariance is also oriented quite similarly at an acute angle of

less than 30 deg and often much smaller with respect to µ(2)− µ(1) in each case although for

image 1 the principle axis is more closely parallel to µ(2)−µ(1) than for the other two images.

It was also noticed that the three vectors defined by the principal axis of SW , a and ∆µ =

µ(2) − µ(1) were in each case almost co-planar, the magnitude of the scalar triple products of

the corresponding unit vectors in no case exceeding 0.03. The acute angles between a and ∆µ
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Image 1 Image 4 Image 45

µ(2)− µ(1)

-29.701 -53.768 -49.829

-48.472 -77.965 -73.906

-58.744 -63.993 -43.488

â

0.0472 0.1484 0.0472

-0.5254 0.0029 -0.7229

-0.8495 -0.9889 -0.6894

Angle α deg 25.2 61.2 35.2

Eigenvalues

92060 1682017 265597

19404 18138 65383

5446 15836 36634

Eigensolution Eigenvector Angle θ Eigenvector Angle θ Eigenvector Angle θ

0.4730

6.9

-0.6344

27.8

0.7282

17.2First 0.5587 -0.7644 0.6238

0.6813 -0.1159 0.2838

0.8725

83.1

-0.7657

79.7

0.6770

73.0Second -0.4047 0.6003 -0.5906

-0.2739 0.2311 -0.4391

-0.1227

89.2

0.1071

64.5

0.1063

87.4Third -0.7240 -0.2353 -0.5119

0.6788 0.9660 0.8525

Table 5.1: First three rows: values of µ(2) − µ(1), the optimal feature vector â and the acute

angle α in degrees between them for each of three illustrative images, numbers: 1, 4 and 45

shown in figure 5.1. Eigenvalues of the within-class covariance matrix and their eigenvectors are

shown in the remainder of the table together with the acute angles θ between each eigenvector

and µ(2)− µ(1).

and between the principal eigenvector, v(1) say, of the within-class covariance and ∆µ may

thus be added to give, at least for these three illustrative images, to within less than 1 deg the

angles between a and the principal eigenvector v(1).

Using the spectral decomposition of SW it may be shown that

a ∝
3∑

k=1

[
v(k)T∆µ

λ(k)

]
v(k) (5.7)

where λ(k) and v(k) are the eigenvalues and eigenvectors of SW respectively with the principal

eigenvector belonging to the largest eigenvalue labelled as v(1). It then follows from 5.7 that
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the scalar triple product3

{v(1), â,∆µ} =
(v(2)T∆µ)(v(3)T∆µ)[ 1

λ(2) −
1

λ(3) ]

|∆µ|
√∑3

k=1[
v(k)T∆µ

λ(k) ]2
. (5.8)

The three vectors would thus be coplanar if λ(2) u λ(3) but, it can be seen from table 5.1

that this is not the case. If these vectors were to be approximately coplanar in general, there

would evidently be some interplay between the values of the inner products and eigenvalues

in 5.8 which would make it so. We have not been able to ascertain what this might be so the

approximate co-planarity of the vectors remains a somewhat surprising empirical observation,

supported only by the evidence from these three illustrative images.

5.2 Convergence of the Otsu algorithms

It is well-known as we noted in section 5.1.1 that the C-means algorithms converge to a local

optimum. The behaviour of the Otsu algorithm in one-dimension will be similar and thus at best

we may expect our multi-dimensional extension, Otsu 3D, also to converge to a local optimum.

For all the examples of segmentation of malaria thin-film slide images into two classes of pixels

belonging to RBCs and to background that we have run, neither the original one-dimensional

Otsu algorithm (applied either to the intensity or to a single colour channel) nor our multi-

dimensional extension, the Otsu 3D algorithm, ever seemed to produce unsatisfactory results.

It is known that the original Otsu algorithm in a one-dimensional feature space “breaks down

when the two populations are very unequal” ([135] page 282)4 so it would appear that in all

our examples, the numbers of pixels in the background and belonging to RBCs were not too

unequal – in fact, as usual for blood thin-film slide images, the ratio was often ∼ 40− 50%.

5.2.1 The basin of attraction of the Otsu algorithm

The closeness of the fraction of RBC pixels in an image to 50% and the clear bimodality of the

histograms shown in chapter 4 indicate from the remarks of Petrou and Bosdogianni [135] not

only that the Otsu algorithm should converge but why it produces such good segmentations of

the RBCs. In addition, the form of the histograms shows that we may expect initialisation of

the algorithm with the threshold T = µ to be quite close to the final converged value of T but

to understand more fully the robustness of the algorithm and why it produced good results for

every example on which it was run, we need to investigate its basin of attraction.

3Provided the eigenvectors of SW form a right-handed set; if they are left-handed the sign of the result changes.
4Similarly, we note that, for example according to the Wikipedia article [195], ideally the C-means algorithm

“assumes equal-sized clusters”.
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Since the feature space is one-dimensional it is easy to search the entire range 0− 255 for

the optimal value of the threshold T which maximises the Fisher discriminant5, or equivalently,

the between-class variance σ2
B . Doing so shows that the between-class variance, and thus the

Fisher discriminant, each have a single maximum (figure 5.2) and confirms that in this case the

optimal threshold for intensity-based segmentation is T = 155 and that the Otsu algorithm will

converge to this threshold.

These results are typical (see for example further results in section 6.3.1) and indicate

why, for intensity-based segmentation of RBC pixels, the Otsu algorithm always converged and

produced good results.

5.2.2 The basins of attraction of the Otsu 3D algorithm

Characterising the behaviour of our extension of Otsu’s algorithm is more difficult because

the higher dimensionality complicates both complete search of the parameter space and easy

visualisation of what the algorithm does. In the previous chapter (section 4.12 and figures 4.14

- 4.16) we saw an example of how the algorithm converged from initialisation via PCA but

to characterise the basins of attraction of the algorithm would need similar results for every

possible initialisation. This is not feasible, but having seen how the 1D Otsu algorithm used in

the second stage of each iteration of the 3D algorithm behaves, we focus on using the direction

of the vector a in the first stage of the algorithm to characterise the behaviour of our Otsu 3D

algorithm.

Using the image shown in chapter 4 figure 4.12 as a typical example, the Otsu 3D algo-

rithm was run 1000 times using directions of the feature vector â on the surface of the unit

sphere [121] to initialise the algorithm rather than PCA as described in section 4.2.4. In each

case we checked whether the algorithm converged successfully (S) to a good segmentation (fig-

ure 5.3 (a)) like that shown in chapter 4, figure 4.12. We also recorded when initialisation of

the Otsu 3D algorithm converged to a poor segmentation (U) and when it failed (F) by reaching

a set limit of 100 on the number of updates of â. Results are summarised in figure 5.3 (b). It

can be seen that most initialisations led to successful segmentations, that there are two bands

on the unit sphere where the initial choice of â led to an unsuccessful segmentation and a few

choices, lying on narrow stripes on the surface of the unit sphere, for which the algorithm failed

to converge.

Strictly, the fact that the between-class variance for an intensity-based segmentation of

5There are remarks in [135] pages 281-282 and [164] page 87 about such sequential searching, checking that

maxima of σ2
B have been found and other issues, including the use of efficient recursive algorithms (see appendix

E), but all we need here is the between-class variance as a function of T .
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(a)

(b)

(c)

Figure 5.2: The intensity histogram (a) for image number 1 shown in figure 5.1, the between-

class variance σ2
B (b) as a function of the threshold T , and (c) the corresponding Fisher dis-

criminant. The histogram has two, well-separated distinct peaks whilst both the between-class

variance and Fisher discriminant each have a unique, well-defined maximum – the maximum

in the latter being somewhat more prounced.
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RBC pixels is well-behaved with a single maximum does not suffice to ensure that the 1D Otsu

stage of the algorithm will always converge. Figures 4.12 and 4.14 - 4.16 suggest that the

initial and intermediate stages of the Otsu 3D algorithm may produce distributions of the one-

dimensional discriminating feature that are not similarly well-behaved with a single maximum.

As a double-check we therefore re-ran the whole experiment with an exhaustive search for the

threshold used in each application of the 1D Otsu algorithm. This double-check produced no

significant difference when the segmentation was successful.

5.3 Invariance properties
It is noted in Duda, Hart and Stork (Chapter 3, section 3.8.3, p124, [46], and in the earlier

[45], Chapter 4, section 4.11, p121) that solution for the matrix of discriminating directions,

A, derived from the various Fisher discriminant criteria is invariant to transformations which

include “rotation and scaling of the axes in various ways” which are “linear transformations

from a (C−1) dimensional space to a (C−1) dimensional space”. Of greater interest, however,

are transformations of the d-dimensional space of the original data which Duda, Hart and Stork

only discuss in the context of clustering when the feature matrix A is redundant ([46], chapter

10, p546 and p589, problem 28). In particular in the malarial application such transformations

can represent colour transformations reflecting variability in the image data as discussed in

chapter 2, section 2.2.1.

All the discrimination criteria discussed in chapter 4, section 4.2.2: the three relative cri-

teria, D2, D3, D4 and the absolute criterion D1, are based on matrix expressions of the form

ATSA = P (5.9)

(say) where S is a d × d covariance matrix of some type and A is a d × r dimensional feature

matrix. Non-linear transformations of the colour space are sometimes used, especially for im-

proving the display of image data, but these won’t lead to straightforward transformation of the

covariance matrices, so we restrict attention to affine transformations of the form

x
′
(i) = Mx(i) + b (5.10)

with some non-singular matrix M and an additive constant or colour bias vector b. In the

malaria application i labels the pixels within an image or sub-image region. The affine transfor-

mation (M, b) may have from one to twelve degrees of freedom depending on what restrictions

are placed on the matrix M and the vector b. Special forms of interest include: for M the unit

matrix, isotropic and diagonal matrices; and for b the zero vector (leading to linear transfor-

mations), and constant vectors of the form b = b(1, 1, 1)T leading to isotropic biasing of the
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(a)

(b)

Figure 5.3: (a) A good segmentation of RBC pixels. (b) Feature vectors â used to test conver-

gence of the Otsu 3D algorithm as described in the text. Those which converged to a successful

segmentation (S) are shown as points in green on the surface of the unit sphere whilst those

which produced a poor segmentation (U) are shown in red and those for which the algorithm

failed to converge in 100 iterations (F) are shown blue.
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colours. There are thus 4 × 3 − 1 = 11 different types of affine transformation of the colour

space which may be regarded in general as not contrived. They include isotropic and anisotropic

scaling of the colour axes, with or without corresponding colour biases or off-sets.

Since the mean colour of on an image or image region transforms in the same manner as

the x(i) it follows that the total covariance matrix ST transforms as:

S
′
T = MSTM

T ⇔ ST = M−1S
′
T (M−1)T . (5.11)

Furthermore, since the (actual) class membership of a pixel is unaffected by the transformation

it is easy to see that the class-conditioned means µ(J) also transform according to 5.9 and thus

that the class-conditioned covariance matrices S(J), the within-class covariance SW and the

between-class covariance SB will all transform as indicated in 5.11. Any expression of the

form 5.9 will therefore be invariant with:

P
′

= A
′TS

′
A
′

= P (5.12)

if the feature matrix transforms according to:

A
′

= (M−1)TA⇔ A = MTA
′
. (5.13)

5.3.1 Invariance of the Fisher discriminant criteria

It follows immediately from the above that the Fisher criteria D2, D3, D4 are invariant under

non-singular affine transformations of the data. This can also be seen from the fact that optimi-

sation of the criteria leads to the same generalised eigenequation 4.39

SBa(k) = λ(k)SWa(k) k = 1 · · · rB. (5.14)

and that the optimum may in each case be written in terms of the eigenvalues λ(k) (see for ex-

ample, appendix D) which are invariant under transformation of the covariance matrices in 5.14.

Furthermore, we see from 5.14 that the feature vectors themselves may be transformed as

a
′
(k) ∝ (M−1)Ta(k)⇔ a(k) ∝MTa

′
(k) (5.15)

which is consistent with 5.13. The proportionality in 5.15 highlights the fact that only the

directions of the feature vectors a(k) are important.

It is notable that, unless M is orthogonal or proportional to an orthogonal matrix, the

feature vectors a(k) do not transform in a manner precisely similar to transformation of the

data x(i) 5.10. To understand this we recall the two-class case where the Fisher feature vector
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a is given explicitly by 5.5. This shows that, owing to the presence of the SW−1, the feature

vector must in general transform as:

a ∝MTa
′

(5.16)

consistent with 5.15.

5.3.2 Effect of a transformation on the Otsu algorithm

Whilst it is pleasing to see that the Fisher criteria are invariant under affine transformations of

the data 5.10, this only indicates similar invariance of a segmentation of an image in which the

class labels of the pixels x(i) are fixed. Invariance of the algorithms and of the results they

produce requires that we demonstrate:

(i) each iteration of the algorithm transforms in an appropriate manner,

(ii) as does its initialisation.

We consider first a one-dimensional feature space in which the data x(i) are subject to

x
′
(i) = mx(i) + b (5.17)

which may represent a scaling or gain change m and a translation b, a shift or bias, of a single

colour attribute or of the image intensity. On using 5.17 to change variables in the derivation of

the Otsu algorithm developed in chapter 4, sections 4.1.1, 4.1.4 and appendix A we find that,

provided the thresholds are transformed according to 5.17 with

T
′
J = mTJ + b (5.18)

that the indicator variable transforms as

Z(J) = Z(J) J = 1 · · ·C (5.19)

and thus that the class-conditioned means defined by the thresholds TJ as in 4.10 or 4.28 also

transform according to 5.17:

µ
′
(J) = mµ(J) + b J = 1 · · ·C. (5.20)

It then follows that:

T
′
J =

1

2
[µ
′
(J) + µ

′
(J + 1)] J = 1 · · ·C − 1, (5.21)

and we may conclude that the iterative step in the one-dimensional Otsu algorithm is invariant

under an affine transformation of the data x(i). Provided it is initialised in a manner that trans-

forms the initial TJ according to 5.18 or the means µ(J) according to 5.20 the whole algorithm
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will be invariant. In particular, the two-class Otsu algorithm is invariant since in this case the

threshold T is initially chosen to be the mean µ which we already know transforms in the same

manner as the data x(i) according to 5.17.

Finally we note that, since all variances transform as:

σ
′2 = m2σ2, (5.22)

the maximium value of the between-class variance σ2
B is scaled but its location is invari-

ant. In one-dimension not only is the location of the maximum of the Fisher discriminant

max{σ2
B/σ

2
W } invariant, but so also is the discriminant itself.

5.3.3 Effect of a transformation on the extended Otsu 3D algorithm

Each iteration of our multi-dimensional extension of the Otsu algorithm is comprised of two

steps:

(i) update of the direction of the Fisher feature vector a according to 4.48

a ∝ S−1
W (µ(2)− µ(1)), (5.23)

(ii) projection of each datum x(i) onto a to define a one-dimensional feature datum:

x(i) = âTx(i), (5.24)

and subsequent application of the one-dimensional Otsu algorithm to segment the data

x(i) according whether the x(i) is greater than or less than a threshold T .

From the transformations of the data x(i) 5.10 and of the feature vector a 5.16 it follows

that we may say:

â
′

= m(M−1)T â, (5.25)

where m is a scaling dependent on a and M (or equivalently on a and a
′
). We can then say that

the projected variable x(i) undergoes an affine transformation like 5.17 in which the scaling

factor m is as in 5.25 and the additive constant:

b
′

= mâTM−1b. (5.26)

Thus, we ultimately see that both steps in the iteration of our multi-dimensional extension of the

Otsu algorithm transform in an invariant manner and that, given an initialisation that is similarly

invariant, the whole algorithm would be invariant.

Unfortunately, initially setting a = p(1) where p(1) is the mode corresponding to the

largest variance in a PCA of the total covariance ST is not in general invariant. Under an affine
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transformation of the data 5.10, PCA modes p(k) may only be invariant if the matrix M is

orthogonal or proportional to an orthogonal matrix since:

M−1S
′
T (M−1)T p(k) = σ2(k)p(k)⇒ S

′
T (M−1)T p(k) = σ2(k)Mp(k). (5.27)

Since there is no obvious alternative to a deterministic initialisation of a via PCA that would

transform in the required manner, we have to concede that our multi-dimensional extension of

the Otsu algorithm is not invariant under a general affine transformation 5.10. It is invariant

when M is orthogonal or proportional to an orthogonal matrix but such transformations are, in

an imaging application such as our malaria problem, very restrictive and of little use as they

exclude for example independent rescaling of each colour channel.

All is not lost, however, for the final segmentation produced by our algorithm. We have

seen previously in section 5.2.2 that the basin of attraction in which the direction of the initial

feature may be chosen so that the algorithm converges to a successful segmentation is large.

Provided the PCA mode p
′
(1) of the transformed total covariance matrix S

′
T lies in the same

basin of attraction as p(1), the corresponding mode of variation of ST , the algorithm should

result in the same (or, depending on the termination condition used, very nearly the same)

segmentation.

