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ABSTRACT 

Quadruplex-forming sequences are widely prevalent in human and other genomes, including 

bacterial ones. These sequences are over-represented in eukaryotic telomeres, promoters and 

5' untranslated regions. They can form quadruplex structures, which may be transient in many 

situations in normal cells since they can be effectively resolved by helicase action. Mutated 

helicases in cancer cells are unable to unwind quadruplexes, which are impediments to 

transcription, translation or replication, depending on their location within a particular gene. 

Small molecules that can stabilise quadruplex structures augment these effects and produce 

cell and proliferation growth inhibition. This article surveys the chemical biology of 

quadruplexes. It critically examines the major classes of quadruplex-binding small molecules 

that have been developed to date and the various approaches to discovering selective agents. 

The challenges of requiring (and achieving) small-molecule targeted selectivity for a 

particular quadruplex are discussed in relation to the potential of these small molecules as 

potentially clinically-useful therapeutic agents.   
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INTRODUCTION 

    The concept that certain guanine-rich nucleic acid sequences can form four-stranded 

structures is now over fifty years old, although the knowledge that such sequences form 

aggregates is much older.1 Initially fibre-diffraction studies2-4 were used to establish that 

polymeric runs of guanylic acid (and also guanosine monomers) form right-handed four-fold 

helices, and proposed that the strands are tightly held together by guanine-guanine Hoogsteen 

hydrogen-bonding to form guanine base quartets (termed G-quartets or G-tetrads: Figure 1a). 

the quartets stack together in the manner of base pairs in duplex nucleic acids, with the 

striking differences of having four strands, and sodium or potassium ions held centrally 

between quartets and coordinated to the O6 substituent of a guanine base.5  

     It was subsequently found that such guanine-rich sequences form the underlying repeat 

motif of telomeric DNA at the ends of all eukaryotic chromosomes6-8 and also that short-

length oligonucleotides containing such sequences can form discrete structures, termed 

quadruplexes9 (Figure 1b). These structures can be formed10-12 from  

(i) a single strand, folded back three times (unimolecular quadruplexes), having the 

general sequence Ga Xn Gb Xo Gc Xp Gd where Ga-d represent short guanine (G) 

tracts and Xn-p represent intervening “loop” regions of more general length and 

sequence 

(ii) two strands, which are normally identical (bimolecular quadruplexes), each folded 

back once  

(iii) three13 or four strands (tetramolecular quadruplexes).  

     Quadruplexes can adopt a wide diversity of structures and topologies (outlined below), in 

striking contrast to the relative uniformity of duplex nucleic acids. A number of quadruplexes 

have been characterised by biophysical methods, especially by circular dichroism and 
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fluorescence spectroscopy.14,15  All have the common feature of a core of stacked G-quartets, 

a central ion channel and four grooves, of varying dimensions (Figure 2a,b). The diversity 

arises in particular from (i) the variability of loop length and sequence, (ii) sequences in 

which the length of G-tracts is non-equivalent, and (iii) the influence of monovalent ions in 

the channel. Quadruplexes remained of little more than academic interest, until the early 

1990s, when several seminal NMR16-18 and X-ray crystallographic19 studies confirmed the 

earlier supposition of the nature of the G-quartet and its role as the underlying structural 

motif in quadruplexes.  

    This article will discuss the background to, and current status of quadruplexes, 

emphasizing their targeting with small molecules for therapeutic ends. It will also examine 

some future directions for this rapidly-developing field, including structure-based approaches 

and their relevance to the development of new therapeutic agents. The interested reader is 

referred to the large number of existing reviews on various other aspects of quadruplex 

chemistry, biophysics and biology for further background reading.10-12,14-15,20-24   

QUADRUPLEX PREVALENCE AND STABILITY  

     The determination of the sequence of the human genome (comprising ca three billion 

nucleotides) in 2002 led to the discovery of the wide prevalence of putative quadruplex 

sequence motifs,25-29 in addition to their inherent occurrence in human telomeric DNA (see 

below). The initial search algorithms employed in two independent informatics studies25,26 

both used a basic search sequence of G3-5 Xn G3-5 Xo G3-5 Xp G3-5, albeit with distinct 

algorithms. Both assumed that loops Xn, Xo and Xp would have 1-7 nucleotides, and that the 

size of the G-tracts varied between three and five guanines in length, but that they were not 

necessarily of equal length. The loop length limits were set on the assumption that shorter 

loops would be of greatest stability, in accordance with experimental and computational 
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studies.30-32 Both these studies independently resulted in the finding of ca 350,000 putative 

occurrences, of which a significant number occur in longer stretches of multiple G-tracts 

(“quadruplex islands”), where the definition of an individual quadruplex may be ambiguous 

and thus there is likely to be multiple and overlapping quadruplex species. The existence of a 

stable quadruplex can be validated by the combined use of several spectroscopic and 

biophysical techniques, notably UV fluorescence33 and circular dichroism,34 optimally 

together with X-ray crystallographic35 and NMR analyses.36  

     The concept that individual loops within a stable genomic quadruplex cannot contain more 

than seven nucleotides has been more recently challenged by experimental findings of 

quadruplex-forming sequences with long loops in a number of quadruplexes. Examples 

include:  

(i) a nine-nucleotide propeller loop determined in the NMR structure of a quadruplex 

within the human CEB25 mini-satellite locus, which comprises almost perfect 52-

nucleotide tandem repeats.37  

(ii) A 26-nucleotide loop, stabilised as a hairpin and with C:G and G:G base pairing, has 

been reported to be formed within a quadruplex encoded in the promoter sequence of 

the hTERT gene.38  

(iii) Very long central loops have been identified using a combined bioinformatics and 

experimental  approach in the 5'-UTRs (untranslated regions) of human mRNAs, 10-

90 nucleotides in length and with each flanking loop comprising just a single 

nucleotide.39  

(iv) An NMR study has shown that the promoter of the human BCL-2 gene contains a 13-

nucleotide central loop,40 of sequence d(CGCGGGAGGAAGG). 
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    These results strongly suggests that the original loop length definitions25,26 are too 

restrictive, and that the total number of putative quadruplexes is much greater than the 

original tally of ca 350,000. This is also in accord with a systematic experimental study of 80 

different sequences,41 which concluded that provided the flanking loops are short, then a very 

long central loop can be tolerated. The ability of this loop to form stable secondary 

interactions is clearly a major factor in determining stability. Shorter loops can also do this: 

the five-nucleotide lateral loop of sequence d(AGGAG) in the promoter of the c-KIT gene 

forms a highly stable secondary structure with two G:A base pairs, as observed in 2D-NMR42 

and crystal structures,43,44 and persists in molecular dynamics simulations.44,45 Although 

detailed structural data on the 13-nucleotide loop in the BCL-2 promoter quadruplex40 is not 

yet available, its sequence is strongly suggestive of it also containing a number of stabilising 

G:A base pairs.  

      The effects of longer loop length are however not straightforward and ultimately depend 

on the sequence of the loop(s) and possibly on the biological function and sequence context 

of the quadruplex. This has recently been illustrated in the case of the quadruplex sequence in 

the human mini-satellite 39-nucleotide CEB25 repeating motif, with a 9-nucleotide central 

loop flanked by two single-nucleotide T loops.37 The overall quadruplex sequence is 

d(GGGTGGGTGTAAGTGTGGGTGGG). Although this central loop (shown in bold) 

appears to be much less structured than the long loops in other quadruplexes in for example 

the BCL-2 or c-KIT genes, its presence still imparts some stability to this quadruplex. A 

subsequent detailed analysis46 of the effects of varying loop length both in vitro and in vivo 

on the CEB25 mini-satellite in Saccharomyces cerevisiae cells has revealed that the length of 

the central loop is an important factor in determining genomic instability at such sequences. 

Short (≤ 4 nucleotide) central loop CEB25 quadruplexes have enhanced stability compared to 

ones with a longer loop and can act to block replication and enhance genomic instability. 
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      The overwhelming majority of quadruplex studies, especially those related to small-

molecule therapeutics, have focussed on the human genome. Putative quadruplex-forming 

sequences have been located using bioinformatics approaches in a number of organisms other 

than homo sapiens (there is frequently strong evolutionary conservation of quadruplex motifs 

in vertebrates,47 for example between canine and humans in the c-KIT gene48). Examples of 

other organisms with quadruplex-containing genomes include Saccharomyces cerevisiae,49 

Escherichia coli
50,51 and a large number of bacterial species.52 In broad terms the effects of a 

quadruplex sequence on transcription and translation depend on its position within an E. coli 

gene.50 A number of quadruplex-forming sequences have been identified within the HIV 

genome, including within the long terminal repeat (LTR) promoter53,54 and in the coding 

region of the NEF gene.55 Therapeutic implications of targeting these HIV quadruplexes are 

discussed below. Potential quadruplex-forming sequences have also been located in the small 

(23 million nucleotide) malaria genome,56 with 63 non-telomeric quadruplexes being 

identified in this genome using a search sequence containing up to 11 nucleotides in the 

loops. Of these, 16 are clustered upstream of var genes, and there is some evidence that 

several of these quadruplexes can be selectively targeted in vitro,56 as demonstrated with a 

synthetic macrocyclic dibenzophenanthroline derivative.  

       The development of methodology to directly locate genomic quadruplex occurrences 

using a combination of next-generation sequencing and the polymerase stop assay has 

recently been applied to the human genome.57 Results were consistent using either K+ ions or 

stabilising ligands to induce quadruplex formation, and a large number of previously known 

quadruplex-forming regions have been identified and validated. In addition, and 

unexpectedly, quadruplexes were found in genes which had previously not been identified by 

computational search methods:25,26 two such notable genes are the breast cancer susceptibility 

genes BRCA1 and BRCA2. Overall, a total of 716,310 quadruplex occurrences were 
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identified, of which 451,646 had not been previously predicted. Many of these have non-

canonical quadruplex structures (ie they do not conform to the G3-5XnG3-5XoG3-5XpG3-5 

pattern of quadruplex sequence norm) and/or long loops. Of particular relevance to potential 

drug targeting was the prediction of regions of high quadruplex density within oncogenes 

such as c-MYC and BCL-2. 

