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Summary

1. Human infectious diseases are a significant threat to global human health and economies (e.g. Ebola, SARs),

with the majority of infectious diseases having an animal source (zoonotic). Despite their importance, the lack of

a quantitative predictive framework hampers our understanding of how spillovers of zoonotic infectious diseases

into the human populationwill be impacted by global environmental stressors.

2. Here, we create an environmental-mechanistic model for understanding the impact of global change on the

probability of zoonotic disease reservoir host–human spillover events. As a case study, we focus on Lassa fever

virus (LAS). We first quantify the spatial determinants of LAS outbreaks, including the phylogeographic distri-

bution of its reservoir host Natal multimammate rat (Mastomys natalensis) (LAS host). Secondly, we use these

determinants to inform our environmental-mechanistic model to estimate present-day LAS spillover events and

the predicted impact of climate change, human population growth and land use by 2070.

3. We find phylogeographic evidence to suggest that LAS is confined to only one clade of LAS host (Western

cladeMastomys natalensis) and that the probability of its occurrence was amajor determinant of the spatial vari-

ation in LAShistorical outbreaks (69�8%), alongwith human population density (20�4%). Our estimates for pre-

sent-day LAS spillover events from our environmental-mechanistic model were consistent with observed

patterns, and we predict an increase in events per year by 2070 from 195 125 to 406 725 within the LAS endemic

western African region. Of the component drivers, climate change and human population growth are predicted

to have the largest effects by increasing landscape suitability for the host and human–host contact rates, while
land-use change has only a weak impact on the number of future events.

4. LAS spillover events did not respond uniformly to global environmental stressors, and we suggest that under-

standing the impact of global change on zoonotic infectious disease emergence requires an understanding of how

reservoir host species respond to environmental change. Our environmental-mechanisticmodellingmethodology

provides a novel generalizable framework to understand the impact of global change on the spillover of zoonotic

diseases.

Key-words: climate change, haemorrhagic disease, infectious disease, land-use change, Mastomys
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Introduction

There is growing interest in how human health and well-being

will be impacted by future global change (Millennium Ecosys-

tem Assessment 2005). Climate change, human population

growth or degraded ecosystems with a reduced ability to

produce goods and services (e.g. air and water quality, pollina-

tion) may severely negatively impact human health (Carpenter

et al. 2009; IPCC 2014). One area of particular recent interest

is in understanding how global change may impact the emer-

gence and spread of human infectious diseases (e.g. Ebola,

SARs, rabies) (Keesing et al. 2010). Infectious diseases are

significant threats to global human health and economies

(Grace et al. 2012). The majority of human infectious diseases

are zoonotic, that is they have a wild or domestic animal ori-

gin or reservoir (Taylor, Latham &Woolhouse 2001). It might

be expected then that anthropogenic changes impacting the
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distribution and abundance of these hosts and vectors may

also affect the probability of emergence and spread of human

zoonotic infectious diseases (Keesing et al. 2010).

Supporting evidence for how the loss of biological diversity

generally is linked to the emergence and spread of infectious

disease is contradictory and controversial (Keesing et al.

2010; Randolph & Dobson 2012; Civitello et al. 2015). Glo-

bal spatial analyses of the initial emergence of zoonotic infec-

tious disease have linked high risk (controlling for reporting

effort) to areas of both high biodiversity and human densities

(Jones et al. 2008). However, other evidence suggests that the

spread of infectious disease (once emerged) is suppressed by

areas of high biodiversity (the dilution effect) (Keesing et al.

2010; Civitello et al. 2015), but this remains controversial

(Randolph & Dobson 2012). It is unlikely that zoonotic dis-

eases, as a whole, will respond in a consistent way to biodiver-

sity loss or environmental stressors. We need to first

understand how zoonotic disease is mediated by the impacts

of environmental change on reservoir host species. As species

differ in their responses to environmental change, therefore

the impact on zoonotic disease might depend on reservoir

host species identity and their life-history characteristics.

