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XRD-CT method 

A schematic representation of an XRD-CT experiment is provided in Figure S1. The method 

relies on a pencil beam scanning approach using a highly collimated or focussed 

monochromatic beam with, for best counting statistics/speed, scattered X-rays recorded on an 

area detector. This is typically normal to and centred with respect to the beam. Typically, the 

object is translated across the X-ray beam (i.e. perpendicular to the beam axis) with a step size 

close/same as the horizontal size of the incoming X-ray beam and for every translational step 

t, diffraction patterns are collected using an area detector. The length of the translational scan 

can be the same as the width of the sample but in practise the value for the length s used is 

higher (i.e. number of translational steps n = s / t). This is because one should take into account 

the imperfection of the sample alignment and also the fact that the sample may move during 

successive tomographic collections. After a translational scan is completed, the sample is 

rotated (angular step) and the translational scan is repeated. The angular range usually covered 

is from 0 to π and the number of angles scanned m should be, as in the case of the first 

generation X-ray computed tomography, equal to the number of translational measurements 

times π/2 (i.e. m = n × π/2). However, in practice, the number of angular steps can be decreased 

without significant changes in the quality of the collected data (Álvarez-Murga et al., 2012).  
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Figure S1: Tomographic plane schematics of XRD-CT experiment. In the schematic the green object consists primarily of 

phases A (coloured green) with inclusion of a small amount of phase B (coloured light grey/green).  The incident beam is 

denoted I0, the detector is protected from the incident beam by use of a backstop (denoted bs in the schematics). As the object 

is translated across the beam, diffraction is recorded from the entire path of the incident beam. If A and B are powders, 

characteristic Bragg reflections from both phases will be recorded on the detector manifesting as diffraction rings on the 

detector. This is illustrated in the figure where purple ray path indicates a reflection at high 2θ angles from phase A, and the 

red paths indicate a single reflection from phase B recorded at low 2θ angles on different sides of the detector ring centre. 
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Preparation of catalyst and membranes 

2%Mn-1.6%Na-3.1%W/SiO2 was prepared by a sequential incipient wetness impregnation 

method. Firstly, the SiO2 support (Silica gel Davisil 646, ~ 250-500 μm) was impregnated by 

an aqueous solution of sodium tungstate dihydrate Na2WO4·2H2O and sodium oxalate 

Na2C2O4 salts taken in appropriate concentrations at a temperature of 80ºC. The Na-W/SiO2 

was dried at 120 ºC for 6 h and was then impregnated by an aqueous solution of manganese 

(II) acetate tetrahydrate Mn(CH3COO)2·4H2O salt. For the 2%La-2%Mn-1.6%Na-

3.1%W/SiO2 catalyst, the Na-W/SiO2 was dried at 120 ºC for 6 h and was then impregnated by 

an aqueous solution of manganese (II) acetate tetrahydrate Mn(CH3COO)2·4H2O and 

lanthanum nitrate La(NO3)3·6H2O salts taken in appropriate concentrations. The catalysts were 

then dried at 120°C for 6 h and calcined in air at 850 for 6 h with a heating rate of 2 ºC/min. 

The BCFZ membranes reported here have been manufactured using the spinning and phase 

inversion methods previously described.(Van Noyen et al., 2012, Middelkoop et al., 2014) The 

starting polymer suspension was prepared from cellulose acetate (CA, Mr ~52000, Fluka), 

dimethylsulphoxide (DMSO, Synthesis grade, Merck) and de-ionised water that were used as 

a phase-inversion polymer, solvent and non-solvent additive to the polymer solution, 

respectively. 
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Summed diffraction pattern 

The summed diffraction pattern of the XRD-CT dataset is shown at the left side of Figure S2. 

The cristobalite (green), BaWO4 (red), Mn2O3 (cyan) and BCFZ (magenta) peaks presented at 

the right side of Figure S2 correspond to the sinograms used in this work. 

 

Figure S2: Left: The summed diffraction pattern from the XRD-CT dataset presented in the main paper. Right: A region of 

interest (ROI) of that diffraction pattern, showing four peaks corresponding to cristobalite (green), BaWO4 (red), Mn2O3 (cyan) 

and BCFZ (magenta) phases. 