       Direct experimental observations of quadruplexes in cells have relied on the generation 

of quadruplex-specific antibodies, which were first successfully applied58 to demonstrate the 

presence of quadruplexes in the transcriptionally active macronuclei of the ciliate organism 

Stylonychia lemnae. Interestingly, no evidence of antibody staining was found in the 

replication region of this organism; this prescient finding was suggested as indicative of 

quadruplexes being resolved (ie unwound) during replication. Another antibody, also with the 

ability to specifically pull-down quadruplex nucleic acid structures has been developed more 

recently59 for use with human cells, initially with MCF-7 breast carcinoma cells, in tandem 

with deep sequencing, to map the occurrence of quadruplexes in the genome for this cell line. 

Quadruplex signals were found to be enriched in particular, in sub-telomeric and regulatory 

regions. Furthermore a representative set of enriched genes are sensitive to transcriptional 

down-regulation when treated with the quadruplex-specific ligand pyridostatin (1). Direct 

visualisation of quadruplex occurrence within (fixed) cancer cells has been demonstrated 

using the antibody approach coupled with fluorescent probes.60,61 Interestingly the images 

show finite numbers of quadruplex foci, strongly suggesting that the number of stable 

quadruplexes within these cell lines is not large. One of these antibodies60 (BG4) has been 

used to examine quadruplex occurrence in human tissues and elevated levels have been found 

in patient-derived stomach and liver cancers, contrasting with lower responses in normal 

tissues.62 Possible causes of these elevated quadruplex levels are discussed further below, but 
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this data overall is strongly suggestive of underlying differences in actual quadruplex 

occurrence between normal and cancer cells.  

     Antibody-based quadruplex visualisation is restricted to fixed or permeable cells and 

tissues, and thus may potentially be prone to artefacts arising from the fixing process. Several 

groups are developing small-molecule quadruplex-specific probes that are useable in live 

cells. These show significant differences in fluorescent emission/excitation maxima and 

especially in fluorescent decay lifetimes when bound to quadruplex versus other types of 

nucleic acids. Examples include 3,6-bis(1-methyl-2-vinylpyridinium) carbazole diiodide63 (o-

BMVC: 2), naphthoTASQ (a G-quartet mimetic tetra-substituted naphthalene derivative,64 3) 

and a planar triarylmethyl carbocation65 (4). These promising approaches will need cross-

validation with quadruplex-binding antibodies before they become generally useable. At 

present neither the antibody nor the small-molecule visualisation methodology is able to 

identify an individual quadruplex within a genome, although this may be more readily 

feasible with a small genome such as that of HIV, which has only a small number of 

quadruplex targets.  

TELOMERIC QUADRUPLEXES 

The ability of eukaryotic telomeric sequences DNA, and in particular human telomeric DNA 

based on the hexanucleotide repeat sequence d(TTAGGG),8,66 to form discrete quadruplex 

arrangements,6,7,9,66,67 requires a transient or stable single-stranded stretch of DNA. Typically 

telomeric DNA can range in length from 3-7 kilobases, almost all of which except the 

extreme 100-200 nucleotides at the 3' end,68 is double-stranded. This single-stranded 

overhang, free from the constraints of Watson-Crick base pairing, is thus in principle 

available for quadruplex formation and indeed such structures will spontaneously form in the 

absence of associated proteins. Telomeric duplex DNA may be folded into a higher-order 
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structure (the t-loop), and is associated with an array of telomere-binding proteins (TRF1, 

TRF2, RAP1, TIN2, and TPP1), collectively termed the shelterin complex.69 The single-

stranded overhang is also not normally free to form higher-order structures since it is 

associated with a number of copies of the single-strand telomere binding protein POT1 

(hPOT1 in humans).70 This protein thus effectively destabilises quadruplex formation at 

telomeric DNA ends.71 The shelterin complex is involved in telomere length regulation, and 

POT1 is involved in telomere end-protection via feedback to other telomeric proteins within 

the shelterin complex, notably TIN2 and TRF2.72  

     The discovery of the telomere length maintenance enzyme telomerase73 and its 

identification as a specialised reverse transcriptase, was followed in the mid-1990s by the 

finding of a profound link between the up-regulated expression of telomerase and 

oncogenesis.74,75 This has been the starting-point for the surge of interest in telomeric 

quadruplexes, and ultimately in quadruplexes generally as therapeutic targets. The detailed 

chemistry at the telomerase catalytic sub-unit (hTERT in humans) active site involves 

assembly of nascent telomeric DNA onto the 3´ end telomeric DNA end. The process occurs 

on a complementary RNA template (hTR) and uses a pool of precursor mononucleotide 

triphosphates, with its substrate, the 3´ end of telomeric DNA, hybridising onto the template, 

and so the telomeric DNA must be single-stranded at this point. The enzymatic activity of 

hTERT can be inhibited by sequestration of this 3´ single-stranded end into a quadruplex 

arrangement76, which is augmented by the stabilising influence of a quadruplex-binding small 

molecule.77 Quadruplex formation in the telomeric DNA substrate effectively hinders this 

hybridisation from occurring. This approach to telomerase inhibition has been subsequently 

developed into an anti-cancer strategy78-81 following proof-of-principle experiments 

demonstrating in general that inhibition of telomerase function in tumour cells (where its 

expression is up-regulated in ca 80-85% of all human cancers) leads to senescence and 
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apoptosis. These key experiments used antisense oligonucleotides,82 dominant-negative 

mutants of the catalytic domain of telomerase83 or hTERT catalytic-site small-molecule 

inhibitors.84 The onset of replicative senescence normally requires telomeric DNA to shorten 

to a critical length and is accompanied by up-regulation of the RB pathway85,86 via the cyclin-

dependent kinase inhibitor p21, and increased expression of the tumour suppressor protein 

p16INK4a.  This leads to senescence induction, which is a precursor to selective cancer cell 

apoptosis and cell death. These cellular and molecular events have also been observed in 

cellulo with a number of quadruplex-binding small molecules, as well as demonstrating 

telomerase inhibitory activity and telomere shortening. Examples of telomeric quadruplex-

binding agents (Figure 3) include quinoline-based triazine compounds (5),87 BRACO-19 (6: 

an acridine derivative88,89), the perylene derivatives PM2 and PIPER (7)90 and more recently, 

a ruthenium complex with chiral 4-(2,3-dihydroxypropyl)-formamide oxoaporphine.91 The 

consequences of what is now termed telomere targeting with be discussed further in a 

subsequent section. 

      The unexpected findings92-94 that telomeric DNA can be transcribed into discrete (non-

coding) telomeric RNA molecules, termed TERRA, may indicate further potential targets for 

small-molecule quadruplex-mediated intervention at the telomere since TERRAs readily 

form stable RNA quadruplexes.95-98 TERRA molecules are involved in regulating telomere 

length, via telomerase activity in telomerase-positive cancer cells, and also form TERRA 

RNA-telomeric DNA hybrids, which may be involved in recombination-mediated telomere 

length homeostatis in telomerase-negative ALT cell types.99,100 TERRA molecules also play a 

role in the DNA damage response at telomeres.101 It is not clear at present what, if any role, 

natural TERRA quadruplexes might play in these processes, so stabilising them with small 

molecules may or may not have therapeutic benefit in proliferating cells. 
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Quadruplex-mediated targeting of telomerase and telomere maintenance. The finding 

that a disubstituted amidoanthraquinone compound (8) could inhibit the catalytic action of 

telomerase from elongating the 3' single-stranded end of telomeric DNA, was correlated with 

its ability to fold the end into a quadruplex arrangement.77 Subsequent synthesis and 

evaluation of the regioisomeric series of bis-amidoanthraquinones enabled structure-activity 

relationships to be established, which strengthened the evidence for a causal link between 

binding and activity.102-104 The overall structural features needed for effective small molecule 

binding to a quadruplex and optimal telomerase activity within a series are closely similar 

and have been defined as (i) the possession of an extended heteroaromatic chromophore 

which can π-π stack onto a G-quartet surface of aquadruplex, and (ii) normally (at least) one 

flexible side-chain containing terminal cationic-charged moiety such as a pyrrolidine or 

piperidine group. The chemical space for quadruplex-binding telomerase-inhibiting 

compounds has been subsequently extended to a large number of chemotypes. These are 

mostly based on polyheteroaromatic compounds, for example the tetra-N-methylpyridyl-

porphyrin compound (TMPyP4: 9, well-studied but non-selective),105 a series based on the 

pentacyclic dibenzophenanthroline core,106 the N,N'-bis[2-(1-piperidino)ethyl]-3,4,9,10-

perylenetetracarboxylic diimide PIPER107 and a pentacyclic acridinium compound (RHPS4, 

8,13-diethyl-6-methylquino[4,3,2-kl]acridinium iodide: 10) and dervivatives.108  

      The concept of using substituted polycyclic and heteroaromatic compounds as probes 

(and potential anticancer leads) has been the dominant theme in the subsequent development 

of the majority of quadruplex-binding ligand libraries, whether targeted to telomeric or other 

categories of quadruplex.20,22,109,110 Some of these libraries are derived from natural products, 

such as the core chromophores of the alkaloids berberine (11) and quindoline (12), but the 

majority are purely synthetic in origin. In addition, a number of categories of transition metal-
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containing complexes have been developed to target telomeric quadruplexes,111 some of 

which are also potent telomerase inhibitors (see for example.112, 113) 