One of the ways commonly used to predict impacts of global

change on biodiversity is to model species’ occurrence data

with associated habitats and environments to develop a proba-

bilistic distribution or niche model (Phillips, Dudik & Schapire

2004). Initial habitats and environments can then be altered in

line with global predictions of change, to understand how spe-

cies distributions and populations might be impacted in future

(Pearson et al. 2013). On the other hand, to understand disease

systems, epidemiological mechanistic or process-based models

are often used which allow for conceptually straightforward

predictions of disease transmission when the underlying condi-

tions of the models are changed. If the impact of future envi-

ronmental stressors on reservoir host populations could be

modelled and added into disease mechanistic models, then this

would be a powerful framework to predict future spillover and

subsequent disease outcomes in humans. Solely using complex

correlative approaches to estimate zoonotic disease risk, while

useful for the analyses of present-day patterns (Mylne et al.

2015), is not ideal for making future predictions, as it is unclear

whether the inferred underlying processes (and interactions

between these inferred processes) will remain stable in future

environments (Alexander et al. 2012). Alternatively, fully

mechanistic host–human epidemiological models would be

both data and computationally expensive and would be diffi-

cult to construct for all but the best known diseases.

Here, we develop an environmental-mechanistic framework

to model the impacts of global change on zoonotic spillover

using a case study of a western African haemorrhagic zoonotic

disease, Lassa fever virus (LAS), and its rodent reservoir host

species, the Natal multimammate rat (Mastomys natalensis).

LAS is the only Old World arenavirus (OWA) known to be a

major cause of human mortality. At present, it is thought to

infect between 100 000 and amillion people per year in western

sub-Saharan Africa (McCormick et al. 1987; Richmond &

Baglole 2003).LASand its sister taxaGbagroubeare thought to

have speciated approximately 1800 years ago, having split from

Mopeia virus, which is a non-pathogenic virus also restricted to

the rodent reservoir host species M. natalensis (Coulibaly-

N’Golo et al. 2011).M. natalensis is a common household and

agricultural rodent pest found in almost every country in

sub-SaharanAfrica (Fichet-Calvet &Rogers 2009). Despite the

pan-continental distribution of its reservoir host, fever out-

breaks associatedwithLASare reported in only a small number

of countries in western Africa: Sierra Leone, Guinea, Liberia,

Nigeria and southern Mali (Safronetz et al. 2010). Within

western Africa, human antibody prevalence studies have also

demonstrated the circulation of LAS or a cross-reactive are-

navirus in Senegal, Cote d’Ivoire, Ghana, Benin and Burkina

Faso (Saluzzoet al.1988;Emmerich,Gunther&Schmitz2008).

Available LAS case data are limited: of an estimated

200 000 cases per year, only approximately 400 have been

accurately recorded (CDC 2012). Additionally, these data are

likely to contain reporting biases; for example, many cases

have been reported near the diagnostic laboratory at Kenema

Hospital in Sierra Leone (Fichet-Calvet & Rogers 2009).

Known LAS case data therefore represent a limited data set to

interpolate the true spatial spread of reservoir host–human

spillover events across West Africa. However, we can use this

data set to determine the most important drivers of known

LAS disease events by creating a correlative LAS spatial distri-

bution or niche model. This then can inform our environmen-

tal-mechanistic spillover model, to predict the current and,

importantly, the likely future LAS spillover events across the

region. Reservoir host–human spillover for LAS is not fully

understood, but is believed to be mediated by bushmeat hunt-

ing, inhaling rodent faeces and eating faeces-contaminated

food (CDC 2012). Although interactions between these factors

at a fine scale are likely to be complex and variable (Fichet-Cal-

vet & Rogers 2009), at the macro and temporal scale we focus

on here, our environmental-mechanistic modelling results sug-

gest that we can reasonably approximate these processes for

LAS. Our model is constructed such that it can take advantage

of forecasts of climate change, alongside forecasts of human

future population density and land-use change, and be effec-

tively employed to provide a simulation of LAS spillover

events in these future environments.

Methods

SPATIAL DETERMINANTS OF LAS OUTBREAK RISK

We collated and georeferenced human LAS cases from 1967 to 2012

from the literature (n = 408) (Table S1, Supporting information) to

examine the most important spatial determinants of historical spil-

lovers.We collated spatial environmental and habitat variables for con-

tinental Africa (Table S2, Supporting information) and used those

spatial variables linked to LAS outbreaks, or those thought to explain

higher incidences of disease more generally, to create a LAS distribu-

tion or niche model using boosted-regression trees (BRT) (Elith et al.

