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Abstract

Here we show: I. More details of the methods and computational settings used; II. Additional

structural and vibrational information of monolayer ice; III. Phase stability as a function of confine-

ment width at different pressures; IV. Calculations using different methods to address the validity

of our results; V. Enthalpies including zero point energy corrections; and VI. Coordinates for some

of the most relevant structures identified.
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I. METHODS

Our density functional theory (DFT) calculations were carried out using the Vienna

Ab-initio Simulation Package (VASP) [1]. Periodic boundary conditions are applied in all

dimensions. The simulation model is a slab model (Fig. S1), in which the 2D ice layer

is extended in lateral dimensions by periodic boundary conditions. In the out-of-plane

dimension the inclusion of a vacuum area (>10 Å) ensures the interactions between a 2D ice

layer and its images are negligible. The confinement was introduced by two flat structureless

walls with a width of w. The K-point mesh had a lateral separation between points larger

than 0.03 Å
−1

. Projector augmented-wave potentials were used with an energy cut-off of 550

eV [2]. The generalized gradient approximation was used with the Perdew-Burke-Ernzerhof

(PBE) exchange correlation functional [3] in conjunction with the van der Waals correction

of Tkatchenko and Scheffler [4].

In our study, we used the ab initio random structure search (AIRSS) method to achieve

an unbiased searching of the configuration space for 2D ice [7, 8]. Initial stuctures were built

with 2, 4, 6, 8, 10, 12, 18 and 24 water molecules per unit cell using AIRSS. The lateral

pressure is defined as the average of the lateral stress tensor elements P = 1
2
(σxx + σyy).

In our DFT calculations with periodic boundary conditions with a slab model containing

vacuum the lateral stress tensor of a 2D ice layer is not a conserved quantity with respect to

the choice of vacuum. In fact the conserved quantities are σ′xx × Lz and σ′yy × Lz, where Lz

is the length of the cell in the out-of-plane direction, σ′xx and σ′yy are the calculated lateral

diagonal stress tensor elements for the slab/vacuum model. The lateral stress tensor for

a 2D ice layer is defined as σ = σ′ × Lz/h, where we assign the layer height h equals the

width of the confinement. The lateral stress tensor is diagonalized during the relaxation

of the unit cell until both σxx and σyy are converged to the target pressure. The cell

dimension perpendicular to the water slab was fixed during structure optimization. The

water-wall interaction was described using a classical Morse potential. Parameters of the

Morse potential were obtained by fitting to the quantum Monte Carlo results for water

monomer adsorption on graphene (Fig. S2) [5]. Calculations were also performed with a

Lennard-Jones confining potential. As shown below the Morse and LJ confining potentials

give qualitatively the same results (section IV).

In Fig. S3 we plot energy profiles of graphene-water-graphene slabs as a function of
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FIG. S1. A typical unit cell for our DFT calculation of 2D ice with an empirical confinement. The

red dashed line indicates the average height of all water molecules, the black dashed lines indicate

the confined regime with a width of w.

the graphene interlayer spacing. Two sets of results which cover the density regime we are

interested in are shown. It can be seen that the energy profile depends to some extent on

the lateral density of water between the graphene layers. In the two structures used water

molecules lie flat with all atoms located at the same height to graphene layers. Although the

total energy depends to some extent on the orientation of water molecules, the sensitivity

is much less than the influence of water density. With these two structures an estimate

of the optimal interlayer spacing falls between 6.0 Å and 6.5 Å. Results at 6.0 Å and 6.5

Å are discussed in the paper and the dependence of the phase behavior in a wider range of

confinement widths is shown in SI.III
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FIG. S2. (a) Fitted Morse potential of water-graphene interaction (black line). Blue squares and

red circles are Diffusion Monte Carlo results from Ref. 5 for water in two orientations (so called

two leg and one leg structure). V (z) = D((1 − e−a(z−z0))2 − 1), where z is the distance between

the oxygen atom and the wall. D = 57.8 meV, a = 0.92 Å
-1

, z0 = 3.85 Å. (b) Potential energy of a

water molecule between two walls with different wall separations. In addition to the profiles given

for the Morse potential, the dashed line shows the potential energy profile of a Lennard-Jones 9-3

(LJ-93) potential with σ = 3.0 Å and ε = 21.7 meV under 5.0 Å confinement [6].
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FIG. S3. Energy profile of graphene-water-graphene system as a function of interlayer separation.