      Notable exceptions to the polycyclic + cationic substituted side-chain class are 

compounds based on, or derived from the macrocyclic natural product telomestatin (13), 

which comprises five unsubstituted oxazole rings, two methylated oxazole rings and a 

thiazoline ring with one asymmetric centre.114,115 Even though (13) has no formal positive 

charge and the molecule is slightly non-planar, its extensive π-π overlap with a terminal G-

quartet in quadruplexes116 confers high affinity and selectivity, low duplex affinity, and is 

combined with potent telomerase inhibitory ability. However (13) is highly insoluble in 

aqueous media and thus challenging to formulate for biological studies or potentially as a 

therapeutic agent. A number of (13)-mimetic macrocyclic scaffolds have been reported117, 

often comprising a number of oxazole rings interspersed with for example, pyridyl and/or 

phenyl rings or amide groups (for example, 14).118 These linked rings may form a fully cyclic 

system, as in (13) itself, or may be open, forming a three-sided or acute crescent-like shape, 

with an angle of ca 90° between each arm. The ubiquitous alkylamino type of cationic side-

chain has been added to several of these ring systems, notably in derivative of the compound 

HXDV,119 which has six linked oxazole rings and two valine units together with a 

dimethylaminoalkyl side-chain. A number of these compounds show high potency (<1 µM) 

in cell proliferation assays together with effective quadruplex stabilising properties. One 

compound (15) in this series has been evaluated in the MDA-MB-435 breast tumour 

xenograft model with evidence of diminished tumour growth relative to controls, although 

the relationship of the in vivo activity to quadruplex binding has yet to be elucidated. 

       The classic model of senescence and apoptosis induction via telomerase inhibition 

requires that telomere shortening occurs in a timely manner, progressing through to the limit 

of telomere length attrition (for example in MCF-7 human breast carcinoma cells, which have 
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a mean telomere length of ~6 kilonucleotides). Since ~100 nucleotides are lost per round of 

replication, critical senescence events should only be activated after a large number of rounds 

of replication.120,121 Although several early studies on quadruplex-binding small molecules 

did observe progressive telomeric DNA shortening,87,90 senescence and growth arrest 

occurred much more rapidly than predicted on the basis of the classic senescence model of 

critical telomere shortening being required. Rapid inhibition of cell growth and proliferation 

was also accompanied by changes at the telomere itself such as anaphase bridge formation 

and end-to-end chromosomal fusions. These changes are consistent with telomere end 

uncapping from associated proteins88,90,122-4, including hPOT1, which binds to the single-

stranded overhang70 and is known to be displaced by quadruplex formation.71 It has been 

suggested that the telomerase enzyme complex is physically associated with the extreme 3' 

end of the telomeric DNA overhang in cancer cells, with the inference that this association is 

displaced on quadruplex formation,125  and thus telomere attrition is no longer the rate-

determining event. These rapid senescence- and apoptosis-inducing effects have subsequently 

found to be induced by almost telomeric quadruplex-binding small molecules. Ligand-

induced quadruplex stabilisation and telomere uncapping also results in DNA damage to 

telomeres and consequently initiates a cascade of responses with altered regulation of, in 

particular, p21/p16INK4a kinases, p53, PARP and ATM/ATR pathways. The DNA damage 

responses are characterised by senescence126 and the rapid appearance of phosphorylated 

histone γ-H2AX foci, often being apparent 24 hrs after compound administration.127 These 

responses have been studied in detail with several quadruplex-binding small molecules, 

notably with the pentacyclic acridine derivative (10),128-130 the macrocycle (13)131 and the 

bis(quinolinyl)pyridine-dicarboxamide derivative (1).127 There is also evidence that the 

observed antitumour activity of (10) in xenograft models is a direct consequence of the 

critically-important DNA damage response.128 Intriguingly, a study of the effects of (1) on 
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the genome of several cancer cell lines using a chromatin immunoprecipitation sequencing 

approach132 has revealed that this compound (which has high quadruplex-specificity and very 

low duplex DNA affinity133), produces DNA damage at both telomeres and a small number 

of non-telomeric regions of the genome, notably at the SRC gene locus. 

           The classic model of quadruplex-induced telomerase inhibition and telomere length 

attrition by small molecules with affinity for telomeric quadruplexes has evolved into a more 

direct mechanism in cancer cells, leading directly to telomere-induced senescence, growth 

inhibition and apoptosis. The telomere maintenance effects of these compounds involve 

telomere uncapping and induction of telomere damage, and telomerase inhibition, though it 

may well still play a role, does not appear to be the major factor. Selectivity for cancer cells 

may be a consequence of deficiencies of the DNA damage response apparatus in many 

cancers.134 Initial events are the dissociation of hPOT1 from the single-stranded overhang and 

possibly the uncapping of telomerase from telomere ends to enable quadruplex formation, 

which then acts as a damage-response signal. Once formed, quadruplexes need to be rapidly 

unwound otherwise they pose an impediment to the normal functioning of a cell. The helicase 

RTEL1 provides an additional defence to telomere targeting by quadruplex stabilisation since 

it is able to effectively unwind telomeric quadruplexes and thus maintain telomere 

integrity.135 In those instances where telomere dysfunction via small-molecule quadruplex 

binding has been unequivocally validated, it is a reasonable assumption that RTEL1 itself has 

also been disabled.  The recent finding of a non-uniform distribution of quadruplexes within 

cell nuclei and preferential localisation in heterochromatin136 has been suggested to be a 

consequence of the molecular crowding within heterochromatin, and also implies that 

epigenetic factors may play a role in selectivity.  

         It should not be assumed that strong ligand binding to human telomeric quadruplexes in 

vitro means that the cellular (and in vivo) mechanism of action involves telomere 
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maintenance dysfunction – other quadruplexes may be more significant targets in particular 

cell types. The available evidence points to telomere targeting being the critical mechanism 

of action for at least one well-characterised example, the acridines-based compound (10). 

However the increasing application of high-definition genomic probes, (with (1)132 being a 

prominent example) is demonstrating an altogether more complex scenario, in view of the 

multiplicity of non-telomeric quadruplex sites in the human genome, as discussed in the next 

section.  

PROMOTER QUADRUPLEXES 

In parallel with the developing interest in telomeric quadruplexes in the 1990s, potential 

quadruplex arrangements began to be identified in a variety of genomic contexts and genes, 

initially in retinoblastoma susceptibility genes137 and notably, in the nuclease hypersensitive 

element within the promoter of the c-MYC gene.138-140 The occurrence of a quadruplex 

sequence in the promoter region of a particular gene (with c-MYC being the paradigm for 

many subsequent studies) has been developed into a second potential therapeutic quadruplex-

targeting strategy in human cancers.140,141 The concept was initially articulated as a simple 

inhibition of function following the induction of a stabilising quadruplex-small molecule 

complex (using the porphyrin compound (9)).140 It has received much attention and a number 

of genes with putative promoter quadruplex sequences have been subsequently identified, 

initially by a bioinformatics approach.142-144 A quadruplex-small molecule complex would be 

an effective impediment to RNA polymerase transcription. Subsequent validation of a 

particular sequence as being capable of forming a stable quadruplex has in large part come 

from biophysical studies. Typically this has involved the application of circular dichroism, 

fluorescence and NMR spectroscopy to isolated quadruplex sequences. Promoter 
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quadruplexes have also been identified in bacterial genomes,145 although here as yet the 

concept has not been significantly exploited to date. 

     The majority of stable promoter quadruplexes reported are from human oncogenes and 

cancer-associated genes, and all appear to be intramolecular. In a number of instances the 

sequences are within established nuclease hypersensitive/transcriptional activation sites 

within or upstream of promoter regions. Well-studied examples of genes containing such 

quadruplex sites for which quadruplex formation in vitro has been demonstrated include c-

MYC,140 BCL-2,40,146 h-RAS147, k-RAS,148 c-KIT,149,150 HIF,151,152 b-RAF,153,154 the androgen 

receptor,155 RET,156,157 HSP90,158 MET
159 and VEGF,160 whereas promoter quadruplexes 

appear to under-represented in genes associated with normal cellular processes. Many 

validated and putative promoter quadruplexes tend to be within 1kb, more commonly 

immediately upstream and close to the transcription start site in these genes. Perhaps 

unsurprisingly they can also include or are overlapping with the G-rich SP1 transcription 

factor binding sites161 d(GGGCGG), which would serve to augment their ability to repress 

transcription. Some of these genes, which are over-expressed in particular cancers, have been 

targeted with small molecules at the protein level and in several instances, compounds are in 

the clinic (for b-RAF, c-KIT) or in clinical trial (for example for MET, BCL-2). However 

several of the proteins encoded by genes in this list have long been considered to be 

undruggable – c-MYC and the RAS proteins are prominent examples. Quadruplex targeting 

at the gene level, at least in principle, offers the possibility of circumventing such roadblocks. 