2006). For instance, the reservoir host for Lassa fever virus (LAS host)

M. natalensis is known to be an agricultural pest (Fichet-Calvet &

Rogers 2009), and we included yield estimates for all possible crop

types in an attempt to define more specifically what agricultural prac-
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tices are linked to LASoutbreaks. Similarly, by including human ethnic

groupings, we attempted to control for some gross behavioural differ-

ences between populations in that region.Distances tomining locations

were used due to reports that LAS outbreaks had occurred near mines

(Kaslow, Stanberry & Le Duc 2014). Temperature and rainfall were

included as these were identified as among themost important explana-

tory factors in previous work (Fichet-Calvet & Rogers 2009). Poverty

was also included as this may correspond to the lack of healthcare pro-

vision and may be correlated with outbreaks, giving a data set consist-

ing of (i) Human population density (2010) from the Gridded

Population of theWorld v.3 (CIESIN2005); (ii) CropYields fromHar-

vestChoice (HarvestChoice 2014); (iii) Mining Locations from United

States Geological Survey (United States Geological Survey 2010); (iv)

Ethnic groups fromGREG (Weidmann, Rød & Cederman 2010); and

(v) Gross Domestic Product from Global Poverty Map (Elvidge et al.

2009). We also estimated (vi) LAS host M. natalensis probability of

occurrence p(H), through a species distribution or niche models (see

below). We also investigated the impact of environmental variables

independent of the influence of host distribution by creating two fur-

ther variables: (vii) BIO12 Annual Precipitation residuals and (viii)

BIO1 Annual Mean Temperature residuals. Residuals were created in

each case from a linear model with LAS host occurrence probability, p

(H). We created an average probability surface of LAS outbreak risk

from 25 replicates of boosted-regression trees (BRT) models (using sets

of 500 randomly created absence points across western Africa). In all

cases, the models were trained and tested using different random sub-

sets of the location data, and the ability of models to successfully pre-

dict a testing data set was assessed using the area under operating curve

(AUC) and true-skill statistic (TSS). For both, a value of 1 represents a

perfect ability to predict the testing subset when using models created

with the training subsets, and values close to 0 represents essentially

random niche estimation with respect to the testing data set. The high-

est scoring model was used to create a spatial prediction across LAS

endemic region. All analyses were conducted in R v.3.0.2 (R Develop-

ment Core Team2009).

LAS HOST (MASTOMYS NATALENSIS ) OCCURRENCE

PROBABIL ITY P (H )

Phylogeographic limits ofMastomys natalensis

Recent mitochondrial genetic evidence (cytochrome b) suggests that

Mastomys natalensis may not have a continuous pan-continental

population and contain geographically distinct phylogenetic clades

(Colangelo et al. 2013). This has important implications on the

potential distribution of Lassa fever virus (LAS), because, for

example, if there are phylogenetically and geographically distinct

reservoir host populations, LAS might not be present in all of

them. To investigate the phylogeographic limits of M. natalensis,

we collated genetic sequence data from across the extent of its

range. We used 3 mitochondrial genes (16S ribosomal RNA, cyto-

chrome b and cytochrome oxidase subunit 1) for 373 sequences of

M. natalensis and, as an outgroup, 3 sequences from its sister spe-

cies M. erythroleucus, downloaded from GenBank (Benson et al.

2005) accessed on 01/03/2013 (Table S3, Supporting information).

Only genetic sequences with locations were used. Place names were

extracted using BIOEDIT (v.1.7.10) (Hall 1999) and assigned to coor-

dinates using an online service (Zwiefelhofer 2013). In addition, we

also used material collected from 71 individuals from 6 villages

from Eastern Sierra Leone in January–February and July–August

2009. DNA was purified from liver stored in 95% ethanol using a

‘DNeasy Blood & Tissue kit’ (Qiagen Inc., Valencia, CA, USA).

Cytochrome b was amplified using primers L14723 and 15915, and

samples were sequenced by a service provider using Sanger

dideoxynucleotide sequencing (Table S4, Supporting information).

Sequences were aligned using MAFFT (version 7) (Katoh, Kuma &

Hiroyuki 2005) and then edited by eye in BIOEDIT (Hall 1999).

