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Abstract10

Identifying the steady states of a population is a key issue in theoreti-11

cal ecology, that includes the study of spatially heterogeneous populations.12

There are several examples of real ecosystems in patchy environments where13

the habitats are heterogeneous in their local density dependence. We investi-14

gate a multi-patch model of a single species with spatial dispersal, where the15

growth of the local population is logistic in some localities (negative density16

dependence) while other patches exhibit a strong Allee effect (positive den-17

sity dependence). When the local dynamics is logistic in each patch and the18

habitats are interconnected by dispersal then the total population has only19

the extinction steady state and a componentwise positive equilibrium, corre-20

sponding to persistence in each patch. We show that animal populations in21

patchy environments can have a large number of steady states if local density22

dependence varies over the locations. It is demonstrated that, depending on23

the network topology of migration routes between the patches, the interaction24

of spatial dispersal and local density dependence can create a variety of coex-25

isting stable positive equilibria. We give a detailed description of the multiple26

ways dispersal can rescue local populations from extinction.27

Keywords: patch-model. Allee effect. population migration. ODE.28

Abbreviations: EAD, extinct in the absence of spatial dispersal; OAD, oc-29

cupied in the absence of spatial dispersal30

Population dynamics studies the changes over time in the size (density) of a31

group of individuals who share the same habitat. Since there are so many interactions32

between individuals and the environment, describing how populations grow or shrink33

is often a complex task. Mathematical growth models are frequently used to better34

understand these dynamics in real populations. In simplest terms, the change in the35
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size of the population can be expressed by the difference of births and deaths. If36

environmental conditions are favourable (that is, food, space, etc. are abundant),37

then the population is able to grow. Growth is said to be exponential when the38

growth rate is proportional to the total population size. However, when resources39

are limited, an intraspecific competition of the individuals can occur which results40

in a slowdown of the exponential growth as competition for the resources increases.41

Eventually, population growth decreases nearly to zero as the population reaches42

the carrying capacity of the environment. This way, the growth of the population is43

described by an S-shaped curve, known as the logistic curve.44

Numerous examples illustrate that in real ecosystems the growth of populations45

can exhibit another type of dynamics, the Allee effect, which is very different from46

that of exponential and logistic growth. Animal populations are often subject to the47

Allee effect, that is, they are better able to grow at higher densities. The concept was48

first described by Warder Clyde Allee, who studied the growth of goldfish. While49

classical population dynamics modelling approaches – including the concepts of ex-50

ponential and logistic growth – assume negative density dependence of per capita51

growth rate, Allee’s experiments showed that goldfish were better able to survive52

on higher densities. It has been observed that certain aquatic species can affect the53

chemistry of the water by releasing protective chemicals that could enhance their54

survival. In a tank, goldfish better manage to render the water closer to their op-55

timal chemical requirements when there are several of them (Allee el al, 1932 [1]).56

Based on his experiments and observations, Allee arrived to the conclusion that the57

evolution of social structures is not only driven by competition (which classically58

implies negative density dependence), but that cooperation is another fundamental59

principle in animal species (Allee, 1931 [2]). The individuals of many species coop-60

erate in various ways: they join forces to hunt or to escape predators, they forage61

together, they use cooperative strategies to survive unfavourable conditions, or they62

seek partners for reproduction.63

The phenomenon of the Allee effect, often referred to as positive density de-64

pendence in population growth, has been studied comprehensively in the literature.65

Both in the direction of theoretical works with mathematical models and empirical66

works with the unveiling of Allee dynamics in natural populations, a large number67

of studies have been published (Dennis, 1989 [3]; Courchamp et al, 1999 [4]; Berec68

et al, 2007 [5], Stephens and Sutherland, 1999 [6]). We also refer to the excellent69

book of Courchamp, Berec, and Gascoigne, 2008 [7] which details the history and70

recent developments of the topic, and also provides a thorough overview of the rel-71

evant literature. We distinguish two types of Allee effect: the strong and the weak72

Allee effects. The strong Allee effect includes a population threshold that is often73

referred to as the Allee threshold: the population goes extinct when rare (per capita74

growth rate is negative), and it is able to grow at densities higher than the thresh-75

old (Dennis, 1989 [3]; Lewis and Kareiva, 1993 [8]; Odum and Barrett, 2004 [9]). In76

case when a weak Allee effect occurs in the population, the per capita population77

growth rate is lower (however, still positive) at low densities than at higher densities.78

79

An Allee effect can arise from a large variety of different ecological mechanisms.80

There are several types of reproductive Allee effects, as fertilization efficiency in ses-81

sile organisms, mate finding in mobile organisms or cooperative breeding. Examples82

also include mechanisms related to survival, like environmental conditioning and83
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predation. Comprehensive description of the various mechanisms with appropriate84

ecological examples can be found in Berec et al, 2007 [5]; Stephens and Sutherland,85

1999 [6]; Courchamp et al, 2008 [7]. Predation can generate a strong Allee effect in86

prey. An example for this mechanism is the case of the island fox (prey) and the87

golden eagle (predator) on the California Channel Islands (Angulo el al, 2007 [10]).88

Foxes are consumed by eagles as secondary prey, since feral pigs are the main prey89

for eagles. If pigs are not present on an island, then eagles won’t sustain a permanent90

population on that habitat, as the fox population by itself cannot provide enough91

prey. If, on the other hand, there are sufficient pigs around to maintain the eagle pop-92

ulation then the eagles establish residence on the island. This way, eagle population93

dynamics do not depend on fox density, and unlike in the classical predator–prey94

models, eagles can deplete the fox population without negative feedback on the95

predator population. If the eagle kill rate follows a Holling type II functional re-96

sponse then this phenomenon reveals an Allee effect in the fox population, since the97

lower the fox density, the higher the individual risk of eagle predation (Angulo el98

al, 2007 [10]). Clutton-Brook et al, 1999 [11] also compared survival between prey99

populations living in sites where predators are abundant and sites where predators100

have been reduced or removed as a result of human interference. They find that suri-101

cates in Kalahari Gemsbok Park–an area of high predator density–were subject to a102

strong Allee effect whilst those living in the neighbouring ranchland where predator103

density is relatively low, could survive even in small groups.104

If the mechanism that triggers the Allee effect depends on ecological circum-105

stances (e.g., presence of particular predators), then the Allee effect may be present106

in some areas or time periods, and absent in others. Sinclair at el, 1998 [12] investi-107

gates the impact of reintroducing endangered predators on the prey. Since predation108

causes an Allee effect in the prey population which is not the primary food supply109

for the predator, it might be necessary to apply predator control to allow the escape110

of the prey population. In Australia, several indigenous mammals–the black-footed111

rock wallaby and the quokka for instance–have been reduced to a fraction of their112

former range, so for their conservation some sensitive prey species are now con-113

fined to outer islands where exotic predators (feral cats and red foxes) are absent.114