 

Tomographic reconstruction algorithms 

The effect of different reconstruction algorithms to deal with spotty sinograms is presented in Figure 

S3. The sinogram used corresponds to BaWO4 also shown in Figure 3 in the main paper. The XRDUA 

software program was used to implement the various tomographic algorithms. Initially, the CeO2 

(NIST) diffraction pattern was used for calibration and then the XRD-CT data were processed (i.e. 

azimuthal integration of the raw 2D diffraction images and creation of the sinograms). As expected (see 

first row in Figure S8), the BaWO4 sinogram and reconstructed XRD-CT image (i.e. using the filtered 

back projection algorithm) are identical with the ones generated using the MATLAB script used in this 

work. Different tomographic algorithms were implemented to reconstruct the spotty BaWO4 sinogram 

using the XRDUA software. More specifically, the algebraic reconstruction technique (ART), the 

simultaneous algebraic reconstruction technique (SART), the simultaneous iterative reconstruction 

technique (SIRT), the ordered subset expectation minimization (OSEM) and the maximum likelihood 

expectation maximization (MLEM) algorithms were tested. As it is shown in Figure S8, the 

reconstructed images are full of line artefacts regardless of the algorithm used (or how many iterations 

are used).  
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Figure S3: Top row: BaWO4 sinograms and reconstructed images (FBP) using the MATLAB script provided in the ESI and 

the XRDUA software program. The reconstructed images when ART, SART, SIRT, OSEM, MLEM are used is also shown. 
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Alpha-trimmed mean filter 

In Figure S4, the derived 1D diffraction patterns for the CeO2 standard using different values 

for the alpha-trimmed mean are shown (i.e. 0, 1, 2, 3, 5, 10, 25, 50 and 75% respectively). The 

2D diffraction image shown in Panel A of Figure 2 in the main text is used as the benchmark 

tool. As it is shown in Figure S4, there are no obvious changes in the 1D diffraction patterns 

using the different filters. 

 

Figure S4: The 1D diffraction patterns for the CeO2 standard are shown using different values for the alpha-trimmed mean 

filter. 

 

In Figure S5, the relative difference between the 1D diffraction pattern calculated with standard 

radial integration and 1, 2 and 3% alpha-trimmed mean filter is presented. It can be seen that 

the values remain less than 10% even for the 3% alpha-trimmed mean filter. 
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Figure S5: The relative difference between the 1D diffraction pattern calculated with standard radial integration and 1, 2 and 

3% alpha-trimmed mean filter for the CeO2 is shown. 

 

In Figure S6, the relative difference between the 1D diffraction pattern calculated with standard 

radial integration and 10, 25, 50 and 75% alpha-trimmed mean filter is presented. As expected, 

the values increase and there are differences more than 50% for the 75% alpha-trimmed mean 

filter at certain scattering angles 2θ. 

 

Figure S6: The relative difference between the 1D diffraction pattern calculated with standard radial integration and 1, 2 and 

3% alpha-trimmed mean filter for the CeO2 is shown 
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The maximum values of the relative difference between the 1D diffraction pattern calculated 

with standard radial integration and 1, 2, 3, 5, 10, 25, 50 and 75% alpha-trimmed mean filter 

for the CeO2 are presented in Figure S7.  

 

Figure S7: The maximum values of the relative difference between the 1D diffraction pattern calculated with standard radial 

integration and 1, 2, 3, 5, 10, 25, 50 and 75% alpha-trimmed mean filter for the CeO2 is shown. 

 

However, as it was shown also in Figure S4, even for the extreme case of the 75% trimmed 

mean filter, the changes are not radical. The maximum intensities of the diffraction peaks are 

maintained and the main changes (e.g. the 60% reported in Figure S5) are observed at the tails 

of the bragg peaks. This is clearly shown in Figure S8 where the 1D diffraction pattern 

calculated with standard radial integration and the one calculated with 75% trimmed mean filter 

are presented. 
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Figure S8: The 1D diffraction patterns for the CeO2 standard is shown using standard radial integration and 75% alpha-trimmed 

mean filter. Also shown is a 2θ region of interest where the maximum relative difference between the two diffraction patterns 

is observed (i.e. scattering angle 2.85° 2θ. 
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MATLAB Scripts 

The main MATLAB in-house function used in this work are provided below. 

function [rBin,phiBin,ibad] = binning(image,cnt_x,cnt_y) 
% The function binning is used to set up the polar transformation. It 
% requires a raw 2D diffraction image and the coordinates of the beam 
% centre after the calibration i.e. (cnt_x,cnt_y) 

  
nox = size(image,1); 
noy = size(image,2); 
X = cumsum(ones(nox,noy),2) - cnt_x  ; 
Y = cumsum(ones(nox,noy),1) - cnt_y  ; 
rh = sqrt(X.^2 + Y.^2); 
phi = atan2d(Y,X)+180; 
phiBinSize = 1; 
phiBin = round(phi/phiBinSize); 
rBinSize = 1; 
rBin = round(rh/rBinSize); 
ibad = sub2ind(size(phiBin),cnt_y,cnt_x); 