∆E = (Etotal − 2 ∗ Egraphene −NH2O × EH2O)/Nc, Nc is the number of graphene unit cells in one

layer.
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II. ADDITIONAL STRUCTURAL, ENERGETIC AND VIBRATIONAL INFOR-

MATION

a) b) c)

d) e)

FIG. S4. Top views of the PT-I (a), the PT-II (b), the PT-III (c), the ZC (d), and the OHT (e)

phases. The black box in panel (a) shows a water molecule which has three acceptor HBs. The

Bjerrum D and L defects are highlighted with violet and orange ovals respectively.

Fig. S4 shows the structures of several other metastable phases identified. We dub these

phases “PT-I” (Fig. S4a), “PT-II” (Fig. S4b), and “PT-III” (Fig. S4c). The PT-I, PT-II

and PT-III phases differ from each other in the symmetry and the types of bonding they

have (Table S1).

The PT-I phase has the p2 wall paper group symmetry for the oxygen lattice but the

hydrogen atoms are disordered. Only hydrogen bonds and dangling OH bonds appear in

the PT-I phase but some of the water molecules are five-fold coordinated (one dangling OH

bond, one donor HB and three acceptor HBs), which is against the coordination character

of oxygen atoms in the conventional ice.

The PT-II phase is an hydrogen ordered phase with the same wall-paper group symmetry
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Structures Symmetry of oxygen (water) lattice Ring size HB coordination Defects

Hexagonal p6mm (p1 ) 6 2D1A,1D2A (1/2)DG

CT p4gm (p1 ) 5 2D1A,2D2A,1D2A (1/3)DG

f-SQ p4gm (p4gm) 4 2D2A NONE

ZC p2mg (p2 ) INF 1D1A (1)DG

PT-I p2 (p1 ) 4,5 2D1A,2D2A,1D3A (1/4)DG

PT-II p2 (p2 ) 4,5 2D1A,1D2A (1/4)BJ-D

PT-III p2mg (p2 ) 4,5 2D1A,1D2A (1/8)BJ-L,(1/8)BJ-D,(1/4)DG

OHT p4mm (p1 ) 4,6,8 2D1A,1D1A,1D2A (1/4)BJ-D,(1/4)DG

b-SQ p4mm (p4gm) 4 2D2A NONE

b-RH p2mg (p1 ) 4 2D2A NONE

TABLE S1. Properties of stable and metastable structures. The wall paper group symmetry is

determined using projections of the oxygen atoms (all atoms). In the HB coordination column “D”

is donor HB and “A” is acceptor HB. In the defects column we use BJ-D and BJ-L to represent

the Bjerrum D type and L type defects. Dangling OH bond (DG) is also considered in this column

although it is not actually a defect. In the brackets we show how many “defects” there are in each

water molecule.

(p2 ) for the oxygen lattice and the all atom lattice. All the water molecules have three HBs

(either one donor two acceptor or one acceptor two donor) and the Bjerrum D type defects

in one of the two types of water molecules.

The PT-III phase has a higher symmetry (p2mg for oxygen lattice). It consists of Bjerrum

D and L defects as well as dangling OH bonds.

The structure in Fig. S4d forms one dimensional zigzag chains of HBs, thus we dub it

“ZC”. No bonds are formed between the neighbour chains with an oxygen-oxygen separation

of ca. 3.8 Å. Each water molecule in the ZC phase has one donor HB, one acceptor HB and

one dangling OH bond. It also has similar density and enthalpy to the PT phase.

We also identified a very low density metastable structure which we dub “OHT” con-

sidering the octagons, hexagons and tetramers we see from the top view of the structure

(Fig. S4e). The OHT phase has a p4mm symmetry for the oxygen lattice and a disordered

hydrogen network. We also find Bjerrum D type defects and dangling OH bonds in the OHT

phase.

At the low pressure limit the enthalpies of all the metastable structures shown in Fig.
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S4 are ca. 20-30 meV/water higher than the stable hexagonal and CT structure (Fig.