Sometimes different habitats support different colony sizes, and it depends on their115

density whether the population is subject to an Allee effect or grows logistically.116

Pollock apply two types of strategies for protection from predators. Fish who live in117

structured habitats (such as algal beds) disperse to reduce detection by predators,118

so predation triggers a negative density dependence in fish. On the other hand, in119

open intertidal habitats the fish shoal, which means that their risk-dilution effect is120

positively density dependent (Stephens et al, 1999 [6]).121

122

The term “metapopulation” was introduced in the works of Richard Levins in123

1969 [13] and 1970 [14], referring to a collection of local populations that are con-124

nected by migration ([14]). The metapopulation concept, though it has undergone125

some paradigm shift, has been firmly established in population ecology and conser-126

vation biology since the work of Gilpin and Hanski, 1991 [15], and the topic is also127

receiving increasing attention in mathematical modelling of ecological processes.128

The classical metapopulation theory (Levins, 1969 [13]) rests on the assumptions129

that dynamics of local populations occur on a fast time scale in comparison with130

metapopulation dynamics. This way, the classical metapopulation theory is con-131
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cerned with the number of local populations but changes in their sizes is ignored.132

The dynamic theory of island biogeography (MacArthur and Wilson, 1963 [16], 1967133

[17]), models the changes in the size of local population in the discrete habitat frag-134

ments (patches). In a mathematical model that rests on the island theory approach135

the dynamic variable is the number of individuals on a particular patch, while in the136

classical approach the dynamic variable is the number of habitat fragments occupied137

by the species. Hanski, 2011 [18] explains how the two metapopulation approaches138

can be integrated by providing a theoretical framework that explicitly unites the139

two theories.140

141

In this paper we focus on the approach where the size of local populations is142

modelled. Most literature with this approach assume negatively density-dependent143

(typically, logistic) growth in the local populations ([13, 14, 19, 20, 21, 22, 23, 24,144

25, 26, 27]). Besides, spatial theory for the case when the local dynamics is governed145

by the Allee effect is also relatively well developed ([3, 7, 8, 28, 29, 30, 31, 32]).146

However, an interesting question–that hasn’t been studied yet–is how dispersal and147

spatial heterogeneity influence metapopulation dynamics when the nature of local148

density-dependence is negative in some patches but positive in others. Throughout149

the above discussion we provided examples for real animal metapopulations where150

in some habitats local populations grow logistically while different locations exhibit151

an Allee effect. Such difference in the local dynamics can arise when some ecological152

circumstances (e.g., presence of particular predators) vary over the localities.153

We consider an animal population distributed over several discrete geographical154

patches that are interconnected by dispersal. If a local population is subject to a155

strong Allee effect then typically it has three steady states: the extinction (zero) equi-156

librium attracts every solution started below a positive equilibrium (Allee threshold,157

unstable), and all solutions converge to the population carrying capacity (another158

positive, stable equilibrium) if the initial population size is larger than the Allee159

threshold. On the other hand, in a local population that follows logistic growth160

there exist only two steady states: the extinction equilibrium is unstable, while the161

positive steady state –representing population carrying capacity– is globally stable.162

Studying the dynamics of animal population where density dependence varies over163

spatial locations hasn’t received much attention despite the numerous examples in164

real ecosystems ([6, 10, 11, 12]). Here we show that if some of the patches are subject165

to a strong Allee effect then many steady states exist. Our accurate mathematical166

description characterizes the structure and the stability of the equilibria in terms of167

local density dependence and the migration routes between the patches. Due to the168

coexistence of many positive stable steady states, making predictions for the future169

behaviour of such systems can be rather challenging.170

1 Mathematical model171

We consider r patches, and denote the population of patch i at time t by Ni(t)172

for i = 1, . . . , r and t ≥ 0. Population growth at patch i is modelled by the term173

Ni ·gi(Ni) in an ordinary differential equation. This formulation immediately implies174

that each patch has an extinction state. We assume that gi is r − 1 times continu-175

ously differentiable for each i ∈ {1, . . . , r}, and consider two different scenarios for176

population growth in the patches. We assume that for s patches (0 ≤ s ≤ r) the177
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population is subject to a strong Allee effect, while the population growth is given178

by the logistic function for the remaining r − s patches. To model this, we assume179

that ga (a ≤ s) has two zeros: one gives the unstable Allee threshold Aa (sometimes180

also called the extinction threshold), and another corresponds to the stable carrying181

capacity Ka; and we assume that gb (s+ 1 ≤ b ≤ r) has only one zero, representing182

the stable carrying capacity Kb of the patch. This is formulated mathematically as183

d(Na · ga(Na))

dNa

= ga(Na) +Na
dga(Na)

dNa


< 0 if Na = 0,

> 0 if Na = Aa,

< 0 if Na = Ka,

for a ≤ s,

d(Nb · gb(Nb))

dNb

= gb(Nb) +Nb
dgb(Nb)

dNb

{
> 0 if Nb = 0,

< 0 if Nb = Kb,
for s+ 1 ≤ b ≤ r,

(1)
where 0 < Aa < Ka for a ≤ s. Furthermore, we assume that ga(0) < 0 when a ≤ s184

and gb(0) > 0 when s + 1 ≤ b ≤ r, that is, the extinction steady state of a patch185

is asymptotically stable if a strong Allee effect can occur in the population, and186

unstable for a patch with logistic population growth. Logistic population growth187

is typically modelled with gb(Nb) = rb(Kb − Nb), and numerous examples for the188

mathematical formulations of the Allee effect can be found in the literature that189

satisfy our general assumptions on ga, e.g. ga(Na) = ra(Ka −Na)(Na − Aa) ([3, 28,190

33, 34, 35, 36]).191

Spatial dispersal between the patches is represented by linear terms in the system192

for the metapopulation dynamics. We let α ·cjiNi for the migration term from patch193

i to patch j, where the non-negative constant cji (i, j ∈ {1, . . . , r}, i 6= j) represents194

connectivity potential, and α ≥ 0 is the general dispersal parameter, which will serve195

as a perturbation parameter as well. The following differential equation system (Mα)196

describes population growth over time in r locations:197

d

dt
Ni = Ni · gi(Ni)−

r∑
j=1
j 6=i

α · cjiNi +
r∑
j=1
j 6=i

α · cijNj, i = 1, . . . , r. (Mα)