      In striking contrast to the relative simplicity of human telomeric quadruplexes, where the 

quadruplex unit is four d(TTAGGG) repeats, many promoter quadruplexes have complex 

sequences. There high diversity in overall sequence, as would be expected, which translates 

into diversity in the nature of the G-tract size and in the size and sequence of the loops. Some 

quadruplexes unequivocally comprise just four G-tract repeats, notably the two quadruplexes 
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in the c-KIT gene,149,150 which are 22- and 21-mers respectively. These are between -87 and -

109 bp and between -140 and -160 bp upstream of the transcription initiation site. The latter 

is adjacent to the SP1 transcription factor binding site. By contrast, the well-studied 27-mer 

NHE III1 element of the c-MYC promoter contains five short G-tracts, and that both four-tract 

quadruplexes (1234- and 2345-G-tract) can be formed,162,163 and indeed a quadruplex can be 

formed with all five tracts.164 The major quadruplex-forming sequence in the BCL-2 promoter 

is a 39-mer with six G-tracts, so that in principle up to 15 distinct four-tract intramolecular 

quadruplexes are possible. Unsurprisingly, quadruplexes formed from such clusters can be 

conformationally complex, although when several loops are short (each with ≤ two 

nucleotides), then individual quadruplexes tend to have parallel folds. This is the case even 

when one loop is long, as with a BCL-2 quadruplex.40 Cell-based experiments have shown 

that the promoter of the SRC proto-oncogene is a major binding site for the well-studied 

quadruplex-selective compound (1).132 This site has six G-tracts, suggesting that these 

enhanced quadruplex clustering are possible hot-spots for quadruplex-binding small 

molecules, although in this study not all such sites were targeted, as judged by DNA damage 

responses.      

     The promoter of the hTERT gene (the catalytic domain of the telomerase complex) is 

mutated in a number of human cancers,165 notably in melanomas and gliomas, leading to 

enhanced expression of telomerase and maintenance of the malignant phenotype in these 

cancers. The mutations occur in a highly distinctive putative quadruplex-forming region38 

with 12 G-tracts. The topology of a major quadruplex formed in this region is currently 

controversial, with one model based on foot-printing analysis having a 26-nucleotide loop, 

contrasting with NMR studies on one segment of the sequence having a parallel and a (3+1) 

hybrid quadruplex in equilibrium.166 Biophysical and simulation studies167 on the complete 
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hTERT G-tract region suggest the possibility of a complex arrangement involving three 

stacked parallel quadruplexes, but with some cross-interaction between them.   

Promoter quadruplex targeting with small molecules. The early demonstration of c-MYC 

down-regulation by a small molecule has prompted much effort to target this and a number of 

other quadruplexes, with a view to eventual therapeutic utility. A few examples are given 

here. Substituent groups are usually flexible acyclic chains terminating in cationic groups.  A 

persistent challenge is that even if strong binding to a particular promoter quadruplex is found 

in vitro and effects consistent with down-regulation of the target gene in cells are observed, 

this does not necessarily constitute robust validation of the cellular effects being direct on-

target ones. However evidence of down-regulation at both mRNA and protein levels is 

usually taken to be highly suggestive of on-target effects, and such evidence has been 

documented in a number of instances 

     BCL-2 expression has been shown to be down-regulated, for example, by members of a 

small library of mono-substituted quindoline (12) derivatives,168 using a luciferase reporter 

assay to select compounds with optimal promoter quadruplex stabilising ability. BCL-2 

expression was down-regulated at the mRNA level and reduced levels of BCL-2 protein were 

also observed following cell treatment with the most effective BCL-2 quadruplex binder in 

the series. BCL-2 expression was also shown to be down-regulated in MIA-PACA2 

pancreatic cancer cells169 and tumour xenografts170 treated with the tetra-substituted 

naphthalene diimide compound MM41 (16). This compound has exceptional affinity for 

several quadruplexes, especially human telomeric and BCL-2 promoter ones. Selectivity at 

the cellular level was indicated on the basis of BCL-2 mRNA levels being selectively down-

regulated in several pathway-focussed PCR gene arrays (for oncogenes, DNA damage 

response and for telomere maintenance-related genes). However BCL-2 down-regulation was 

not the sole significant gene change observed, suggesting that with this compound in this 
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particular cell line there are likely to be several major quadruplex targets. Thus protein levels 

of both BCL-2 and k-RAS were reduced in treated tumours compared to controls – k-RAS 

mutation and dysregulation is a key driver of most pancreatic cancers and cell lines. 

Comparisons of changes in gene expression in short-term cell culture conditions with those in 

long-term treated tumours need to be made with caution since in the latter such effects may 

be masked by or mistaken for global necrotic and apoptotic effects. A study of gene 

expression changes induced by a trisubstituted naphthalene diimide derivative (17), also 

using a focussed gene array approach, has similarly observed BCL-2 as well as hTERT 

mRNA down-regulation in several cancer cell lines including a melanoma one.171 In accord 

with other observations,169,170 no reduction in c-MYC expression was observed, which is 

notable in view of the ubiquitous role of c-MYC in oncogenesis and the ability of this and 

many other such small molecules, to bind with high affinity to c-MYC quadruplexes. The 

array data derived from this trisubstituted naphthalene diimide indicates that in some cell 

lines at least the pattern of modulation of gene expression correlates with putative quadruplex 

potential, although the small number of genes surveyed probably preclude a more definitive 

conclusion.   

      The two quadruplexes found in the promoter of the c-KIT oncogene can been stabilised 

by a variety of polycyclic-based small molecules, including substituted indenoisoquinolines, 

tri-substituted isoalloxazines and mono-substituted benzo[a]phenoxazines.172-174 A target 

validation study has been reported174 employing a 173-member compound library including 

mono-substituted benzo[a]phenoxazines (18), using a luciferase reporter assay approach, 

established in the human HGC-27 gastric cancer cell line with and without c-KIT promoter 

quadruplex formation. This enabled the assignment of quadruplex-related effects to be made 

with confidence. The two hit compounds from this assay showed dose-dependent reduction 

of c-KIT expression in HGC-27 cells. 
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       The reality of small molecule-driven promoter quadruplex transcriptional down-

regulation is likely to be considerably more complex than the straightforward picture outlined 

above and may well also involve small-molecule interactions with the opposite i-motif strand 

in a quadruplex-containing duplex sequence, as well as proteins such as nucleolin that would 

stabilise a quadruplex complex once formed. Discussion of these topics is beyond the scope 

of this review and the reader is referred to, for example, recent mechanistic studies on small 

molecule binding to the BCL-2 and c-MYC promoter loci.175-177  

     A number of studies have reported high affinity of a small molecule (often a quindoline 

derivative) to a particular promoter quadruplex, together with observations of down-

regulation of the gene, sometimes at both mRNA and protein level. The dangers of assuming 

a direct cause and effect relationship between in vitro and cellular observations have been 

well illustrated by a structure-activity study on the effects of 11-piperazinylquindoline 

derivatives, such as (2-(4-(10H-indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)-N,N-

dimethylethanamine: 19) on c-MYC expression.178 Several compounds in this series are 

effective stabilisers of a c-MYC quadruplex. The lead compound inhibits cell growth and 

produces c-MYC down-regulation in cells; several other derivatives also have effects on other 

quadruplex-containing genes, as well as their quadruplexes. An exon-specific assay,179 which 

is an elegant alternative to using a pair of isogenic cell lines, exploits particular translocation 

features of the CA46 Burkitt’s lymphoma cell line and was used to demonstrate178 that c-

MYC quadruplex targeting is not directly involved in c-MYC down-regulation by this 

compound. However indirect effects on “quadruplex target” genes are not by any means 

universal and appear to depend on the nature of the small molecule involved, and on the cell 

type. For example, and in striking contrast to the study outlined above,178 an ellipticine 

derivative with a single dimethylaminoethoxy side-chain (GQC-05: NSC338258), was found 

by a combined screening and molecular modelling procedure.179 This compound directly 
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down-regulate c-MYC expression, using the same exon-specific assay.179 Use of a reporter 

assay with quadruplex-containing and quadruplex-negative constructs in the promoter can 

also provide evidence of promoter quadruplex involvement,180 although the approach by itself 

is less definitive than a genetic one. It has been used, for example, to study effects produced 

by disubstituted indolo[3,2-c]quinolines on k-RAS expression in colon cancer cells and their 

relationship to binding to the k-RAS promoter quadruplex,181 as well as with compounds 

targeting BCL-2 and c-KIT quadruplexes.168,174 

         The fluoroquinolone-based quadruplex-binding compound quarfloxin (21) (CX-3543: 

5-fluoro-N-(2-((S)-1-methylpyrrolidin-2-yl)ethyl)-3-oxo-6-((R)-3-(pyrazin-2-yl) pyrrolidin-

1-yl)-3H-benzo[b]pyrido[3,2,1-kl] phenoxazine-2-carboxamide)182,183 is an example of 

evolution in target considerations. It was originally developed as a c-MYC quadruplex 

stabiliser. Subsequent studies have indicated that it acts on ribosomal DNA (rDNA), which 

has a large number of putative quadruplex sequences, and then inhibits rDNA-nucleolin 

interactions, which in turn inhibits RNA polymerase I transcription.183 This compound 

associates with nucleolin in cancer cell nuclei and causes rRNA synthesis inhibition. It 

produced significant reductions in tumour volume in the MDA-MB-231 breast cancer and 

MIA-PACA-2 pancreatic cancer xenograft models. (21) is distinguished by being the first-in-

class, (and to date, only) quadruplex-binding compound to have entered clinical trials for 

human cancer. Phase 1 trials indicated good patient tolerance and a phase 2 trial was in 

carcinoid/neuroendocrine tumours, a tumour type for which the phase 1 trial indicated some 

responses. Compound (21) has more recently been licenced to Tetragene Inc 

(www.tetragene.com) in order for clinical development to continue. It will be interesting to 

see the application of next-generation sequencing technologies to determine the actual targets 

in the genome for this drug.  
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RNA QUADRUPLEXES 

     By contrast with promoter quadruplexes, the concept of quadruplex formation in mRNA 

sequences has the obvious attraction unwinding of duplex nucleic acid is not required.184 

Thus a given RNA G-tract sequence can more readily fold into a quadruplex form than a 

DNA duplex one. In addition, in vitro studies have indicated that RNA quadruplexes are 

more thermodynamically stable than their DNA counterparts185-187 and are less liable to 

conformational and topological heterogeneity, probably as a consequence of the additional 

hydrogen-bonding possibilities provided by the 2' sugar hydroxyl group in RNAs. The 

finding that quadruplex sequences are over-represented in the 5'-untranslated regions (5'-

UTR) of many human genes188,189 has catalysed interest in the category of sequences have 

been identified in a number of genes, for example, in BCL-2,190 n-RAS,191 the human 

estrogen receptor alpha,192 the MT3 matrix metalloproteinase,193 transforming growth factor 

β2194 and several oncogenes targeted by the cap-binding helicase eIF4A,195 as well as more 

generally in introns.196 There is good evidence that 5'-UTR quadruplexes are involved in 

post-translational gene regulation,197,198 although the exact role of a particular quadruplex 

depends on its locus within the 5'-UTR. The quadruplex antibody approach has been used to 

visualise the occurrence of RNA quadruplexes in human cells,199 which was enhanced when a 

RNA quadruplex-specific small molecule (a carboxy derivative of compound (1)) was used. 