S5). However the densities of these structures are quite different from one another, e.g.

the OHT structure has a lower density than the hexagonal structure whereas most of the

other structures have densities similar to the CT structure. The relative energy differences

and densities are not sensitive to the size of confinement and the energy contributions of

confinement are quite small.
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FIG. S5. (a) Relative enthalpies (filled symbols) and energy contributions from confinement (open

symbols) of the stable and metastable structures at different confinements of 6.0 Å (blue circles),

6.5 Å (orange squares), and 7.0 Å (green triangles). (b) Lateral area per water molecule of the

structures.
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FIG. S6. Lateral molecular area (a) and out-of-plane buckling (b) of the structures as a function

of pressure at 6.0 Å (solid lines) and 6.5 Å (dashed lines). The buckling is defined as the maximum

height difference between oxygen atoms in a structure.
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In Fig. S6 we plot the lateral area and buckling as a function of lateral pressure. As we

have shown in the main manuscript phase transitions of monolayer ice under 6.0 Å confine-

ment happen at ca. 0.02 GPa (from hexagonal to CT), ca. 2 GPa (from CT to f-SQ), and

ca. 4 GPa (from f-SQ to b-RH). The transitions all result in a drop of lateral area, thus a

discontinuous increase of density. Under 6.5 Å confinement a transition from the CT phase

to the b-RH is observed which is also accompanied by the sudden increase of density. The

buckling changes continuously from the hexagonal to the CT phase, drops to zero for the

f-SQ phase, and increases to a much larger buckling in the b-RH phase.
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FIG. S7. Phonon density of states of the monolayer ice structures at 1 bar (a) and 1 GPa (b) with

a 6.5 Å confinement.

Fig. S7 shows the phonon density of states of the structures. They were calculated within

the harmonic approximation using the finite displacement method.
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III. PHASE STABILITY AS A FUNCTION OF CONFINEMENT WIDTH AT DIF-

FERENT PRESSURES

The influence of the confinement width on the predictions of the stable monolayer struc-

tures are shown in Fig. S8. At ambient pressure the enthalpy of the hexagonal phase remains

the lowest up to a confinement width of ca. 7.3 Å, at which point the buckled (b-RH) phase

becomes more stable. The CT phase is slightly less stable than the hexagonal phase by ca.

5 meV. As the pressure increases the transition from flat monolayers to buckled ice layers

happens at smaller confinement widths. At 1 GPa the stability of the CT phase persists up

to ca. 6.7 Å. At 3 GPa the f-SQ phase is stable at a confinement less than 6.1 Å.
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FIG. S8. Enthalpies of the water monolayer phases as a function of confinement width at 1 bar

(a), 1 GPa (b), and 3 GPa (c). The definition of enthalpy is the same as in Fig. 2 of the main

manuscript.
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IV. CALCULATIONS USING DIFFERENT METHODS TO ADDRESS THE VA-

LIDITY OF OUR RESULTS

Calculations using different exchange-correlation functionals were performed to test the

validity of the key conclusions reached in this study. We now discuss: i) The sensitivity

of results to the choice of exchange correlation functional and computational settings; ii)

The difference with the DFT results reported in Ref. 9; iii) Calculations of 2D ice confined

within actual sheets of graphene; iv) Calculations using a different confining potential; and

v) Calculations using force field models.

i) The sensitivity of results to the choice of exchange correlation functional and compu-

tational settings.

We tested the validity of our results by doing a set of calculations using much higher

settings (harder PAW potential, higher cutoff and denser K-point mesh). This shows that

the errors are less than 10 percent of energy differences (Table S2).

We further performed calculations using different functionals to compare the enthalpies

of the hexagonal, the CT and the f-SQ phases at ambient pressure and 6.5 Å confinement

[3, 4, 10–14]. At this condition, all the calculations except PBE agree that the hexagonal

phase and the CT phase are close in enthalpy. The square structure is less stable than

the hexagonal structure in all calculations. In PBE van der Waals forces are not taken

into account, leading to an underestimation of the stability of high density ice structures

with respect to the low density ones [15, 16]. Here we can see that with the inclusion of

van der Waals interactions the enthalpy difference between the high density f-SQ structure

and the low density hexagonal structure becomes smaller, similar to the trend observed

upon going from ice I to ice VIII [15, 16]. The value predicted by different van der Waals

functional varies and without a benchmark study it is not straightforward to tell which one is

more accurate. However, as we can learn from previous studies, inclusion of van der Waals

interactions on GGA functionals usually change “underestimation” to “overestimation”,

especially for the PBE-vdW functional [13]. Therefore we speculate that at ambient pressure

the f-SQ structure is less stable than the hexagonal and CT structures by a value between the

prediction of PBE and the various van der Waals functionals, i.e. ca. 20 to ca. 50 meV/H2O.

