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Abstract
Acidithiobacillus ferrooxidans is an acidophile that thrives in metal-contaminated environments and tolerates high levels of uranium. To gain
a better understanding of the processes involved in U(VI) resistance, comparative proteomics was used. The proteome of A. ferrooxidans was
grown in the presence and absence of 0.5 mM U(VI); expression of 17 proteins was upregulated and one was downregulated. Most proteins with
increased expression are part of the general stress response or are involved in reactive oxygen species detoxification. Four novel proteins showed
increased expression in the presence of U(VI) and may contribute to U(VI) resistance via thiol homoeostasis and U(VI) binding.
© 2016 The Authors. Published by Elsevier Masson SAS on behalf of Institut Pasteur. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Widespread contamination of the environment with toxic
heavy metals and radionuclides is often a result of industrial
activities and is of considerable concern for the environment
and human health. Microorganisms are capable of rapidly
adapting to changes in environmental conditions. Some mi-
crobes can tolerate high levels of these contaminants and could
be used for bioremediation of the contaminant in question. For
such an approach to be undertaken, knowledge of the resis-
tance mechanism(s) employed by the organism is required.

Uranium (U) contamination is of particular concern due to
its toxicity and radioactivity, both of which are regarded as
ecological and public health hazards. Acidithiobacillus fer-
rooxidans is an acidophilic bacterium that thrives in metal-
contaminated environments and is resistant to high
* Corresponding author.

E-mail addresses: l.dekker@imperial.ac.uk (L. Dekker), ploetze@unistra.fr

(F. Ars�ene-Ploetze), j.santini@ucl.ac.uk (J.M. Santini).

http://dx.doi.org/10.1016/j.resmic.2016.01.007

0923-2508/© 2016 The Authors. Published by Elsevier Masson SAS on behalf of I

creativecommons.org/licenses/by/4.0/).
concentrations of U. Some strains of A. ferrooxidans can grow
in the presence of 9 mM U(VI) [1], whereas Escherichia coli
growth is inhibited at a concentration of 2 mM U(VI) [2]. A.
ferrooxidans is capable of U(VI) biosorption [1,3]; U(VI) is
mainly found on the cell wall and within the extracellular
polysaccharides [3], suggesting U(VI) does not accumulate
inside the cell. Comparative proteomic studies on the response
of E. coli, Geobacter sulfurreducens and Caulobacter cres-
centus to U(VI) exposure indicate that there is no specific
mechanism for uranium resistance [4e6].

Since genetic studies in A. ferrooxidans are difficult,
several proteomics studies of A. ferrooxidans have been un-
dertaken to gain insight into mechanisms of adaptation in
response to environmental changes. Studies have been un-
dertaken to determine how the proteome changes in response
to metals such as copper, cadmium, nickel, zinc and potassium
[7,8]. To gain insight into how A. ferrooxidans is able to resist
damage by U(VI), we carried out a comparative proteomics
approach where the bacterium was grown in the presence and
absence of U(VI) and a comparison was made of proteins that
were differentially expressed.
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2. Materials and methods
2.1. Bacterial strains and growth conditions
A. ferrooxidans ATCC 23270 was grown at 28 �C in iron
medium, pH 1.6 [9] with and without 0.5 mM U(VI), until
cells reached mid-log phase. A. ferrooxidans cells were
adapted to growth with 0.5 mM U(VI), resulting in approxi-
mately 10 subcultures prior to harvesting cells for protein
extraction.
2.2. A. ferrooxidans cell preparation, lysis and protein
precipitation
A. ferrooxidans cells were harvested by centrifugation at
23,700 � g for 30 min; all centrifugation steps were carried
out at 4 �C. The pellets from 3 � 400 ml cultures were pooled
together and this was classed as one replicate sample. The
cells were washed twice in 1 ml of 0.01 N H2SO4 by
centrifugation at 10,000 � g for 10 min and stored at �20 �C.
Cell pellets (4 from each growth condition) were suspended
in 600 ml of protein solubilisation buffer (7 M urea; 2 M
thiourea; 4% CHAPS) containing benzonase (250 units;
SigmaeAldrich) and protease inhibitor cocktail (4 ml; GE
Healthcare). Approximately 1 g of glass beads (0.1 mm
diameter) was added to each tube. The cells were vortexed for
30 s followed by 1 min incubation on ice; this process was
repeated 8 times. The suspension was centrifuged for 2 min at
10,000 � g, the supernatant was centrifuged for a further
60 min and the supernatant stored overnight at �20 �C. A 2-
D Clean-up kit (GE Healthcare) was used according to Pro-
cedure A of the manufacturers' instructions. The protein
Table 1