134 

       Small-molecule targeting of 5'-UTR quadruplexes has been shown to inhibit translation, 

for example, with the N-RAS200 and TRF2198 genes, with observations of decreased levels of 

translation efficiency using in vitro reporter assays, using respectively pyridine-2,6-bis-

quinolino-dicarboxamide and bis-quinolinium derivatives. It has been shown201 that RNA 5'-

UTR quadruplexes can be targeted in cells, in a study with the K-RAS gene using the photo-
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activated porphyrin compound tri-meso(N-methyl-4-pyridyl), meso(N-tetradecyl-4-pyridyl) 

porphine. This compound has cytoplasmic rather than nuclear localisation. It down-regulates 

k-RAS protein levels in pancreatic cancer PANC-1 cells (which over-express this protein), by 

up to 80% in a dose-dependent manner, and also produces cell-growth arrest. These changes 

were found to be correlated with changes in mRNA levels. 

       There is much current interest in RNA quadruplexes formed from expansion of simple 

quadruplex motifs such as the hexanucleotide repeat r(G4C2). Such repeat expansions are 

found in a number of neurodegenerative diseases.202 The r(G4C2) motif occurs in the non-

coding region of the C9orf72 gene and is associated with the majority of cases of the 

neurodegenerative diseases amyotropic lateral sclerosis (ALS) and frontotemporal dementia 

(FDT).203 The repeats can form RNA quadruplexes204,205, which have been directly related to 

disease progression,204 although the exact mechanisms relating to C9orf72 quadruplexes are 

not known at present. It is not clear for example, whether stabilising the quadruplexes will 

result in beneficial changes in their association with RNA-binding proteins, or what effects 

this will have on the level of further truncated C9orf72 transcripts. A start has been made on 

developing small-molecule targeting of the C9orf72 quadruplex; initial experiments206 with 

the non-selective porphyrin compound (9) show that this ligand does bind to the C9orf72 

RNA quadruplex, which then inhibits binding of two established RNA binding proteins, 

hnRNPA1 and ASF/SF2 to the quadruplex. The C9orf72 repeat expansion RNA can also in 

principle form a hairpin arrangement in equilibrium with a quadruplex, with the latter 

favoured in K+ but not Na+-containing solution. It is not known what the effect on this would 

be in the crowded environment of the cytoplasm. A focussed library of 132 RNA-binding 

small molecules has been used to screen the C9orf72 RNA repeat in vitro.207 The three hit 

compounds were found to bind to the repeats in cells using a pull-down technique and had an 

effect not only on repeat translation but also on numbers of RNA foci in repeat-expressing 
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neurons. Two of the compounds have a curved shape resembling classic DNA minor groove 

binding compounds; the third, most biologically active compound is an ellipticine derivative 

with a single piperidine (cationic) side-chain (22). Remarkably, very few ellipticine 

derivatives have been evaluated for quadruplex binding and cellular activity, a notable 

exception being GQC-05 (NSC338258: 20), also with a single, though different side-chain, 

which down-regulates c-MYC expression.180      

QUADRUPLEXES IN REPLICATION 

      Quadruplexes can occur at many loci208-211 throughout the human and other genomes in 

addition to their well-documented presence in promoters, untranslated regions and telomeres. 

They are present in immunoglobulin switch regions and in breakpoint regions in many cancer 

genomes.212 They may well play a more general role in gene regulation213, consist with their 

well-documented non-random occurrence throughout the genome. Replication presents 

opportunities for DNA quadruplexes to be formed since DNA becomes unwound and 

transiently single-stranded. In principle their occurrence presents a stall to replication, but in 

practice such impediments are effectively resolved by, in particular helicases.214,215 However 

when helicases involved in replication and repair, such as Pif1216,217, FANCJ218,219 and the 

Bloom’s helicase are mutated,60,220, as is often the case in cancer cells, then replication is 

stalled. Quadruplex replication arrest (and the appearance of increased numbers of 

quadruplex foci in cells), is augmented by quadruplex-binding small molecules such as the 

polyoxazole compound (13),60 the resulting quadruplex complexes are more resistant to 

helicase unwinding than the native quadruplexes.221 The helicases XPB and XPD, which are 

associated with promoter activity and transcriptional regulation, also unwind quadruplexes.215 

The RTEL1 helicase unwinds and resolves quadruplexes at telomeres;222 it is mutated in a 
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number of human cancers223 although it is not known as yet whether these mutations result in 

impaired quadruplex unwinding. 

       Helicase malfunction then provides a further basis for the concept of quadruplex-targeted 

selectivity in many cancers, and a working hypothesis to explain the observations of selective 

cancer cell growth inhibition induced by quadruplex-binding small molecules in vitro and in 

vivo. Few systematic compound library screens have been reported to date based on the 

concept of their ability to stabilise quadruplexes against helicase unwinding, but these would 

be a useful addition to existing approaches, possibly using the recently-described rapid 

fluorescence-based helicase assay224, which has been validated with a number of well-

established quadruplex-binding compounds.  

      Structure-based approaches to finding new ligands may also be fruitful. The DEAH (Asp-

Glu-Ala-His) box RNA helicase binds to and unwinds quadruplexes with parallel topology. 

The 2D-NMR solution structure has been determined225 of the quadruplex-binding DEAH 

peptide bound to a parallel quadruplex. This shows the α-helical core of the peptide sitting on 

a G-quartet end-face of the quadruplex (Figure 3) in a manner reminiscent of the 

chromophores of typical quadruplex-binding ligands. Several basic peptide side-chains are 

associated with the quadruplex phosphate groups. Thus the structure reinforces the view that 

ligand planarity is not an essential requirement for quadruplex binding and suggests ways in 

which novel peptomimetic ligands could be engineered to interfere with helicase unwinding 

and bind with high specificity to a particular quadruplex. 

QUADRUPLEX STRUCTURES  

       Crystallographic and 2D-NMR structural studies have determined the detailed molecular 

structures of DNA and RNA quadruplexes from a variety of sources (reviewed in 35,36,226, 227). 

Intramolecular and intermolecular quadruplexes formed from human-derived sequences have 
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been studied in most detail, with the latter formed from two (bimolecular) strands. 

Quadruplexes with four (tetramolecular) or three separate strands are also possible. All show 

the common features of at least two G-quartets, stacked together with a right-handed twist 

and connected by loop sequences. Loops can be of several distinct types; diagonal, lateral (or 

edgewise), and propeller (or chain-reversal). The spaces between the four strands are termed 

grooves, analogous to those in duplex DNA and RNA, although by contrast with the two 

groove sin duplex structures, quadruplexes have four grooves. Groove dimensions are 

sensitive to the size and nature of the loops and to topology – the pattern of glycosidic angles 

plays an important role in defining overall groove width and depth. The differences in groove 

dimensions are import factors in enabling small molecules to differentiate between different 

quadruplexes. A given loop type is associated with a given set of strand directions for the two 

strands that it connects. These various possibilities give rise to a large number of possible 

folds (topologies), of which only a small number have been observed to date. The guanines 

forming each quartet arise from the short G-tracts; however when the tracts are of unequal 

length or loops themselves contain guanines, then more complex arrangements may be 

possible and can even dominate the overall topology.  

Telomeric quadruplexes. There has been considerable emphasis on structural studies of 

quadruplexes formed by human telomeric DNA sequences,228,229 assembled from the repeat 

d(TTAGGG), in particular on intramolecular quadruplexes containing four such repeats.230-235  

All comprise a core of stacked G-quartets assembled from the G-tracts in successive repeats, 

held together by d(TTA loops).  The structures themselves display a variety of folds.228,230-235 

2D-NMR studies in dilute solution in K+ ion environments have revealed several types of 

fold with anti-parallel strands, including (3+1) hybrid topologies (Figure 4) in which three of 

the four backbone strands are in one direction (ie parallel) and the fourth is in the opposite 

antiparallel direction.230-232 The precise nature of the flanking sequences appears to play a 
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role in stabilising one particular type over another. A single fold dominates in Na+ solution, 

with two lateral and one diagonal loop, so that two backbone orientations are in one direction 

and the other two are anti-parallel.228 By contrast, the crystal structures235 of a human 

telomeric intramolecular and a bimolecular quadruplex containing K+ ions shows all strands 

parallel in both structures and with all the loops necessarily being of the propeller type in 

order to achieve this strand orientation (Figure 1). There is continuing controversy as to 

which of these folds best represents the human intramolecular quadruplex in cellular 

environments; under crowding and high concentration conditions the parallel form is 

predominant236,237, consistent with it also being present in cells, whereas in more dilute K+-

containing solution the (3+1) forms may predominate.  

      Crystal structures of small-molecule human telomeric quadruplex complexes representing 

several diverse chemotypes are available238-244, with structural data available in the PDB. 