Standard results from the theory of differential equations [37] guarantee that the198

system is well-posed. We denote our model by (M0) in the special case when there is199

no spatial dispersal between the patches, that is, α = 0 and the habitats are isolated.200

2 Extinction equilibrium and steady states where201

all local populations are abundant202

Equilibria of the model (Mα) arise as solutions of the steady state system203

Ni · gi(Ni)−
r∑
j=1
j 6=i

α · cjiNi +
r∑
j=1
j 6=i

α · cijNj = 0, i = 1, . . . , r. (2)

One immediately derives the following result, that holds for any α and cij (i, j ∈204

{1, . . . , r}, i 6= j).205
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Theorem 2.1. The system (Mα) has a steady state that corresponds to extinction206

in all habitats.207

In the special case when there is no spatial dispersal between the patches (that208

is, α = 0) the steady state system (2) reads209

Ni · gi(Ni) = 0, i = 1, . . . , r,

where we see that the equations decouple, and solving the system requires solving210

r scalar equations which are pairwise independent. There are s patches that exhibit211

a strong Allee effect and each has 3 equilibria, moreover all r patches with logistic212

growth have 2 steady states; therefore, there are 3s · 2r−s equilibria in the system213

(M0) of isolated populations. For a steady state N0
= (N

0

1, . . . , N
0

r) of (M0) it holds214

that N0

a ∈ {0, Aa, Ka} for a ≤ s and N0

b ∈ {0, Kb} for s+ 1 ≤ b ≤ r.215

Whereas finding the solutions is fairly trivial in the case of isolated patches, solv-216

ing the steady state system (2) can be very difficult and sometimes impossible when217

dispersal is incorporated. However, by knowing the roots of (2) without dispersal,218

the implicit function theorem (see [38] for reference) enables us to retrieve some in-219

formation on the steady states for small values of dispersal. To this end, we rewrite220

the system (Mα) in the compact form221

d

dt
X = T (α,X ) (3)

with X = (N1, . . . , Nr)
T ∈ Rr and T = (T1, . . . , Tr)T : R × Rr → Rr, where Ti is222

defined as the right hand side of the ith equation of the system (Mα), i ∈ {1, . . . , r}.223

Note that (3) is equivalent to (M0) in the special case when α = 0.224

The steady state system (2) can be formulated as T (α,X ) = 0. When the patches225

are isolated then this equation reads T (0,X ) = 0, and we have a perfect understand-226

ing of the roots. To apply the implicit function theorem, we note that T is an r− 1227

times continuously differentiable function on R × Rr, and the matrix
(
∂T
∂X

)
(0, N

0
)228

is invertible for any equilibrium N
0 of the system (M0). Indeed,

(
∂T
∂X

)
(0, N

0
) is a229

diagonal matrix with diagonal elements d
dNi

(Nigi(Ni))|Ni=N
0
i
, i = 1, . . . , r, that are230

nonzero. The implicit function theorem then says:231

232

Consider an equilibrium N
0 of the model (M0). There exists a positive constant233

αE, an open set UE containing N0, and a unique r − 1 times continuously differ-234

entiable function N = (N1, . . . , N r)
T : [0, αE) → UE such that N(0) = N

0 and235

T (α,N(α)) = 0 for α ∈ [0, αE).236

237

We arrive at the following result.238

Theorem 2.2. Consider an equilibrium N
0 of the disconnected system (M0). If α239

is sufficiently small then there is a fixed point N(α) of (Mα), and this fixed point240

is close to N0. In particular, if N0 is a componentwise positive equilibrium of (M0)241

and α is sufficiently small then the system (Mα) has a componentwise positive steady242

state N(α), which is close to N0.243

We make an important remark on the stability of steady states, that is proved244

in the Appendix.245

6



Remark 2.3. For small values of dispersal local stability of a steady state N(α)246

of the system (Mα) is the same as that of the associated equilibrium N
0 of the247

system (M0) of isolated local populations. An equilibrium of (M0) is stable if all local248

populations are at stable steady states in the corresponding local dynamics, and the249

equilibrium is unstable otherwise.250

The extinction steady state is stable if all patches exhibit a strong Allee effect,251

and unstable if there is at least one patch with logistic growth. The system (M0)252

has exactly 2s componentwise positive equilibria when there are s patches with Allee253

dynamics. Therefore, it is guaranteed that there exist at least 2s positive equilibria254

in the model (Mα) (though, only one of these equilibria is stable, see the proof of255

Remark 2.3 in the Appendix). In the following sections we investigate how dispersal256

is able to create some additional positive equilibria (many of which are stable).257

3 Mixed steady states with extinct, rescued or abun-258

dant local populations259

Other than the extinction steady state and componentwise positive equilibria, the260

system (M0) also has equilibria with mixed zero and positive components. In fact, in261

(M0) there are 3s · 2r−s− 1− 2s such boundary equilibria (which is the total number262

minus the zero equilibrium minus the ones with all components being positive),263

that correspond to situations when in the absence of spatial dispersal, some local264

populations are at positive states while other patches are at zero state. Now we265

consider such a steady state N0 of the system (M0) of isolated local populations.266

A boundary equilibrium of (M0) might disappear when spatial dispersal between267

the patches is introduced: mathematically speaking, for some α > 0 the unique268

continuous function N(α) associated with N
0 may have negative components. In269

other words, the boundary equilibrium moves out from the non-negative cone and270

hence it doesn’t give a biologically meaningful steady state. On the other hand,271

N(α) ≥ 0 means that the boundary equilibrium N
0 of (M0) is preserved for small272

values of dispersal.273

In what follows we describe a mathematical procedure to decide whether a fixed274

point N(α) associated to a boundary equilibrium of (M0), gives a biologically mean-275

ingful steady state in the system (Mα). Applying the procedure to each of the276

3s · 2r−s − 1 − 2s boundary equilibria of (M0), will allow us to give a lower esti-277

mate on the number of steady states in (Mα) (equilibria other than those associated278

to boundary equilibria of (M0), may also arise with dispersal). We introduce some279

notation for convenience.280

Definition 3.1. Consider a boundary equilibrium N
0 of the system (M0).281

• If a patch i is extinct in N0 (that is, N0

i = 0), then we say that patch i is EAD282

(Extinct in the Absence of spatial Dispersal) in N0.283

• If a patch j is occupied in N
0 (that is, N0

j > 0), then we say that patch j is284

OAD (Occupied in the Absence of spatial Dispersal) in N0.285

7



We note that only those components of N(α) can be negative that correspond to286

EAD patches, that is, that are zero in N0. We give a remark to characterize whether287

a boundary equilibrium remains biologically meaningful when dispersal with small288

rates is introduced into the system. This result follows from Theorem 2.2.289

Remark 3.2. Consider a boundary equilibrium N
0 of the system (M0).290

• If dN i

dα
(0) > 0 holds for every EAD patch i then N(α) is positive if α is small,291

that is, for small α the function N(α) gives a positive steady state in the system292