Finally, we note that conventional C-means clustering which minimises a criterion such

as 5.1 based on a Euclidean distance is not in general invariant under an affine transformation

of the data since:

DE =

C∑
J=1

∑
i∈J

(x
′
(i)− µ′(J))T (M−1)TM−1(x

′
(i)− µ′(J)) (5.28)

which is neither equal nor proportional to D
′
E unless M is orthogonal or proportional to an

orthogonal matrix. As Duda, Hart and Stork [46] state (section 10.6.1, page 539) a clustering

“should be invariant to transformations natural to the problem” so a better choice for image

segmentation problems might be to cluster by minimising a criterion like ([46] section 10.7.3,

page 545):

DW = det|SW | (5.29)

which transforms as

D
′
W = (det|M |)2DW (5.30)

and therefore may lead to clusterings or segmentations that are invariant ([46] problem 27, page

589). A clustering based on the between-class covariance and maximising det|SB| would be

similarly invariant – as would clustering based on the ratios of such quantities mentioned in

section 5.1 which are completely invariant under such affine transformations.
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Alternatively, as also mentioned in section 5.1, clustering may be based on a criterion such

as:

DT =

C∑
J=1

∑
i∈J

(x(i)− µ(J))TS−1
T (x(i)− µ(J)) (5.31)

based on a Mahalanobis distance. It is easy to show that DT , and all similar criteria based

on Mahalanobis distances involving for example, the within-class covariance SW or the class-

conditioned covariances S(J), may produce clusterings with the required invariance to affine

transformations. Duda, Hart and Stork (problem 30, page 590) show how an algorithm to

iteratively minimiseDT might be developed, but even if this (or some other convenient iterative

algorithm were used) there remains the problem of finding a way of initialising the process that

has the required invariance. As this difficulty is common to all such clustering algorithms and

since a random initialisation would merely bring us back to characterisation of the basins of

attraction of the clustering algorithms, it precludes the possibility of using any of them as a

useful, invariant way of initialising our extension of the Otsu algorithm.

5.4 Characterisation of data variability

The analysis in the previous sections of the invariance properties of our extension of Otsu’s

algorithm and its convergence indicates that it would be useful to have a way of characterising

the variability of our thin-film slide image data and, in particular, of determining to what extent

the variability may be represented by an affine transformation of the colour space. The obvious

way to characterise the difference between two images x(i) and x
′
(i) is via a mean squared

error measure:

ε2 =
1

n

n∑
i=1

|x′(i)− x(i)|2, (5.32)

or, if an affine colour transformation 5.10 is included to align the images, via:

ε2(M, b) = min
M,b

{
1

n

n∑
i=1

|x′(i)−Mx(i)− b|2
}
. (5.33)

However, the number of RBCs and their locations vary from image to image, so the pixels

i in images x(i) and x
′
(i) do not necessarily correspond. One way forward would be to restrict

the comparison to background regions in common between the images [175], but this doesn’t

use the data efficiently and, moreover, is dependent on a sufficiently good segmentation of

both images being available. An alternative which removes dependence on the locations of the

RBCs is to compare the colour distributions p
′

and p, say, of the images. Such a comparison

still depends on the number of RBCs in each image, but this is a variability with which our

algorithm has to cope.
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In practice, the distributions p
′

and p will be estimated empirically from histogram data

so the above amounts to histogram alignment. This is a topic that we mentioned briefly in our

review, section 2.2.1 but it is worth considering a little more deeply in principle.

Statisticians have developed a variety of ways of testing for the equivalence of two distri-

butions, the best known of which for the comparison of two empirical distributions is probably

the Kolmogorov-Smirnov test [198]. This is usually applied to univariate data and depends on

the cumulative probability distributions which, being integral measures, are not very sensitive

to the data distributions. From our purposes, it seems better to compare the probability density

functions p
′

and p directly. A squared-error, Euclidean metric is an obvious possibility:

ε2PF =

∫
ddx[p

′
(x)− p(x)]2, (5.34)

but the discussion of probabilistic distance and dependence measures in Devijver and Kittler

(see [43] chapter 7, in particular sections 7.2 and 7.3) suggests a wide variety of other possibil-

ities, including: Chernov, Bhattacharyya, divergence, Lissack-Fu, Kolmogorov and entropy or

information measures (see also [118]). These and others may be found on various webpages,

including Wikipedia articles. The squared error measure 5.34 appears in [43] associated with

the name “Patrick-Fisher” – hence our notation above. We also note that it depends on the over-

lap or intersection of the distributions as used in a method for recognizing objects from their

colour [173] and that 5.34 may be generalised to allow for a colour transformation by setting:

ε2PF (M, b) = min
M,b

{∫
ddx[p

′
(x
′
)− p(x)]2

}
. (5.35)

Though 5.35 can be differentiated in order to develop equations defining the transformation

which minimises 5.35, the resulting equations are non-linear and of little practical use as the

required derivatives of p
′
(x
′
) are not available when the distributions are only known empir-

ically [21]. Moreover, the Patrick-Fisher probabilistic distance is not dimensionless and not

bounded above, so there is no natural scale on which a particular value of ε2PF or ε2PF (M, b)

may be interpreted. What we might, following [43], call the Kolmogorov distances:

εK =

∫
ddx|p′(x)− p(x)| (5.36)

and

εK(M, b) = min
M,b

{∫
ddx|p′(x′)− p(x)|

}
, (5.37)

are free of these defects. In particular we note that εK and εK(M, b) are dimensionless and that

it follows from the triangle inequality that 0 < εK < 2 with the upper bound achieved when

the distributions p and p
′

do not overlap, and similarly 0 < εK(M, b) < 2 with the upper bound

attained when the distributions p(x) and p
′
(x
′
) of the transformed image do not overlap.
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5.5 Conclusions

It the previous chapter we saw that our multi-dimensional extension of Otsu’s algorithm seemed

to be a useful tool in 3D for a colour-based segmentation of the RBCs in thin-film microscope

slide images. However, at the close of the chapter we indicated that we had little theoretical

understanding as to how the algorithm worked: how it converged, when it could be expected to

converge, and to what kind of solutions, and why it seemed equally effective across the range

of our image data in which the image colour and number of RBCs varied. In this chapter we

have attempted to obtain a deeper understanding of the algorithm and to answer such questions.

To this end we first:

(i) Briefly reviewed some standard clustering procedures, in particular those based on statis-

tical, covariance measures. In particular, C-means (better known as k-means) clustering

was discussed and it was shown that, when the feature space x(i) is one-dimensional as,

for example, when pixel intensity or data from a single colour channel is used to segment

an image, C-means and the Otsu algorithm were based on optimisation of the same crite-

rion – minimisation of the within-class variance σ2
W or equivalently maximisation of the

between-class variance σ2
B .

(ii) It was noted that common implementations of C-means proceed by iteratively changing

class membership according to a greedy algorithm whilst the Otsu algorithm is based on

an iterative procedure derived by direct differentiation of σ2
B with respect to the discrim-

inating thresholds. In addition it was noted that C-means is usually initialised from a

random clustering or segmentation whereas the Otsu algorithm, at least in the two-class

case, has a deterministic initialisation. For RBC segmentation the algorithms should

thus give similar, and in principle barring discretisation effects, identical results when

initialised in the same way.

(iii) In higher dimensions d it was shown that clustering algorithms do not attempt to optimise

a criterion equivalent to the various forms of the Fisher discriminant. In particular, the

Fisher discriminant is based on matrix expressions of the form ATSA in which a d × d

covariance matrix S is pre- and post-multiplied by a d × r rectangular matrix A which

selects the r most discriminating feature directions in the data space x. In one-dimension,

A is nugatory hence the equivalence noted above, but this is no longer the case in higher

dimensions as there is nothing equivalent to A in the clustering criteria.

(iv) In particular, when there are two-classes, the only case for which we have been able to
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develop our multi-dimensional extension of Otsu’s algorithm, there is a single most dis-

criminating feature direction, a ∝ S−1
W (µ(2)−µ(1)) so, it was noted, the most important

differences between our algorithm and a 2-means algorithm arise from the inverse of

the within-class covariance SW . If SW is highly anisotropic the discriminating surface

between the two classes or clusters will not be perpendicular to the line joining the re-

spective class means µ(2) − µ(1) . Analysis of the SW produced in some of the RBC

segmentations confirmed the anisotropy and thus that a colour-based segmentation via a

2-means algorithm would not be the same as that produced by our Otsu 3D algorithm. It

was noted that although the direction of µ(2)− µ(1) and its magnitude varied somewhat

from image to image reflecting variation in colour and brightness, the principal axis of

the within-class covariance always tended to be parallel to µ(2)−µ(1) though again with

some variation from image to image.

Issues concerning the convergence of the Otsu algorithms were addressed next, in particular by

exploring the basins of attraction of the algorithms in the two-class case.

(v) In one-dimension the basin of attraction of the Otsu algorithm could be studied by an

exhaustive search of all possible initialisations, essentially by evaluating the between-

class variance σ2
B as a function of the threshold T . It was found that σ2

B and thus similarly

the Fisher discriminant σ2
B/σ

2
W typically had a single maximum. The basin of attraction

from which all initialisations of the algorithm converged to this maximum thus covered

the complete range of intensities and the algorithm never failed to produce to a good

segmentation of the RBC pixels.

(vi) In order to characterise the behaviour of our Otsu 3D algorithm, we took advantage of

the fact that each iteration comprised two stages: application of the Otsu algorithm to the

data projected onto the single dimension of the current estimate of the feature direction

a followed by an update of a. Given behaviour of the Otsu algorithm as in (v) above and

the fact that the 3D algorithm commences by selecting an initial a, our Otsu 3D algorithm

was characterised by studying how different choices for the initial direction of the feature

vector affected its behaviour. It was shown that a large fraction of the choices for the

initial direction of a covering most of the unit sphere led to successful segmentation of

the RBCs in a typical thin-film microscope slide image. Since the segmentation was

successful when the direction of a was chosen deterministically from the first mode p(1)

of a PCA analysis, evidently p(1) lay within this basin of attraction.

(vii) In order to help understand why the Otsu algorithms worked well on a variety of data,
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in particular on images of noticeably different colours, we studied the invariance prop-

erties of the criteria, solutions and of the algorithms derived therefrom. In one dimen-

sion, the criteria, solutions and algorithm were all found to be invariant under affine

transformations of the feature space. In higher dimensions, the criteria and generalised

eigensolutions are invariant provided the feature matrix A itself transformed appropri-

ately according to 5.13. It was shown explicitly that the discriminating feature direction

â transformed in the required manner. The iterative stages of our Otsu 3D algorithm

were thus invariant but initialisation via the PCA analysis was found only to be invariant

provided the transformation matrix M was proportional to an orthogonal matrix. This

strongly constrains the form of the colour transformations for which our algorithm is

completely invariant and unfortunately excludes the most common types for which M is

diagonal but not isotropic. However, it was noted that successful segmentation may still

be obtained under such transformations (and more general ones) if the PCA initialisation

remains within the required basin of attraction of the algorithm.

Finally, with these properties of the algorithms in mind, a method was discussed for char-

acterising the variability of the image data.

(viii) It was argued that a probabilistic distance measure should be used as such measures,

unlike image alignment, do not depend on availability of a successful segmentation. It

was argued that a Kolmogorov distance between the probability density functions (pdfs)

of two datasets should be used for this purpose as it is a dimensionless number in the

range 0 − 2. It was shown how the Kolmogorov distance may be generalised to include

not only the direct comparison of the distribution of one dataset with another but also to

allow first for an affine transformation of one dataset in order better to align it with the

other.

In summary, the analysis described in this chapter gives us confidence in the application of

the original Otsu algorithm and our extended Otsu 3D algorithm to the segmentation of RBCs

in images of blood, thin-film slides. It is thus appropriate to press on and, in the next chapter,

to explore how these algorithms might further be used to count the total number of RBCs, to

explore how they might be used to distinguish healthy and infected RBCs and thus ultimately,

via the number of cells infected with parasites, to determine the parasitemia of a blood sample.



Chapter 6

Counting RBCs, Detecting Infections and

Estimating Parasitemia

Having a system that can automatically detect RBCs in an image of a thin-film slide is only of

mild interest and, unless possibly it were used as a tool to aid a human observer, on its own not

of much practical significance. Of greater interest would be a system which could automatically

detect RBCs, count them and determine whether the cells were infected or not. As noted in the

review, chapter 2 such a system would be useful in laboratory work to relieve staff of a repetitive

and time consuming task in determining the degree of infection or parasitemia of a sample. In

the field, an automatic system could be used for similar purposes, or even to determine the type

of malaria infection, though we recall that for detecting whether a patient is infected thick-film

slides have greater sensitivity (section 2.3) and that determining the type of parasite infecting a

RBC may also require recognizing the stage of its life-cycle (section 2.3.1) and [175]). In this

chapter we explore to what extent the discrimination approach adopted in this thesis might be

used to count RBCs and report some preliminary work on similarly determining whether RBCs

are infected or healthy. We begin with the former.

6.1 Counting RBCs

Review of the literature (chapter 2, section 2.3.4) indicates that there are two fundamentally

different ways of counting RBCs. One approach (cf. [165]) would be to make a statistical

estimate of the number of RBCs from the number of RBC pixels which, following the results

reported in chapter 4 we would take from the segmentation produced by either the 1D Otsu

algorithms or by our extended Otsu 3D algorithm.

The alternative is to separate RBC objects and to count the number of cells they represent.

In addition to distracting artefacts in the plasma the main complication in this case, if we avoid

problems of over segmentation (cf. section 2.3.4), is that RBCs which are close to each other
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or touching may present as a single object comprised of two or more cells. Previous authors

have worked hard to overcome such problems with Tek, in particular [175], employing a battery

of techniques including granulometry, a minimum area watershed transformation and a radon

transform to obtain objects having the expected RBC radius. The advantage of counting indi-

vidual RBCs is that, if they can be identified as healthy or infected, the counts may be used

to determine the parasitemia. There are several reasons why a statistical, pixel-based approach

cannot be extended to estimating the number of infected RBCs. First, our preliminary work to

be discussed below (sections 6.2 and 6.3) indicates that attempts to segment parasite pixels are

somewhat variable and of unknown quality. Secondly, there tends to be false positives in the

background and also possibly many false negatives where stained pixels should have been de-

tected inside infected RBCs. Finally, the proportion of such errors in comparison to the number

of true-positives is unknown and variable from image to image, owing to inter alia the stage

of the life cycle of the parasite infection. This destroys any hope of a applying a statistical

correction to counts of infected pixels for estimating the number of infected RBCs. However,

it leaves open the possibility that if infected RBCs can be identified the number of them might

still be estimated statistically from the total number of pixels belonging to the corresponding

image objects.

6.1.1 Further use of the Otsu algorithm

Although Tek’s approach to RBC counting seems to work well within the context of the overall

system he developed, it is not well-suited to our approach and seems overly complicated. As

we have seen, our segmentation of RBC pixels is very good, and running a straightforward

connected components algorithm on the segmentation, isolates many individual RBCs as shown

in figure 6.1. However, it can be seen that some objects represent clusters of two or occasionally

three RBCs. In figure 6.1 (c) we show a histogram of object sizes. This has a very simple peak

structure which suggests that an Otsu algorithm might be used to separate and label the objects

into single RBCs, doublets, triplets etc.. Unfortunately, the extent feature histogrammed in

figure 6.1 isn’t very suitable for this purpose. Not only are there too few doublet and triplet

RBC clusters to produce easily discernible peaks but, as we shall see below in contrast to the

object area A, there is no simple, ideal relationship between the extents of objects representing

singlet, doublet and multiplet RBC clusters. However, given a suitable one-dimensional feature

space the first thought would be to use the algorithm with C − 1 thresholds or the equivalent

C-means algorithm but there are two complications.

First, we do not know how many RBCs are in the largest contiguous clusters – and there
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could be artefacts which produce objects larger than the biggest cluster of adjoining RBCs.

White blood cells caused problems of this kind in the work carried out at the University of

Westminster as mentioned in section 2.3.1. Such artefacts would be expected to be lighter than

the blood plasma and therefore should not be segmented amongst the putative RBC pixels in

our system but irrespective of this the number of classes C remains unknown.

Secondly, the area of a pair of contiguous RBCs is expected to be approximately twice that

of a single cell, that of a triplet three-times etc. so there ought to be some kind of constraint

on the corresponding means µ(J) produced by such a segmentation. If the cluster comprised

of objects with the smallest areas has mean µ(0) (this class corresponds to small artefacts since

RBCs near the image boundary and only partially within the field of view are excluded by

rejecting objects wholly within a border 81 pixels wide), that comprised of singlet RBCs has

mean µ(1), etc. and that comprised of the largest objects has mean1 µ(C − 1) and if the

relationship between the areas of singlet RBC objects, doublets, triplets etc. were ideal, such a

constraint might be expressed as:

µ(J) = Jµ(1) for J = 2 · · ·C − 1. (6.1)

One could try to develop a version of the multi-threshold Otsu algorithm to accommodate such

a constraint. For example, if we assume that the largest clusters are doublets the process of

minimising:

min
T1,T2

{
σ2
W + λ[2µ(1)− µ(2)]

}
(6.2)

is at first no more complicated than the derivation in appendix A especially as, with appropriate

adjustment of the class labels J , we can use the fact that

∂σ2
W

∂TJ
= −

∂σ2
B

∂TJ
. (6.3)

The result is:

p(T1)[µ(1)− µ(0)][2T1 − (µ(1) + µ(0))] + 2λ
p(T1)

Z(1)
[µ(1)− T1] = 0

p(T2)[µ(2)− µ(1)][2T2 − (µ(2) + µ(1))]

+ λp(T2)

{
2[T2 − µ(1)]

Z(1)
− [µ(2)− T2]

Z(2)

}
= 0 (6.4)

in which Z(0), Z(1) and Z(2) indicate the fractional class memberships like the variables in-

troduced in 4.8 section 4.1.1. Equations 6.4 are to be solved simultaneously with the constraint

µ(2) = 2µ(1). (6.5)
1The class labels are chosen here so that the class of objects representing a contiguous cluster of c RBCs has

mean µ(c) rather than being labelled as in section 4.1.4 or in appendix A.
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(a)

(b)

(c)

Figure 6.1: The thin-film slide image from figure 4.12 (a) with below (b) a colour-coding of

the objects obtained as 4-connected components from the segmentation shown in figure 4.12

by means of the Otsu 3D algorithm. A histogram of the object sizes obtained as the extremal

x and y extents of each object is shown bottom (c). Objects in the periphery of the image are

excluded so the peak at the left represents small artefacts.
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The Lagrange multiplier λ may be eliminated from 6.4, but the result is complicated, explic-

itly bilinear in T1, T2, and does not seem to lead to anything with the simplicity of an Otsu

algorithm. This does not seem a promising approach.