Structures for a number of naphthalene diimide intramolecular complexes239-241 have been 

determined (Figure 5), as well as with berberine,243 two mesoporphyrin complexes244 and the 

crystal structure of a bimolecular complexes with the trisubstituted acridine compound (6).238 

All of these structures have parallel-stranded quadruplexes, with the ligand chromophore 

bound on an external G-quartet face and side-chain substituents located in quadruplex 

grooves. In all instances the core structure, of three stacked G-quartets, is constant and 

essentially unchanged. Also to a first approximation the quadruplexes in these complexes are 

closely similar overall to the native structures. However there are significant variations in 

conformation of the propeller loops and groove dimensions, with evidence of ligand-related 

effects.245 Analysis of the structural data on several naphthalene diimide derivative 

complexes shows that loop conformations are most constrained within a series of closely-

related compounds, giving confidence to conservative in silico design studies based on such 

crystal structures. These crystal structures have also highlighted the role of groove-bound 
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water molecules in generating a network of water-mediated hydrogen bonds to the cationic 

side-chain substituents of the naphthalene diimides.  

      Only one NMR-determined structure in this category has been reported to date246, 

involving an analogue of the cyclic polyoxazole compound (13) with six oxazole rings 

together with two alkylamino side-chains (23), which impart aqueous solubility to the 

otherwise insoluble macrocycle core. A human telomeric DNA sequence was used, which 

forms a (3+1) hybrid fold in the native state.230,232 This topology is retained in the complex 

(Figure 6), with the macrocycle stacked on one end of the quadruplex. The macrocycle has a 

significant out-of-plane twist, which is reflected in the non-planarity of the G-quartet on 

which it is stacked, indicating that G-quartets can accommodate chemotypes with substantial 

non-planarity without compromising overall quadruplex stability. Overall stabilisation of the 

six oxazole rings arises from a number of close contacts to backbone and two sideways-on 

loop bases, which contribute to the preference for this particular topology. The two flexible 

side-chains are in close hydrogen-bond contact with backbone phosphate atoms. The overall 

structure provides some clear pointers to ways in which affinity and selectivity can be 

enhanced by rational modification of, in particular, the side-chains. 

      Small-molecule binding tends to favour a particular quadruplex topology, dependent on 

the precise nature of the ligand, which can be reliably assessed, at least for telomeric 

quadruplexes, by CD spectroscopy.247 Thus compound (13) and the pentacyclic acridines 

derivative (10), which has minimal substituents, both have a preference for anti-parallel type 

quadruplexes whereas the porphyrin (9) and a number of porphyrin derivatives as well as 

tetrasubstituted naphthalene diimide compounds, prefer the parallel fold. This behaviour has 

been rationalised on the basis of the available surface area at the chromophore binding site, 

the 3' or 5' terminal G-quartet.248 
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     Human telomeric RNA sequences can also readily form quadruplexes. However unlike 

their DNA counterparts, these are altogether more conformationally rigid and fold into only a 

single topology in K+ solution. This is the all-parallel-stranded form, observed both in the 

crystal249 and in dilute solution by 2D-NMR;250 both structures are closely similar to the 

crystal structures of the DNA telomeric quadruplex. The crystal structure has highlighted the 

role of the O2' ribose hydroxyl group in stabilising r(UUA) propeller loop conformation via 

hydrogen bonding.  Only one structure of an RNA telomeric quadruplex ligand complex is 

currently available, involving a disubstituted acridine chromophore having two 

amidoalkylamino side-chains.251 The r(UUA) propeller loops have altered conformations 

compared to the native structure, with the O2' ribose hydroxyl groups hydrogen bonding to 

loop adenine bases so that these bases swing round to become in-plane with the terminal G-

quartet of the quadruplex. The resulting extended r(AGGGGA) surface is able to 

accommodate two side-by-side bound ligand molecules.  

Promoter and other quadruplexes. 2D-NMR studies in particular have validated the 

existence of stable quadruplexes for a number of promoter quadruplex sequences. These are 

notable for their sequence diversity, and include structures for c-MYC,252,253 BCL-2,254,255 

VEGF
256, hTERT166 and RET257 quadruplexes, all of which have fully-assigned spectra and 

structures deposited in the PDB. Remarkably, the majority of the major species in solution 

tend to have parallel topology, which is a consequence of most sequences have at least one 

short (n<3 nucleotide) propeller loop, whose stereochemistry requires strands to be parallel; 

the VEGF 22-mer sequence d(CG4CG3CCG5CG4) is typical (Figure 7), with two single-

nucleotide dC loops and a longer tetranucleotide loop, which plays a role in overall 

stabilisation of this quadruplex. This parallel propensity is also shown, for example, by the 

RET oncogene quadruplex, with one single-nucleotide dC loop and two d(GCG) propeller 

loops. Examination of the prevalence of single nucleotides in the quadruplex surveys of the 
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human genome25,26 indicate that they probably comprise the majority of loop types in 

quadruplexes.  

     However the existence of propeller loops and of parallel strands does not necessarily lead 

to a simple all-parallel topology, if for example guanine bases occur within loop regions and 

also actively participate in quartet formation. This can result in an altogether more complex 

fold. An example is one of the two sequences in the c-KIT promoter, which has been 

extensively characterised by 2D-NMR42 and by X-ray crystallography.43,44 A non-G-tract 

guanosine situated between two cytosine loops, is folded back and forms part of the G-quartet 

core. This overall fold has not been observed in other quadruplexes, which is unsurprising 

given that the primary 22-mer sequence has a unique occurrence in the human genome.256 

The c-KIT fold (Figure 8) is conserved between solution and crystal, providing further 

support for the notion that the topology of quadruplexes with parallel strands is likely to be 

conformationally stable. 

     No crystal structures of small molecule complexes with non-telomeric DNA quadruplexes 

have been reported to date. Three 2D-NMR structures of c-MYC promoter quadruplexes have 

been determined, with the porphyrin compound (9)259, the (bisquinolinium) phenanthroline 

compound260 Phen-DC3 (24) and a crescent-shaped mono-substituted quindoline compound 

with an aminoalkylamino side-chain.261 The chromophores in all three structures are stacked 

over a terminal G-quartet of the quadruplex core. The complex with compound (9) has the 

substituent N-methylpyridyl groups positioned close to the edges of the grooves but not 

actually bound in them. Unsurprisingly this compound has modest quadruplex selectivity, 

being able to also bind effectively to duplex nucleic acids. The quindoline substituents of 

compound (24) have extensive overlap with the guanines of the terminal G-quartet (Figure 9) 

whereas the overall crescent-like shape of the molecule ensures that it would stack only 

poorly in a duplex intercalation site (Figure 10), in accord with its high quadruplex 
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selectivity. The NMR structure rationalises earlier data, on for example, analogues with 

pyridinium rings replacing the quinolones, which have reduced quadruplex-stabilising ability. 

It also suggests sites of functionalisation to enhance affinity and selectivity. The mono-

substituted quindoline 2: 1 complex261 is unusual in that a ligand molecule is bound to each 

terminal G-quartet face, with additional stabilisation from 5' and 3' flanking nucleotides. The 

short protonated aminoalkylamino side-chain attached to the quindoline skeleton is barely 

able to reach the nearest groove (Figure 11), suggesting ways in which to improve affinity, as 

well as selectivity for this particular quadruplex.  

     There are remarkably few detailed molecular structures available for RNA quadruplexes 

and none to date of 5'-UTR ones. Those determined include several in more complex flanking 

sequence environments than those in the structures of simple isolated DNA quadruplexes. An 

RNA quadruplex is the target of the Fragile X Mental Retardation Protein (FMRP) and a co-

crystal structure262 (Figure 12) shows recognition of this quadruplex by the arginine-glycine-

rich (RGG) motif of the protein. This quadruplex is at the end of a helical RNA stem, where 

the RGG β-turn is bound. There is an extensive pattern amino-acid contacts to the RNA, 

stabilising the interface and its mixed-base quartet. As with the DEAH-box helicase, one sees 

a protein motif bound at one end of the quadruplex, analogous to small-molecule binding 

sites, and suggesting where small-molecule inhibitors might best act. Two co-crystal 

structures263,264 of small-molecule fluorophores bound to a novel RNA quadruplex aptamer 

have revealed an unprecedented quadruplex fold with, in both structures, just two G-quartets. 

This parallel-stranded quadruplex is formed at the junction between two RNA duplex stems, 

with the strands folding back and each donating guanines to the quartets. The sequences 

involved do not obviously conform to the quadruplex rules and there are no G-tracts of more 

than two nucleotides in length. The two fluorophores are closely-related - in one structure264 it 

is 3,5-difluoro-4-hydroxybenzylidene imidazolinone (25) - both are bound in a stacking 
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environment between one G-quartet and the adjacent base triplet (Figure 13), which are both 

part of an extended co-planar run of duplex and quadruplex base pairs, triplets and quartets. 

There are a number of contacts involving 2'-ribose hydroxyl atoms and fluorophore. 

Altogether these structures show that quadruplexes, perhaps RNA ones in particular, can 

form highly specific small-molecule binding environments, especially when part of more 

extensive nucleic acid structures.    

QUADRUPLEX SELECTIVITY 

     Can small molecules have (i) selectivity for quadruplexes over duplex and other nucleic 

acids forms, and (ii) selectivity for a particular quadruplex? The first question is 

straightforward to answer, in the affirmative. There are many examples in the literature of 

individual compounds, and of broad chemotypes that have low or minimal affinity for duplex 

nucleic acids as well as high quadruplex affinity (this is typically assessed on a small number 

of quadruplex types). Heteroaromatic polycyclic compounds such as substituted acridines, 

quindolines, ellipticines and naphthalene-diimides, tend to show promiscuous binding to 

various types of nucleic acid structure; selectivity for the larger surface area of a terminal G-

quartet increases with ligand size and especially with the number of side-chain substituents. 