(Mα).293

• If there is an EAD patch k such that dNk

dα
(0) < 0 then Nk(α) is negative for294

any small α, which means that the function N(α) doesn’t give a biologically295

meaningful steady state in the system (Mα).296

To derive dN i

dα
(0) we differentiate the steady state equation Ti(α,X ) = 0, and297

then evaluate at α = 0. Since298

d

dα

(
gi(N i(α))N i(α)−

r∑
j=1
j 6=i

αcjiN i(α) +
r∑
j=1
j 6=i

αcijN j(α)

)
=

d

dα
gi(N i(α)) ·N i(α) + gi(N i(α))

dN i

dα
(α)−

r∑
j=1
j 6=i

cjiN i(α)

−
r∑
j=1
j 6=i

αcji
dN i

dα
(α) +

r∑
j=1
j 6=i

cijN j(α) +
r∑
j=1
j 6=i

αcij
dN j

dα
(α) = 0

holds whenever i is an EAD patch, at α = 0 we obtain299

gi(0)
dN i

dα
(0) +

r∑
j=1
j 6=i

cijN
0

j = 0,

where we used that N j(0) = N
0

j for j = 1, . . . , r, and N0

i = 0. It holds that gi(0) 6= 0,300

so we derive the following equation for the derivative, when i is an EAD patch:301

dN i

dα
(0) = −

∑r
j=1
j 6=i

cijN
0

j

gi(0)
. (4)

Assume for now that individuals can move directly from any patch to any other302

habitat, that is, cij > 0 for all i, j ∈ {1, . . . , r}. This means that the migration303

network is fully connected, i.e., it forms a complete graph. Since N0 is a boundary304

equilibrium, it has some positive components, which implies that
∑r

j=1
j 6=i

cijN
0

j is305

positive. Thus, the sign of the derivative in (4) is opposite of that of gi(0). We recall306

that gi(0) < 0 when the population of patch i is subject to a strong Allee effect,307

and gi(0) > 0 for a patch with logistic population growth. Thus, we conclude that308

the derivative dN i

dα
(0) is positive if a strong Allee effect can occur in patch i, while it309

is negative if the population growth is given by the logistic function. Summarizing,310

we state this result in the form of a theorem. We give Figure 1 for an illustration of311

these findings.312
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Theorem 3.3. Consider a boundary equilibrium N
0 of the system (M0) for isolated313

local populations, and assume that individuals can move freely between the patches.314

If all the EAD habitats (that is, extinct in N
0) are subject to a strong Allee effect,315

then for small α the associated fixed point N(α) of the system (Mα) gives a positive316

equilibrium. Otherwise, N(α) has some negative components for any small α, and317

thus it doesn’t give a biologically meaningful equilibrium.318

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N1

N
2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N1

N
2

(b)
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0.0

0.2
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0.6

0.8

1.0

N1

N
2

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N1

N
2

(d)

Figure 1: Structure of steady states in the model (Mα) for two patches,
when individuals can move from patch 1 to 2, and from patch 2 to 1
(that is, the migration network forms a complete graph). In Figure (a) both
patches are subject to a strong Allee effect, (b) patch 1 is subject to a strong Allee
effect and growth is logistic in patch 2, (c) growth is logistic in patch 1 and patch
2 is subject to a strong Allee effect, (d) growth is logistic in both patches. Red
dots indicate equilibria that exist for all movement rates. Steady states which exist
only when the patches are disconnected (α = 0) are indicated with green dots. We
illustrate by changing the color from green through blue and violet to red, how these
equilibria wander in the positive cone as dispersal parameter increases from 0 to 1.
For these simulations, we use ga(Na) = ra(Ka−Na)(Na−Aa) for Allee patches and
gb(Nb) = rb(Kb − Nb) for patches with logistic growth, r1 = 1, r2 = 1.3, c12 = 1,
c21 = 1, K1 = 1, K2 = 1, A1 = 0.3, A2 = 0.3.

Spatial dispersal of populations is influenced by numerous environmental factors,319

as distance between habitats, fitness of individuals, or human interference that limit320

accessibility of certain geographic areas. One can think of various reasons why two321

habitats are not connected, or are connected by a one-way route only. In our math-322

ematical model, such a scenario is implemented by setting one or more connectivity323

potential parameters to zero. If cij = 0 holds, then no individual migrates from324
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patch j to i directly (however, this doesn’t necessarily mean that i is unreachable325

from j as there may exist an indirect way via other locations). When investigating326

whether a fixed point N(α) associated to a boundary equilibrium N
0 of (M0) gives327

a biologically meaningful steady state in the system (Mα) with spatial dispersal, we328

look at the derivative of the function at all patches that are extinct without dispersal329

(see Remark 3.2). By equation (4), such derivatives are non-zero as long as the sum330

in the numerator of (4) is non-zero, that is,331

dN i

dα
(0) 6= 0⇐⇒

r∑
j=1
j 6=i

cijN
0

j 6= 0.

We remind that, speaking of a boundary equilibrium with mixed positive and zero332

components, there always exists a j such that N0

j is positive. Thus, if cij > 0 for all333

j (migration to i is possible from any other patch directly), or N0

j > 0 and cij > 0334

hold at the same time, then the derivative of N i is non-zero, and one can easily335

decide whether N i(α) is positive or negative for small α. On the other hand, it is336

also possible that cij = 0 whenever N0

j > 0, meaning that there is no direct way to i337

from patches that are at positive steady state (occupied) in the absence of dispersal.338

In such case, equation (4) is not sufficient to decide whether the fixed point N(α)339

associated to the boundary equilibrium N
0, gives a biologically meaningful steady340

state in the system (Mα), since the derivative of N i is zero.341

To overcome this difficulty, one has to look at higher order derivatives and the342

entire network of connections between patches, instead of just looking at locations343

that directly connect to EAD patches. We give Theorem 3.4 below to show that344

our earlier result in Theorem 3.3 for the special case of a fully connected migration345

network can be extended to general migration networks. Theorem 3.4 is applicable346

to an arbitrary connection network between the patches, hence the proof is much347

more technical than the one for the fully connected migration network in Theorem348