Furthermore, it may be argued that applying constraint 6.1 in an exact manner is not appro-

priate. We might therefore favour imposing 6.5 as an approximate, soft constraint via a penalty

term and (say):

min
T1,T2

{
σ2
W + λ[2µ(1)− µ(2)]2

}
. (6.6)

However, even though the resulting equations are explicitly linear in T1, T2 and are easily solved

for the thresholds in an ‘Otsu-like’ form, we do not advocate this approach as λ is then an

additional parameter whose value has to be specified.

6.1.2 Recursive use of the Otsu algorithm with checks

A simpler approach is to use the Otsu algorithm recursively and to use relationship 6.1 to check

whether the results are reasonable. We thus propose that:

(0) The area histogram is segmented into three classes by recursive application of the 1D

Otsu algorithm with:

(i) a first application of the algorithm defining a threshold T1 with small artefacts with area

A < T1 with mean µ(0) and larger objects with area A > T1 with mean µ(A > T1),

(ii) a second application of the Otsu algorithm to the histogram above T1 defining a thresh-

old T2 with putative singlet RBC image objects with T2 > A > T1 with mean µ(1)

and putative multiple RBC image objects with area A > T2 with mean µ(2) that are

expected to be mostly RBC doublets and some occasional RBC triplets and perhaps, very

occasionally, larger clusters of four or more adjoining cells.

As usual, according to step (i) above:

T1 =
1

2
[µ(0) + µ(A > T1)] and T2 =

1

2
[µ(1) + µ(2)]. (6.7)

Ideally:

µ(0) u 0 and µ(2) u 2µ(1) (6.8)

with, since these objects are supposedly RBC doublets with occasional RBC triplets or larger

clusters of adjoining cells, the expectation that:

µ(2) ≥ 2µ(1). (6.9)
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However, if the thresholds are not correct we may have µ(2) < 2µ(1) which is most likely to

happen if T2 is incorrect. Finally, we note that it follows from 6.7 and 6.8 that:

T2 u 3T1 and µ(1) u (T1 + T2)/2. (6.10)

The image object area spectra have substantial gaps between the small artefacts, single

RBC objects, and the clusters of adjoining RBCs where p(A) = 0 as illustrated in figure 6.2.

The thresholds T1 and T2 are expected to lie in these gaps. Furthermore, in the ideal case

where µ(0) = 0 and µ(2) = 2µ(1) and there are few doublet and no triplet or larger clusters

of adjoining RBCs, T1 u 0.5µ(1) and T2 u 1.5µ(1). We thus further propose that an image

object of area A is labelled as an s = 1, 2, 3.... singlet, doublet or triplet RBC etc. according to

s = round(A/µ(1)). (6.11)

The second relationship in 6.10 could also be used to label objects as singlet, doublet, triplet

RBCs etc. according to s = round(2A/(T1 + T2)) but, given the way the area data is dis-

tributed, the mean µ(1) is likely to be a less sensitive estimate than the thresholds T1 and

especially T2 so 6.11 is preferred.

The procedure described above is illustrated for each of the three images shown in figure

5.1. First, in figures 6.3 and 6.4 we show the result of a recursive application of the Otsu

algorithm to histograms of the areas of image objects to reject small artefacts (class 0) and to

label singlet (class 1) and doublet (class 2) RBCs.

Labelling of the image objects in the examples above seems to be quite good but there is

scope to make the process much more rigorous and to check that it is reliable.

6.1.3 Reliability of RBC cluster labelling and counts

The discussion in the previous section provides a number of tests which may be carried out

to check whether the procedures described above work properly in practice and are likely to

produce accurate cell counts. First, we may test the following numerical relationships which

follow from equations 6.7 – 6.10:

0 < t1 = µ(0)/µ(1)� 1, (6.12)

0 < t2 = (µ(2)/2µ(1))− 1� 1, (6.13)

0 < t3 < |3T1/T2 − 1| � 1. (6.14)

Ratio t1 can never be negative and we expect it will almost always be small. It is therefore not

a very strong test. However, if it were found that t2 were negative and |t2| were not� 1 this

would be a very strong indication that the procedure is not working properly.
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(a)

(b)

Figure 6.2: Histograms of the areas of the objects segmented in image number 1 of figure 5.1

as putative RBCs using the Otsu algorithm on the intensity. In (a) the histogram is depicted

by showing as data points the heights of the histogram bins for objects of area A > 2 so as to

allow the cluster of data points for objects representing singlet RBCs around A = 3500 to be

visible together with the much smaller clusters for doublets and triplets around A = 7000 and

above A = 10500 respectively. In (b) all the histogram bin values are plotted as a graph as a

function of the rank of non-empty bins. In this representation, peaks for singlet, doublet and

triplet clusters of RBCs are barely visible, but the peak near A = 0 for objects representing

small artefacts is clear. Empty bins are ignored so gaps in the histogram where p(A) = 0 do

not appear in this representation.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Intensity-based segmentations of the three images from figure 5.1 showing for

each image 1 (top), image 4 (middle) and image 45 (bottom): left – the segmentation of pixels

putatively belonging to RBCs, and right – the corresponding 4-connected image objects labelled

as singlet, or doublet RBC clusters by a second recursive application of an Otsu algorithm to

the histogram of object areas as described in the text. Objects in the periphery of the image

which could include only partially visible RBCs are excluded as shown by the borders images

on the right.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Left – colour-based segmentations of the three images obtained by means of our

Otsu 3D algorithm and, right – the corresponding labelling of 4-connected objects as singlet or

doublet RBC clusters as in figure 6.3.
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Second, we can check that the labelling s of image objects as singlet RBCs, doublets,

triplets etc. is consistent with the thresholds T1 and T2. Ideally:

s = 0 ∀ objects with A < T1, (6.15)

s = 1 ∀ objects with T1 < A < T2, (6.16)

s ≥ 2 ∀ objects with T2 < A. (6.17)

Since µ(0) u 0 the first relationship is very unlikely not to be satisfied. The others however are

more stringent tests, in particular as to whether the second threshold T2 is erroneous. Thus, if

O is the total number of putative RBC image objects present (i.e. the number with A > T1) and

we count the number OIL of image objects for which any of 6.15 do not hold and thus may be

said to be inconsistently labelled, we have the following additional labelling check:

tL = OIL/O � 1. (6.18)

Finally, in the spirit of the MalariaCount system developed by Sio et al [165] we may also

use the average area of a RBC µ(1) to estimate the number of RBCs in an image statistically

according to:

Nstatistical = Npixels(A > T1)/µ(1) (6.19)

where Npixels(A > T1) is the number of pixels belonging to objects with area A > T1. This

may then be compared with the number of RBCs obtained by counting the cell clusters

Ncount =
∑
image
objects

s, (6.20)

and a test ratio:

tN = 2(Ncount−Nstatistical)/(Ncount+Nstatistical) (6.21)

formed2. As indicated above borders are used to exclude partially visible objects near the

periphery of the image in all estimates of the number of RBCs.

To illustrate these tests we apply them to the interpretation of the three images shown in

figure 5.1. Table 6.1 summarises the characteristics of these images interpreted via intensity

and colour-based segmentation of putative RBC objects whilst the results of the above tests

and statistical estimation of the numbers of RBCs are given in table 6.2. The labellings of the

image objects used for the cell counts in the table were shown in figures 6.3 and 6.4 for the

intensity-based and colour-based segmentations respectively.
2The test ratio is defined in this manner since neither Nstatistical nor Ncount is necessarily equal to the

ground-truth number of RBCs, N (say). Note also that O is not necessarily equal to the actual (ground truth)

number of RBCs N nor to either of the estimates Nstatistical or Ncount.
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Image #1 Image #4 Image #45

Image attributes used Intensity Colour Intensity Colour Intensity Colour

Segmentation algorithm 1D Otsu Otsu 3D 1D Otsu Otsu 3D 1D Otsu Otsu 3D

Segmentation characteristics

#pixels belonging to image objects 371633.0 372922.5 481871.0 463600.0 459166.0 456004.0

#(image objects) 276 255 584 668 280 262

µ 1346.5 1462.4 825.1 694.0 1639.9 1740.5

largest object area 11277.5 11307.5 11469.5 6993.5 8294.5 8194.5

Image object characteristics

T1 1922 1939 2070 1930 1712 1690

#pixels(A < T1) 5656.0 5551.0 7544.5 5293.5 3017.0 2645.5

#(image objects|A < T − 1) 180 160 469 549 146 127

#pixels(A > T1) 365977.0 367371.5 474326.5 458306.5 456149.0 453358.5

#(image objects|A > T1) 96 95 115 119 134 135

µ(0) 31.4 34.7 16.1 9.6 20.7 20.8

µ(A > T1) 3812.3 3843.8 4124.6 3851.3 3404.1 3358.2

T2 5648 5468 5844 4070 3469 3430

#pixels(T1 < A < T2) 335374.0 331084.0 411595.5 291904.5 239569.0 243323.0

#(image objects|T1 < A < T2) 92 90 107 83 78 80

#pixels(A > T2) 30603.0 36287.5 62731.0 166402.0 216580.0 210035.5

#(image objects|A > T2) 4 5 8 36 56 55

µ(1) 3645.4 3678.7 3846.7 3516.9 3071.4 3041.5

µ(2) 7650.8 7257.5 7841.4 4622.3 3867.5 3818.8

Table 6.1: Recursive application of the Otsu algorithm to the 4-connected objects obtained

from the three images: numbers 1, 4 and 45 shown in figure 5.1 interpreted via intensity and

colour-based segmentation of putative RBC objects.

It can be seen from the first four rows of data in the table that the characteristics of the

intensity and colour-based segmentations are similar for images 1 and 45 but somewhat different

for image 4. Comparison of the two segmentation methods is not included in the tests developed

above, but it is useful to note this difference for image 4 and that, as the values of the mean and

maximum areas of the image objects indicate, the difference is not confined to spurious small

objects. For example: close comparison of figures 6.3 (c) and 6.4 (c) reveals three image objects

in the top, right corner of the latter which are connected as a single, large object in the former

and two RBCs connected by a thin ‘peninsula’ of segmented pixels near the bottom, middle of

the former which are separate in the latter. This may be seen more clearly in figure 6.5 which

shows for image 4 at (a) the pixels in the intensity-based segmentation which are not included
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in the colour-based segmentation and at (b), the opposite.

If desired, a measure of the similarity of the two segmentations could be calculated [84]

as:

tIC =
2× |SI ∪ SC − SI ∩ SC |
|SI ∪ SC + SI ∩ SC |

(6.22)

where SI is the intensity-based segmentation and SC the colour-based segmentation. Even

without computing tIC we may note that according to the data in table 6.1 the corresponding

fractional differences in the number of pixels in the intensity nI and colour-based segmentations

nC are also quite different with 2(nI−nC)/(nI +nC) = 0.0386 for image 4 but only−0.0035

and 0.0069 for images 1 and 45 respectively. This difference in the two segmentations of image

4 indicates that there seems to be something difficult about this image that affects much of the

rest of the data in the table, in particular quantities dependent on the upper object area threshold

T2. The values inferred from the intensity and colour-based segmentations for this threshold

differ far more for image 4 than for the other two: 2(T1I − T1C)/(T1I + T1C) = 0.358 for

image 4 using a similar relative measure of comparison as against 0.032 and 0.011 for the other

two images respectively.

Image #1 Image #4 Image #45

Image attributes used Intensity Colour Intensity Colour Intensity Colour

Segmentation algorithm 1D Otsu Otsu 3D 1D Otsu Otsu 3D 1D Otsu Otsu 3D

Segmentation characteristics

Numerical checks:

t1 = µ(0)/µ(1) 0.009 0.009 0.004 0.003 0.007 0.007

t2 = (µ(2)/(2µ(1))− 1 0.049 -0.014 0.019 -0.343 -0.370 -0.372

t3 = |3 ∗ (T1/T2)− 1| 0.021 0.064 0.063 0.423 0.481 0.478

Cell cluster labelling check

# cells 101 101 124 124 138 138

# inconsistent object labels 0 0 0 31 53 53

tL 0.000 0.000 0.000 0.250 0.384 0.384

# cells inferred from # pixels

#pixels(A > T1)/µ(A > T1) 96.0 95.6 115.0 119.0 134.0 135.0

#pixels(A > T1)/µ(1) 100.4 99.9 123.3 130.3 148.5 149.1

tN 0.006 0.011 0.006 -0.050 -0.073 -0.077

Table 6.2: Data for the interpretation of the three images shown in figure 5.1 via intensity and

colour-based segmentation of putative RBC objects shown in figures 6.3 and 6.4.

Turning now to the five test quantities t1, t2, t3, tL and tN introduced above that are ap-
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(a)

(b)

Figure 6.5: (a) Pixels included in the intensity-based segmentation of image 4 shown in fig-

ure 6.3 (c) but not in the colour-based segmentation shown in figure 6.4 (c). (b) The opposite,

pixels included in the colour-based segmentation but not in the intensity-based segmentation.

As the numbers in the third row of table 6.1 indicate, for this image the intensity-based segmen-

tation is considerably more generous than the colour-based segmentation.
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plied separately to each segmented image we note from table 6.2 that all of these are small

for both segmentations of image 1 and that they are all similarly small for the intensity-based

segmentation of image 4. The tests thus give no reason to doubt either interpretation of image

1, nor that of image 4 via the intensity-based segmentation. For image 45 and the colour-based

interpretation of image 4, however, only t1 is small with all four other test parameters taking

absolute values approximately a factor of 10 or more larger than they did in the previous cases.

It can only be concluded that these interpretations are not reliable and, since t1 was acceptably

small, that the source of error is likely to be associated with the determination of the threshold

T2.

6.1.4 Analysis of between-class variances

Analysis of the behaviour of the between-class variances σ2
B as a function of the thresholds

confirms the above. First we note that, as illustrated in figures 6.6 and 6.7 respectively for the

intensity and colour-based segmentations of image 45, at the first level of recursion when the

lower threshold T1 is being determined in order to eliminate spurious, small objects from the

segmentations, σ2
B has a broad plateau in the lower half of the range of image object areas A.

The threshold T1 determined by the Otsu algorithm is located within this plateau but to see

this as a well-defined maximum of the between-class variance it is necessary to plot σ2
B as a

function of the rank of the object areas A. This mapping is monotonic and does not create new

extrema but distorts the ordinate so that it is clear where the maximum lies.

The behaviour of this between-class variance is similar for the other two images. Using the

Otsu algorithm to determine T1 thus works well and small, spurious objects may be successfully

eliminated from the segmentations.

In section 6.1.2 the Otsu algorithm was then used again on remaining objects with areas

A > T1 to determine the second threshold T2 and the means µ(1) and µ(2) of putative singlet

and (mostly) doublet RBCs. In this case, the between-class variances for image 45 show mul-

tiple extrema which are rather more pronounced when the colour-based segmentation is used

(figure 6.9) than when the intensity-based segmentation is used (figures 6.8) . For this image,

the upper thresholds T2 = 3469 and 3430 (Table 6.1) determined by the Otsu algorithms corre-

spond to the local maxima of the between-class variances at low values of the thresholds – best

(but even then, only just) discernible in figure 6.8 (b) and figure 6.9 (b) between histogram bin

ranks 70− 71 and 77− 78 respectively.

It is clear that in this case the behaviour of the between-class variance is more complicated

than it was at the first level when T1 was being determined. Inspection of the numerical values



6.1. Counting RBCs 160

(a)

(b)

Figure 6.6: Between-class variances of the object areas at the first level for image 45 where the

lower threshold T1 is being determined using the intensity-based segmentation of the image.