MALDI-TOF/TOF spectroscopy analysis showing proteins with altered expression

Locus tag (NCBI) Gene name Putative function

Cellular processes and signalling

AFE_2086 hsp20 Heat shock protein Hsp20

AFE_1648 hsp20 Heat shock protein, Hsp20 family

AFE_0200 ftsZ Cell division protein FtsZ

AFE_2600 or/and AFE_3117 Putative uncharacterised protein

AFE_0375 trxB Thioredoxin reductase

AFE_0985 ahpC/tsa Alkyl hydroperoxide reductase/thio

specific antioxidant/Mal allergen

AFE_2666 grpE Protein GrpE

Cellular processes and signalling, and information storage and processing

AFE_2017 pspA Phage shock protein A, PspA

Metabolism

AFE_1545 mop Molybdopterin binding protein

AFE_0419 tal Transaldolase

AFE_2155 cbbL2 Ribulose bisphosphate carboxylase

AFE_1811 2-Oxo acid dehydrogenase, acyltran

AFE_1857 gdh Glucose 1-dehydrogenase, putative

AFE_2741 omp40 Major outer membrane protein 40

Poorly characterised

AFE_3280 Phospholipid-like binding protein

AFE_2018 Putative uncharacterized protein

AFE_1839 Glyoxalase/bleomycin resistance pr

AFE_3116 or/and AFE_2599 Putative uncharacterised protein
pellets were suspended in 100 ml of rehydration buffer
(30 mM Tris, pH 8.8; 7 M urea; 2 M thiourea; 4% CHAPS).
Protein concentrations were determined using the Bradford
method [10].
2.3. Differential protein expression analysis
Differential in gel electrophoresis (DIGE) was performed
using the Refraction-2D™ labelling kit (NH DyeAG-
NOSTICS) according to the manufacturer's specifications.
Four replicate experiments were carried out comparing four
with U(VI) and four without U(VI) samples. Isoelectric
focussing (IEF) was performed using an Ettan™ IPGphor™
IEF system (GE Healthcare) and an 18 cm, pH 4e7, immo-
biline drystrip. IEF was undertaken at 20 �C using step-and-
hold methods as follows: 0 V 5 h; 30 V 5 h; 500 V 2 h;
1000 V 0.3 h; 1500 V 0.3 h; 2500 V 0.3 h; 5000 V 10 h;
8000 V until 69,500 V was achieved. IEF strips were equili-
brated as described previously [11]. SDS-PAGE was done
using an 11% resolving gel in an Ettan DALT II electropho-
resis system (GE Healthcare). Proteins were stained with
Brilliant Blue-G-Colloidal (SigmaeAldrich) and digitised
using a Typhoon TRIO variable mode imager (GE Health-
care). Spot detection and differential protein expression anal-
ysis were performed using Delta 2D software (Decodon).
Differentially expressed spots (Student's t-test value of less
than p < 0.05) were excised from the gel. In gel digestion,
analysis by MALDI-TOF/TOF MS and database searching
were performed by Plateforme Prot�eomique Strasbourg
Esplanade as described previously [12]. Proteins were identi-
fied by searching data against the SwissProt non-redundant
protein sequence database. In all results, the probability
following growth of A. ferrooxidans in the presence of U(VI).

MW (Da) pI Fold change (U(VI) 0.5 mM/0 mM)

16,924 6.2 3.7

16,671 5.43 3.3, 3.6, 3.7

40,578 4.98 2.2

22,830 5.54 2.0

35,056 5.61 1.7

l 22,534 5.69 1.4

18,949 5.12 1.4

26,454 4.87 1.6, 1.8

7,204 5.77 2.1

39,609 5.4 1.9

50,522 5.69 1.7

sferase, putative 44,291 6.26 1.6

27,388 5.03 1.4

42,225 4.93 0.2, 0.3

20,358 5.25 2.1

30,506 5.04 1.9

otein/dioxygenase 15,321 5.06 1.7

13,809 5.04 1.5
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scores were greater than the score fixed as significant with a p-
value of 0.05.