3.3. For this reason, we refer the interested reader to the Appendix for the proof,349

nevertheless present Figure 2 for the illustration of the result.350

Theorem 3.4. Consider a boundary equilibrium N
0 of the system (M0) for isolated351

local populations. If there is an EAD patch (that is, extinct in N
0) with logistic352

growth, that is reachable (maybe via other patches) from an OAD patch (that is,353

occupied in N0), then for any small α the associated fixed point N(α) of the system354

(Mα) doesn’t give a biologically meaningful equilibrium since N(α) has some negative355

components. Otherwise, N(α) gives a non-negative equilibrium in the system (Mα).356

See Figure 2 below for the equilibria in the model (Mα) in the case when two357

patches are considered, but patch 1 is not reachable from patch 2. A migration358

network of five patches is presented in Figure 3. If local populations are isolated359

then the system has 32 · 23 = 72 equilibria, 4 of those are stable and the other 68360

are unstable. Following the method described in Theorems 2.1, 2.2, and 3.4, one can361

derive that there are 72 fixed points in the system with small migration values, each362

associated to an equilibrium of isolated local populations; however, 59 of these fixed363

points don’t give biologically meaningful equilibria, and the system of five patches364

has 4 stable and 9 unstable steady states for small values of dispersal. In the caption365
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of Figure 3 we show through two examples how to apply the procedure described in366

Theorem 3.4.367

0.0 0.2 0.4 0.6 0.8 1.0
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(a)
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(b)
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(c)
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(d)

Figure 2: Structure of steady states in the model (Mα) for two patches, when
individuals can move from patch 1 to 2, but they cannot from patch 2
to 1. In Figure (a) both patches are subject to a strong Allee effect, (b) patch 1 is
subject to a strong Allee effect and growth is logistic in patch 2, (c) growth is logistic
in patch 1 and patch 2 is subject to a strong Allee effect, (d) growth is logistic in
both patches. Red dots indicate equilibria that exist for all movement rates. Steady
states which exist only when the patches are disconnected (α = 0) are indicated
with green dots. We illustrate by changing the colour from green through blue and
violet to red, how these equilibria wander in the positive cone as dispersal parameter
increases from 0 to 1. For these simulations, we use ga(Na) = ra(Ka−Na)(Na−Aa)
for Allee patches and gb(Nb) = rb(Kb−Nb) for patches with logistic growth, r1 = 1,
r2 = 1.3, c12 = 0, c21 = 1, K1 = 1, K2 = 1, A1 = 0.3, A2 = 0.3.

Summarizing, our method exactly determines in a straightforward way whether a368

boundary steady state of the isolated populations moves out from or moves into the369

positive cone, when dispersal is introduced. Equilibria moving outwards are ceased370

to exist as biologically feasible steady states, while equilibria moving inwards persist.371

The procedure also tells which of those equilibria are stable, and it works for any372

number of patches and any migration network.373

4 Discussion374

We illustrated that populations in a patchy environment can have a large number375

of steady states if a strong Allee effect can occur in some of the habitats. We gave376
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0
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(b)

Figure 3: Migration network of five patches, where patches 1 and 2 exhibit
a strong Allee effect, and patches 3, 4, and 5 follow logistic growth. The
migration pathways are indicated by arrows. In the absence of dispersal, such net-
work of patches has 4 stable and 68 unstable steady states, but only 4 stable and 9
unstable equilibria are biologically meaningful when migration is introduced. Figure
(a): Consider the equilibrium N

0
= (K1, 0, K3, 0, K5) of the system of isolated local

populations. Then, the associated fixed point N(α) of the system with dispersal will
NOT be a biologically meaningful equilibrium: patch 4 is with logistic growth, ex-
tinct in the absence of dispersal, and reachable (though, not directly) from patch 1,
that is at positive steady state without dispersal. Figure (b): On the other hand, for
the equilibrium N

0
= (0, 0, 0, K4, K5) of isolated local populations, the associated

fixed point N(α) gives a biologically meaningful steady state in the system with
dispersal: considering the three patches that follow logistic growth, patches 4 and
5 are at positive states without dispersal, and though patch 3 is extinct when the
locations are isolated, it is not reachable from another patch that is at positive state.

a general mathematical model for the dynamics of a single species when individuals377

migrate between r patches that can exhibit two types of local density dependence.378

Logistic growth and a strong Allee effect are typical examples for negative and379

positive density dependence, respectively; however, due to the general formulation380

of the local growth function Ni · gi(Ni), our model is applicable to a broad range of381

scenarios for local growth.382

After understanding the dynamics of local populations, it is easy to describe all383

the steady states and their stability when the locations are isolated. If s patches384

exhibit a strong Allee effect (having 3 equilibria each) and r − s patches follow385

logistic growth (having 2 equilibria each), then the system of disconnected patches386

has a total number of 3s ·2r−s equilibria, because from each patch we can choose one387

possibility independently. An equilibrium is stable if each component is stable in the388

corresponding local dynamics, and the equilibrium is unstable otherwise. Thus, there389

are 2s stable steady states in the combined population of isolated local populations.390

On the other hand, finding the steady states in the system with dispersal is difficult.391

In this paper, we provided a procedure that describes the structure and stability of392

the steady states for small values of migration between the patches. If the migration393

network is fully connected, then we found that there are 3r steady states if all patches394

exhibit a strong Allee effect (s = r), and there exist 3s + 1 equilibria if there is at395

least one habitat where growth is logistic (s < r). Thus, there exists a large number396
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of steady states and this number grows exponentially in the number of locations. But397

more importantly, the same statement holds for the number of stable equilibria: for398

fully connected locations there exist 2s (s ≤ r) stable steady states when dispersal399

rates are low. Calculating these numbers for a general migration network (that is,400

when some patches don’t directly connect) is more challenging, and requires the401

application of the procedure described in Theorems 2.1, 2.2, and 3.4. These results402

rest on the idea of finding steady states in the system for low dispersal rates by using403

our knowledge on the steady states of the system without dispersal. More precisely,404

the procedure identifies equilibria of the system with dispersal that are close to an405

equilibrium of the system of isolated locations.406

When dispersal between the locations is weak, our results hold true for a broad407

range of parametrization on the local growth. However, such general formulation of408

the model makes it impossible to extend the steady state analysis to cases when409

migration rates are higher; depending on the particular form of the local nonlinear410

growth functions Ni · gi(Ni), a rich variety of dynamics can occur in the model. We411

illustrated for some specific functional forms in Figures 1 and 2 how the structure412

of equilibria changes when dispersal rates vary more widely. We can numerically413

observe that by increasing the dispersal rate, equilibria collide and disappear in414

various bifurcations, and generally the situation simplifies when migration is larger.415