Sequences that could not be aligned were not used in further analysis.

Gene topologies for each gene were inferred using MRBAYES (version

3.2) (Ronquist & Huelsenbeck 2005), on each occasion using a strict

rather than relaxed molecular clock as it produced trees with higher

likelihoods. For the cytochrome b gene tree, branch lengths were calcu-

lated in years using per-year nucleotide substitution rates of 0�0078
nucleotides per year calculated from closely related rodent species (Mus

indutus, Rattus norvegicus, Apodemus sylvaticus, Apodemus mystacinus,

Gerbillus nigeriae, Gerbillus nanus) (Nabholz, Glemin & Galtier 2008).

Given the variation in substitution rates in the reported literature, we

used the mean, minimum and maximum values to calculate branch

lengths to test the sensitivity of our estimates.

The resulting separate phylogenetic analyses of the three genes

(Fig. 1a–c) suggest that M. natalensis can be split into three well-sup-

ported monophyletic clades (>99% posterior probability). The loca-

tion of these sequences suggests that the clades are also distinct

geographically and correspond to ‘Western’, ‘Central’ and ‘Southern’

distributions (Fig. 1d). There is some evidence for a fourth clade or a

hybrid zone between the Central and Southern M. natalensis clades

(Fig. 1c), as a few sequences from Mozambique, Tanzania and

Kenya did not fit well into the three clades. The Western clade (from

the eastern Nigerian border westwards) consists of, and entirely con-

tains, individuals from areas known to have LAS outbreaks. We esti-

mate that the Western clade M. natalensis split off from the other

clades 250 000 years ago (525 000–60 000 maximum and minimum

values, respectively) (Fig. 1c). Despite the large range of dates esti-

mated using our data, this split is at least twenty times older than the

estimated date when LAS split from the Lassa-Mopeia ancestral

strain (Coulibaly-N’Golo et al. 2011). It is therefore reasonable to

suggest that LAS evolved to become the pathogenic virus seen today,

within the Western clade of M. natalensis. Consequently, we base our

following analyses of the LAS reservoir’s host’s environmental and

habitat requirements on this Western clade.

Environmental and habitat requirements ofMastomys

natalensis

To understand how the spatial distribution of the reservoir host species

is limited by climatic factors and habitat coverage, we collated 88

occurrence records of Western clade M. natalensis from our collected

material and the Global Biodiversity Information Facility data base

(Global Biodiversity Information Facility 2013). Western cladeM. na-

talensis records were defined as those from Nigeria’s eastern border

westwards. Records were cleaned manually by removing erroneous

geolocations and points of low spatial resolution which could not be

confidently spatially assigned. From our collated geospatial environ-

mental and habitat variables for continental Africa (Table S2, Support-

ing information), we used the following bioclimatic variables from

Hijmans et al. (2005) for analysis: (i) BioClim BIO1 Annual Mean

Temperature; (ii) BioClim BIO5 Maximum Temperature of Warmest

Month; (iii) BioClim BIO6Minimum Temperature of Coldest Month;

(iv) BioClim BIO7 Temperature Annual Range; (v) BioClim BIO10

Mean Temperature of Warmest Quarter; (vi) BIO11 BioClim Mean

Temperature of Coldest Quarter; (vii) BioClim BIO12 Annual

Precipitation; (viii) BioClim BIO13 Precipitation of Wettest Month;
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Fig. 1. Bayesian phylogenetic analysis of three mitochondrial genes ofMastomys natalensis using the outgroupM. erythroleucus for (a) 16S riboso-

mal RNA, (b) cytochrome oxidase subunit 1 and (c) cytochrome b. Cytochrome b sequence locations are shown in (d). Branch lengths represent

expected substitutions per site in (a) and (b) and are proportional to time (years) in (c). Tip labels represent country of sequence origin (see Table S3,

Supporting information for country codes). *** represents 100% posterior probability; ** >95%; * >75%; and + >50% posterior probability. 1 or

green filled circles represents the ‘Western Clade’; 2 or red filled circles, ‘Central Clade’; and 3 or black filled circles, ‘Southern Clade’; and 4 or black

filled circles, hybrid zone between 2 and 3.
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(ix) BioClim BIO14 Precipitation of Driest Month. The bioclimatic

variables chosen were the nine most orthogonal (<75% correlation).