This however is at the cost of reduced drug-like character - higher molecular weight and 

increased cationic charge, even though several of these compounds are showing anticancer 

effects in vivo. Many macrocyclic and crescent-shape molecules on the other hand, have 

built-in low duplex-binding ability by virtue of their inability to effectively bind into a duplex 

intercalation site (see Figure 10). These crescent-shaped molecules bear some resemblance to 

classic DNA duplex groove binders but crucially they do not have the shallow curvature 

characteristic of this class, with the three sides of the crescent being much more acutely 

angled in order to achieve selectivity. Examples include quindoline compounds261 and a 
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number of oligo-oxazole-based compounds and several low-molecular weight meta-

substituted diphenyl furans.266  

        Selectivity for a particular quadruplex has generally been approached empirically rather 

than by exploiting the available structural data. Even so, screening approaches have resulted 

in several remarkable findings. For example the crescent-shaped heptacyclic compound 

TOxaPy, comprising four oxazole and three pyridyl rings (26) is highly selective267 for the 

Na+ form of the human telomeric quadruplex and binds only very weakly to any of the K+ 

forms,229-235 indicating a marked topological preference for the antiparallel Na+ form.228 

Compound (26) also shows some affinity for several promoter quadruplexes. Selectivity for 

human telomeric quadruplex DNA can in principle be enhanced by exploiting the potential of 

the 3' single-stranded telomeric DNA overhang to form tandem quadruplexes, analogous to 

‘beads on a string.’268 Such selectivity has been found269 with a hybrid oxazole-triazole 

compound, which can have a crescent-shaped conformation. The goal of designing small 

molecules selective for particular promoter quadruplexes is altogether more challenging and 

no studies have been reported to date utilising the available structural data. Screening 

methods continue to be employed, with some successes. For example, several members of a 

series of crescent-shaped bis(benzimidazole)-phenanthroline compounds, with additional 

flexible alkylamino side-chains have been found to be selective for the c-MYC and c-KIT 

promoter quadruplexes over a human telomeric one and duplex DNA.270 These findings have 

been rationalised by molecular dynamics simulations, which emphasise the role of the side-

chains in propeller loop recognition. An innovative application of small-molecule 

microarrays, screening 20,000 compounds, has been used to find a selective c-MYC promoter 

quadruplex inhibitor.271 The lead compound from this approach, a disubstituted benzofuran 

derivative (27), does not have the characteristics of a conventional quadruplex binder and 

produces only a modest increase in c-MYC quadruplex melting temperature (∆Tm), of 2.1° C. 
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On the other hand, measurement of binding affinity by surface plasmon resonance (SPR) 

gave a low µM value for Kd, sufficient to elicit a biological response. Significantly, SPR 

measurements on five other promoter quadruplexes did not record binding, although weak 

binding was found with two others (from the BCL-2 and RB1 genes). In accord with this 

selectivity, an exon-specific assay179 using the Burkitt’s lymphoma cell line CA46, 

demonstrated that effects were ascribable to binding to the c-MYC promoter quadruplex 

locus. Studies on various panels of cancer cell lines has confirmed and extended these finding 

of high selectivity, so that overall this represents the first detailed proof of concept study in 

this field. The lead compound (27), while not being an ideal drug candidate, is an appropriate 

starting-point for further optimisation. 

LIGAND DESIGN 

      The overwhelming majority of current quadruplex-binding small molecule scaffolds80, 

109,265,272 have been selected on the basis of the simple premise of possessing102-104 (i) a 

heteropolyaromatic planar chromophore, which binds via π-π stacking to a terminal G-

quartet, and (ii) one or more flexible substituents with a cationic charge, to bind in 

quadruplex grooves and to loops. Notable exceptions to these broad guidelines are (i) cationic 

porphyrin and related scaffolds, of which the best-studied is the tetra-N-methyl-pyridyl 

porphyrin, compound (9), and (ii) a number of ligand families, all characterised by having 

macrocyclic or crescent-shaped scaffolds. These scaffolds are mostly based on or derived 

from the telomestatin and related oxazole-linked macrocyclic chemotypes. Appropriate 

crescent shapes can be achieved using pyridyl or phenanthroline rings disubstituted with 

heteroaromatic groups such as quinolines. Members of both of these broad classes of 

compounds bind to the terminal G-quartets in telomeric and other quadruplexes, with 

sufficient affinity from π-π aromatic G-quartet stacking so to not require the involvement of 
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additional cationic groove-binding substituents. These quadruplex binders tend to have 

greater quadruplex selectivity over duplex DNA or RNA than those based on 

polyheteroaromatic chemotypes. 

      New quadruplex-binding chemotypes have mostly been found as outcomes of screening 

chemical libraries against a measurement of quadruplex affinity or stabilisation. We are now 

seeing the increasing use of much larger compound libraries, which is starting to move the 

field away from the established concepts of what constitutes a good quadruplex-binding 

ligand, and promises to ensure the development in time of altogether more drug-like 

chemotypes. Also in silico and structure-based approaches are being used with increasingly 

broader ranges of scaffolds. The extensive structural knowledge base for the various 

topological folds of the human telomeric monomeric quadruplex has prompted a number of 

in silico studies273-277 using, for the most part, well-established docking software with the 

crystallographic or NMR-derived structures. As well as the well-documented pitfalls of the 

approach in general, telomeric quadruplexes present several particular challenges as in silico 

targets:  

(i) the flexibility of the loops in these structures has rarely been taken into account,278 so 

“hits” from screening of small-molecule libraries can only be taken as indicative of plausible 

high-affinity hits and are generally not reliably predictive of ranking order. A survey245 of 

known crystal structures of telomeric quadruplex complexes with small molecules has found 

that a number of distinct loop types are represented in this data set, although one type does 

predominate. There appears to be a dependence of loop type on the nature of the small 

molecule, although at present it is not possible to predict this. A combined spectroscopic and 

molecular dynamics simulation study has shown that natural mutations in loop sequences 

may affect loop conformations and even overall quadruplex topology.279 This may be of 

especial relevance to the design of ligands specific to such mutated quadruplexes as further 
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sequence data on mutations in promoter regions becomes available, following the findings of 

hTERT promoter mutations in melanoma and other cancers.165 

(ii) In general in silico studies have taken a particular telomeric quadruplex topology as a 

starting-point. It cannot be assumed that the chosen topology is preferentially stabilised by 

the resulting hits, especially since some ligands are known to alter topology, for example 

from anti-parallel to parallel. 

(iii) in silico methods work best with well-defined binding pockets for example in nucleotide 

binding sites in kinases, which are not present in most structurally simple quadruplexes. No 

studies to date have been reported on in silico screening of more complex quadruplexes, 

where fragment-based approaches could also be used.       

        In spite of these caveats, it is apparent that the approach can successfully generate novel 

hits, and has the advantage of targeting quadruplex grooves as well as the more conventional 

terminal G-quartets. This has resulted in the discovery of a number of non-planar quadruplex-

binding compounds, some of which have the potential to be developed into drug-like 

leads.274-277 Docking studies have used a range of large in silico libraries, with the ZINC and 

ChemBridge databases employed, for example, to find hits against the c-MYC 

quadruplexes.280,281 Fragment-based design has not yet been used to full develop a novel lead 

compound, although a study using a fragment library derived from RNA-targeting has 

identified the potential of this approach.282 

     Data from X-ray crystallography35 and 2D-NMR studies36 on molecular structures of 

small-molecule quadruplex complexes, notably of telomeric quadruplexes has provided the 

starting-points for some of these in silico studies. The perennial question of the relevance of 

quasi-solid-state crystal structures to solution or even cellular conditions, is of especial 

significance for quadruplexes, since some do have folds that are environment-sensitive. 
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These crystal structures are densely packed and crowded solvent-containing environments 

akin to the cellular conditions surrounding nuclear DNA – it is notable that quadruplexes 

have been recently reported to be localised in the highly organised DNA of 

heterochromatin.135 It is therefore unsurprising that in the case of human telomeric 

quadruplexes - the most contentious category – studies of topology in crowded solution have 

mostly concurred with the crystal data. Water molecules can also play a more detailed, active 

and intimate role in ligand binding. The crystal structures, for example of several 

naphthalenediimide-telomeric quadruplex complexes,240,241 have revealed the consistent role 

of bridging water molecules in the grooves via hydrogen bonds between cationic groups at 

the termini of ligand side-chains, and phosphate groups lining the walls of the grooves.  

       Although those crystal structures have not been used directly for the design of new leads, 

they have been useful starting-points for structure-based optimisation of existing 

compounds.239 Recent 2D-NMR structures of quadruplex complexes also provide 

opportunities for ligand refinement and improvement.283 An important future application of 

this structural information, especially for polycyclic compounds, will be to enhance their 

drug-like features.  

Limitations of current quadruplex models. There are several potential challenges with the 

current approaches to measuring quadruplex-small molecule binding, which is normally 

assessed in vitro by one or more biophysical methods, using an isolated quadruplex as target. 

In particular there has been relatively little attention paid to the relationship of the behaviour 

and ligand binding of an isolated quadruplex, to its behaviour in its (DNA or RNA plus 

associated proteins) biological or cellular context. The higher-order telomeric quadruplexes 

arrangements possible in the single-stranded 3' overhang at the extreme end of eukaryotic 

telomeres are obvious and accessible ones to focus on, as discussed earlier in this review. The 

junctions of telomeric quadruplexes with duplex DNA may also be plausible ligand targets, 
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with ligand binding onto a d(TAT) base triplet platform formed at the junction.284 Analogous 

junctions may be formed around promoter DNA quadruplexes and have been observed in two 

extended RNA quadruplex-small molecule complexes.263,264 The sequences of the junctions 

and flanking regions may affect quadruplex topology. mRNA quadruplexes are also in 

principle susceptible to flanking and bystander effects, although the additional ribose 2'-OH 

groups may reduce flexibility and hence hinder topological change in RNA quadruplexes – 

this reduced flexibility has been noted in telomeric RNA quadruplexes which do not have the 

variability observed in dilute solution with their DNA counterparts.  