σ2
B is shown as a function of the threshold, top (a); and with the threshold mapped onto the rank

of the image object area bins in the histograms, bottom (b).
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(a)

(b)

Figure 6.7: Between-class variances of the object areas at the first level for image 45 where the

lower threshold T1 is being determined using the colour-based segmentation of the image. σ2
B

is shown as a function of the threshold, top (a); and with the threshold mapped onto the rank of

the image object area bins in the histograms, bottom (b).
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(a)

(b)

Figure 6.8: Between-class variances of the object areas at the second level for the intensity-

based segmentation of image 45 after removal of spurious, small objects. σ2
B is shown, top (a),

as a function of the threshold for T2 > T1 and, bottom (b), with the threshold mapped onto the

rank of the image object areas for A > T1.
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(a)

(b)

Figure 6.9: Between-class variances of the object areas at the second level for image 45 after

removal of spurious, small objects. The second, upper threshold T2 is being determined for

objects segmented using the colour-based segmentation of the image. σ2
B is shown, top (a), as a

function of the threshold for T2 > T1 and, bottom (b), with the threshold mapped onto the rank

of the image object areas A > T1.
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reveals that in both the intensity and colour-based interpretations of image 45 at this second level

of recursion σ2
B has at least five extrema as summarised in table 6.3. In both cases these extrema

are alternately maxima and minima with, in figure 6.9 (b) the final and highest maximum at the

end of the range. The three intermediate extrema are weak and, indeed, there may be other

pairs of very weak extrema which we ignore in regions where σ2
B is flattish – hence we said

“at least five extrema” above. In both cases the Otsu algorithm produces a threshold (table 6.1)

corresponding to (in fact probably owing to the sparseness of the data just below) the first

maximum at the lowest value of A in table 6.3. However, it can be seen from table 6.3 that the

highest maximum of the between-class variances occurs at the extrema at the largest values of

the object area A given. Detailed inspection of the object area histograms reveals that, again

because of the sparseness of the data, these correspond to the areas of almost the largest image

objects found in the segmentations (see table 6.1 for comparison). In contrast, for image 1

where both the intensity and colour-based interpretations appear to be successful, the between-

class variances at the second level are much simpler with only a single maximum in each case

near the largest values of the object areas A (figure 6.10).

Intensity-based Colour-based

rank(A) A σ2
B × 10−5 rank(A) A σ2

B × 10−5

71 3482 1.540 78 3470 1.459

76 3513 1.535 95 3586 1.392

103 3770 1.635 107 3702 1.404

114 4060 1.622 120 4074 1.288

120 4424 1.950 126 5051 1.745

Table 6.3: Extrema of the between-class variances of image object areas at the second level of

recursion for the intensity and colour-based interpretations of image 45.

As the tests summarised in table 6.2 suggest, the colour-based interpretation of image 4

generates a between-class covariance which has multiple extrema similar to those found for

image 45. Placing the boundary between the RBC singlet and multiplet clusters near the largest

maximum of the between-class variances for the colour-based interpretation of image 4 and

both interpretations of image 45 leads to the results summarised in table 6.4 with the first three

test parameters, t1, t2, t3 small and cell counts and number estimates consistent to within ap-

proximately 1%. Admittedly the values of t2 and t3 for the colour-based segmentation of image

4 are larger than the largest of those in the first three columns of table 6.2 by approximately a

factor of two, but it can be seen by comparison with table 6.2 that the cell counts and number
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(a)

(b)

Figure 6.10: Similar results to those shown in figures 6.8 and 6.9 for image 1 when the be-

haviour of the between-class variances is simpler with only a single peak when either: (a) the

intensity-based segmentation of RBCs is used, or (b) the colour-based segmentation is used.
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estimates are the same as those obtained from the intensity-based interpretation.

Image #4 Image #45

Image attributes used Colour Intensity Colour

Segmentation algorithm Otsu 3D 1D Otsu Otsu 3D

Image object characteristics T2 from max(σ2
B)

T2 5005.2 4829.6 4965.8

#pixels(T1 < N < T2) 425696.0 437183.5 440113.5

#(image objects|T1 < N < T2) 114 131 133

#pixels(N > T2) 37731 18965.5 13245.0

#(image objects|N > T2) 6 3 2

µ(1) 3721.9 3337.3 3309.1

µ(2) 6288.5 6321.8 6622.5

Numerical checks

t1 = µ(0)/µ(1) 0.003 0.006 0.006

t2 = (µ(2)/(2µ(1))− 1 -0.155 -0.053 0.001

t3 = |3 ∗ (T1/T2)− 1| 0.157 0.063 0.021

Cell cluster labelling check

# cells 124 137 137

# inconsistent object labels 1 0 0

tL 0.008 0.000 0.000

# cells inferred from #pixels

#pixels(N > T1)/µ(1) 123.1 136.7 137.0

tN 0.007 0.002 0.000

Table 6.4: Interpretation of images 4 and 45 at the second level when the between-class vari-

ances have multiple extrema and the thresholds T2 are set to correspond to the largest maxima

of σ2
B .

6.1.5 Accuracy

In the previous section, two parameters tL and tN were computed to test the consistency of

the cell counting process and the extent to which it agreed with a simple statistical estimate

of the number of RBCs. These are internal characterisations of the algorithm’s performance

(cf. [195]) unlike characterisation of the algorithm’s accuracy which requires the external input

of the actual number of RBCs or ground truth, N , say. The latter is usually obtained manually,
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if possible via the intervention of a human expert who in this case would ideally be a medical

researcher. Unfortunately, as we remarked in chapter 2, medical researchers’ time is at a pre-

mium and best not spent on the tedious task of counting hundreds of RBCs in many samples.

Indeed, the main aim of this research was to develop a system capable of performing tedious

cell counting tasks automatically and thereby saving much time in obtaining the parasitemia of

a sample. In counting the number of RBCs visible in an image, one has to ignore cells that

are partially visible near the periphery of the image, distinguish RBCs from artefacts in the

plasma, and decide how many cells may be in a cluster of adjoining RBCs. These tasks are

fairly straightforward though the last can sometimes be a little tricky when cells overlap or are

rather misshapen. Even so, and in particular with the help of the software tools described in

chapter 3, section 3.2.1 counting the number of RBCs in a sample is a relatively straightforward

task that does not require the full expertise of a medical researcher. To illustrate this, counting

the RBCs was therefore carried out on the three images shown in figure 5.1 by the author as ‘de-

veloper’ after a period of training and supervision by medical collaborators. Such ground-truth

counts are given in table 6.5 where they are compared with the reliable algorithm counts taken

from tables 6.2 and 6.4 – i.e. from the first three columns of the former and the three columns

of the latter.

Image #1 Image #4 Image #45

Image attributes used Intensity Colour Intensity Colour Intensity Colour

Segmentation algorithm 1D Otsu Otsu 3D 1D Otsu Otsu 3D 1D Otsu Otsu 3D

user count # cells 100 120 137

# cells 101 101 124 124 137 137

#pixels(A > T1)/µ(1) 100.4 99.9 123.3 123.1 136.7 137.0

Table 6.5: Reliable cell counts for images 1, 4 and 45 compared to counts made by the author as

described in the text. In this table whenever there were multiple maxima in the between-class

variance for setting the threshold T2 for classification of image objects according to their areas,

T2 was set to correspond to the largest maxima of σ2
B .

It can be seen that, with the exception of image 4 where there is an over-estimation of 4

cells representing a 3% error, these ‘reliable’ cell counts are not only internally consistent, but

also accurate to within 1%. Given that the counts are in error by a few % only for image 4 it

is useful to recall that for this image there were difficulties in producing intensity and colour-

based segmentations of pixels belonging to RBCs consistent with each other (cf. remarks in

section 6.1.3) as well as in producing reliable cell counts (section 6.1.4). Finally, it may be noted
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that the reliable RBC counts in the last three columns of table 6.5 for image 45 and the colour-

based interpretation of image 4 do not differ much (by less than 1%) from the initial counts (#

cells) in the corresponding last three columns of table 6.2 but that the statistical estimates of

the number of cells (#pixels(A > T1)/µ(1)) do differ significantly (by up to 9% for image 45).

Both types of cell numbers for the first three columns are of course identical.

6.2 Parasite detection

Determining whether RBCs are infected or healthy requires at least a three-way classification

of the pixels in a thin-film microscope slide image – whether they correspond to the background

(plasma or possibly an artefact or WBC); to a healthy part of a RBC; or to a stained parasite.

The only simplifications are that, for determination of the degree of infection or parasitemia,

only parasites within RBCs are of interest (i.e. before the cell is disrupted, section 1.2) and that

there is almost never more than one parasite within an infected cell. Classification of pixels as

belonging to a healthy part of a RBC or to a parasite infection may thus be made as a binary

decision on each of the pixels which have already been segmented from the background in a

hierarchical architecture (section 4.2.6) as an alternative to attempting the multi-class discrimi-

nation directly which is not likely to be a viable approach.

Typically, although some 40 − 50% of the pixels in an image may belong to RBCs only

a few % of the RBCs may be infected and, unless almost mature, a parasite may only occupy

a small fraction of the area of a RBC. The number of pixels in an image belonging to stained

parasite infections may thus be very small compared to the 1.3M pixels in an image – say

1/1000th given the remarks above which would make the infected pixels a very small minority

class indeed. Detecting such pixels and subsequently determining whether they lie inside a

RBC and that the cell is infected and reliably counting the small number of such cells are thus

all quite difficult tasks. Only preliminary work has been carried out and satisfactory solutions

that would, for example, enable an accurate estimate of the parasitemia to be made have yet to

be found. Nevertheless, in the remainder of this chapter we describe this preliminary work as it

may provide a useful guide to further research.

6.2.1 A structural approach?

In addition to their propensity to favour balanced classes unsupervised, multi-class algorithms

are very general. They therefore make little or no use of any regularities or structure in the

problem. In image processing and computer vision, the aim is often to utilise spatial structure

but we have seen that, in particular for the parasite infections, it can be quite difficult to encap-

sulate such structure. However, when the feature space is one-dimensional and the input is a
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histogram, some structure of the histogram may be characterised and utilised in a quite general

manner. For example, inspection of the intensity histograms indicates that pixels corresponding

to stained parasite infections are deep in the lower tail of the histogram.

Consider image number 1 shown in figure 5.1 (a). The Otsu algorithm applied to the inten-

sity histogram of this image shown in figure 6.11 (a) may be used to segment pixels belonging

to RBCs (b) with a threshold T = 155. Background pixels above this threshold may be re-

moved and the peak in the remainder of the histogram easily found automatically – in this case

at IP = 134. If we then reflect the threshold T about IP and retain only the tail of the histogram

below IP − (T − IP ) = 113 we are left (figure 6.11 (c)) with a cluster which appears (see fig-

ure 6.12 (a)) to include pixels that may belong to parasite infections but also some others. A

further application of the Otsu algorithm to this histogram produces a threshold of T = 73 and

leaves only pixels very deep in the tail of the histogram that seem, in addition to some artefacts

in the background plasma, to be predominantly stained parasite pixels as shown in figure 6.12

(b) and (c).

This example shows that there are approximately 905000 pixels in the background plasma

and ∼ 433800 pixels in the healthy parts of the RBCs but only ∼ 7200 pixels corresponding

to putative stained parasite pixels. Some of these appear to be artefacts but the numbers3 nev-

ertheless confirm and emphasize the smallness of the parasite pixel class and the difficulty of

segmenting it.

It would also seem from the above that such an approach might work more generally since

to determine the parasitemia it is only necessary to detect malaria infections within RBCs and

thence to decide whether a cell is infected or not. A crude segmentation of parasite pixels

within a RBC might thus suffice, rather than the detailed segmentation that would be required

for determining the size, shape and other characteristics of a parasite in order to classify the type

of infection and stage of its life cycle [175, 176]. Furthermore, since the Giemsa stain of the

parasite is dark blue, one could also envisage processing individual colour channels in a similar

manner and possibly combining information from two or more colour channels. However, the

approach is rather ad hoc – there is no reason to expect the histogram to have the symmetry

proposed – and thus potentially fickle and will only be used for comparison with other methods

to be discussed below based on recursive application of Otsu algorithms.

3The number of stained pixels detected is ∼ 0.5% of the image pixels and ∼ 1.7% of putative RBC pixels.
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(a)

(b)

(c)

Figure 6.11: Intensity histogram (a) of image number 1 shown in figure 5.1 (a) for which the

intensity-based RBC pixel segmentation was shown in figure 6.3. The peak (b) of the lower

part of the histogram at I = 134 and (c) the tail at values of I < 113 selected from structural

considerations as described in the text.
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(a)

(b)

(c)

Figure 6.12: Results of the ‘structural segmentation’: (a) pixels segmented from the tail of the

histogram selected in figure 6.11(c); (b) pixels remaining with intensity below I = 73 after a

further application of the Otsu algorithm; (c) as in (b) but superimposed on the original image

shown in 5.1.
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6.3 Recursive application of the Otsu algorithms

For the purpose of determining the parasitemia only parasite infections within RBCs are of

interest. Recursive application of the Otsu algorithms in a hierarchical, multi-classifier archi-

tecture would thus seem an approach worth exploring – and one that would help overcome

the difficulties caused by the fact that parasite pixels usually belong to a very small, minority

cluster. The three images shown in figure 5.1 are used to illustrate the approach.

6.3.1 Recursive application of the 1D Otsu algorithm

We consider first recursive application of the Otsu algorithm to the image intensity histogram as

illustrated in figure 6.13. The first Otsu threshold T = 155 is of course just what we have seen

previously for this image corresponding to a value in the dip between the background and RBC

peaks, but the second at 130 is not far from the peak in the RBC pixels at IP = 134 identified

previously in section 6.2.1 whilst the final threshold at 92 is somewhat higher than the final

threshold of 73 determined structurally.

A point to note from figure 6.13 is that the Otsu algorithm partitions the histogram into

two classes even when the histogram is mono-modal. This is because, regarded as a function

of the threshold T , the between-class variance σ2
B has at least one peak at some intermediate

value of T as shown in figure 6.14. In fact a little algebra shows this is true even when the

histogram is constant and there is no structure whatsoever to suggest a segmentation into two

or more classes and one may also recall that the C-means algorithm similarly always partitions

a dataset in C clusters whatever its structure may be. In some respects the C-means algorithm

should therefore perhaps better be regarded as providing C representatives of a dataset as in

vector quantisation [115, 108].

The main point, however, is that the between-class variance σ2
B is bimodal at the second

level of recursive application of the Otsu algorithm. It is not obvious what characteristics of the

histogram shown in figure 6.13 (a) produce this bimodality, but we note that at the third level

of recursion σ2
B is again monomodal though with a broad, more structured peak than at the first

level. We have previously seen bimodality – and indeed multimodality – of the between-class

variance in section 6.1.4 but in the context of classifying image objects according to their area

when there were gaps in the feature histograms. In contrast, there are no gaps in the intensity

histograms here. Results for the three images shown in figure 5.1 are shown in figures 6.15,

6.16 and 6.17. The final segmentation (c) for the first image, number 1, is quite similar to the

structural segmentation shown in figure 6.12 (b) but, owing to the higher threshold, rather more

generous with a few more pixels selected.



6.3. Recursive application of the Otsu algorithms 173

(a)

(b)

(c)

Figure 6.13: (a) the part of the intensity histogram below the first Otsu threshold of T = 155

for image 1 whose full histogram was shown in figure 6.11 (a); (b) the part of the histogram

below the second threshold at 130 obtained when the Otsu algorithm is applied to the histogram

in (a), and (c) the tail of the histogram below a threshold of 92 obtained from histogram (b) for

comparison with figure 6.11 (c).
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(a)

(b)

(c)

Figure 6.14: The between-class variance σ2
B as a function of the threshold T : (a) for the image

intensity histogram of figure 6.11 (a) which has two distinctive peaks; (b) for the histogram

below the threshold of T = 155 shown in figure 6.13 (a); and (c) for the histogram below

T = 130 shown in figure 6.13 (b). In neither figure 6.13 (a) nor (b) is there structure in the

histograms to indicate that they should be partitioned into two classes.
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(a)

(b)

(c)

Figure 6.15: Recursive intensity-based segmentation of image number 1 shown in figure 5.1

using the Otsu algorithm: (a) the first application to produce a segmentation of RBC pixels

from the background; (b) a second application, and (c) the third application.
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(a)

(b)

(c)

Figure 6.16: Recursive intensity-based segmentation of image number 4 shown in figure 5.1

using the Otsu algorithm: (a) the first application to produce a segmentation of RBC pixels

from the background; (b) a second application, and (c) the third application.
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(a)

(b)

(c)

Figure 6.17: Recursive intensity-based segmentation of image number 45 shown in figure 5.1

using the Otsu algorithm: (a) the first application to produce a segmentation of RBC pixels from

the background; (b) a second application, and (c) the third application.
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6.3.2 Recursive application of the Otsu 3D algorithm

The extended Otsu 3D algorithm developed in Chapter 4, section 4.2.4 can be applied recur-

sively in a similar manner. Segmentations produced by three-fold recursive application of the

algorithm to the images shown in figure 5.1 are shown in figures 6.18, 6.19 and 6.20. It can

be seen from comparison with figures 6.15, 6.16 and 6.17 respectively that in this colour-based

segmentation rather more pixels tend to be selected at the second level of recursion than when

the intensity was used.

The only slight difference in the implementation of recursive use of the Otsu 3D algorithm

in comparison to that of the above recursive application of the one-dimensional Otsu algorithm

itself is that selecting which of the two classes partitioned at each step should be used in the

next step is a little more complicated. We can no longer in principle simply take the class which

is below threshold, say, as when the intensity and 1D Otsu algorithm were used above. At each

application of the Otsu 3D algorithm used to produce the results shown in figures 6.18 – 6.20

the minority class was nevertheless selected as described in section 4.2.5. The results seem not

unreasonable, but it should be borne in mind that it is much more uncertain when selecting the

minority class at the higher levels of recursion that the cluster containing the parasite pixels will

be the minority class than it was at the first level that RBC pixels would be the minority class.