We also used additional variables of (x) Distance toWater Bodies from

Global Lakes andWetlands data base (Lehner&Doll 2004); (xi) Eleva-

tion from Digital Elevation Model (Jarvis et al. 2008); (xii) Soil Type

fromHarmonizedWorld Soil Database (Fischer et al. 2008); and (xiii)

Land Use from Harmonized Land Cover (Chini, Hurtt & Frolking

2014) (percentage cultivated, urban, pastoral, primary and secondary).

For analysis, all variables were reduced in latitudinal extent to 85°N

58°S and resampled to a 0�0416 degree grid cell size using a World

Geodetic System 84 projection using ‘raster’ (Hijmans & van Etten

2012).

We used boosted-regression trees (BRT) models (Elith et al.

2006) to examine the relationship between occurrence records of

Western clade M. natalensis and our ecological and environmental

data to create niche models. We created an average probability sur-

face from ten replicates of BRT models (using sets of 500 randomly

created absence points) to represent LAS host occurrence probabil-

ity p(H). In all cases, niche models were trained and tested using

different random subsets of the location data, and the ability of

niche models to successfully predict a testing data set was assessed

using AUC and TSS (Elith et al. 2006). All analyses were con-

ducted in R v.3.0.2 (R Development Core Team 2009). The BRT

model for LAS host occurrence was strongly supported as AUC

and TSS values were high (AUC 0�96, TSS 0�29), suggesting that

the training data were able to predict the test data effectively, with

the lower TSS score due to using pseudo-absences reducing model

specificity. Western clade M. natalensis were found to be associated

most strongly with areas of high annual precipitation (28�3% of the

variance), with a higher proportion of cultivated land (25�4%) and

with areas that had the highest precipitation in the wettest month

(17�4%) (Figs S1, S2, Supporting information).

LAS ENVIRONMENTAL-MECHANISTIC ZOONOTIC

SPILLOVER MODEL

We constructed an environmental-mechanistic model of LAS spillover

by quantifying the contact rate between LAS host and humans in

0�0416° grid cells across the West African LAS endemic region (18°E

to 16°W and 1°N to 18�5°S). However, instead of just assuming that

contact rates could be quantified by homogenous, random mixing of

infectious reservoir hosts and susceptible human individuals, we chose

to further incorporate a spatially variable weighting factor to describe

the increased contact rates in areas of the world where there is less

non-mechanized transport (thereby increasing on-the-ground move-

ment and likelihood of direct and indirect contact). Therefore, in each

0�0416° grid cell j, we calculated the force of infection for zoonotic

host-to-human transmission kz, as follows:

kzj ¼ cj
�c
jSj eqn 1

where cj = the number of human–reservoir host contacts in a grid cell j

per day, �c = mean number of human–reservoir host contacts across all

grid cells per day, j = spillover risk and Sj = the number of susceptible

people per grid cell j.

To estimate the spatially variable weighted contact rate, we first

approximated per grid cell reservoir host–human contact rate cj, using

a two-dimensional, two-particle ideal free gas model (Hutchinson &

Waser 2007). While an ideal free gas model may overestimate the real

contact rate compared to, for instance, correlated movement patterns,

it is also likely to underestimate contact rate due to human-seeking

behaviour of M. natalensis (Fichet-Calvet & Rogers 2009) and

therefore was selected as a compromise. We calculated contact rates

per grid cell j, as follows:

cj ¼ p1p2qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1Þ2 þ ðd2Þ2

q
eqn 2

where p1 = density of people calculated for 2010 from the Gridded

Population of the World v.3 (CIESIN 2005), p2 = density of LAS

reservoir hosts (hereafter called LAS hosts), q = interaction sphere

radius of radius (0�5 m), a = area of each grid cell (5�6 km2), d1 = daily

non-mechanizedmovement distance (km) of people calculated from an

empirical positive relationship between daily movement distances and

per person, per country gross national income (GNI) (Table S5, Sup-

porting information; based on Purchasing Power Parity World Bank

2014) (this relationship was applied to generate a value for each grid

cell, with grid cells in each country having the same value), and

d2 = daily distance travelled of LAS hosts derived from mean of daily

distance values from closely related species to M. natalensis with the

same body size (0�6 km) (Carbone et al. 2005).