In the future benchmark studies with more accurate electronic structure methods such as

quantum Monte Carlo are highly desirable to substantiate the conclusions reached with
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DFT.

H-Hhexagonal (meV/H2O) CT f-SQ

PBE+vdW(TS) [4] 4.9 (5.1) 43.1 (38.8)

PBE+vdW(TS)+ZPE [4] 1.8 42.6

PBE [3] 18.9 67.4

optB86b-vdW [13, 14] 3.4 16.3

HSE+vdW(TS) [4, 10, 12] 3.1 30.8

PBE-vdW [11] -8.6 6.1

TABLE S2. Enthalpy differences between the hexagonal phase, the CT phase, and the f-SQ phase

at ambient pressure and 6.5 Å confinement using different methods. Results shown in brackets are

calculated using hard PAW potentials, a 1000 eV energy cutoff, and a K-point mesh denser than

0.02 Å
−1

. “+ZPE” means the energy differences are corrected with the inclusion of zero point

energy. Positive values indicate that the hexagonal structure is more stable than the CT or f-SQ

structures.

In Table S3 we show the CT/f-SQ and f-SQ/b-RH transition pressures at 6.0 Å confine-

ment to see the dependence of transition pressure on the choice of functional. As expected,

the different performance of van der Waals functionals on high and low density ice structures

results in a different transition pressure from the CT to the f-SQ phase. However, all three

functionals predict a CT/f-SQ transition at a finite pressure in the order of 1 GPa. For the

transition from the f-SQ to the b-RH, the transition pressure differences are much smaller

with the different functionals as the HB network and density of the two structures are quite

similar.

Transition pressure (GPa) CT/f-SQ f-SQ/b-RH

PBE+vdW(TS) [4] 1.9 4.2

optB86b-vdW [13, 14] 0.43 3.9

PBE-vdW [11] 0.51 3.8

TABLE S3. Transition pressure from CT to f-SQ (CT/f-SQ) and from f-SQ to b-RH (f-SQ/b-RH)

at 6.0 Å confinement calculated using three different van der Waals functionals.
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ii) The difference with the DFT results reported in Ref. 9.

It was reported in an arXiv preprint [9] that the square phase of monolayer ice is more

stable than the hexagonal structure at all pressures. Even at ambient pressure it was sug-

gested that the enthalpy of the square structure is lower by ca. 30 meV/H2O [9]. This

is different from our results where we see that the hexagonal monolayer ice phase is more

stable at ambient pressure. We have identified two reasons for this discrepancy. First, in

Ref. 9 the functional used is PBE-vdW, which favors the square structure the most among

all the functionals tested (Table S2). Second, a small basis set was used in the SIESTA

code calculations reported in Ref. 9, which results in a further overestimation of the relative

stability of the square structure. We show this in Table S4 where we report our own SIESTA

results. Compared with the more accurate basis sets such as tζ + dp+ p′ and qζ + tp+ dp′

or the plane wave DFT calculations using VASP, the (P )dζ + p basis set used in Ref. 9

overestimates the binding and underestimates the difference between the hexagonal and the

square structures. Similar behavior has also been observed in more extensive tests of various

basis sets for the binding of the water dimer and bulk ice structures [17]. With all these

tests we are confident that the hexagonal structure is indeed more stable than the square

structure at ambient pressure.

Methods \ energy (meV/H2O) Eb(f-SQ) Eb(hexagonal) ∆E

(P )dζ + p (SIESTA) [9, 18] -451.2 -478.6 27.4

tζ + dp+ p′ (SIESTA) [17] -382.5 -430.5 48.0

qζ + tp+ dp′ (SIESTA) [17] -376.8 -425.9 49.1

Plane wave (VASP) [1] -386.6 -459.0 72.4

TABLE S4. Binding energy and binding energy difference between the f-SQ and the hexagonal

structure calculated using different methods. Single point total energy calculations are performed

using PBE with structures optimized in a 6.5 Å confinement using the PBE+vdW(TS) method.