 

function T = image2pol(a,rBin,phiBin,ibad) 
% The image2pol function transforms an image from Cartesian to polar 
% coordinates 

  
T = zeros(max(rBin(:)),max(phiBin(:))); 
for i = 1: length(rBin(:)) 
    if i == ibad; 
        continue 
    end 
    T(rBin(i),phiBin(i)+1) = a(i); 
end 

 

function M = masknan(a) 
% The masknan function creates a binary mask (i.e. NaN and 1 values only)  
% and requires as an input the original 2D diffraction image.  

  
a(find(a == 0)) = 0.01; 
a(find(a < 0)) = 0; 
M = image2pol(a,rBin,phiBin,ibad); 
M(find(M==0)) = NaN; 
M(find(M>0)) = 1; 

 

function F = tnans(T,z) 
% The tnans function is used to transfer the NaN values in each row of a 2 

% dimensional matrix (T) to the end of each row. The user can choose if the 

% NaN values are converted to zeros at the end of the operation. 

% T is the 2D matrix (e.g. grayscale image) 

% if z == 1 then the nan values are going to be zeros 

  
F = zeros(size(T)); 
for i = 1:size(T,1) 
    F(i,1:length(find(~isnan(T(i,:))))) = T(i,~isnan(T(i,:))); 
    if z == 1 
        F(i,length(find(~isnan(T(i,:))))+1:end) = 0; 
    else 
        F(i,length(find(~isnan(T(i,:))))+1:end) = NaN; 
    end 
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end 

 
function MN = masknan2(M) 
% The masknan2 function creates a binary mask (i.e. 0 and 1 values only)  
% and requires as an input the binary mask created with the masknan 
% function. This process is necessary if the user wants to apply the 
% ordfilt2 function. 
MN = tnans(M,0); 

 
function A = filterextrv(B,sd) 
% The filterextrv function applies the Standard Deviation based Trimmed 
% Mean filter to the polar transformed images. 
% B is the polar transformed image 
% sd: how many times the standard deviation should be applied as the 
% threshold value. The user should input 10 times the desired value. 

  
for i = 1: size(B,1) 
    B(i,find(abs(B(i,:)-nanmean(B(i,:)))>(sd/10)*nanstd(B(i,:)))) = nan; 
end 
A(1:size(B,1)) = nanmean(B,2); 

 

Below is provided, for the interested reader, a simplified example of the MATLAB code used 

to apply different filter in the XRD-CT data presented in this work. 

%% XRD-CT reconstruction example 
% Parameters from the tomographic scan 
nFastAxisSteps = 140; 
slowAxisStart = -94.5; 
slowAxisEnd = 94.5; 
nSlowAxisSteps = 105; 
angleStep = abs(slowAxisEnd-slowAxisStart)/nSlowAxisSteps; 
theta = angleStep:angleStep:abs(slowAxisEnd-slowAxisStart); 
theta = theta(find(theta<=180)); 

  
% Directory name 
xrdct_datasets = {'test'}; 
% Domains for ordfilt2 
fm1 = [1 1 1 1 1]; % Row Median filter 
fm2 = ones(3,3); % Median filter 
fm3 = [0 1 0 ; 1 1 1;0 1 0]; % Cross Median filter 
sdtm = 10*[1,1.5,2,3]; % Standard Deviatioan based Trimmed Mean Filter 

  
mm = 1; 
XRDCT_filters(mm).name = char(xrdct_datasets(mm)); 
% specify the directory where the images have been stored 
mypath = sprintf('/data/%s/',char(xrdct_datasets(mm))); 
mystem = sprintf('%s_',char(xrdct_datasets(mm))); 
% n is the number of images in the xrd-ct scan 
n = 20000; 

  
% Generate the names and allocate zeros 
clear RAW 
vnames = {'r','fm', 'f','atm'}; 
tth = size(T,1); 
for ii = 1:length(sdtm) 
    RAW.(sprintf('%s%s',char(vnames(4)),num2str(sdtm(ii)))) = 

zeros(n,length(tth)); 
end 
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for ii = [0,1,2,3,5,10,25,50] 
    RAW.(sprintf('%s%s',char(vnames(1)),num2str(ii))) = 

zeros(n,length(tth)); 
    if (ii < 10) 
        