The density of LAS hosts p2, per grid cell, was calculated as follows:

p2 ¼ pðHÞmax
n

z eqn 3

where p(H) = probability of LAS host occurrence informed from our

previous analysis above, z = densities of the host with n samples calcu-

lated from the literature (Table S6, Supporting information), using the

maximum value so that in optimum conditions (p(H) = 1) the grid cell

is given the maximum density, and for less than optimum conditions

the grid cells contain proportionally fewer.

Spillover risk jwas calculated as follows:

j ¼ OP1
n cjSj

eqn 4

where O = estimated cases per year from (CDC 2012) (200 000),

cj = human–reservoir host contact rate per grid cell, Sj = the number

of susceptible people inferred from human population estimates from

2014 (based on Purchasing Power Parity World Bank 2014), and

n = the total number of grid cells in the area of interest.

As spillover is a binary state (either a person is infected or not), we

can approximate the probability of i spillover events for each grid cell j,

using the following binomial model:

pðki infections within SÞ ¼ S
ki

� �
kzkij 1� kzj

� �kz�ki eqn 5

where ki = the number of individuals infected, S = the number of sus-

ceptible individuals and kz = force of zoonotic infection. Using the

probability distribution function derived from these distributions (dbi-

nom R Development Core Team 2009), we calculated the number of

spillover events per year, alongside the expected variation in cases, for

the whole landscape given present-day conditions. By altering the

model inputs in LAS host occurrence probability p(H), human popula-

tion densities to those predicted in 2070, we then calculated how the

total numbers and spatial patterns in spillover events were likely to

change in future. Last, we reran the present-daymodel without the spa-

tially variable weighting per grid cell for contact rate, that is with force

of infection being weighted by host numbers only:

kzj ¼ p2j
p2

jSj eqn 6

where p2j = density of LAS hosts, j = spillover risk and Sj = the num-

ber of susceptible people per grid cell j, with j in this case being derived

by substituting host numbers p2 for contact rate cj in eqn 4.
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We chose to model host–human spillover specifically, rather than

include human-to-human transmission as it is unclear how much

impact this transmission pathway has across the endemic landscape,

though it clearly plays a role in the few recorded severe, often nosoco-

mial, outbreaks when contaminated medical equipment and fluids

could be playing a significant role (Lo Iacono et al. 2015). The final

absolute case number would likely be higher than our predictions if

human-to-human transmission plays a major role in day-to-day

infections.

INCORPORATING GLOBAL CHANGE

Future LAS host occurrence

To infer the probability of future host occurrence p(H)2070 for

each grid cell, we first substituted the values of the BioClim vari-

ables in the present-day BRT model with those predicted from

the Hadley atmospheric ocean-coupled climate model (HADGem3)

for 2070, under the three carbon emission scenarios: low

(2�5 ppm), medium (6�5 ppm) and severe (8�5 ppm). Secondly, we

estimated future land cover–land use (LULC) change by using the

changes seen per grid cell from 2000 to 2012 to estimate the

probability of the type of LULC change in 2070 using the data

from MODIS (Friedl et al. 2010). We calculated a probability for

each grid cell based on the pattern of LULC transitions seen

since 2000–2012 within a grid of 16 surrounding cells, where 5

scenarios were created producing landscapes with 0�1, 0�25, 0�5,
0�75 and 1 of the background rate of LULC change seen previ-

ously. We updated the LULC of each grid cell yearly from 2012

until 2070 for the 5 scenarios and ran each scenario 100 times to

create a bank of future possible landscapes (Table S7, Supporting

information). Each scenario was summarized by choosing the

modal class per grid cell. We then substituted these predicted

LULC values into the present-day BRT models and, along with

the climatic variables, used these predicted variables to recalculate

the probability of LAS host occurrence for 2070. We undertook

this simulation as previous work to date (e.g. Chini, Hurtt &

Frolking 2014) has not differentiated habitat cover beyond a few

broad categories. The future predictions, when visually inspected,

produced reasonable future extensions of previously observed pat-

terns of land-use change.