3. Results and discussion

Analysis of the A. ferrooxidans proteome following growth
with or without U(VI) was undertaken to gain a better un-
derstanding of the mechanism(s) involved in U(VI) resistance.
As has been done previously [3], we adapted the cells to
growth with 0.5 mM U(VI); non-adapted cells were severely
stressed in the presence of U(VI) and did not reach a cell
density that provided enough protein for proteomic studies. A
total of 22 differentially expressed protein spots were analysed
by MALDI-TOF/TOF MS. In three cases, multiple spots
corresponded to the same protein identification (AFE_1648,
AFE_2017 and AFE_2741), indicating post-translational
modification. Expression of 17 proteins was upregulated and
expression of one protein was downregulated in response to
growth with U(VI) (Table 1).

Proteins whose expression was up- or downregulated in
response to growth of A. ferrooxidans in the presence of U(VI)
were grouped according to their putative function within the
COG (clusters of orthologous groups) functional categories.
Most of the proteins were classified into the cellular processes
and signalling (39%) group. The remainder of the proteins
were classified into cellular processes and signalling and in-
formation storage and processing (6%), metabolism (33%) and
poorly characterised (22%) groups (Table 1).
3.1. Cellular processes and signalling
The greatest number of changes observed in proteins from
A. ferrooxidans grown in the presence of U(VI) belonged to
the functional group cellular processes and signalling; within
this category, 75% belonged to the post-translational modifi-
cation, protein turnover and chaperones subgroup. Heavy
metal ions and metalloids interfere in protein folding affecting
cell viability and protein homoeostasis [13]. Heat shock pro-
teins (Hsps) are induced in response to stress, and function as
protein chaperones, preventing aggregation or aiding in the
refolding of partially denatured proteins [14]. AFE_1648 and
AFE_2086 are both annotated as Hsps that belong to the
Hsp20 family, and their expression was the most upregulated
in response to A. ferrooxidans growth with U(VI) (Table 1).
The expression of the co-chaperone protein GrpE was also
upregulated in the presence of U(VI). It had been previously
shown that when A. ferrooxidans LR was exposed to 40 �C
(10 �C above optimum growth temperature) for 20 h, the
expression of Hsp20 encoded by AFE_1648 and GrpE was
upregulated [15]. Overexpression of Hsps in A. ferrooxidans
was also observed in response to metals such as copper [16],
growth stresses such as pH [17] and changes in energy sources
such as iron and sulphur [18], suggesting that Hsps respond to
different types of stress in A. ferrooxidans.

The expression of PspA was upregulated in the presence of
U(VI). PspA is considered part of a cytoplasmic stress
response in Gram-negative bacteria and has been shown to
maintain the proton motive force across the membrane, which
is required by many divalent metal transporters for function
[19]. In E. coli, the expression of PspA was upregulated in
response to a variety of stresses, indicating that PspA is
involved in the general stress response [20] and might be part
of the general stress response in A. ferrooxidans to U(VI).

Exposure of A. ferrooxidans cells to U(VI) triggers a
response against oxidative stress to protect cellular functions
and maintain thiol homoeostasis. The expression of both TrxB
and AhpC/Tsa family proteins was upregulated, and they
function to combat oxidative stress by decomposition of su-
peroxide radicals or oxidation of sulphur-containing moieties,
using electrons donated from redox cofactors. Genes in one
operon from Desulfovibrio desulfuricans G20 which encode
thioredoxin, thioredoxin reductase and an oxidoreductase were
heterologously expressed in E. coli and shown to increase its
resistance to U(VI). These results indicate that thioredoxin may
serve as the electron donor for U(VI) reduction and that thio-
redoxin reductase is the terminal reductase involved in U(VI)
reduction [21]. The expression of TrxB is probably upregulated
in response to U(VI) in A. ferrooxidans, because the reduced
redox state of the cytoplasm is compromised due to reactive
oxygen species (ROS) oxidising thiols, and therefore TrxB may
help to maintain a reduced redox state in the cytoplasm.
3.2. Metabolism
The expression of both transaldolase and ribulose
bisphosphate carboxylase (RubisCO) was upregulated in the
presence of U(VI). Transaldolase is important for the balance
of metabolites in the pentose-phosphate pathway. In Saccha-
romyces cerevisiae and Xanthomonas campestris pv. phaseoli
transaldolase mutants, there is a reduction in NADH in the
cell, which is required to combat oxidative stress, resulting in
higher sensitivity to oxidative stress [22]. The increased
expression of transaldolase in response to U(VI) could be a
mechanism enabling A. ferrooxidans to produce more NADH
through the pentose phosphate pathway so as to combat
oxidative stress. RubisCO is the enzyme that catalyses CO2