RAW.(sprintf('%s%s%s1',char(vnames(1)),num2str(ii),char(vnames(2)))) = 

zeros(n,length(tth)); 
        

RAW.(sprintf('%s%s%s2',char(vnames(1)),num2str(ii),char(vnames(2)))) = 

zeros(n,length(tth)); 
        

RAW.(sprintf('%s%s%s3',char(vnames(1)),num2str(ii),char(vnames(2)))) = 

zeros(n,length(tth)); 
    end 
end 

  
for jj = 0 : n 
    % Directory for the raw images 
    fn = sprintf('%s%s%.jpg',mypath,mystem,jj); 

    % Read the raw images 

    I = imread(fn);  
    % Transform the raw I image from Cartesian to polar coordinates 
    T = image2pol(I,rBin,phiBin).*masknan; 
    % The different nth rank-order filters 
    F1 = ordfilt2(tnans(T,1),3,fm1).*maskn; 
    F2 = ordfilt2(tnans(T,1),5,fm2).*maskn; 
    F3 = ordfilt2(tnans(T,1),3,fm3).*maskn; 
    % The SDTM filter 
    for ii = 1:1:length(sdtm) 
        RAW.(sprintf('%s%s',char(vnames(4)),num2str(sdtm(ii))))(jj+1,:) = 

filterextrv(T,length(tth),sdtm(ii)); 
    end 
    % The alpha-trimmed mean filters 
    for ii = [0,1,2,3,5,10,25,50] 
        RAW.(sprintf('%s%s',char(vnames(1)),num2str(ii)))(jj+1,:) = 

trimmean(T(1:length(tth),:),ii,2)'; 
        if (ii < 10) 
            

RAW.(sprintf('%s%s%s1',char(vnames(1)),num2str(ii),char(vnames(2))))(jj+1,:

) = trimmean(F1(1:length(tth),:),ii,2)'; 
            

RAW.(sprintf('%s%s%s2',char(vnames(1)),num2str(ii),char(vnames(2))))(jj+1,:

) = trimmean(F2(1:length(tth),:),ii,2)'; 
            

RAW.(sprintf('%s%s%s3',char(vnames(1)),num2str(ii),char(vnames(2))))(jj+1,:

) = trimmean(F3(1:length(tth),:),ii,2)'; 
        end 
    end 

     
    fprintf('\r---> %.4d',jj); 
end 

  
% Store the projection data 
for ii = 1:1:length(sdtm) 
    

XRDCT_filters(mm).(sprintf('%s%s_projectiondata',char(vnames(4)),num2str(sd

tm(ii)))) = 

reshape(RAW.(sprintf('%s%s',char(vnames(4)),num2str(sdtm(ii)))),nFastAxisSt

eps,nSlowAxisSteps+1,size(T,1)); 
end 
for ii = [0,1,2,3,5,10,25,50] 
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XRDCT_filters(mm).(sprintf('%s%s_projectiondata',char(vnames(1)),num2str(ii

))) = 

reshape(RAW.(sprintf('%s%s',char(vnames(1)),num2str(ii))),nFastAxisSteps,nS

lowAxisSteps+1, size(T,1)); 
    if (ii < 10) 
        

XRDCT_filters(mm).(sprintf('%s%s%s1_projectiondata',char(vnames(1)),num2str

(ii),char(vnames(2)))) = 

reshape(RAW.(sprintf('%s%s%s1',char(vnames(1)),num2str(ii),char(vnames(2)))

),nFastAxisSteps,nSlowAxisSteps+1, size(T,1)); 
        

XRDCT_filters(mm).(sprintf('%s%s%s2_projectiondata',char(vnames(1)),num2str

(ii),char(vnames(2)))) = 

reshape(RAW.(sprintf('%s%s%s2',char(vnames(1)),num2str(ii),char(vnames(2)))

),nFastAxisSteps,nSlowAxisSteps+1, size(T,1)); 
        

XRDCT_filters(mm).(sprintf('%s%s%s3_projectiondata',char(vnames(1)),num2str

(ii),char(vnames(2)))) = 

reshape(RAW.(sprintf('%s%s%s3',char(vnames(1)),num2str(ii),char(vnames(2)))

),nFastAxisSteps,nSlowAxisSteps+1, size(T,1)); 
    end 
end 

  
% Centre the sinograms 
for ii = 1:1:length(sdtm) 
    