Future human populations

Human population estimates per grid cell for 1995, 2000 and

2005 from Gridded Population of the World v3 (CIESIN 2005)

were used to establish a per-year, per grid cell slope of popula-

tion change using a linear model. This model was then used to

forecast human populations per cell in 2070. To estimate future

human on-the-ground mobility, we predicted future GNI for each

country based on current trends (World Bank 2014) and awarded

grids cells within each country their corresponding new estimate

of movement (Table S5, Supporting information).

We estimated present-day LAS spillover per grid cell in the

endemic regions and then made a prediction for the year 2070,

using the model and data sets outlined above. To examine the

impact of each of the drivers of change in our model (i.e. climate

change, human population density, land cover change and human

mobility), we ran a series of exploratory scenarios where all drivers

were held at present-day levels except one which we substituted

for the future values.

Results

SPATIAL DETERMINANTS OF LAS OUTBREAK RISK

The BRTnichemodel for LASoutbreak risk was strongly sup-

ported (AUC 0�98, TSS 0�51) and LAS outbreaks were most

strongly correlated with the spatial occurrence of LAS host

(explaining 69�8% of the model variance), followed by human

population density (20�4%), annual precipitation residuals

(4�4%) and rice yields (1�9%). Other variables (e.g. mine sites

and ethnic groups) showed no ability to explain disease varia-

tion. The spatial risk of LAS outbreaks across the endemic

region in western Africa (Fig. 2) showed a high correlation

with areas most suitable for the host (M. natalensis) (Fig. S2,

Supporting information). In most cases, the relationship of

LAS outbreak risk with the different variables was best sum-

marized as a positive, but asymptotic one, except for LAS host

occurrence probability that had an approximately linear

relationship with LAS outbreak risk (Fig. S3, Supporting

information).

ENVIRONMENTAL-MECHANISTIC MODEL OF PRESENT

AND FUTURE LAS SPILLOVER

The spatial distribution of the number of LAS spillover events

from the simulation for present day was consistent with his-

toric outbreaks within the LAS endemic region (Fig. 3a). An

evaluation using locations of known outbreaks and random

background points to create a confusion matrix resulted in

high/medium AUC and TSS scores of 0�71 and 0�58, respec-
tively. The basic contact model (eqn 6) gave poorer AUC and

TSS scores (0�64 and 0�26, respectively). Qualitative differences

from the correlative model (Fig. 2) are influenced by biased

clusters of disease cases near, for instance, diagnostic laborato-

ries. An increase in the distributional range of LAS spillover

events is predicted by 2070, especially in the northern and east-

ern parts of the present simulated distribution (Fig. 3b), with

the biggest impact seen under medium to high climate impact

Fig. 2. Spatial distribution of LAS risk across its endemic region in

West Africa estimated from outbreak records from 1967–2012 using

BRTmodels. Risk probability per grid (0�0416°) cell is represented on a
linear colour scale from 1-0, where green is most suitable and grey

unsuitable. Axis labels indicate degrees, in aWorld Geodetic System 84

projection. Filled black circles represent locations of historic LAS out-

breaks (sources, see Table S1, Supporting information).
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scenarios (Fig. 4a) and greater land cover change scenarios

(Fig. 4b). For a medium climate change and full land cover

change scenario, the model predicts an average 2�1-fold
increase (expected range 2�0-2�1) in the number of spillover

events per year by 2070 (Fig. 5), with the largest increases seen

under higher impact scenarios (i.e. full land cover change and

high levels of climate change Fig. 4a, b). Of the component dri-

vers, changes to climate and human population densities have

the largest effect on increasing spillover events, with land cover

change having a weaker positive impact. Changes in human

mobility patterns acted independently to reduce the number of

LAS spillover events (Fig. 5).

Discussion

LAS is a serious, high burden disease within West Africa that

is currently still poorly understood. We show that, from our

spillover environmental-mechanistic model, more areas of

West Africa are at risk of reservoir host–human spillover that

current case data suggest. Our model suggests that in future, it

is likely to become a greater burden on local communities

spreading to more areas with approximately twice as many

spillover events predicted by 2070. The spillover increase in our

model in future is attributable to a large extent to climate

change, which appears to increase future disease burden,

because the future climatic conditions in this region (hotter

and wet) provide more suitable habitat for the Western clade

M. natalensis. Regional predicted increases in human popula-

tions increase the number of susceptible individuals, thereby

increasing the contact rate between reservoir hosts and humans

and the number of spillover events. Landscape change has a

less powerful effect on spillovers. LAS host (M. natalensis) is a

common household and agricultural rodent pest (Fichet-Cal-

vet &Rogers 2009), and ourmodel of the habitat requirements

of the Western clade M. natalensis shows that this species

occurs in areas of high rainfall and cultivated land and savanna

(Figs S2, S3, Supporting information). The largest landscape

change predicted by 2070 is the conversion of savanna and

grasslands to croplands (Table S7, Supporting information).