We note that at ambient pressure the structures at different confinement widths or with different

confinement potentials are almost identical as long as the confinement width is not too large, and

the enthalpy difference mainly arises from the binding energy difference. Therefore, single point

calculations can capture the differences resulted from different electronic structure methods. The

main conclusion from this table is that the small (P )dζ + p basis set very poorly describes the

energy difference between the hexagonal and the square structures.
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iii) Calculations of 2D ice confined within actual sheets of graphene. To understand the

influence a real graphene sheet would have on our results we have compared the energies of

hexagonal and f-SQ structures at the low pressure limit. These structures are interesting to

compare because they have quite different water molecule orientations; the hexagonal struc-

ture has dangling OH bonds pointing to the graphene sheets whereas in the f-SQ structure

all the water molecules are in a plane parallel to the layer. We first calculated the energies

of the hexagonal (Fig. S9a) and the f-SQ (Fig. S9b) 2D ice within two layers of distorted

graphene sheets separated by 6.5 Å. The ice structures are those already obtained with our

confining potential. The graphene lattices are distorted by < 2% to match the lattice of

2D ice. In Table S5 we report the energy difference between these two structures (data

in column 1). We see the energy difference between the f-SQ and the hexagonal structure

agrees quite well in two different methods. The other way to build a water/graphene struc-

ture is to keep graphene fixed at its equilibrium in plane lattice constant and distort the

2D ice sheet (Fig. S9c,d). In this case we re-optimise the structure of the 2D ice and then

compare the relative energies of these re-optimised structures with the energies they would

have if confined by our confining potential (Table S5, data column 2). We see that there is a

difference ca. 10 meV/H2O between the calculation using a confining potential and the full

ab initio calculation. We conclude from these tests that although the presence of explicit

graphene does alter the relative energies of the phases to some extent it does not alter any

of the key conclusions of our study.

∆E = E(f-SQ)-E(hexagonal) (meV/H2O) Graphene distorted 2D ice distorted

Morse potential confinement 43.1 25.9

Graphene Confinement 46.0 37.7

TABLE S5. Energy differences between the f-SQ structure and the hexagonal structure either

confined by our regular Morse potential (derived from QMC) or confined by explicit graphene.

E = Etotal − Egraphene.

iv) Calculations using a different confining potential.

In previous force field simulations, a Lennard-Jones potential was usually used to describe

the water-wall interaction. Here we test our calculations using the LJ-93 potential shown

in Fig. S2b as the confinement. We see that to mimic the water graphene interaction, a

quite different confinement size should be used. The main conclusions we discussed in the
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a) b)

d)c)

FIG. S9. a,b) Top view of 2D confined ice in two distorted graphene layers. c,d) The re-optimised

structures of distorted 2D ice in undistorted graphene lattice.

paper can also be achieved by properly choosing the confinement size, e.g. the 5.0 Å LJ-93

potential results agree quite well with the 6.0 Å Morse-potential results (Fig. S10a).

v) Calculations using force field models.

Only the b-RH and f-SQ structures have been observed in force field simulations for

monolayer ice in a smooth hydrophobic confinement [19–21]. The CT structure was only

seen in double layer ice simulations [6]. The hexagonal structure was seen either as a

double layer structure or in confinement with a hexagonal substrate structure as a template

[6, 22, 23]. However the monolayer hexagonal and CT structures have not been reported in

smooth confinement. In order to understand this, we calculated the enthalpies as a function

of pressure using two widely used force fields, TIP4P/2005 [24] and SPC/E [25]. It is clear

that the force fields and DFT predict qualitatively different results. Both force fields show

that the b-RH is the lowest energy structure at all pressures and the f-SQ is the second

lowest enthalpy structure (Fig. S10b,c). The CT and hexagonal structures are significantly
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FIG. S10. Enthalpies of the water monolayer phases as a function of lateral pressure under

5.0 Å confinement using a LJ-93 potential described in Fig. S2b. The DFT data is with the

PBE+vdW(TS) approach.

less stable at all pressures.