Since stained parasite pixels are dark and few in number, three alternative possibilities

come to mind in addition to (i) selecting the minority class: (ii) selecting the class for which

the mean µ(J) is closer to the origin of the colour space, and (iii) selecting the class from

the side of the decision surface which contains the origin. Finally, since the stained parasite

pixels are dark blue a refinement of the above considerations would be: (iv) to take the class

for which µ̂(J).b̂ is the larger where b̂ is the unit vector (001)T along the blue colour axis. We

note that the second and third criteria above would be the same if the decision surface were the

perpendicular bisector of µ(2) − µ(1). Although none of these alternatives were implemented

in the preliminary work reported here, in practice all three of these criteria could be used with a

warning to be flagged and (say) the last to take precedence in the event of disagreement.

6.4 Degree of infection

At this stage no detailed, systematic evaluation of the approaches discussed in the previous

sections are available. However, though they are somewhat imperfect the preliminary results

reported in sections 6.2 and 6.3 indicate that it might be possible to use unsupervised algo-

rithms based on the Fisher discriminant to detect not only pixels belonging to RBCs, but also to

determine whether some of them belong to stained parasite infections. This suggests that it is
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(a)

(b)

(c)

Figure 6.18: Recursive segmentation of image number 1 shown in figure 5.1 using our extended

Otsu 3D algorithm: (a) the first application to produce a segmentation of RBC pixels from the

background; (b) a second application, and (c) the third application.
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(a)

(b)

(c)

Figure 6.19: Recursive segmentation of image number 4 shown in figure 5.1 using our extended

Otsu 3D algorithm: (a) the first application to produce a segmentation of RBC pixels from the

background; (b) a second application, and (c) the third application.
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(a)

(b)

(c)

Figure 6.20: Recursive segmentation of image number 45 shown in figure 5.1 using our ex-

tended Otsu 3D algorithm: (a) the first application to produce a segmentation of RBC pixels

from the background; (b) a second application, and (c) the third application.
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worth exploring how we might determine whether each RBC is healthy or infected and whether

we could subsequently adequately determine the degree of infection or parasitemia.

Before doing so, we note that, in the procedures for detecting parasite pixels, perhaps

we should use the outcome of the counting procedures established in section 6.1 to restrict

the pixels selected from the first application of an Otsu algorithm to belong only to image

objects representing singlet or larger clusters of adjacent RBCs. This would eliminate pixels

belonging to small artefacts but it is not obvious whether doing so would improve final results

for segmentation of parasite pixels. Making such a selection would be straightforward when

discriminants based on the intensity are used since stained parasite pixels are even darker than

pixels belonging to healthy parts of RBCs. Small, brighter artefacts inside RBCs are thus

not a problem and application of a mask derived from the counting procedures should suffice.

Unfortunately, because of the way orientation of the decision surface is affected by S−1
W , a

similar approach might not suffice when the Otsu 3D algorithm is used to segment pixels in

the colour space. In general, a procedure based on identifying pixels contained within the

boundary of a RBC might thus be required – which could, if desired, be implemented so as

to include as “within a RBC” any of the small, bright artefacts mentioned above that are not

currently classified as RBC pixels.

6.4.1 Determining whether a RBC is infected

In principle, we could say that any RBC which contained a parasite pixel was ‘infected’ but this

would be very susceptible to error owing to ‘false-positives’, i.e. whenever there were pixels

identified incorrectly as belonging to parasite infections4. For this reason and remembering that

parasite infections should be within RBCs, after some experimentation we chose to designate a

RBC object as infected according to one or the other of the rules below:

• there was a 4-connected cluster of at least 15 putative parasite pixels within a proximity

box of ±36 pixels of the centre of a RBC,

• there was a 4-connected cluster of at least 25 putative parasite pixels within a proximity

box of ±10 pixels of the centre of a RBC.

The former was first used for detection of parasite pixels by recursive application of the

Otsu algorithm to the image intensities (section 6.3.1) as shown in figure 6.21. Clusters of para-

site pixels selected by the procedure are marked by small, white squares, whilst cells identified

by medical experts as infected are enclosed in square boxes.
4cf. the approach adopted by Ross et al [151] discussed in the review for determining whether a sample was

from an infected patient.
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(a)

(b)

(c)

Figure 6.21: Results illustrating recursive application of the Otsu algorithm to the intensity for

the identification of infected RBCs. Significant clusters of 15 or more 4-connected parasite

pixels within±36 pixels of the centre of a RBC are indicated by small, white squares with cells

identified as infected by medical experts enclosed within boxes: (a) for image number 1, (b)

image 4, and (c) image 45.
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We show in figure 6.22 a similar result obtained via the structural approach described in

section 6.2.1 which utilises a lower threshold (73 cf. 92 for image number 1, 94 cf. 118 and 116

cf. 123 for images 4 and 45 respectively ) and thus produces slightly fewer putative parasite

pixels.

Recursive application of our Otsu 3D algorithm to colour data seems to be the most gener-

ous of our procedures for segmenting parasite pixels. Thus, when this approach (section 6.3.2)

was used clusters of at least 25 4-connected putative parasite pixels within a proximity box of

±10 pixels of the centre of a RBC as in the second rule above were selected as putative parasite

infections as shown by the small red squares in figure 6.23. For comparison, application of

the above “25 pixel cluster” criterion to segmentations produced by recursive application of the

Otsu algorithm to the image intensities produced the results shown in figure 6.24.

None of the above approaches seems very satisfactory. Not only do we have to overcome

the difficulty of detecting the very small minority class of infected pixels and that the stained

pixels may be very faint (see for example, figure 6.23 (c)), but also that there may be few

infected cells within an image. Furthermore, in using the pixels segmented as putatively be-

longing to parasite infections to identify infected RBCs we have to contend with the fact that

some of these pixels may be located very near to, or what appears at first sight to be just outside,

the boundary of a RBC. Medical experts tend to reject these as indicating infected cells (though

they occasionally may make mistakes as figure 6.23 (b) appears to show!). It was to reject

such pixels that the criteria for proximity to a RBC centre were introduced in the above. With-

out such criteria, the algorithms would produce many false-positive RBCs labelled as infected

when they were in fact healthy. Finally, we note that close inspection of the images reveals

that these pixels are frequently just inside protuberances on the boundaries of the image objects

segmented as RBCs. These protuberances are included within the areas of cells in the counting

processes and thus would not be removed at that stage, even if the robust counting procedure

were used prior to attempts to segment parasite pixels.

Though more research is evidently required to develop a way of detecting pixels belonging

to stained parasite infections and of reliably labelling RBCs which are infected, we attempted

to count the numbers of infected cells within all of the images in our database of 100. This

preliminary work using the structural approach was carried out before the robust and reliable

counting methods described in sections 6.1.2, 6.1.3 and 6.1.4 were developed. Multiple ‘hits’

of clusters of parasite pixels within a RBC (as can be seen for example in figure 6.21 (a) and

figure 6.23 (c) were ignored as, during the parasite life-cycle stages of interest for determining

the parasitemia, a cell almost never contains more than one parasite. Identification by medical
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(a)

(b)

(c)

Figure 6.22: Results from using the structural approach to segment parasite pixels for iden-

tification of infected RBCs. As in figure 6.21 significant clusters of 15 or more 4-connected

parasite pixels ±36 pixels of the centre of a RBC are indicated by small, white squares with

cells identified as infected by medical experts enclosed within boxes: (a) for image number 1,

(b) image 4, and (c) image 45.
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(a)

(b)

(c)

Figure 6.23: Illustrative results using recursive application of the Otsu 3D algorithm to colour

data and marking significant clusters of 25 or more 4-connected pixels within±10 pixels of the

centre of a RBC by small, red squares: (a) image number 1, (b) image 4, and (c) image 45. As

usual, cells identified as infected by medical experts enclosed within boxes.
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(a)

(b)

(c)

Figure 6.24: Illustrative results similar to those in 6.21 obtained by recursive application of

the Otsu algorithm, but with significant clusters of 25 or more 4-connected pixels within ±10

pixels of the centre of a RBC to indicate infected cells: (a) image number 1, (b) image 4, and

(c) image 45.
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Figure 6.25: A histogram, consisting of ten bins, of the numbers of infected RBCs found in

each of the 100 images in our database.

experts of infected cells in the 100 images in our database showed that, as the three sample

images, numbers 1, 4 and 45 illustrate, there were not many infected RBCs in each image – in

most cases less than 20 or so (Figure 6.25). Comparison of the computer counts of the number

of infected RBCs in each image as described above with counts of the number of cells identified

as infected by the experts is summarised in figure 6.26 and showed that this automatic counting

tended to underestimate the number of infected cells. Given the small numbers of infected

cells in each of the images it can be seen that these very preliminary computer counts of the

number of infected RBCs are not sufficiently accurate to warrant calculation of the parasitemia.

This was even though the ordinate in figure 6.26 is the net count in which false-positives and

false-negatives may cancel. The error would undoubtedly have cast the results in a poorer

light. In future research on the counting of infected RBCs it is important that detailed, separate

consideration of the numbers of true-positives and false-positives be included.

Given the unsatisfactory and ad-hoc nature of the current preliminary work it was, as

noted above, not worthwhile determining the degree of infection or parasitemia. In addition

to improving the algorithm used, we note that a reliable and accurate determination of the

parasitemia will also almost certainly require use of many images to provide a much more

extensive sampling of the thin-film slide and thus greater numbers of infected cells for the

estimation.
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Figure 6.26: A histogram, also consisting of ten bins, showing that in preliminary work com-

puter counts of infected RBCs tended to be under-estimates when compared to the counts made

by medical experts.

6.5 Summary, discussion and conclusions

This chapter has been focussed on determining the number of RBCs in an image and on detect-

ing whether they are healthy or infected with a malaria parasite. Successful implementation of

these two operations and their application to a large number of images taken from a single thin-

film slide would enable the degree of infection or parasitemia to be determined by machine.

The work presented, however, is preliminary, relying for the most part on experiments carried

out on three example images from our dataset of 100: numbers 1, 4 and 45 chosen to illustrate

variations in the colour of the images, in the number of RBCs present, and in the number of

cells which were infected.

Motivated by the distribution of the object sizes obtained from the segmentation proce-

dures developed in chapter 4 we first considered how unsupervised algorithms based on the

Fisher discriminant might be further used to determine the number of RBCs in an image:

(i) Classification of image objects according to their areas either as small artefacts to be ig-

nored, or as clusters of singlet, doublet, triplet (etc.) RBCs was considered with particular

attention to the fact that the area of doublet cell clusters should be approximately twice

that of singlets, triplets three times, etc.. It was argued that it was better to employ such

facts as an internal check on the classification of the image objects rather than to employ

them as constraints on the optimisation of a discriminant.
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(ii) It was thus decided to use the Otsu algorithm recursively to classify the image objects

with a first application to removal of small artefacts and a second to classification of pu-

tative RBC objects as singlets or larger clusters of mostly adjoining doublet cells with

perhaps a few triplets and very occasionally larger multiplets. This was developed not

only to provide a means of counting RBCs from classification of individual RBC clusters

but also to provide a statistical estimate of the number of RBCs from their average area

as determined by the classification process. Furthermore, it led to development of three

numerical parameters t1, t2 and t3 whose smallness could be used as internal checks on

the performance of the classification process together with a fourth parameter tL whose

smallness would indicate consistent labelling of individual RBC objects. A fifth parame-

ter t5 was developed to quantify the difference between the RBC count and the statistical

estimate of the number of RBCs.

(iii) The first application of the Otsu algorithm to eliminate small artefacts was found to be

straightforward with the first parameter t1 as expected always small, but large values of

all the other parameters, in particular |t2| which was expected to be most sensitive and in-

formative, indicated problems with classification of RBC clusters for both segmentations

of image 45 and for the colour-based segmentation of image 4.

(iv) Analysis showed that, whereas for both segmentations of image 1 and the intensity-based

segmentation of image 4 the between-class variances of the putative RBC cluster object

areas were simple and the Otsu algorithm could be expected to work, for both segmen-

tations of image 45 and the colour-based segmentation of image 4 it was multimodal

with the largest variance occurring at the largest value of the object areas at which it was

extremal. Using this extremum to set the threshold for classification of image objects

as singlet or (mostly) doublet RBCs then gave consistent results with low values of all

five parameters t1, t2, t3, tL and tN . Unlike image intensity histograms which are usually

‘dense’, it was noted that histograms of image object areas have many ‘gaps’. If we re-

call equation 4.24 it appears that these gaps may be facilitating the multimodality of the

between-class variance of the object areas though, as the example of image 1 showed,

they do not always give rise to multiple extrema.

(v) After training by medical experts the number of RBCs in the selected images were

counted by the author as developer/user and compared with computer-based RBC counts

and statistical estimates obtained by the ‘reliable’ procedures summarised in (iv) above in

which all the internal performance characterisation parameters were satisfactorily small.
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Results for images 1 and 45 were almost perfect with errors of at most one cell in ∼ 100

or more whilst those for image 4 were in error by ∼ 3%.

(vi) No attempt has been made quantitatively to compare the intensity-based and colour-based

segmentations of RBCs though it was noted these seemed to be potentially most dissimi-

lar for image 4, the image for which the final RBC counts in (v) above were most in error.

It would seem that systematic comparison of the two RBC segmentation procedures de-

scribed in chapter 4 – one based on the image intensity, the other on its colour – could be

used to provide a further internal measure of confidence.

It thus seems that we have found a reliable and accurate way of using unsupervised al-

gorithms based on the Fisher discriminant to determine the number of RBCs produced by an

image segmentation procedure. The method requires a full, systematic evaluation for which

it would be best to use a recursive algorithm to find the largest maximum of the variance via

an exhaustive search. Such algorithms have been discussed previously in the literature (see for

example the text books [135] and [164]). The algebra underpinning a recursive algorithm that

would provide an efficient evaluation of σ2
B for an exhaustive search for the highest maximum

of the between-class variance when there are many gaps in the histogram was presented in ap-

pendix E. Such an implementation would certainly be required were this approach to be used in

practice.

In the following part of this chapter (sections 6.2, 6.3 and 6.4), we briefly explored the use

of the type of unsupervised algorithms considered in this thesis for detecting pixels representing

parasite infections and how such pixels might be used in deciding whether a RBC is healthy or

infected.

(vii) It was noted that stained parasite pixels have a distinctive dark-blue colour; that usually

only a small fraction of the RBCs are infected; and that, unless close to the end of its

life-cycle within a cell, parasites occupy only a small fraction of a RBC. Stained parasite

pixels are thus a very small, minority class comprised of ∼ 1% of the pixels in an image

or less and therefore difficult to detect reliably. Multiclass-algorithms were thus ruled out.

The Otsu algorithm applied to image intensity data and our Otsu 3D extension applied to

colour data were therefore used recursively. In each case, the smallness of the infected

pixel class meant that the algorithms had to be applied three times: once to segment RBC

pixels – then twice more, each time selecting the minority class, to segment putative

parasite pixels. Some alternative ways of selecting the appropriate class at each recursive

application of the Otsu 3D algorithm to colour data were discussed.
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(viii) In addition, for comparison with recursive application of the Otsu algorithms, it was noted

that structure of the RBC pixel peak in the intensity histogram could be used if followed

by further applications of the Otsu algorithm to select very dark, stained parasite pixels

from deep in the tail of the histogram.

(ix) It was not expected that any of the above techniques would produce an accurate seg-

mentation of parasite pixels but an approximate segmentation that, when combined with

appropriate rules for designating clusters of putative parasite pixels within RBCs as in-

dicative of infection, would be sufficient for deciding whether a RBC was healthy or

infected. Two rules setting different thresholds on the size of the cluster of pixels seg-

mented as representing a parasite infection and on its proximity to the centre of a RBC

were proposed.

(x) The three images, numbers 1, 4 and 45, were again used as explorative examples and

illustrative results presented for each of the three ways of segmenting stained parasite

pixels and subsequently using the two rules proposed in (ix) above to classify RBCs as

healthy or infected. Cells classified as infected were compared with those designated as

infected by expert medical researchers.

(xi) With such preliminary results for only three images, each containing only some∼ 3−10

infected RBCs, it was not possible to characterise the accuracy of the detection of infected

RBCs but it was noted that the structural approach was more stringent – i.e. in any given

image produced fewer putative stained parasite pixels – than recursive application of the

Otsu algorithm to the image intensities, which itself tended to be more stringent than

recursive application of the Otsu 3D algorithm to the image colour attributes. It could

also be seen that whichever of the above approaches was used there were instances of

both false negatives (infected cells classified as healthy) and of false positives (healthy

cells classified as infected). It was concluded therefore that none of the methods explored

was satisfactory and that none merited calculation of the degree of parasitemia.

(xii) In spite of the above, a net count of the number of infected cells was carried out for

each of the 100 images in our database using the ‘structural’ segmentation of stained

parasite pixels via location of the peak in the intensity histogram. Comparison with

counts obtained by expert medical researchers showed that this computational approach,

which was the most stringent of the methods explored for segmenting parasite pixels,

systematically under-estimated the number of infected RBCs. Since false positives and
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false negatives cancel in such a net count the results do not fully characterise performance

and are optimistic.