This conversion is from one land-use type that is suitable to the

reservoir host to another, providing only limited net positive

effects on total spillover events. Nevertheless, this suggests that

a greater anthropogenic transformation of the landscape

across western Africa may have the potential to involve a

trade-off between agricultural production and LAS spillover

events. Current predictions of changes to national wealth in

the endemic regions (assuming future mobility patterns map

well to these expected changes) suggest that reduced daily

Fig. 3. Spatial distribution of simulated LAS spillover events across its

endemic region in western Africa for (a) present day and (b) projected

for 2070 under a medium climate and full land cover change scenario.

Values represent the expected number of spillover events per grid cell

per year (0�0416°) and are represented on a linear colour scale from

green to grey. Axis labels indicate degrees, in aWorld Geodetic System

84 projection. Filled black circles represent locations of historic LAS

outbreaks (sources, see Table S1, Supporting information).

Fig. 4. Effect of different (a) climate and (b) land-use change scenarios

on expected LAS spillover events in 2070. Where (a) represents three

different climate scenarios (‘high change’, ‘business as usual’ and ‘low

change’) and (b) five scenarios of land-use change, representing 0�1,
0�25, 0�5, 0�75 and 1 times the rate of land-use change seen in the region

in last few decades. Error bars represent 95% confidence intervals

around themean.
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movement distance will also reduce human–host contact rates,
thereby reducing spillover events. Taken together, our LAS

case study suggests that zoonotic diseases are unlikely to

respond uniformly to global environmental stressors.

Our environmental-mechanistic model provides a useful

framework for understanding the impact of any interventions

or change in national or international government policies.

For example, although population growth is highly stable and

unlikely to have sharp deflections away from historical trends

(Lutz, Sanderson & Scherbov 2001), land cover change has

perhaps a less predetermined future pattern. Our model shows

that the severity of landscape conversion is proportional to the

severity of the disease spillover events, suggesting that a reduc-

tion in the rate of land-use change may benefit future commu-

nities. However, to achieve a consensus position fromwhich to

petition changes to regional land-use policy, we need to move

away from a single disease approach. For example, if one envi-

ronmental stressor decreases one disease, but increases

another, then the overall cost to community could be negative.

The modelling framework we propose offers the potential to

look at the impact of global change on multiple diseases at

once, to understand these trade-offs. We can test, for instance,

the relative impact of reducing reservoir host–human contact

rates compared to mitigation measures aimed at reducing

reservoir host populations. A future development of our envi-

ronmental-mechanistic frameworkmight be tomodel zoonotic

disease transmission within human populations by including

the impact of, for example, travel infrastructure, human-to-

human contact rates and poverty. One disease that this

approach would be relevant for is plague (Yersinia pestis)

(Makundi, Massawe & Mulungu 2007), which is carried by

M. natalensis alongside LAS, but differs in its transmission

structure and way the disease presents in human cases. Extend-

ing our spillovermodel tomodel a disease within human popu-

lations would mean that it would be possible to determine the

fate of predicted spillovers, with regard to the expected number

of infections, amount of morbidity or resource cost to local

communities.

Finally, the accuracy of our modelling approach is contin-

gent on the greater understanding of both the phylogeography

and ecology of the reservoir host. More information on the

spatial variation of seroprevalence in the host would further

add to the understanding of current disease patterns. Further

work needs to be undertaken to see whether our model can be

extended to other zoonotic human–reservoir host systems and

used globally, as part of a forecasting system for major zoo-

noses. It is imperative that we begin to uncover and quantify

these expected changes in response to future environmental

stressors, from a multidisease and global perspective, to create

effective and non-contradictory policy solutions.
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