One possible intuitive interpretation is that large dispersal weakens the effect of416

heterogeneity. The exact behaviour depends on the particular nonlinearities that417

describe the population growth.418

Amarasekare, 1998 [28] studied the interaction between local dynamics and dis-419

persal on population persistence in a two-patch model. She found that two local420

populations that grow logistically are unlikely to go extinct even when rare. Our421

results for multiple patches with logistic growth agree with those in [28]. We showed422

that the only stable equilibrium is the one with all local populations at their carrying423

capacities, whereas all other steady states (if any) are unstable, implying that rare424

populations are likely to increase. When patches are isolated and all follow Allee dy-425

namics, then the population goes extinct when rare because rare local populations426

go to their stable extinction states. Amarasekare, 1998 [28] showed that dispersal427

leads to a qualitative change in the two-patch system, that is, a patch below the428

Allee threshold is rescued from extinction by immigrants from another patch that429

is above the Allee threshold. Our findings for multiple patches are in accordance430

with this result, in fact, we can say much more. If all local populations exhibit a431

strong Allee effect then we showed that there are numerous equilibria including a432

large number of stable steady states. In particular, if a patch is at the extinction433

steady state in the isolated system, then immigration from another patch that is434

at positive state, pushes the extinction state to some positive value, thereby the435

extinct patch becomes occupied. More importantly, the extinction state of a patch436

with Allee growth is stable in the local dynamics, which means that weak dispersal437

creates stable positive equilibria that don’t exist without dispersal, and this way438

local populations won’t go extinct even if near the extinction state. Our results gen-439

eralize those by Amarasekare since we consider animal populations where growth440

can vary over the locations.441

Regardless of the way local populations grow, the total population of isolated442

localities has a single componentwise positive stable equilibrium, that corresponds443

to the patch-wise carrying capacities. In this paper, we showed that a large number444
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of alternate positive stable steady states can exist if some of the patches exhibit a445

strong Allee effect. From the dynamical systems perspective, such rich structure of446

stable steady states goes hand in hand with complicated behaviour of the model,447

that makes predicting the population dynamics particularly difficult.448

Appendix449

The Appendix is organized as follows. Firstly, Remark 2.3 will be proved. Then, we450

present several definitions, lemmas, and theorems for the proof of Theorem 3.4.451

452

Remark 2.3 cares for the local stability of equilibria of the system (Mα). To this453

end, we investigate the eigenvalues of the Jacobian of the system (2) evaluated at454

the equilibria. If all eigenvalues of the Jacobian have negative real parts then the455

equilibrium is locally asymptotically stable whereas it is unstable if there is an eigen-456

value with positive real part. If local populations are isolated (that is, α = 0) then457

the equations of (2) decouple, and the Jacobian is a diagonal matrix with diagonal458

elements d
dNi

(Ni · gi(Ni)), i = 1, . . . , r. Thus, eigenvalues arise as the elements in459

the diagonal, and the stability of an equilibrium N
0 of the system (M0) for isolated460

local populations is determined by the sign of d
dNi

(Ni ·gi(Ni))|Ni=N
0
i
, i = 1, . . . , r. In461

particular, N0 is locally asymptotically stable if d
dNi

(Ni · gi(Ni))|Ni=N
0
i
< 0 holds for462

i = 1, . . . , r, and unstable if there is a j such that d
dNj

(Nj · gj(Nj))|Nj=N
0
j
> 0. In (1)463

and the discussion afterwards we described the steady states of local populations as464

well as the stability of these steady states. Note that in the local dynamics, a negative465

derivate corresponds to stability whereas a positive derivate means instability.466

In particular, the extinction equilibrium of the system (Mα) is stable if all patches467

exhibit a strong Allee effect (s = r), and unstable otherwise. An equilibrium N
0

468

where all patches are occupied, is stable if all local populations are at the carrying469

capacities (that is, N0

a = K
0

a and N
0

b = K
0

b for all a ≤ s and b ≥ s + 1), and470

unstable otherwise (that is, if there is an a such that N0

a = A
0

a). An equilibrium N
0

471

with some local populations at the extinction state and others abundant, is stable472

if all patches with logistic growth are at their carrying capacities and patches that473

are subject to a strong Allee effect, are either extinct or at their carrying capacities474

(that is, N0

a = 0 or N0

a = K
0

a for all a ≤ s, and N0

b = K
0

b for all b ≥ s+ 1).475

We showed that the steady state system (2) can be obtained in the compact form476

T (α,X ) = 0, where α is the general dispersal parameter and α = 0 means isolated477

local populations. The Jacobian dT
dX (α,X ) is continuous in α and so is the function478

N(α), representing an equilibrium of the system (Mα) on the interval [0, αE) for479

small αE. We remind that the system (2) is equivalent to the system (M0) when480

α = 0, so by continuity of eigenvalues with respect to parameters, we arrive to the481

statement of Remark 2.3.482

483

For the proof of Theorem 3.4, we make the following preparation.484

Lemma 4.1. For any positive integer n such that n ≤ r − 1, it holds that485

dnN i

dαn
(0) = −

n
∑r

j=1
j 6=i

cij
dn−1Nj

dαn−1 (0)

gi(0)
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whenever patch i (i ∈ {1, . . . , r}) is EAD in the boundary equilibrium N
0, and486

dlN i

dαl (0) = 0 for every l < n.487

Proof. Indeed, we obtain the nth derivative of the steady state equation Ti(α,X ) = 0488

as489

dn

dαn

(
gi(N i(α))N i(α)−

r∑
j=1
j 6=i

αcjiN i(α) +
r∑
j=1
j 6=i

αcijN j(α)

)
=

n∑
l=0

(
n

l

)
dn−l

dαn−l
gi(N i(α)) ·

dlN i

dαl
(α)−

n∑
l=0

(
n

l

) r∑
j=1
j 6=i

dn−l(αcji)

dαn−l
· d

lN i

dαl
(α)

+
n∑
l=0

(
n

l

) r∑
j=1
j 6=i

dn−l(αcij)

dαn−l
· d

lN j

dαl
(α) = 0.