The preliminary results discussed in this chapter for detecting pixels representing parasite

infections and of classifying RBCs as infected or healthy are interesting but inconclusive. They

suggest that hierarchical application of unsupervised techniques based on optimisation of Fisher

discriminants might be made to work but evidently considerable research is needed in order to

develop such approaches further and to evaluate the extent to which they could be used to meet

the requirements of medical researchers for reliable computer counts of the number of infected

RBCs and ultimately determination of the parasitemia of the blood film on a slide. This will be

discussed in the concluding chapter.



Chapter 7

Summary, Conclusions and Discussion

In this chapter we briefly summarise the work reported in this thesis and the main conclusions

to be drawn from it, followed by a discussion of their significance and the need/opportunities

for further research.

7.1 Summary and Conclusions

Our work has focused on the automatic processing of images of thin-film microscope slides of

malarial infected blood in order to provide counts of the RBCs, to detect and label cells which

were infected with a malaria parasite, and if possible thence to calculate the degree of infection

or parasitemia.

(0) This is a very different aim from the detection of malaria infections in the field, ad-

dressed for example by Ross et al. [151] for which thick-film slides are probably more

sensitive [175], and the identification of the type of infection and, necessarily concomi-

tantly, the stage of the parasite life cycle within a cell, as studied most comprehensively

by Tek [175], the last of a series of several doctorate students with the group at the Univer-

sity of Westminster in the 2000s whose work was summarised in a paper in the Malaria

Journal in 2009 [176].

7.1.1 Background

The main conclusions to be drawn from the review and background work were:

(i) Around the time this thesis commenced, the work of Sio et al. [165], which used tradi-

tional image processing and neural network techniques together with a statistical method

for estimating cell counts, had focused similarly on counting RBCs and determining the

parasitemia. It was noted that neural network techniques are widely used in the process-

ing of images of biological samples, including in particular images of blood films and
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other thin-film sections, but given the lack of a reliable, large database of images anno-

tated by medical experts in the malaria application, our aim was to see to what extent

simpler, unsupervised methods could be utilised to similar ends.

(ii) In the late 1990s and early 2000s, Liu and Sclaroff [111, 112, 110, 113, 114] used flexible

models in a different application involving the analysis of blood, thin-film microscope

slide images for misshapen RBCs indicative of various medical conditions. In the malaria

application unless there is some other medical condition simultaneously present, RBCs

remain ideally round. The application of flexible models to our task was thus reviewed

and explored in chapter 3 via the simplest modelling approach, the flexible patch model

(FPM), as building such a model of a RBC required only cells selected by the author as a

‘semi-expert’ user irrespective of whether they were healthy or infected. Unfortunately,

application of the model in its active version, the APM, revealed that it was likely to

be difficult to detect RBCs with acceptable false positive and false negative rates and,

once again given the absence of a reliable, large database of annotated images that could

be used as training data, the flexible modelling approach was abandoned in favour of

unsupervised methods.

(iii) The simplest unsupervised criterion, maximisation of a Fisher discriminant, was chosen

as, in image processing it leads to the very simple Otsu algorithm for segmentation of an

image from its grey-level, intensity histogram. The Fisher discriminant has a long history

in pattern recognition though much of the theoretical detail, including its relationship to

the Otsu algorithm, is now buried in old and often neglected papers, including that by

Otsu [131], or in old or unfashionable and often inaccessible texts such as [45, 97, 178,

135, 164, 46] and, in particular [43] which is long out of print. Considerable detail of this

background was therefore given, where possible in mathematical appendices.

7.1.2 Application of Otsu algorithms to the segmentation of RBCs

Chapters 4 and 5 were devoted to the application and extension of Otsu algorithms to the seg-

mentation of RBCs in thin-film, microscope slide images. This is an almost ideal application of

these techniques as it is a simple two-class discrimination problem with the foreground class of

RBC pixels typically representing ∼ 40− 50% of the image data. The main conclusion drawn

from these chapters were:

(iv) Application of the Otsu algorithm to histograms of image intensities was successful for

segmentation of pixels belonging to RBCs, irrespective of whether they were healthy or
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infected with a malaria parasite. In addition to the almost ideal weight of the foreground

RBC pixel class above, it was noted that the RBC and background peaks in the intensity

histograms were well-separated and that the between-class variance σ2
B , and hence simi-

larly the Fisher discriminant, were mono-modal. The Otsu algorithm was thus guaranteed

to converge to a unique threshold – again an ideal situation.

(v) A multi-dimensional extension of Otsu’s algorithm was developed by alternate iteration

of a projection of pixel colours onto the most discriminating direction â in the colour

space defined by a maximisation of a Fisher discriminant and subsequent selection of

a threshold by application of Otsu’s algorithm to the histogram of the projected data.

Application of this procedure, initialised via PCA of the total covariance matrix ST of the

pixel colours and called here the Otsu 3D algorithm (section 4.2.4), to the segmentation

of RBC pixels converged in ∼ 10 − 15 iterations. The algorithm appeared to produce a

successful segmentation of RBC pixels for every image studied.

(vi) Evaluated together with the Otsu algorithm (iv) applied to the image intensities and an

application of the Otsu algorithm to individual colour channel data and in combination,

our extended Otsu 3D algorithm was found to be just superior (section 4.2.5). This result,

based on the evaluation of 17 1/9th sub-images from the 100 thin-film slide images made

available to us by medical experts at the National Institute for Medical Research (NIMR),

was published in [23]. ROC curves and the MRROC construction were used for these

comparisons based on a detailed, laborious labelling by the author as a ‘semi-expert’ user

of the pixels belonging to RBCs in the aforementioned 17 sub-images.

(vii) When a one-dimensional feature such as pixel intensity is used the Otsu algorithm is

equivalent to an appropriately initialised C-means clustering algorithm and, in our case

for distinguishing RBC pixels from pixels belonging to the background plasma, specif-

ically to a 2-means algorithm. This equivalence, however, no longer holds for our ex-

tended Otsu 3D algorithm as the orientation of the decision surface perpendicular to the

final discriminating vector a ∝ S−1
W [µ(2)− µ(1)] produced on convergence is in general

no longer normal to µ(2) − µ(1) as it would be for a 2-means clustering with the same

sample labels. Analysis of three illustrative example images showed that SW is very

anisotropic and that its effect on the orientation of the decision surface is significant.

(viii) Behaviour of the extended Otsu 3D algorithm during iteration was analysed via evolution

of the discriminating direction â for an illustrative example image. It was found that â
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had a large basin of attraction to a successful segmentation that covered most, but not

quite all of the unit sphere. There was only a small band of initial directions â on the

unit sphere for which the final segmentation was poor and an even smaller stripe of initial

directions from which the algorithm failed to converge in 100 iterations.

(ix) Since the colour of the images in the dataset provided by the NIMR varied somewhat

the extent to which the algorithms would be invariant under affine transformations of the

colour space was analysed. The Otsu algorithm was found to be completely invariant, but

only the iterative steps of our extended Otsu 3D algorithm were invariant. Initialisation

via PCA of the total covariance matrix ST is invariant only if the colour transformation

matrix is proportional to an orthogonal matrix – unfortunately ruling out the common

colour transformations defined by independent shifts and scaling (gains) in each colour

channel. However this lack of invariance of the PCA initialisation of the algorithm is

mitigated by the large basin of attraction (viii) above.

(x) Ways of comparing the variations in colour between different images (or sub-images)

were discussed, both with and without application of affine colour transformations to

improve colour alignment. It was argued that a measure, named the Kolmogorov criterion

by analogy with a measure in the old pattern recognition textbook [43], might be preferred

as it is dimensionless and restricted to the range [0− 2] but it was not implemented.

7.1.3 Counting RBCs

Chapter 6 was concerned first with the counting of RBCs:

(xi) Exploration of the size distribution of image objects obtained from the segmentation of

RBC pixels suggested that the Otsu algorithm might be further applied, in a recursive

manner, in order to classify the objects which, if they were individual RBCs would be

wholly visible within the field of view, as small artefacts to be ignored, singlet RBCs

and clusters of two or more adjoining RBCs. Object area was selected as the discrim-

inating feature because of the simple relationship between the areas of singlet RBCs,

doublets, triplets etc.. Building these relationships as hard constraints into the algorithm

would have destroyed its simplicity whilst utilising them as soft constraints would have

introduced an extra parameter.

(xii) The relationships between the object areas were therefore used to provide internal checks

on the performance of object size classifications and, together with an additional test

based on comparison with a statistical estimate of the number of RBCs, on the reliability
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of the automated counts of the number of cells wholly within the field of view. Study of

the three illustrative images selected from our database of 100 showed that application of

the Otsu algorithm in this manner was not in general successful because of multi-modality

of the between-class variances, in particular at the second level of recursion when singlet

RBCs were being distinguished from larger clusters of adjoining cells.

(xiii) Location of the largest maxima of the between-class variances by exhaustive search was

shown however to be successful and to lead to object classifications and RBC counts

which, for all three example images and for both intensity-based and colour-based seg-

mentations of RBC pixels produced respectively by means of the Otsu algorithm and our

extended Otsu 3D algorithm, passed all tests and produced completely consistent, reliable

results1.

(xiv) For two of these example images, the RBC counts were also accurate, to within less than

1% (i.e. to within one cell) in comparison to manual counts made by the author as a ‘semi-

expert’ user. For the remaining example image (4 in our database) the automated counts

overestimated the number of RBCs by ∼ 3% (i.e. by 4 cells). In all cases, similar counts

to within one cell, were obtained both by counting the individual image objects classified

as RBC singlets, doublets etc. and via statistical estimates based on the average area of

singlet RBC objects. These consistent results were obtained when either an intensity-

based segmentation of RBC pixels produced by the Otsu algorithm or a colour-based

segmentation produced by the Otsu 3D algorithm was used.

7.1.4 Parasite detection

The last part of chapter 6, sections 6.2 – 6.4, described some preliminary work on the use of

unsupervised, Fisher-Otsu algorithms ultimately to label RBCs as infected or healthy.

(xv) Attempts to segment pixels belonging to parasite infections were, unfortunately, not suf-

ficiently successful to allow reliable identification of infected RBCs even though, since

we are not interested in the type of infection or stage of the life cycle within a RBC,

a rough segmentation of clusters of pixels representing parasite infections within RBCs

would suffice to determine whether a cell was infected or healthy.

(xvi) Segmentation of pixels representing parasite infections within RBCs is difficult because

1Somewhat surprisingly, cell counts obtained (table 6.2) from inconsistent classifications of putative RBC clus-

ters when the Otsu algorithm was used at both levels of recursion as in (xii) above were found to be closely similar

to the ‘reliable’ cell counts (table 6.5) obtained from the consistent classification described here.
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such pixels are a very small minority class, usually < 1% of the pixels in an image and

< 2% of the pixels belonging to RBCs themselves, owing to the small fraction of RBCs

infected (typically itself at most∼ a few % in laboratory samples) and, unless the parasite

is near the end of its life cycle within a RBC, the small size of the parasite body within

a cell. Three-fold recursive applications of both the intensity-based (Otsu) and colour-

based (Otsu 3D) algorithms were thus used to segment such pixels. A method which tried

to exploit the approximate symmetry of the RBC peak in the intensity histogram to select

pixels prior to a second application of the Otsu algorithm was explored for comparison

(section 6.2.1).

(xvi) Given these difficulties and the small number of infected RBCs (∼ 3 − 15) identified in

each image by medical experts from the NIMR it was not possible to reduce the number

of false positives (healthy RBCs classified as infected) and false negatives (infected RBCs

classified as healthy) to a sufficiently low level to permit a meaningful calculation of the

parasitemia. Use of several images from different parts of a microscope slide to raise

the number of infected cells to a reasonable number is evidently required together with

further research, either to develop further the kind of unsupervised approach presented in

this thesis or alternatives (see sections 7.2.2 and 7.3 below), hopefully to deliver a more

accurate classification of RBCs as infected or healthy.

7.2 Discussion

Though a much more extensive and systematic evaluation is required before any of the methods

explored in this thesis could be used in the laboratory it would seem that we have, as noted

above, overall two successes: segmentation of RBC pixels and counting of RBCs and, owing

to the preliminary nature of the work carried out, one inconclusive outcome: the labelling of

RBCs as infected or healthy.

7.2.1 Segmentation and counting of RBCs

First, re the successes of using unsupervised Fisher-Otsu algorithms for the segmentation of

RBC pixels and the counting of RBCs wholly visible within an image:

(i) When the feature space is one dimensional as in the segmentation of RBC pixels from

their intensity or the classification of image objects according to their area, the between-

class variance should be maximised via a recursive implementation of an exhaustive

search in preference to using the Otsu algorithm. Since the Otsu algorithm typically con-

verges within a few iterations the computational load of the exhaustive search is likely to
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be greater but, with modern computers, not punishingly so. For counting RBC objects

such an implementation is essential2, but in general the extra computational effort would

be well worth the gain in reliability even when the Otsu algorithm appears, as in the RBC

pixel segmentation, to be working well.

(ii) Though it appears never to have failed for any of the images to which it was applied, con-

vergence of the Otsu 3D algorithm used in the colour-based segmentation of RBC pixels

is more problematic. Unfortunately it is more difficult to envisage an efficient, feasible

exhaustive search procedure that could be used in this case. In the three-dimensional

colour space, the decision plane may be represented by each of its intercepts on the red,

green and blue colour axes. A crude exhaustive search for the decision plane which

would optimise a Fisher discriminant would, for the usual 24-bit colour imagery, thus

require the order of 16 million calculations of the discriminant. However, even for our

1.3 mega-pixel images, most of the bins in a colour histogram would be empty, so an

efficient representation should be used. These are commonly found in image retrieval

systems (see for example chapters 8 and 6 of [164]) and may, for example, be based on a

multi-resolution binary tree [9] or some kind of transform (including PCA [182]3) used

to compress the representation. It would also seem that calculations of the discriminant

could be made recursive so, without going into details, it would seem there is scope for an

efficient, exhaustive search procedure to be developed for the Otsu 3D algorithm should

application needs warrant it.

(iii) Comparison of the intensity-based and colour-based segmentations of RBC pixels was

mentioned in section 6.1.3. The quantitative calculation of the similarity of the seg-

mentations produced by these two approaches (or any other) has not been carried out,

although it would be straightforward to do so. Though the two methods are not entirely

independent, close similarity of the two segmentations would give confidence in the re-

sults produced by either and would seem well-worth implementing as a routine check

in any application. Figure 7.1 left, (a), (c) and (e) shows RBC pixels included in the

intensity-based segmentations of figure 6.3 but not in the colour-based segmentations of

figure 6.4 whilst at right (b), (d) and (f) it shows the converse. It can be seen that the

more generous segmentation includes more pixels around the boundaries of RBCs and

that, with the exception of image 1, the intensity-based-based segmentation tends to be
2But see figures 6.6 and 6.7 and point (iv) below for a warning that care and, in practice, use of the Otsu algorithm,

would be required in precisely locating maxima of σ2
B in gaps in the area histograms.

3This thesis also discusses various ways of comparing colour distributions – a matter also mentioned in [164].
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the more generous in accord with the figures given in the first row of table 6.1. More

striking is the much greater difference in the two segmentations of image 4 visible in

figure 7.1 (c) where there are many pixels in the intensity-based segmentation that are not

included in the colour-based segmentation. However without implementing exhaustive

search procedures such as those discussed in (i) and (ii) above and some means of assess-

ing the reliability of each segmentation, perhaps such as those discussed in (iv) below, we

do not know which may be inadequate.

(iv) Furthermore, reliability measures of each segmentation method could themselves be

constructed. For example, given an exhaustive search of the between-class variance in

one-dimension which yielded several maxima, σ2
B(k) say, labelled such that σ2

B(1) ≥

σ2
B(2) ≥ · · · ≥ σ2

B(K), a reliability measure taking values in the range 0 (completely

unreliable when there are many equal maxima) to 1 (completely reliable when there is a

single, unique maximum or when there is one very prominent maximum of value σ2
B(1)

in comparison to which the remaining K − 1 maxima are negligible) would be:

R =
σ2
B(1) +

∑K
k=1(σ2

B(1)− σ2
B(k))

K
∑K

k=1 σ
2
B(k)

=
1

K

{
(K + 1)σ2

B(1)∑K
k=1 σ

2
B(k)

− 1

}
. (7.1)

This measure (and perhaps even just a simple count of the number of maxima, K) could

be applied to both an intensity-based segmentation of RBC pixels (where we would find

R = 1) and to the classification of image objects by area as small artefacts, singlet RBCs,

or doublets. In the latter, the graphs in figures 6.6 and 6.7 indicate that, at the first level

of recursion, we might again find R = 1 yet be given little warning4 of the large plateaux

in σ2
B . A local curvature measure would be required in order to flag such situations.

At the second level of recursion for classification of the image objects from their areas,

the values of the three maxima in table 6.3 would more usefully give R = 0.174 and

R = 0.172 for the classification of the RBC objects obtained from the intensity-based

and colour-based segmentations respectively. Whether these are large enough to give

confidence in the image object classification requires further research and evaluation over

a wide range of images but we recall that in addition one can also (and should) use the

parameters already discussed in section 6.1.3 as checks on the RBC object classification

and counting processes.