Quadruplex selectivity: a real or apparent problem? This review has highlighted those 

studies where individual small molecule leads and starting-points have been exemplified into 

chemical libraries, and from these structure-activity relationships have been evaluated, for 

example correlating quadruplex stabilisation measured by thermal shift (∆Tm) with 

telomerase inhibitory activity or changes in expression of a target gene. In reality, selectivity 

for individual quadruplexes has until recently been almost entirely the result of serendipitous 

discovery, following screening with either an individual pre-chosen quadruplex, or from a 

small library of (normally) promoter quadruplexes. Once a particular quadruplex has been 

chosen, affinity can be optimised on the basis of structure-activity relationships. Remarkably 

few studies have surveyed a complete genome, for example by whole-genome expression 

profiling285, to verify that the chosen quadruplex is in reality a significant biological target. 

We have discussed in an earlier section the advisability of being able to distinguish between 

direct effects arising from quadruplex-small molecule binding and consequential changes in 

the target gene’s expression, from effects that are in reality just correlated together and are 

not direct cause-and-effect. This latter circumstance can occur when other upstream 

components of a pathway, or of an intersecting pathway, are the direct targets and these may 

or may not be quadruplex-related. 

Page 38 of 93

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



39 
 

        The task of specifically targeting an individual quadruplex in say the human genome 

appears at first sight to be an impossibly daunting one, unless that quadruplex has features so 

distinctive for structure-based design or library screening. This may be more realistic with 

very small genomes such as the HIV one, where all the potential quadruplexes can be 

identified. At present this approach is not obviously feasible for the human genome. 

Bioinformatics surveys of both DNA and RNA human quadruplexes have shown that the 

majority probably have at least one short loop, suggestive of a “simple” parallel topology. 

Many genomic quadruplexes are therefore likely to have the same general features, ie a core 

of stacked quartets with the loops forming four grooves. Structural and molecular dynamics 

data has shown that the groove dimensions and loop conformations are not fixed, but have 

significant flexibility, which will change on ligand binding. Even so, it is possible to 

categorise a large number of these simple quadruplexes into a few structural families. More 

complexes quadruplexes are formed, for example when the loops themselves contain guanine 

residues that can actively participate in core quartet formation via insertion, when a loop is of 

sufficient length to form its own stable secondary structure, or when the quadruplex is an 

RNA one. One of the c-KIT quadruplexes illustrates this, with both an insertion loop and a 

secondary structure loop, which results in a topology that has not been observed to date in 

any other quadruplex. Thus such instances may provide individual quadruplex starting-points 

for highly selective ligand design. It might be thought then that attempting to target a simple 

quadruplex with more generic structural features, is unlikely to be successful. This is belied 

by the recent success with a microarray compound library approach to targeting the c-MYC 

quadruplex.271 Even though the lead compound was only evaluated for selectivity with a 

small number of other quadruplexes (and therefore its genomic quadruplex selectivity is 

unknown), the fact that it was able to down-regulate c-MYC expression in a cancer cell with 
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some potency, demonstrates that the cell is in effect able to sort out selectivity, provided that 

the target plays a major role in maintaining the cell’s malignant phenotype.    

      Although targeting a single defined quadruplex within a genome may not be readily 

feasible at present, it is important to achieve high selectivity over binding to duplex DNA and 

RNA. Competition studies that examine (for example thermal stability (∆Tm)) effects of a 

ligand on a quadruplex in the presence of large excess of duplex DNA are valuable in that 

they have relevance to the nucleic acid biological context. Duplex nucleic acid affinity leads 

to non-specific cell toxicity; the fact that many quadruplex-binding small molecules have 

features that at first sight resemble, in particular, classic intercalative compounds, with 

implications of such off-target toxicity, should not deter further studies on them. It is notable 

that most of the quadruplex-binding compounds with reported anti-cancer activity in 

xenograft models, are based on classic polycyclic heteroaromatic cores, notably compounds 

(6),89 (10)128,286,, (16),168 (21)181 and EMICORON (N,N-bis[2-(1-piperidino)-ethyl]-1-(1-

piperidinyl)-6-[2-(1-piperidino)-ethyl]-benzo[ghi] perylene-3,4:9,10-tetracarboxylic 

diimide.287 This suggests that even if their genomic quadruplex selectivity is modest, it is 

sufficient to down-regulate key oncogenic targets. 

         Is it therefore necessary in practice to be confident that a single gene is being targeted at 

the promoter or UTR level by a small molecule? The experience of cancer therapeutics over 

the past 25 years suggests that in reality this does not matter as long as one can be confident 

of among the major quadruplex targets is a driver gene or genes that play a key role in the 

maintenance and progression of a particular cancer cell type. The oncogene addiction 

hypothesis288,289 states that some cancers rely on the dominant action of an individual 

oncogene for growth and viability, and that these are appropriate targets. In principle, then 

targeting aberrant telomere maintenance, promoter or 5'-UTR quadruplexes may be a fruitful 

way of demonstrating the importance of this hypothesis, and arriving at novel drugs for the 
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treatment of human cancers. The quadruplex approach holds out the promise of 

circumventing the challenges of targeting “undruggable” targets such as c-MYC and RAS at 

the protein level. The next few years will determine whether this promise becomes a reality 

as chemical-based approaches are increasingly combined with new biological tools in order 

to interfere with quadruplex function. 
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Figure legends 

Figure 1  

a. Stick representation of a guanine G-quartet, with hydrogen bonds shown as dashed 

lines. A potassium ion at the centre of the quartet is also shown. This is coordinated to 

O6 atoms of the quartet and also to those of the stacked adjacent quartet.   

b. Representation of the assembly of an intramolecular quadruplex from a human 

telomeric DNA sequence (PDB id 1KF1)235, illustrating the donation of one guanine 

from each of the four G-tracts to form an individual G-quartet. Three quartets stack 

together to form this quadruplex, linked by propeller loops 

Figure 2  

a. Cartoon representation of a quadruplex (PDB id 1JPQ), with various features 

highlighted and labelled. The stack of four G-quartets constitute the quadruplex core. 

Guanine bases are coloured blue. The loops contain thymine bases, coloured cyan. 

b. View of the same quadruplex, now looking down onto the quartet plane.  

Figure 3 

A cartoon view of the DEAH helicase peptide-quadruplex complex, as determined by 2D-

NMR.225 The α-helix core of the peptide is shown sitting on an external G-quartet face (PDB 

id 2N21). 

Figure 4 

A view of a (3+1) hybrid human telomeric quadruplex, determined by 2D-NMR (PDB id 

2HY9).231 

Figure 5 
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View showing the crystal structure241 of an intramolecular human telomeric DNA G-

quadruplex bound by the tetra-substituted naphthalene-diimide compound (16), shown in 

stick form (PDB id 3UYH). 

Figure 6 

Two orthogonal views of the 2D-NMR structure246 of a complex between a human telomeric 

quadruplex and a telomestatin analogue (23), shown in stick representation (PDB id 2MB3).  

Figure 7  

Cartoon view of the parallel quadruplex formed from a sequence in the human VEGF 

promoter (PDB id 2M27), determined by 2D-NMR.256 

Figure 8 

Cartoon view of the high-resolution crystal structure43 for a quadruplex formed from a 

sequence in the c-KIT promoter (PDB id 3QXR). 

Figure 9 

View of the 2D-NMR structure260 of a c-MYC promoter quadruplex, with bound 

(bisquinolinium) phenanthroline Phen-DC3 (PDB id 2MGN), projected onto the plane of the 

G-quartets. Note the extensive π-π overlap between the four guanines of the terminal quartet 

and the two quinolinium and phenanthroline moieties. 

Figure 10 

A molecular model for Phen-DC3 intercalated between two Watson-Crick base pairs in 

duplex DNA. Note that although the phenanthroline group is stacked between the base pairs, 

the two quinolinium groups are necessarily completely protruding into solvent and do not 

make any contacts with the DNA. 
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Figure 11 

View of the 2:1 complex between a mono-substituted quindoline compound261 (shown in 

stick representation) and a c-MYC promoter complex, determined by 2D-NMR (PDB id 

2L7V). 

Figure 12 

Co-crystal structure262 of the RNA quadruplex which is the target of the Fragile X Mental 

Retardation Protein (FMRP) bound to the arginine-glycine-rich (RGG) motif of the protein. 

The close-up view shows the part of the RNA stem and quadruplex, in cartoon form, together 

with the peptide (with the β-turn and backbone in cartoon form and side-chain atoms in stick 

form), bound onto a mixed quartet surface at one end of the quadruplex. 

Figure 13 

a. Close-up view of the crystal structure264 (PDB id 4Q9R) RNA quadruplex region of 

the RNA aptamer mimicking green fluorescent protein, bound to a substituted 

hydroxybenzylidene imidazolinone molecule (shown in space-filling mode).  

b. Close-up looking onto the plane of the G-quartets, showing the overlap between the 

bound hydroxybenzylidene imidazolinone molecule (in stick form) and the guanines. 
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Figure 1a 
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Figure 2a 
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Figure 3                                                            Figure 4 
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Figure 7                                                               Figure 8 

 

 

Figure 9                                                                     Figure 10 
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Figure 12 

 

 

 

 

 

 

 

 

 

Figure 13 

b                                                                        b   
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