(5)

Here we used the assumption that gi is r−1 times continuously differentiable. Clearly490

dn−l(αcij)
dαn−l = 0 whenever n− l ≥ 2, moreover d(αcij)

dα
= cij, so if dlN i

dαl (0) = 0 holds for491

all l < n then (5) at α = 0 reads492

gi(N i(0))
dnN i

dαn
(0) + n

r∑
j=1
j 6=i

cij
dn−1N j

dαn−1
(0) = 0. (6)

It holds by assumption that N i(0) = 0, which completes the proof.493

Definition 4.2. Consider a patch i that is EAD in the boundary equilibrium N
0.494

We define Di as the least nonnegative integer such that in the migration network,495

there is a path that starts with an OAD patch j, ends with patch i, and contains Di496

patches in-between. If there is no such path then let Di = r − 1.497

Definition 4.3. We characterize connectivity between patches.498

• We say that there is a direct connection from patch j to patch i if cij > 0. We499

note that if i is an EAD patch with direct connection from an OAD patch j500

then Di = 0.501

• We say that patch i is reachable from patch j if there is a path from j to i. We502

also note that if i is an EAD patch and there exists a path to i from an OAD503

patch then Di ≤ r − 2 holds.504

Lemma 4.4. If i is an EAD patch in N0, then it holds that dlN i

dαl (0) = 0 whenever505

l ≤ Di.506

Proof. Indeed, the inequality Di0 ≥ 0 is satisfied for every patch i0 with N i0 = 0.507

The case when Di0 = 0 is trivial, so we consider a patch i1 for which Di1 ≥ 1, and508

from Lemma 4.1 we derive509

dN i1

dα
(0) = −

∑r
j=1
j 6=i1

ci1,jN j(0)

gi(0)
.
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For every j such that ci1,j 6= 0, it follows from Di1 6= 0 that N j(0) = 0, thus the510

right hand side is zero. We obtain that dN i1

dα
(0) = 0.511

Next, consider a patch i2 where N i2 = 0 and Di2 ≥ 2. We have dN i2

dα
(0) = 0 since512

Di2 ≥ 2 ≥ 1, so Lemma 4.1 yields the equation513

d2N i2

dα2
(0) = −

2
∑r

j=1
j 6=i2

ci2,j
dNj

dα
(0)

gi(0)
.

We note that each patch j for which ci2,j 6= 0 is EAD since Di2 ≥ 1. Thus, for Dj it514

follows that Dj ≥ 1, henceforth dNj

dα
(0) = 0 holds by induction, and the right hand515

side of the last equation is zero. We conclude that d2N i2

dα2 (0) = 0 holds for all patches516

where Di2 ≥ 2.517

The continuation of this procedure yields that dlN il

dαl (0) = 0 for any patch il where518

Dil ≥ l holds. This proves the lemma.519

Theorem 4.5. Assume that in the boundary equilibrium N
0, there is a patch i that520

is EAD and growth is logistic, furthermore i is reachable from an OAD patch. Then521

there is an α∗ > 0 such that N i
(α) < 0 for α ∈ (0, α∗), which implies that N(α)522

has a negative component and it doesn’t give a biologically meaningful equilibrium in523

(Mα).524

Proof. The proof is by contradiction. Assume that N0 is such that there are patches525

i0 and i+ such that N i0 = 0, N i+ > 0, in i0 the population growth is logistic, i0526

is reachable from i+, and there exists an α∗∗ > 0 such that N(α) ≥ 0 on [0, α∗∗].527

If patches i0 and i+ –as described above– exist then there is a minimal distance528

between such patches, i.e., there exists a least nonnegative integer L ≤ r − 2 such529

that there is a path from an OAD patch via L patches to a patch which is EAD in530

N0 and with logistic growth. We denote by i this patch in the shortest path, and531

let i∗L+1 be the OAD patch.532

In the case when L = 0, Lemma 4.1 immediately yields contradiction. Indeed,533

as ci,i
∗
L+1 > 0, N i∗L+1

> 0, and gi(0) > 0 (the population growth is logistic in i), the534

equation535

dN i

dα
(0) = −

∑r
j=1
j 6=i

cijN j(0)

gi(0)

yields dN i

dα
(0) < 0. Next, we assume that L ≥ 1. We label the patches in the minimal-536

length path by i, i∗1, . . . , i∗L, i∗L+1. We note that N0

i = N
0

i∗1
= . . . , N

0

i∗L
= 0, N0

i∗L+1
> 0,537

moreover by the minimality of L the patches i∗1, . . . , i∗L cannot follow logistic growth.538

Instead, there is a strong Allee effect in patch i∗j for j = 1, . . . , L, and hence gi∗j (0) < 0539

holds.540

By Lemma 4.1, N i∗L

0
= 0 yields541

dN i∗L

dα
(0) = −

∑r
j=1
j 6=i∗L

ci
∗
L,jN j(0)

gi∗L(0)
.
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The equation has a positive right hand side since N0

i∗L+1
= N i∗L+1

(0) > 0 and gi∗L(0) <542

0, which implies that
dN i∗

L

dα
(0) > 0. A similar equation543

dN i∗L−1

dα
(0) = −

∑r
j=1

j 6=i∗L−1

ci
∗
L−1,jN j(0)

gi∗L−1
(0)

follows from N
0

i∗L−1
= 0 and Lemma 4.1. We note that Di∗L−1

= 1, hence N j(0) = 0544

holds for every j such that ci
∗
L−1,j 6= 0. The zero numerator yields

dN i∗
L−1

dα
(0) = 0, so545

we can apply Lemma 4.1 to derive546

d2N i∗L−1

dα2
(0) = −

2
∑r

j=1
j 6=i∗L−1

ci
∗
L−1,j dNj

dα
(0)

gi∗L−1
(0)

.

If there is a j such that ci
∗
L−1,j 6= 0 and dNj

dα
(0) < 0, then N j(α) is negative for small547

α and hence N(α) is not in the nonnegative cone, which violates our assumption548

that N(α) ≥ 0 for α sufficiently small. Thus, each such derivative is necessarily549

nonnegative, moreover we have showed that
dN i∗

L

dα
(0) > 0 is satisfied, which makes550

the numerator positive. This implies
d2N i∗

L−1

d2α
(0) > 0 since gi∗L−1

(0) < 0.551

Next, we consider patch i∗L−2, where Di∗L−2
= 2. For any patch j for which552

ci
∗
L−2,j 6= 0, it holds that Dj ≥ 1, thus N j(0) = 0 and dNj

dα
(0) = 0 hold by Lemma553

4.4. Thus, the right hand side of equation554

dN i∗L−2

dα
(0) = −

∑r
j=1

j 6=i∗L−2

ci
∗
L−2,jN j(0)

gi∗L−2
(0)

is zero, so it follows that
dN i∗

L−2

dα
(0) = 0, and thus Lemma 4.1 yields555

d2N i∗L−2

dα2
(0) = −

2
∑r

j=1
j 6=i∗L−2

ci
∗
L−2,j dNj

dα
(0)

gi∗L−2
(0)

.