4Recall the footnote to item (i) above.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Left: RBC pixels included in the intensity-based segmentations of images 1 (a), 4

(c) and 45 (e) but not included in the colour-based segmentations, and right: the converse.
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If a search procedure were used as indicated in (ii) above, thought not quite so straightfor-

ward a similar reliability measure to that defined in 7.1 could in principle be constructed

for the colour-based segmentation of RBC pixels. As in the one-dimensional case, it

would also need to be supplemented by local curvature measures in order to flag the

occurrence of ridges and plateau regions in σ2
B .

(v) The colour-based segmentation offers another way of potentially characterising the relia-

bility of the segmentation via stability of projection of colour data onto the discriminating

direction â. For example, one could use the total covariance matrix ST to check stability

of projection of all the pixel colour data onto the discriminating direction, and similarly

use the between and within-class covariances SB and SW respectively and, if desired, the

individual class-conditioned covariances S(1) and S(2). A suitable measure in the range

[0− 1] may be constructed from an eigen-decomposition of each of the matrices:

P =

∑3
k=1 |(â

T v(k))λ(k)|∑3
k=1 λ(k)

(7.2)

where λ(k) are the eigenvalues of the matrix labelled in descending order and v(k) are

the corresponding eigenvectors. The between-class covariance SB is rank one and has

only one non-zero eigenvalue with eigenvector v(1) ∝ (µ(2) − µ(1)) so 7.2 in this case

reduces to:

P = cos(α) (7.3)

where α is the acute angle between a and µ(2)−µ(1) whose values for the three illustra-

tive images shown in figure 5.1 were given in table 5.1. It can be seen from the table that

for image 4 the value of α is quite different from the values ∼ 25◦ and ∼ 35◦ taken for

images 1 and 45 respectively. Again further research is required to establish the extent to

which such internal performance indicators might be useful.

(vi) Were use of the kind of internal performance parameters discussed above and elsewhere

in the main body of the thesis to indicate potentially unsatisfactory or unreliable results

in the segmentation of RBC pixels, for example in applications to a much larger range

of imagery than the 100 in our small database, one further opportunity remains open as

noted in section 2.2.1 via a kind of transfer learning. Since the fraction of RBC pixels in a

correctly taken image of a thin-film slide should always be in the range∼ 30−50% such

failure is likely to be caused by variation in image colour. To overcome this, we could try

to use the techniques discussed in section 5.4 to adjust, by histogram or colour histogram

alignment, the colour of such troublesome images to be more like the colours of images
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which had been successfully processed. Such techniques have been used in the context

of an inspection application [163] and histogram alignment algorithms developed for that

purpose [162]. Again, however, further research is required in order to see if such colour

alignment would be effective and whether new algorithms would need to be developed in

order to carry it out, for example, in accordance with the criteria discussed in section 5.4.

7.2.2 Parasite detection and calculation of parasitemia

It is surprising that few (if any, except perhaps [145] – see section 7.3 below) authors have

commented on the difficulty of reliably detecting pixels representing parasite infections within

RBCs when such pixels usually form a small minority class, relative to both the total number

of pixels in an image and to the number of RBC pixels. Within the context of ROC analy-

sis Flach [57] discussed the problem of class imbalances and the trade-off of decision costs

and values although particular attention was not drawn to the difficulty of developing reliable

classification systems in such circumstances.

(i) The colour and configuration of Giemsa stained parasites seems quite distinctive to an

expert medical observer but their colour is not sufficiently distinctive (figure 7.2) to enable

such pixels easily to be detected individually. It is possible that the crude discretisation of

these histograms is misleading but, given this data, it is a little surprising that it is possible

to detect parasite pixels at all from intensity data. Projection of the pixel colours on the

green-blue and red-blue colour planes as shown in figure 7.3 indicates a more optimistic

scenario for detecting such pixels in the colour space especially if, as for our extended

Otsu 3D algorithm, the orientation of the decision surface is determined by the procedure

and is not fixed a priori relative to the colour axes. Finally, we note that these histograms

indicate that there might not be much to be gained by using only pixels within reliably

counted RBCs as input to parasite pixel detection rather than using directly the pixels

segmented as belonging to RBCs – i.e. as in sections 6.2 and 6.3 by applying the Otsu

algorithms recursively to the whole image.

(ii) In light of the data presented in figures 7.2 and 7.3 it may be asking too much to expect

an unsupervised algorithm, especially if the predicate or criterion is a function only of

individual pixel attributes, to work well for the segmentation of parasite pixels. A first

step away from such a paradigm might be to use pixel data labelled as originating from

healthy or from infected parts of RBCs to infer a suitable choice for the decision plane.

Using such data to estimate µ(1), µ(2) and the class-conditioned covariances S(1), S(2)

and hence the within-class covariance SW , the vector â and threshold T on this dis-
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(a)

(b)

(c)

Figure 7.2: Histograms of pixels from healthy parts of a number of RBCs identified by medical

experts as infected and from the stained parasite infections within the cells: (a) in the red colour

channel, (b) the green channel, and (c) in the blue channel. Counts of pixels belonging to

stained parasites are represented in blue throughout with the counts of pixels from healthy parts

of cells shown in a contrasting colour: red for the red channel, green for the green channel, but

in yellow for the blue channel.
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(a)

(b)

Figure 7.3: Colours of pixels from a number of infected RBCs projected: (a) on the RB colour

plane and (b) on the GB colour plane. In each case, as in figure 7.2 pixels belonging to parasite

infections are depicted in blue with pixels from healthy parts of cells depicted in a contrasting

colour.
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criminating direction would construct in a supervised manner a type of least-mean square

classifier corresponding to the Fisher discriminant as noted in section 4.1.1. Alternatively,

such data could be used to train a modern capacity controlled neural network [13, 48] or

support-vector-machine [190, 18] which, with suitable kernel functions [39] would en-

able the decision surface in RGB colour space to be non-planar, as figure 7.3 suggests it

may need to be.

(iii) It was noted in (i) above that medical experts use both the colour and appearance of clus-

ters of pixels to determine whether they belong to the image of a stained parasite. When

determining the severity of infection they further check that the stained object is properly

within a RBC in order to decide that a cell is infected5. Since medical researchers fre-

quently count the number of infected RBCs in the course of their work – a task much less

laborious than counting the number of RBCs – there are opportunities, especially if some

simple software tools were available and appropriate protocols established, to create a

large database of thin-film slide images in which infected RBCs have been labelled by

experts.

(iv) For example, one of the standard methods of quantifying the severity of infection is the

number of parasites per unit volume of blood (e.g., usually expressed as thousands per

µl). Usually, this relies on estimating the blood volume from finding a certain number,

typically a few hundred, WBCs which is then converted via a standard of 8000 WBCs

per µl to give an estimate of the density of infected RBCs. Since WBCs comprise only

∼ 1% of the blood volume and are∼ 50 to 100 times rarer than RBCs [199], observation

of a few hundred WBCs requires study of a similar number of images taken from many

different fields of a thin-film slide. Using the several hundred fields, or tiles as they

are sometimes known, required would typically lead to identification of a few 100 to

∼ 1000 infected RBCs from the slide. Repeated over many slides, this should enable

large databases of malaria infected RBCs to be built up, both from laboratory work where

the type and stage of parasite life-cycle could be part of the database records and perhaps

also from field studies where typically there may be within one sample from an individual

patient parasites at different stages of the life-cycle.

(v) Moreover, if desired and perhaps with the aid of techniques such as those devel-

5Recall e.g. from the background section 1.2 that the degree of infection or parasitemia is defined from the num-

ber of number of parasites in asexual stage malaria when the parasite infection is within a RBC. This is consistent

with the remarks in section 6.4.1.
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oped in this thesis to isolate the RBCs, labelling could be carried through to the in-

dividual pixel level with clusters of pixels belonging to the stained parasites within

the infected cells identified by technicians or ‘semi-experts’, or perhaps even ‘crowd-

sourced’ [116, 124, 122]. Such data, capturing the skill of medical staff in using the

appearance and location of stained parasite infections within RBCs to identify cells that

are infected would, in particular, embody the spatial relationships between pixels repre-

senting each stained parasite. It would thus be ideal for training supervised systems either

to segment parasite pixels, detect clusters of stained parasite pixels within a RBC, or to

classify cells directly as infected or healthy. As noted several times within this thesis and

in [23] provision of a large database of standardised, labelled data would be a big step

forward in research on the automatic processing of malarial infected blood films.

It is notable that Mavandadi et al. [124, 123] consider how the decisions of individual

gamers should be combined by MAP (maximum a posterior) estimation or an EM algo-

rithm. The same decision logic may of course be applied to a group of experts (who are

the gamers in some versions) and also to the combination of computational decisions as

described earlier by Warfield et al. [193]. Details of the mathematics are given in the

supplementary material to [124] and, in particular in [123] which describes the optimal

combination of decisions in three categories: healthy, infected and uncertain. The former

also describes the local colour peak histogram features and adaptive boosting algorithm

used in their computational system whilst the latter [123] also describes a probabilistic

framework for proceeding from decisions on individual RBCs to a slide or patient level

diagnosis. This fills a gap left by [151] (section 2.5.2). The paper therefore makes two

important contributions.

7.3 Epilogue
We finish with an update on some recent papers on computational analysis of microscope im-

ages of malaria blood smears together with some closing remarks on the distinctiveness of the

research described in this thesis. Also mentioned are some modern alternatives that might have

been utilised instead of the Fisher discriminant.

Recent important papers Several important papers [106, 144, 62, 145, 140, 192, 109] have

recently been published in leading journals. Several of these utilised available image analysis

programmes such as ImageJ [150] ([62]), Matlab ([145, 109] – the latter as an annotation tool

[187] or bespoke commercial scanning hardware and processing software [140]. By 2009 the

first three of the above, [106, 144] for the analysis of thin-film images and [62] for thick-films,
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all reported semi-automated systems capable of accurately quantifying the parasitemia with cor-

relation coefficients R ≥ 0.96 in comparison to results obtained by medical experts. According

to Frean [61] in 2010 “trained technologists readily recognise and count erythrocytes (the nu-

merator) in an adequately stained thin smear, (but) estimating the denominator (total number of

erythrocytes) of the required fraction is the source of most error in estimating the parasitemia”.

The tedium of manual total RBC counts indicates that this is probably still true and thus the

importance of automating total RBC counts. Three of the above subsequent publications have

continued to focus on thin-films [145, 192, 109] whilst in the other [140] the processing of

both thin and thick-films is considered. With the exception of the two papers by Frean, all of

the above are multi-author papers indicative of the large, multidisciplinary, collaborative teams

needed to address these problems to the standards set by the WHO and to collect process and,

where required for evaluation, annotate many hundreds of images. Four points may be noted

from these papers:

(i) Detection and identification of malaria infection seem to be more prominent than its

quantification with the reliable estimate of parasitemia particularly difficult. For exam-

ple: provisos such as counting only well-defined singlet and well-rounded RBCs enabled

[109] to obtain accurate results with againR = 0.97 in comparison with medical experts,

whilst [140] failed to reach the lowest level of WHO ‘expert’ reader standard with a some-

what lowerR = 0.91. Purwar et al. [145] using an active contour algorithm [25] to detect

RBC boundaries obtained counts of better than 1% accuracy per image. Unfortunately

their small dataset prevented them from counting more than a few infected RBCs so it

is not possible to draw reliable, quantitative conclusions from their counts of infected

RBCs. It is interesting however to note that they are critical of the large training sets

required by supervised machine learning techniques and use an adaptation of K-means

clustering for the detection of stained, parasite pixels in which clusters are probabilisti-

cally re-weighted. Walliander et al. [192] obtained RBC counts with an overall accuracy

of 0.21% by considering three categories of RBCs – ‘RoundCells’ and less-round ‘Found-

Cells’ detected via a Hough transform and misshapen cells called ‘ApproxCells’ which

were counted statistically from comparison of their areas with the average area of cells in

the two former categories.

(ii) Thresholding is frequently used in the early stages of the image analysis in many of the

above especially for segmentation of RBCs: e.g. [106, 140, 192, 109]. Variants of an old

thresholding algorithm due to Zack [201] which utilises a geometric construction similar
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to the ‘scree-graph’ discussed in section 3.2.4 are often used as described by [106, 192]

and [109]. It is perforce a one-dimensional algorithm applied to the image intensity, to

one of the colour channels (e.g. the green channel), or to a difference of the blue and

green channels [106]. For automatic detection of parasite infections comparison6 with

a database of ‘parameters’ [140] and supervised, machine learning techniques utilising

support vector machines operating on a range of local image features [109] are used, in

accord with our remarks in section 7.2.2 above – though not of course with the critique

of such supervised methods by [145] and with what we ourselves had hoped to achieve.

(iii) Several of the counting methods employed have utilised size distribution histograms or

statistical properties of image object size distributions (see e.g. [106, 145, 140, 192, 109])

but none has integrated the kinds of constraints on the relationship between the sizes of

singlet and doublet, triplet or larger clusters of adjoining RBCs in the way we have. It is

notable that [106] found it necessary to deal with clusters of large numbers of adjoining

RBCs (sometimes 10 or more) and strongly advocated the analysis of whole images rather

than a grid of RBCs excised from the microscope image in some manner as in many of

the other papers.

(iv) Most of these works rely on trained technicians to acquire digital thin-film slide images

using conventional microscopes. Prescott et al. [140] describe the use of two types of

automatic scanner in the bespoke (WHT – World Health Technology) system but, even

then, with an operator required to identify autofocus points. It thus seems that acqui-

sition of digital microscope slide images is a potential bottle-neck especially at a cost

and utilising equipment suitable for use in the tropics. It is somewhat surprising not to

have encountered research on such matters but this may be because it is reported else-

where, for example: in the literatures on the development of so-called lensless systems,

micro-technology lab-on-chip systems, and of mobile phone applications.

Malarial image analysis papers As for papers in the image processing/computer vision litera-

ture, there are many, for example the 112 articles reviewed by Das et al [40] whose production,

including the papers in leading medical journals cited above, seems to have peaked in 2012 –

2014. There is little to add to this review which includes eleven tabulations ranging from the

characteristics of different types of malaria parasite (cf. the discussion in Tek’s thesis [175])

to the performance of various parasite count methodologies, the latter showing that the results

6No more detailed description of this bespoke approach by a commercial organisation, WHT – World Health

Technologies, is given.
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obtained by Sio et al. in 2006-7 with their MalariaCount system [165] are still competitive.

The review also shows that most of this recent work has been on the computational analysis of

thin-film images, often for diagnosis of malaria, with supervised machine learning techniques

mainly used to identify parasite infections. Unfortunately the paper by Mavandadi et al [123]

with its important contributions to decision fusion and patient level diagnosis seems to be one

of the few that were overlooked.

Alternative approaches It is also worth noting that the unsupervised approach adopted in this

thesis could have been based on alternative criteria, in particular on the use of image entropies,

which like the Fisher discriminant are also a statistical property of the distribution of pixel

attributes. This includes the non-additive7 entropies introduced by Tsallis which have become

popular in some areas of medical image analysis [41, 138] and registration [2]. As for the Fisher

discriminant in one-dimension, entropy criteria may be used for multi-thresholding though care

must be taken efficiently to find a good enough ‘global’ optimum (see for example [158]). It

seems that the choice of criterion, including selection of the q parameter in the Tsallis entropies

to reflect the degree of short-range order in an image [41], should be based on that which works

best for an application and, as noted in section 5.2, optimisation of Fisher discriminants seems

eminently well-suited to our problem – at least for RBC segmentation!

Finally, we note that it may not be necessary to choose one particular criterion, or even

having chosen a criterion, to select to which feature or features it should be applied. We saw

in section 4.2.1 that one could exhaustively search for the combination of Otsu thresholds on

each of the individual colour channels which optimised the sum of the between-class variances

across the three channels. With a multi-level, hierarchical system or some other kind of more

complicated architecture, the number of possible combinations would be so great as to preclude

an exhaustive search. The evolutionary technique developed by Oechsle [128] could be useful

in such cases and it would then seem that the approach could be adapted to produce a system

optimised, or perhaps even Pareto optimised (section 2.5.1), over combinations of many criteria.

Better still, if sufficient training data were available, it might be possible to evolve a system for

the analysis of microscope images of malarial blood smears, ultimately optimised for counting

cells, identifying healthy and infected cells, estimating parasitemia or whatever end result is

required for a particular application.

7But not non-extensive [184].
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Derivation from Fisher’s discriminant

We wish to maximize the between-class covariance, σ2
B , but this time with respect to each of

the C − 1 thresholds TJ , J = 1 · · ·C − 1 [recall T0 = L and TC = U are fixed], i.e. we want

to set:
∂σ2

B

∂TJ
= 0 J = 1 · · ·C − 1. (A.1)

Since σ2
B =

C∑
I=1

Z(I)(µ(I)− µ)2 (A.2)

⇒
∂σ2

B

∂TJ
=

C∑
I=1

∂Z(I)

∂TJ
(µ(I)− µ)2 + 2

C∑
I=1

Z(I)(µ(I)− µ)
∂µ(I)

∂TJ
. (A.3)

We first evaluate using 4.16:

∂Z(I)

∂TJ
=

∂

∂TJ

∫
dx z(x|I) =

∂

∂TJ

∫
dx[ϑ(x− TI−1)− ϑ(x− TI)]p(x)

⇒ ∂Z(I)

∂TJ
= −p(TI−1)δI−1,J + p(TI)δI,J (A.4)

which remains true ∀I = 1 · · ·C and ∀J = 1 · · ·C − 1.