XRDCT_filters(mm).(sprintf('%s%s_centredsino',char(vnames(4)),num2str(sdtm(

ii)))) = 

XRDCT_filters(mm).(sprintf('%s%s_projectiondata',char(vnames(4)),num2str(sd

tm(ii))))(:,1:length(theta),:); 
end 
for ii = [0,1,2,3,5,10,25,50] 
    

XRDCT_filters(mm).(sprintf('%s%s_centredsino',char(vnames(1)),num2str(ii))) 

= 

XRDCT_filters(mm).(sprintf('%s%s_projectiondata',char(vnames(1)),num2str(ii

)))(:,1:length(theta),:); 
    if (ii < 10) 
        

XRDCT_filters(mm).(sprintf('%s%s%s1_centredsino',char(vnames(1)),num2str(ii

),char(vnames(2)))) = 

XRDCT_filters(mm).(sprintf('%s%s%s1_projectiondata',char(vnames(1)),num2str

(ii),char(vnames(2))))(:,1:length(theta),:); 
        

XRDCT_filters(mm).(sprintf('%s%s%s2_centredsino',char(vnames(1)),num2str(ii

),char(vnames(2)))) = 

XRDCT_filters(mm).(sprintf('%s%s%s2_projectiondata',char(vnames(1)),num2str

(ii),char(vnames(2))))(:,1:length(theta),:); 
        

XRDCT_filters(mm).(sprintf('%s%s%s3_centredsino',char(vnames(1)),num2str(ii

),char(vnames(2)))) = 

XRDCT_filters(mm).(sprintf('%s%s%s3_projectiondata',char(vnames(1)),num2str

(ii),char(vnames(2))))(:,1:length(theta),:); 
    end 
end 

  
% Filtered back projection 
ii = 0; 



 

J. Appl. Cryst. (2015). 48, 1943-1955, doi:10.1107/S1600576715020701        Supporting information, sup-14 

[finalSize,NAng,NCh] = 

size(XRDCT_filters(mm).(sprintf('%s%s_centredsino',char(vnames(1)),num2str(

ii)))); 
clear s0 
for kk = 1 : NCh 
    for ii = 1:1:length(sdtm) 
        

XRDCT_filters(mm).(sprintf('%s%s_fbp',char(vnames(4)),num2str(sdtm(ii))))(:

,:,kk) = 

iradon(XRDCT_filters(mm).(sprintf('%s%s_centredsino',char(vnames(4)),num2st

r(sdtm(ii))))(:,:,kk),theta,'linear','Shepp-Logan',0.9,finalSize); 
    end 

     
    for ii = [0,1,2,3,5,10,25,50] 
        

XRDCT_filters(mm).(sprintf('%s%s_fbp',char(vnames(1)),num2str(ii)))(:,:,kk) 

= 

iradon(XRDCT_filters(mm).(sprintf('%s%s_centredsino',char(vnames(1)),num2st

r(ii)))(:,:,kk),theta,'linear','Shepp-Logan',0.9,finalSize); 
        if (ii < 10) 
            

XRDCT_filters(mm).(sprintf('%s%s%s1_fbp',char(vnames(1)),num2str(ii),char(v

names(2))))(:,:,kk) = 

iradon(XRDCT_filters(mm).(sprintf('%s%s%s1_centredsino',char(vnames(1)),num

2str(ii),char(vnames(2))))(:,:,kk),theta,'linear','Shepp-

Logan',0.9,finalSize); 
            

XRDCT_filters(mm).(sprintf('%s%s%s2_fbp',char(vnames(1)),num2str(ii),char(v

names(2))))(:,:,kk) = 

iradon(XRDCT_filters(mm).(sprintf('%s%s%s2_centredsino',char(vnames(1)),num

2str(ii),char(vnames(2))))(:,:,kk),theta,'linear','Shepp-

Logan',0.9,finalSize); 
            

XRDCT_filters(mm).(sprintf('%s%s%s3_fbp',char(vnames(1)),num2str(ii),char(v

names(2))))(:,:,kk) = 

iradon(XRDCT_filters(mm).(sprintf('%s%s%s3_centredsino',char(vnames(1)),num

2str(ii),char(vnames(2))))(:,:,kk),theta,'linear','Shepp-

Logan',0.9,finalSize); 
        end 
    end 
end 

  

  
save XRDCT_effectfilters.mat -v7.3 XRDCT_filters 
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