fixation by the Calvine Benson-Bassham(CBB) cycle in au-
totrophs. cbbL2 (AFE_2155), encodes a Form II RubisCO; it
has been suggested that Form II RubisCO may be involved in
maintenance of the redox balance of the cell [23]. A. fer-
rooxidans contains two genes encoding a Form I RubisCO
(AFE_1690-1 and AFE_3051-2) and a gene encoding a Form
IV RubisCO (AFE_0434). Since expression of other RubisCO
genes was not upregulated, it is possible that AFE_2155 has an
alternative unknown function and could be involved in U(VI)
resistance in A. ferrooxidans.

Molybdopterin-binding protein (Mop) is involved in Mo
transport and ATP binding and its expression was upregulated
in the presence of U(VI). Mop from Haemophilus influenzae
has been shown to bind molybdate at two sites, and can also
weakly bind sulphate (bond length ¼ 143 pm) [24]. The
oxyanion size is thought to be important in molybdenum
binding proteins [25]; therefore due to a similar bond length,
they can also bind tungstate (MoeO bond length ¼ 173 pm,
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WeO bond length ¼ 174 pm) [24]. The UeO bond length
varies from 167 to 208 pm; therefore, it may be possible that
Mop can bind it, but this has never been shown. It could also
be possible that Mop can bind phosphate (PeO bond
length ¼ 163 pm, P]O bond length ¼ 150 pm) which is
bound to U(VI).

The expression of outer membrane protein 40 (Omp40) was
downregulated in the presence of U(VI). Omp40 belongs to
the Porin_O_P family which are anion-specific porins. Phos-
phate groups are the main binding sites for U(VI); U(VI)
associated with A. ferrooxidans is mainly found as uranyl
organic phosphate compounds [3]. The expression of Omp40
was downregulated in the presence of copper and it was
suggested that a change in the permeability of the outer
membrane occurred, decreasing the entrance of copper ions to
the cell [16]. Omp40 is predicted to be located in the outer
membrane and U(VI) in A. ferrooxidans is mostly associated
with the cell wall, so it is possible that a change in the
permeability of the outer membrane occurs to decrease U(VI)
entrance to the cell to prevent toxicity.
3.3. Poorly characterised
The expression of glyoxalase/bleomycin resistance protein/
dioxygenase protein (AFE_1839) was upregulated in the
presence of U(VI). ArsK in Bacillus subtilis is involved in
arsenic resistance by maintaining thiol homoeostasis, and both
arsK and AFE_1839 belong to the VOC metallo-enzyme su-
perfamily [26]. An arsK deletion in B. subtilis was more
sensitive to arsenite in the presence of oxygen [26]. Arsenic is
known to induce oxidative stress and low-molecular-weight
thiols play an important role in the protection against oxida-
tive stress, therefore, the arsK mutant may be impaired in its
thiol homoeostasis, which renders it more sensitive to arsenite-
induced oxidative stress [26]. When Shewanella oneidensis
was exposed to Cr(VI) stress, the expression of a glyoxalase
family protein was upregulated; it was hypothesised the gene
that codes for the glyoxalase family protein and an adjacent
that that codes for a hypothetical protein, function in cellular
defence against thiol-reactive electrophiles [27]. The protein
encoded by AFE_1839 might be involved in thiol homoeo-
stasis in A. ferrooxidans.
Fig. 1. Two identical copies of two genes encoding proteins with increased expres

AFE_3116/AFE_2599 (dark grey arrows) are uncharacterised proteins whose exp

AFE_2601 is annotated as a pyridine nucleotide-disulphide oxidoreductase in A. fe

proteins. The position on the chromosome is shown above each gene arrangement
AFE_3280 was upregulated in the presence of U(VI) and is
annotated as a phospholipid-like binding protein. In S. cer-
evisiae, a gene knockout of a phospholipid-binding protein
resulted in a decrease in U(VI) accumulation compared to the
wild-type [28], and AFE_3280 may serve the same role in A.
ferrooxidans.