In the 2-class case with T1 = T , A.5 leads as required to equations 4.17.

We note that A.5 may be written as:

∂Z(I)

∂TJ
= p(TJ)[δI,J − δI−1,J ]. (A.5)

We also have to evaluate

∂µ(I)

∂TJ
=

1

Z(I)

∫
dx
∂z(x|I)x

∂TJ
− 1

Z(I)2

∂Z(I)

∂TJ

∫
dx z(x|I)x

=
1

Z(I)
[−TJp(TJ)δI−1,J + TJp(TJ)δI,J ]− 1

Z(I)
[−p(TJ)δI−1,J + p(TJ)δI,J ]µ(I)

=
p(TJ)

Z(I)
TJ [δI,J − δI−1,J ]− p(TJ)µ(I)

Z(I)
[δI,J − δI−1,J ]

⇒ ∂µ(I)

∂TJ
=
p(TJ)

Z(I)
[TJ − µ(I)][δI,J − δI−1,J ] (A.6)
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which also remains true ∀I = 1 · · ·C, J = 1 · · ·C − 1.

Again, we note that in the 2-class case with T1 = T A.6 leads to equations 4.18.

Thus, on substituting A.5 and A.6 in A.3 we obtain:

∂σ2
B

∂TJ
=

C∑
I=1

p(TJ)[δI,J − δI−1,J ][µ(I)− µ]2

+ 2
C∑
I=1

Z(I)[µ(I)− µ]
p(TJ)

Z(I)
[TJ − µ(I)][δI,J − δI−1,J ]

= p(TJ){[µ(J)− µ]2 − [µ(J + 1)− µ]2}+ 2p(TJ){[µ(J)− µ][TJ − µ(J)]

− [µ(J + 1)− µ][TJ − µ(J + 1)]}

= p(TJ)[µ(J)2 − 2µµ(J)− µ(J + 1)2 + 2µµ(J + 1) + 2µ(J)TJ − 2µTJ − 2µ(J)2

+ 2µµ(J)− 2µ(J + 1)TJ + 2µTJ + 2µ(J + 1)2 − 2µµ(J + 1)]

= p(TJ)[µ(J + 1)2 − µ(J)2 + 2µ(J)TJ − 2µ(J + 1)TJ ]

⇒
∂σ2

B

∂TJ
= p(TJ)[µ(J)− µ(J + 1)][2TJ − (µ(J) + µ(J + 1))]. (A.7)

In the 2-class case with T1 = T A.7 immediately reduces to 4.19:

∂σ2
B

∂T
= p(T )[µ(1)− µ(2)][2T − (µ(1) + µ(2))]. (A.8)

A.7 holds ∀J = 1 · · ·C − 1.

We finally note that, if required it is straightforward similarly to calculate the second

derivative from A.7.
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Multi-threshold segmentation

On the assumption that µ(J) 6= µ(J + 1) for any two adjacent classes, A.7 implies that the J th

threshold TJ should be chosen either such that

p(TJ) = 0

OR TJ =
1

2
[µ(J) + µ(J + 1)].

(B.1)

If there are no clear breaks in the histogram we have to iterate each of the thresholds according

to

TJ =
1

2
[µ(J) + µ(J + 1)] ∀J = 1 · · ·C − 1 (B.2)

or find a solution by means of some optimisation or search procedure.

The important point to note is that each class conditional mean

µ(J) =
1

Z(J)

∫
dx z(x|J) x =

1

Z(J)

∫
dx x p(x)[ϑ(x− TJ−1)− ϑ(x− TJ)] (B.3)

depends on TJ and on TJ−1.

Several possibilities are now open to us:

(I) Solve the set of (C − 1) equations B.2 by a generalisation of Otsu’s algorithm. The main

issue in this case is initialisation within a basin of attraction that converges to the desired

optimal solution.

(II) Solve the set of equations B.2 by employing standard means such as a multi-dimensional

Newton-Raphson or Levenberg-Marquardt method.

(III) Solve the set of equations B.2 by a continuation method in which one starts with an easy

problem with (say) C well separated classes when λ = 0 with distribution pe(x) and an

obvious solution set TJ(0) and tracks the thresholds TJ(λ) which segment

pλ(x) = (1− λ)pe(x) + λp(x) (B.4)

to the solutions TJ = TJ(1) of the desired problem with p1(x) = p(x).
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(IV) Directly solve the optimisation problem to

max
TJ
{σ2

B} (B.5)

using any convenient, sufficiently powerful optimisation procedure. Since the deriva-

tives ∂σ2
B

∂TJ
are available and by further differentiation of A.7 the second derivatives, the

following possibilities spring to mind:

(i) simple gradient ascent (with or without a momentum / memory term etc.)

(ii) a conjugate gradient method

(iii) a multi-dimensional Newton-Raphson method (cf. (II) above)

(iv) a Levenberg-Marquardt method (again cf. (II) above)

(v) any other convenient method described in the literature (e.g. in [141] or available in

Matlab or (say) Mathematica – e.g. trust region methods).

In addition methods which do not require derivatives could be used, including:

(vi) a simplex method

(vii) stochastic methods such as: stochastic gradient, simulated annealing, genetic al-

gorithms, and the more modern differential evolution and SOMA (self organizing

migrating algorithm).

The stochastic methods may be important as it is likely that there are multiple local min-

ima of σ2
B when there are multiple thresholds [202]).

It is also worth noting that the solution set is constrained, i.e. by virtue of the segmenta-

tion model:

L = T0 < TJ < TC = U (B.6)

and in general TJ−1 < TJ < TJ+1 J = 1 · · ·C − 1 (B.7)

which includes B.6 as a special case with fixed T0 = L and TC = U . Note that B.7 also

excludes combinatorial replication of otherwise identical solutions which differ only in

the choice of class labels.

It is also important to note that, in particular, the derivative based algorithms (gradient,

Newton-Raphson, etc.) could easily violate the constraints B.7. Imposition of B.7 as a

feasible solution set at each iteration might therefore be necessary. The constraints should

also help any search method by reducing the solution search space.
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(V) Finally, we note that B.2 and B.3 are reminiscent of an EM algorithm. In fact, the standard

way of solving the classification by use of a linear mixture model would be via an EM

algorithm. There is a close similarity between a linear mixture model in which we would

let (say):

p(x) =
C∑
I=1

p(I)p(x|I) (B.8)

and the segmentation model in which we say:

p(x) =

C∑
I=1

z(x|I) =

C∑
I=1

Z(I)

(
z(x|I)

Z(I)

)
(B.9)

with, as already noted z(x|I)/Z(I) having the properties of a probability density. Apart

from the fact that the classes do not overlap in the segmentation model, the major dif-

ference is that parametric models of the class-conditional distributions (e.g. Gaussians)

are usually used in the linear mixture model B.8 whereas the segmentation model B.9 is

non-parametric.
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Optimisation of Fisher’s discriminants

Using the summation convention in the notation we have adopted whereby components in the

original feature space are labelled by suffices whilst components along the directions of the

feature vectors generated are labelled in brackets, differentiation of D2 (4.33)

D2 =
tr(ATSBA)

tr(ATSWA)
=

ai(k)SBijaj(k)

ai′(k′)SW i′j′aj′(k′)
(C.1)

is straightforward:

∂D2

∂al(m)
=

1

[tr(ATSWA)]2


tr(ATSWA)[δilδ(km)SBijaj(k) + ai(k)SBijδjlδ(km)]

− tr(ATSBA)[δilδ(km)SW ijaj(k) + ai(k)SBijδjlδ(km)]

 .

(C.2)

Since the covariance matrices are symmetric, setting the derivatives to zero leads to:

tr(ATSBA)SBljaj(m) = tr(ATSWA)SW ljaj(m)) (C.3)

which has the form of a generalised eigen-equation:

SBa(m) = D2(m)SWa(m) (C.4)

in which the eigensolution chosen determines the value of D2.

To differentiate D3 (4.34) it is helpful to introduce rB × rB symmetric matrices:

P = ATSBA, Q = ATSWA (C.5)

so that

∂D3

∂al(m)
=

∂

∂al(m)

{
Q−1(uv)P (vu)

}
=

∂Q−1(uv)

∂al(m)
P (vu) +Q−1(uv)

∂P (vu)

∂al(m)
. (C.6)

The second term is straightforward to evaluate and, since the matrices are symmetric, yields

Q−1(uv)
∂P (vu)

∂al(m)
= 2SBljaj(u)Q−1(um) (C.7)
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which may be written in matrix form as 2SBAQ
−1.

The first term requires us to evaluate the derivative of the inverse matrix Q−1:

∂Q−1

∂al(m)
= −Q−1 ∂Q

∂al(m)
Q−1 (C.8)

which, since all the matrices are symmetric leads to:

∂Q−1(uv)

∂al(m)
P (vu) = −2SW ljaj(s)Q

−1(sv)P (vu)Q−1(um) (C.9)

which in turn may be written in matrix form as −2SWAQ
−1PQ−1.

Setting the derivatives to zero thus leads to:

SBAQ
−1 = SWAQ

−1PQ−1 (C.10)

as given by [43] section 6.6.3, page 252.

Finally, we note that if we have the eigen-equation 4.43, SBA = SWAΛ, it follows that

P = QΛ and thus C.10 is satisfied.

As noted in the text, differentiation ofD4 (4.35) requires the trick (4.45) for differentiating

the determinant of a matrix with respect to its elements. Utilising the matrix P introduced in

(C.5) it is straightforward to show that

∂|P |
∂al(m)

= [δilδ(um)SBijaj(v) + ai(u)SBijδjlδ(vm)] |P |P−1(uv) (C.11)

and thus, since the covariance matrix is symmetric that, in matrix form:

∂|P |
∂A

= 2|P |SBAP−1. (C.12)

Proceeding in a similar manner using the other matrix Q introduced in (C.5) it follows

that:
∂|Q|−1

∂A
= −2|Q|
|Q|2

QSWAQ
−1. (C.13)

At the optimal D4 we thus see that:

SBAP
−1 = SWAQ

−1 (C.14)

which again is satisfied if we have the eigen-equation 4.43, SBA = SWAΛ.
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Absolute trace criteria

Three absolute trace criteria may be constructed from the three familiar covariance matrices,

ST , SB and SW :

D1 ≡ DT = tr(ATSTA)

DB = tr(ATSBA)

DW = tr(ATSWA)

 (D.1)

where we have noted that DT is the same as criterion D1 mentioned in section 4.2.2. Each of

these criteria is unbounded and must be used with some constraint or constraints on the feature

matrix A. We shall consider a single normalisation constraint expressed in the general form:

aT (k)Wa(k) = α(k) (D.2)

with a weight matrix W and normalisations α(k) to be specified.

The criteria are each of the form tr(ATSA) and optimisation leads to generalised eigen-

equations of the form:

SA = WAΞ. (D.3)

The obvious choices are forW to be the identity matrix I to introduce a conventional Euclidean

distance constraint or one of the covariance matrices other than the matrix S itself appearing

in D.3 to constrain a within-class distance (W = SW ), a between-class distance (W = SB), or

a sample data distance (W = ST ).

The unit matrix normalisation with the α(k) = 1 and the total covariance matrix leads to

PCA whilst the six non-trivial cases in which W is chosen to be a covariance matrix all lead to

LDA and may be summarised as in table D.1 with

D(opt) =

rB∑
k=1

α(h)ξ(k). (D.4)
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S SB ST SW

W SW , ST SB , SW ST , SB

ξ(k) λ(k) , λ(k)
1+λ(k)

λ(k)+1
λ(k) , λ(k) + 1 1

λ(k)+1 , 1
λ(k)

Table D.1: Outcomes for the non-trivial choices of using a covariance matrix as the weight

matrix W given the choice of covariance matrix S in D.3.
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Recursive Calculations

It is well known in statistics that means and variances may be calculated recursively, in par-

ticular when data is gathered sequentially over time (see for example [65]). A similar ap-

proach may be used when the Fisher discriminant (or equivalently when the feature space is

one-dimensional, either of the between-class or within-class variances) is being opitimised.

Recall that, in our probabilistic development of the Otsu algorithm we introduced the in-

dicator densities which for the two-class case were;

z(x|1) =


p(x) for T ≤ x

0 for T ≥ x
z(x|2) =


0 for T ≤ x

p(x) for T ≥ x

so that

µ(1) =
1

Z(1)

∫ T

−∞
dxp(x)x µ(2) =

1

Z(2)

∫ ∞
T

dxp(x)x (E.1)

where

Z(1) =

∫
dxz(x|1) =

∫ T

−∞
dxp(x) Z(2) =

∫
dxz(x|2) =

∫ ∞
T

dxp(x). (E.2)

Class-conditioned variances σ2(1) and σ2(2) may be similarly defined but are not required

here since maxT
{
σ2
B

}
suffices and the between-class variance depends only on the class-

conditioned means (recall equation 4.11 and, in particular in the two-class case, 4.12). If we

have a discrete, finite dataset with feature values x(i) over the range [L,U ] characterised by a

histogram h(x), the first of equations E.2 would, for example, be replaced by:

Z(1|T ) =
T∑
x=L

h(x) = h(L) + · · ·+ h(T ) (E.3)

where, since we will be systematically changing the value of the threshold, it is convenient to

make the dependence of Z(1) on T explicit. Analogous to the second of equations E.2, we then

also have:

Z(2|T ) =

U∑
x=T+∆T (T )

h(x) = h(T + ∆T (T )) + · · ·+ h(U) (E.4)
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where ∆T (T ) is the increment in x from x = T to the next non-empty histogram bin h(T +

∆T (T )) after h(T ).

It follows from E.3 and E.4 that, if the threshold is incremented:

Z(1|T + ∆T (T )) = Z(1|T ) + h(T + ∆T (T ))

Z(2|T + ∆T (T )) = Z(2|T )− h(T + ∆T (T )). (E.5)

Similarly, in the discrete case using the same notation as above to indicate explicitly that

the threshold is T :

µ(1|T ) =
1

Z(1|T )

T∑
x=L

xh(x)

µ(2|T ) =
1

Z(2|T )

U∑
x=T+∆T (T )

xh(x). (E.6)

and:

σ2
B(T ) = Z(1|T )Z(2|T )[µ(1|T )− µ(2|T )]2. (E.7)

It can be seen from equations E.6 and E.7 that the normalisation of the histogram, which would

usually be either to 1 or to n, the number of samples, is immaterial.

It follows from equations E.6 that:

µ(1|T + ∆T (T )) =
Z(1|T )µ(1|T ) + (T + ∆T (T ))h(T + ∆T (T ))

Z(1|T + ∆T (T ))

µ(2|T + ∆T (T )) =
Z(2|T )µ(2|T )− (T + ∆T (T ))h(T + ∆T (T ))

Z(2|T + ∆T (T ))
. (E.8)

Similar equations result if the threshold T were decremented, but with the + and − signs in the

numerators on the right hand sides interchanged.

Equations E.8 and E.5 are generalisations to variable ∆T (T ) of familiar equations for

the recursive computation of the mean of a data sequence x(i), i = 1 . . . n and, in the present

specific context of equations (3.32) and (3.31) respectively in [164] (Chapter 3, section 3.8, page

88). When the feature x is the image intensity, the increment ∆T would usually be equal to one

and therefore constant. Although gaps in the intensity histogram are rare they may occur and,

indeed, as we have seen are one of the classic conditions for choice of a threshold to segment

completely separated classes. More importantly, we have seen in section 6.1 that gaps in image

object area histograms are much likely. This motivated the development of the more general

recursive equations in this appendix.

In order to carry out the above recursive calculations, they must be initialised. Inspection
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of E.3 and E.4 reveals that, if the histogram is normalised to n:

Z(1|L) = h(L) Z(2|L) = n− h(L),

Z(1|U) = n Z(2|U) = 0. (E.9)

These equations satisfy the requirement that;

Z(1) + Z(2) =

U∑
x=L

h(x) = n (E.10)

which is true whatever the value of T as may be readily verified from E.4.

With the same normalisation of the histogram to n it follows from E.6that:

µ(1|L) = L µ(2|L) =
nµ− Lh(L)

n− h(L)

µ(1|U) = µ and that µ(2|U) is indeterminate. (E.11)

where, as usual µ is the mean. The above satisfy a constraint similar to E.10:

Z(1)µ(1) + Z(2)µ(2) =
U∑
x=L

xh(x) = nµ, (E.12)

which is again true for any T – as may be verified from E.6.

According to the indeterminacy of E.12 we may set µ(2|U) = 0 but the initialisations of

Z(2|L) and µ(2|L) are rather inelegant and equations E.9 – E.12 lack symmetry. The simplicity

and symmetry may be restored by setting:

Z(1|L−∆L) = 0 Z(2|L−∆L) = n

Z(1|U) = n Z(2|U) = 0

µ(1|L−∆L) = 0 µ(2|L−∆L) = µ

µ(1|U) = µ µ(2|U) = 0. (E.13)

and carrying out the recursive calculations with T incremented from an initial hypothetical

L − ∆L. Alternatively, similar recursive relationships to E.5 and E.8 (with appropriate sign

changes) may be derived were the threshold T decremented and calculations initialised from

T = U as in E.13 above.
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