15



V. ENTHALPIES INCLUDING ZERO POINT ENERGY CORRECTIONS

In order to understand if zero point energy (ZPE) effects would change the conclusions

reached here, we calculated the ZPEs using the harmonic approximation. The enthalpies

are corrected by the ZPEs at different lateral pressures (Fig. S11). The ZPEs changes the

transition point but the main conclusions reached in the paper are valid, e.g. at ambient

pressure the enthalpy difference between the CT phase and the hexagonal phase is incredibly

small: 5 meV without ZPEs and 2 meV with ZPEs.
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FIG. S11. Enthalpies with zero point energy (ZPE) corrections under 6.5 Å confinement (solid line

with symbols). Relative enthalpies with respect to the CT phase is plotted. The dashed lines show

the results without ZPEs.

VI. COORDINATES FOR SOME OF THE MOST RELEVANT STRUCTURES

IDENTIFIED

In this section, coordinates for the hexagonal (#1), CT (#2), f-SQ (#3), b-RH (#4) and

b-SQ (#5) obtained at ambient pressure with a 6.5 Å confinement are listed.
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data_#1

_pd_phase_name                         'H   O                                 '
_cell_length_a                         9.17400
_cell_length_b                         8.09685
_cell_length_c                         15.00000
_cell_angle_alpha                      90
_cell_angle_beta                       90
_cell_angle_gamma                      90
_symmetry_space_group_name_H­M         'P 1'
_symmetry_Int_Tables_number            1

loop_
_symmetry_equiv_pos_as_xyz
   'x, y, z'

loop_
   _atom_site_label
   _atom_site_occupancy
   _atom_site_fract_x
   _atom_site_fract_y
   _atom_site_fract_z
   _atom_site_adp_type
   _atom_site_B_iso_or_equiv
   _atom_site_type_symbol
   H1         1.0     0.699594      0.543205      0.492978     Biso  1.000000 H
   H2         1.0     0.614214      0.717110      0.494031     Biso  1.000000 H
   H3         1.0     0.300406      0.043205      0.507022     Biso  1.000000 H
   H4         1.0     0.385786      0.217110      0.505969     Biso  1.000000 H
   H5         1.0     0.851060      0.423601      0.574829     Biso  1.000000 H
   H6         1.0     0.957435      0.498075      0.503731     Biso  1.000000 H
   H7         1.0     0.148940      0.923601      0.425171     Biso  1.000000 H
   H8         1.0     0.042565      0.998075      0.496269     Biso  1.000000 H
   H9         1.0     0.800406      0.043202      0.492978     Biso  1.000000 H
   H10        1.0     0.885789      0.217104      0.494030     Biso  1.000000 H
   H11        1.0     0.199594      0.543202      0.507022     Biso  1.000000 H
   H12        1.0     0.114211      0.717104      0.505970     Biso  1.000000 H
   H13        1.0     0.351065      0.423607      0.425170     Biso  1.000000 H
   H14        1.0     0.457436      0.498079      0.496270     Biso  1.000000 H
   H15        1.0     0.648935      0.923607      0.574830     Biso  1.000000 H
   H16        1.0     0.542564      0.998079      0.503730     Biso  1.000000 H
   O1         1.0     0.602398      0.595686      0.498302     Biso  1.000000 O
   O2         1.0     0.397602      0.095686      0.501698     Biso  1.000000 O
   O3         1.0     0.862975      0.431765      0.510443     Biso  1.000000 O
   O4         1.0     0.137025      0.931765      0.489557     Biso  1.000000 O
   O5         1.0     0.897604      0.095680      0.498299     Biso  1.000000 O
   O6         1.0     0.102396      0.595680      0.501701     Biso  1.000000 O
   O7         1.0     0.362976      0.431769      0.489556     Biso  1.000000 O
   O8         1.0     0.637024      0.931769      0.510444     Biso  1.000000 O



data_#2

_pd_phase_name                         'H  O                                  '
_cell_length_a                         9.95974
_cell_length_b                         9.94506
_cell_length_c                         15.00000
_cell_angle_alpha                      90
_cell_angle_beta                       90
_cell_angle_gamma                      89.99287
_symmetry_space_group_name_H­M         'P 1'
_symmetry_Int_Tables_number            1

loop_
_symmetry_equiv_pos_as_xyz
   'x, y, z'