We obtain again that
d2N i∗

L−2

dα2 (0) = 0 since all derivatives in the right hand side are556

zero. Finally, by Lemma 4.1 we derive557

d3N i∗L−2

dα3
(0) = −

3
∑r

j=1
j 6=i∗L−2

ci
∗
L−2,j d2Nj

dα2 (0)

gi∗L−2
(0)

.

If there is a j such that ci
∗
L−2,j 6= 0 and d2Nj

dα2 (0) is negative then so is N(α) for small α558

since dNj

dα
(0) = 0 and N j(0) = 0, which is a contradiction. Otherwise, the right hand559

side of the last equation is positive (it holds that ci
∗
L−2,i

∗
L−1 6= 0 and

d2N i∗
L−1

dα2 (0) > 0),560

thus the positivity of
d3N i∗

L−2

dα3 (0) follows from gi∗L−2
(0) < 0.561
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Following these arguments, one can prove that
dm+1N i∗

L−m

dαm+1 (0) > 0 for m =562

0, 1, . . . , L− 1 (we remark that for m = L− 1 this reads
dLN i∗1
dαL (0) > 0), and that for563

any fixed m and k ≤ m, it holds that
dkN i∗

L−m

dαk (0) = 0. We note that Di = L, which564

also means by Lemma 4.4 that dmN i

dαm (0) = 0 for m ≤ Di = L. Henceforth, we can565

apply Lemma 4.1 and derive566

dL+1N i

dαL+1
(0) = −

L
∑r

j=1
j 6=i

ci,j
dLNj

dαL (0)

gi(0)
.

Di = L implies Dj ≥ L − 1 for any j for which ci,j 6= 0, hence dmNj

dαm (0) = 0 is567

satisfied for m = 0, 1, . . . , L − 1. The assumption that N(α) ≥ 0 for small α yields568

that dLNj

dαL (0) < 0 is impossible; this, together with
dLN i∗1
dαL (0) > 0 and ci,i

∗
1 > 0,569

implies the positivity of the numerator. As gi(0) > 0 holds, it follows that dL+1N i

dαL+1 (0)570

is negative, but we showed that dmN i

dαm (0) = 0 when 0 ≤ m ≤ L, so it follows that571

N i(α) < 0 for small α, a contradiction. The proof is complete.572

Theorem 4.6. Assume that in the boundary equilibrium N
0, there is a strong Allee573

effect in every EAD patch j where Dj < r − 1. Then for an EAD patch i that is574

subject to a strong Allee effect, it holds that dDi+1N i

dαDi+1 (0) > 0 if Di < r − 1, and575

N(α) = 0 if Di = r − 1.576

Proof. If i is at the extinction steady state for α = 0, and the patch is not reachable577

from any patch j with N j > 0 (that is, Di = r − 1), then no individuals migrate578

into i when spatial dispersal is incorporated, and hence we have N i(α) = 0 for any579

α > 0. In the case when Di < r− 1, the proof is by induction. If Di0 = 0 for a patch580

i0 that is subject to a strong Allee effect (gi0(0) < 0) and N0

i0
= 0, then there is a j581

such that ci0,j 6= 0 and N0

j > 0, so582

dN i0

dα
(0) = −

∑r
j=1
j 6=i1

ci0,jN j(0)

gi0(0)
.

yields dN i0

dα
(0) > 0.583

Whenever Di1 = 1 is satisfied in a patch i1 where N0

i1
= 0 and subject to a584

strong Allee effect, Lemma 4.4 implies dN i1

dα
(0) = 0, so by Lemma 4.1 we derive585

d2N i1

dα2
(0) = −

2
∑r

j=1
j 6=i1

ci1,j
dNj

dα
(0)

gi1(0)
.

For every j with ci1,j 6= 0 and 1 ≤ Dj ≤ r − 1, Lemma 4.4 gives dNj

dα
(0) = 0.586

If there is a j such that Dj = 0, j is EAD and ci1,j 6= 0, then there necessarily587

is a strong Allee effect in j, so dNj

dα
(0) > 0 holds by induction. Nevertheless, the588

positivity of the right hand side of the last equation is guaranteed because we know589

from Di1 = 1 that there must exist a j where Dj = 0 and ci1,j 6= 0, hence the590

inequality d2N i1

dα2 (0) > 0 follows.591

18



We assume that the statement of the theorem holds for any EAD patch i that592

is subject to a strong Allee effect and Di ≤ L, 0 < L < r − 2. We consider an EAD593

patch iL+1 where DiL+1
= L+1 and there is to a strong Allee effect, and obtain the594

equation595

dL+2N iL+1

dαL+2
(0) = −

(L+ 1)
∑r

j=1
j 6=iL+1

ciL+1,j dL+1Nj

dαL+1 (0)

giL+1
(0)

by Lemma 4.1 and Lemma 4.4. DiL+1
= L + 1 makes Dj ≥ L for each j where596

ciL+1,j 6= 0, and from Lemma 4.4 we have dL+1Nj

dαL+1 (0) = 0 for each j where ciL+1,j 6= 0597

and Dj ≥ L + 1. The case when Dj = L is only possible if j is EAD and subject598

to a strong Allee effect, and for each such j the inequality dL+1Nj

dαL+1 (0) > 0 holds599

by induction. There exists a j such that ciL+1,j > 0 and Dj = L, hence the right600

hand side of the last equation is positive. We derive that
dL+2N iL+1

dαL+2 (0) > 0, which601

completes the proof.602

Theorem 4.5 ensures that for a boundary equilibrium N(0) = N
0 of (M0), the603

point N(α) will not be a biologically meaningful fixed point of the system (Mα) if604

there is a EAD patch i in N0 where population growth is logistic and i is reachable605

from an OAD patch. On the other hand, a boundary equilibrium N(0) = N
0 of (M0)606

will persist for small values of spatial dispersal if in all EAD patches of N0 that are607

reachable from an OAD patch, a strong Allee effect can occur. More precisely, in608

Theorem 4.6 we show that N i has a positive derivative whenever patch i is EAD,609

subject to a strong Allee effect, and reachable from an OAD patch j. Then, by610

Lemma 4.4, the statement yields thatN i(α) is positive for small α. EAD patches that611

are unreachable from OAD patches won’t become occupied with the introduction612

of spatial dispersal. This last remark, together with Theorems 4.5 and 4.6, proves613

Theorem 3.4.614
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