The expression of an uncharacterised protein in A. ferroox-
idans (AFE_2018) was upregulated in the presence of U(VI).
The protein encoded by gene AFE_2018 contains two YbjQ-1
domains and the gene is adjacent to gene AFE_2017 coding for
PspA. From comparative structural analysis, this family is
likely to be involved in heavy-metal binding, and therefore may
play a role in U(VI) resistance. AFE_2019 also encodes a re-
gion homologous to proteins in the YbjQ-1 superfamily.
Although only expression of AFE_2017 and AFE_2018 was
upregulated, the the corresponding adjacent gene products
could all be involved in responding to metal stress. Given the
close proximity of the genes encoding the YbjQ-1 family pro-
tein and PspA, it is possible that they form an operon and may
be involved in resistance to U(VI) in A. ferrooxidans.

Two sets of identical genes (AFE_2599/AFE_3116 and
AFE_2600/AFE_3117) encode two identical uncharacterised
proteins (Fig. 1), which were upregulated in the presence of
U(VI). AFE_2599/AFE_3116 encodes a DsrE domain which
is involved in intracellular sulphur reduction [29]. TusD has
strong sequence homology to DsrE, and it has been shown that
TusA transfers sulphur to TusD [30]. AFE_2600/AFE_3117
encode a TusA domain which functions as a sulphur trans-
ferase. Bacterial TusA homologues contain a highly conserved
cysteine residue (C19) which is responsible for persulphide
formation and sulphur transfer [30]; AFE_2600/AFE_3117
contain this conserved cysteine residue (data not shown).
Given that the expression of AFE_2599/AFE_3116 and
AFE_2600/AFE_3117 was upregulated in the presence of
U(VI), there is a strong likelihood that these proteins interact
together in A. ferrooxidans with a role in sulphur relay. Low
molecular weight thiols maintain the reducing environment of
the cytosol and are critical for preventing the oxidation of
cysteine residues in proteins.

Transcriptional regulation of genes of interest from the
proteomics study was analysed by quantitative-RT-PCR anal-
ysis (data not shown). Unfortunately, we did not find any
sion in the presence of U(VI). AFE_3117/AFE_2600 (light grey arrows) and

ression was upregulated when grown in the presence of U(VI). AFE_3118/

rrooxidans ATCC 23270. The remainder of the genes encode uncharacterised

.
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correlation between the proteomics and q-RT-PCR results. It is
possible that the rate of response to growth with U(VI)
differed between the mRNA and protein levels, and hence a
non-optimal time point was analysed. This result, however, is
not entirely surprising, as previous studies comparing prote-
omics and q-RT-PCR studies often found no correlation or
only a weak one [5,31,32]. Attempts at targeted gene disrup-
tions were also unsuccessful.
3.4. Conclusion
The proteomic analysis presented in this work gives us a
better understanding of the adaptive responses of A. ferroox-
idans when grown in the presence of U(VI). Proteins whose
expression were upregulated were mainly involved in either
the response to ROS or the general stress response. The data
suggest that U(VI) induces oxidative stress in A. ferrooxidans,
and low molecular weight thiols play an important role in
protection against oxidative stress; this was also observed
following U(VI) exposure in G. sulfurreducens and E. coli
[4,6], indicating there is also a general response to U(VI)
rather than a specific response in A. ferrooxidans. Novel pro-
teins, most with unknown functions, are also implicated in the
ability of A. ferrooxidans to grow in the presence of U(VI).
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[31] Maier T, Güell M, Serrano L. Correlation of mRNA and protein in

complex biological samples. FEBS Lett 2009;583:3966e73.
[32] Vogel C, Marcotte EM. Insights into the regulation of protein abundance

from proteomic and transcriptomic analyses. Nat Rev Genet

2012;13:227e32.

http://refhub.elsevier.com/S0923-2508(16)00012-7/sref25
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref25
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref25
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref25
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref25
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref26
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref26
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref26
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref27
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref27
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref27
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref27
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref28
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref28
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref28
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref28
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref28
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref29
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref29
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref29
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref29
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref30
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref30
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref30
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref30
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref31
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref31
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref31
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref32
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref32
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref32
http://refhub.elsevier.com/S0923-2508(16)00012-7/sref32

	Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium
	1. Introduction
	2. Materials and methods
	2.1. Bacterial strains and growth conditions
	2.2. A. ferrooxidans cell preparation, lysis and protein precipitation
	2.3. Differential protein expression analysis

	3. Results and discussion
	3.1. Cellular processes and signalling
	3.2. Metabolism
	3.3. Poorly characterised
	3.4. Conclusion

	Conflict of interest statement
	Acknowledgements
	Appendix A. Supplementary data
	References