loop_
   _atom_site_label
   _atom_site_occupancy
   _atom_site_fract_x
   _atom_site_fract_y
   _atom_site_fract_z
   _atom_site_adp_type
   _atom_site_B_iso_or_equiv
   _atom_site_type_symbol
   H1         1.0     0.061737      0.174838      0.496521     Biso  1.000000 H
   H2         1.0     0.900693      0.171397      0.501272     Biso  1.000000 H
   H3         1.0     0.988240      0.953407      0.498511     Biso  1.000000 H
   H4         1.0     0.067640      0.814708      0.515726     Biso  1.000000 H
   H5         1.0     0.164650      0.581922      0.498672     Biso  1.000000 H
   H6         1.0     0.165495      0.422597      0.485079     Biso  1.000000 H
   H7         1.0     0.304222      0.924462      0.504400     Biso  1.000000 H
   H8         1.0     0.443879      0.005431      0.500255     Biso  1.000000 H
   H9         1.0     0.561692      0.325632      0.503476     Biso  1.000000 H
   H10        1.0     0.400643      0.329085      0.498741     Biso  1.000000 H
   H11        1.0     0.567638      0.685687      0.484196     Biso  1.000000 H
   H12        1.0     0.488226      0.547014      0.501446     Biso  1.000000 H
   H13        1.0     0.664638      0.918640      0.501231     Biso  1.000000 H
   H14        1.0     0.665499      0.077945      0.514918     Biso  1.000000 H
   H15        1.0     0.804171      0.576058      0.495549     Biso  1.000000 H
   H16        1.0     0.943848      0.495115      0.499710     Biso  1.000000 H
   H17        1.0     0.227674      0.256432      0.574808     Biso  1.000000 H
   H18        1.0     0.277929      0.149497      0.503769     Biso  1.000000 H
   H19        1.0     0.345276      0.708869      0.495260     Biso  1.000000 H
   H20        1.0     0.235775      0.756625      0.424799     Biso  1.000000 H
   H21        1.0     0.727726      0.244043      0.425233     Biso  1.000000 H
   H22        1.0     0.777941      0.351029      0.496245     Biso  1.000000 H
   H23        1.0     0.845239      0.791638      0.504669     Biso  1.000000 H
   H24        1.0     0.735696      0.743934      0.575106     Biso  1.000000 H



   O1         1.0     0.982854      0.116111      0.502536     Biso  1.000000 O
   O2         1.0     0.982870      0.852662      0.494781     Biso  1.000000 O
   O3         1.0     0.109603      0.499535      0.501568     Biso  1.000000 O
   O4         1.0     0.343942      0.014443      0.498206     Biso  1.000000 O
   O5         1.0     0.482799      0.384353      0.497411     Biso  1.000000 O
   O6         1.0     0.482887      0.647765      0.505180     Biso  1.000000 O
   O7         1.0     0.609628      0.001067      0.498307     Biso  1.000000 O
   O8         1.0     0.843917      0.486090      0.501797     Biso  1.000000 O
   O9         1.0     0.237247      0.244847      0.510588     Biso  1.000000 O
   O10        1.0     0.248428      0.745480      0.488821     Biso  1.000000 O
   O11        1.0     0.737291      0.255677      0.489449     Biso  1.000000 O
   O12        1.0     0.748367      0.755111      0.511088     Biso  1.000000 O

data_#3

_pd_phase_name                         'H   O                                 '
_cell_length_a                         5.56337
_cell_length_b                         5.56343
_cell_length_c                         15.00000
_cell_angle_alpha                      90
_cell_angle_beta                       90
_cell_angle_gamma                      90
_symmetry_space_group_name_H­M         'P 1'
_symmetry_Int_Tables_number            1

loop_
_symmetry_equiv_pos_as_xyz
   'x, y, z'

loop_
   _atom_site_label
   _atom_site_occupancy
   _atom_site_fract_x
   _atom_site_fract_y
   _atom_site_fract_z
   _atom_site_adp_type
   _atom_site_B_iso_or_equiv
   _atom_site_type_symbol
   H1         1.0     0.559637      0.763453      0.523069     Biso  1.000000 H
   H2         1.0     0.736556      0.940374      0.476915     Biso  1.000000 H
   H3         1.0     0.440363      0.236547      0.523069     Biso  1.000000 H
   H4         1.0     0.263444      0.059626      0.476915     Biso  1.000000 H
   H5         1.0     0.059637      0.736547      0.523069     Biso  1.000000 H
   H6         1.0     0.236556      0.559626      0.476915     Biso  1.000000 H
   H7         1.0     0.940363      0.263453      0.523069     Biso  1.000000 H
   H8         1.0     0.763444      0.440374      0.476915     Biso  1.000000 H



   O1         1.0     0.724952      0.775062      0.499993     Biso  1.000000 O
   O2         1.0     0.275048      0.224938      0.499993     Biso  1.000000 O
   O3         1.0     0.224951      0.724938      0.499993     Biso  1.000000 O
   O4         1.0     0.775048      0.275062      0.499993     Biso  1.000000 O

data_#4

_pd_phase_name                         'H O                                   '
_cell_length_a                         5.22074
_cell_length_b                         5.59951
_cell_length_c                         20.00000
_cell_angle_alpha                      90
_cell_angle_beta                       90
_cell_angle_gamma                      90.00002
_symmetry_space_group_name_H­M         'P 1'
_symmetry_Int_Tables_number            1

loop_
_symmetry_equiv_pos_as_xyz
   'x, y, z'

loop_
   _atom_site_label
   _atom_site_occupancy
   _atom_site_fract_x
   _atom_site_fract_y
   _atom_site_fract_z
   _atom_site_adp_type
   _atom_site_B_iso_or_equiv
   _atom_site_type_symbol
   H1         1.0     0.475650      0.217714      0.537233     Biso  1.000000 H
   H2         1.0     0.281312      0.037703      0.506176     Biso  1.000000 H
   H3         1.0     0.975649      0.217712      0.462765     Biso  1.000000 H
   H4         1.0     0.781313      0.037704      0.493821     Biso  1.000000 H
   H5         1.0     0.024293      0.717713      0.462765     Biso  1.000000 H
   H6         1.0     0.218630      0.537703      0.493821     Biso  1.000000 H
   H7         1.0     0.718630      0.537703      0.506176     Biso  1.000000 H
   H8         1.0     0.524293      0.717714      0.537233     Biso  1.000000 H
   O1         1.0     0.464994      0.056313      0.518028     Biso  1.000000 O
   O2         1.0     0.964994      0.056311      0.481969     Biso  1.000000 O
   O3         1.0     0.034949      0.556312      0.481969     Biso  1.000000 O
   O4         1.0     0.534949      0.556313      0.518028     Biso  1.000000 O



data_#5

_pd_phase_name                         'H   O                                 '
_cell_length_a                         5.53742
_cell_length_b                         5.53742
_cell_length_c                         20.00000
_cell_angle_alpha                      90
_cell_angle_beta                       90
_cell_angle_gamma                      90
_symmetry_space_group_name_H­M         'P 1'
_symmetry_Int_Tables_number            1

loop_
_symmetry_equiv_pos_as_xyz
   'x, y, z'

loop_
   _atom_site_label
   _atom_site_occupancy
   _atom_site_fract_x
   _atom_site_fract_y
   _atom_site_fract_z
   _atom_site_adp_type
   _atom_site_B_iso_or_equiv
   _atom_site_type_symbol
   H1         1.0     0.603762      0.250000      0.393238     Biso  1.000000 H
   H2         1.0     0.250000      0.103762      0.356850     Biso  1.000000 H
   H3         1.0     0.750000      0.603763      0.356850     Biso  1.000000 H
   H4         1.0     0.896237      0.250000      0.393238     Biso  1.000000 H
   H5         1.0     0.396238      0.750000      0.393238     Biso  1.000000 H
   H6         1.0     0.750000      0.896237      0.356850     Biso  1.000000 H
   H7         1.0     0.250000      0.396237      0.356850     Biso  1.000000 H
   H8         1.0     0.103762      0.750000      0.393238     Biso  1.000000 H
   O1         1.0     0.250000      0.250000      0.384874     Biso  1.000000 O
   O2         1.0     0.750000      0.250000      0.365214     Biso  1.000000 O
   O3         1.0     0.750000      0.750000      0.384874     Biso  1.000000 O
   O4         1.0     0.250000      0.750000      0.365214     Biso  1.000000 O
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