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Abstract  16 

Aerosol assisted chemical vapour deposition of substituted polyoxometalates: 17 

H4[PMo11VO40]; H7[PMo8V4O40]; [nBu4N]4[PVW11O40] and [nBu4N]5[PV2W10O40] 18 

resulted in the formation of vanadium-doped metal oxide thin films. Depositions were 19 

carried out at 550 oC in methanol or acetonitrile solution for the molybdenum or 20 

tungsten containing POMs, respectively.  The as-deposited films were X-ray 21 

amorphous and relatively non-adherent however, on annealing in air at 600 oC 22 

decolourised translucent films which were more mechanically robust were obtained. 23 

Films deposited from H4[PMo11VO40] and H7[PMo8V4O40] consisted of V-doped 24 

MoO3 in the orthorhombic phase and films from [nBu4N]4[PVW11O40] and 25 

[nBu4N]5[PV2W10O40] comprised of monoclinic V-doped WO3. All films were fully 26 

characterised using XPS, EDX, SEM and UV-Vis. 27 
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Introduction 28 

Polyoxometalates (POMs) are characterized as anionic transition metal oxygen cluster 29 

compounds, diverse in structure,[1] physical and chemical properties, that lend 30 

themselves to a wide range of applications, most notably as catalysts and conductive 31 

materials, in the form of membranes and thin films.[2] POM clusters have a high 32 

degree of solubility in a variety of inorganic and organic solvents and hence are 33 

termed ‘molecular metal oxides’.[2a] In solution, POMs interact electrostatically with 34 

cationic species which leads to interactions between POMs and cationic ions, 35 

molecules, complexes, polymers and positively charged solid surfaces.[2a] POMs are 36 

classified into two subfamilies depending on the absence (as in heteropolyanions) or 37 

presence (as in isopolyanions) of a central cation or heteroatom.[1] A number of 38 

different structural types of POM clusters exist[1, 2b] but the Keggin structure was the 39 

first to be discovered.[1] Keggin-type POMs can be represented by the formula 40 

[XM12O40]
n- where X is the central heteroatom (e.g., P, Si, or B) with 4 oxygen atoms 41 

bonded tetrahedrally to it, and M (usually Mo, W or V) is the addenda or peripheral 42 

atom (the metal atoms that make up the framework). The central atom is surrounded 43 

by 12 octahedrons made of MO6 and all the oxygens are shared except for the 12 44 

terminal oxygens, which are attached to only one atom. 45 

 46 

Substituted POMs are a modification of the Keggin structure where an additional 47 

addenda atom can be incorporated, such as vanadium to give POMs of formula, 48 

[PM12-xVxO40]
n-.[3] The physical and chemical properties of a POM are a function of 49 

their chemical composition, i.e. the identity of the heteroatom and addenda atom(s). 50 

POMs with Mo or W as the addenda atoms with different heteroatoms (e.g., P, V, Nb 51 

or W) are easy to prepare.   Changing the heteroatom and/or substituting an addenda 52 

atom also provides the means to add an additional element into the metal oxide films 53 

which may have a significant effect on the chemical and physical properties of the 54 

film and lead to doped-metal oxide films.  Vanadium has been used as a dopant in the 55 

production of thin films for reducing the band gap and improving photocatalytic 56 

properties.[4]  57 

 58 

Thin films of Mo oxides have been made previously using dual-source precursors, 59 

such as molybdenum hexacarbonyl, [Mo(CO)6] and oxygen, and from single-source 60 

precursors such as molybdenum pentacarbonyl 1-methylbutylisonitrile.[5] 61 
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Molybdenum(VI) oxide exists in two basic crystal structures with different molecular 62 

vibrational and optical properties:[5] α-MoO3 with orthorhombic symmetry and 63 

metastable monoclinic β-MoO3; MoO2 also has a monoclinic structure.[6] 64 

Molybdenum trioxide (MoO3), the technologically more significant form of the oxide, 65 

exists in the orthorhombic phase and has a double layered structure.[6] MoO3 is a well-66 

known catalyst often used in the oxidative dehydrogenation of methanol to an 67 

aldehyde[7] and has also been shown to act as an excellent antimicrobial coating, 68 

forming an acidic environment that retards bacterial growth and proliferation.[8] 69 

Applications of MoO3 also extend to organic electronic devices due to its low 70 

absorption in the visible spectrum and high compatibility with other materials. MoO3 71 

has also been used as a material to reduce energy barriers for charge carrier injection, 72 

extraction or transport between semiconductor and organic layers.[9] 73 

 74 

Like MoO3, tungsten trioxide (WO3) has many applications as an interface layer in 75 

electronic devices.[9-10] Principally, it reduces the barrier for charge injection between, 76 

for example, a tin doped indium oxide (ITO) layer and a polymer layer.[10a] WO3 also 77 

has applications in gas sensing, photocatalysis and photochromism.[11] Films 78 

containing WO3 have been deposited by evaporation, sputtering, electrochemical 79 

techniques and by CVD.[12] WO3 undergoes a number of phase transitions during 80 

annealing and cooling:[11] monoclinic II (< -43 oC)  triclinic (-43 – 17 oC)  81 

monoclinic I (17 – 330 oC)   orthorhombic (330-740 oC)   tetragonal (> 740 oC).  82 

The monoclinic I (hereon referred to as ‘monoclinic’) is the most stable phase at room 83 

temperature and usually remains so even after annealing.   84 

 85 

CVD has increasingly become the preferred method for producing metal oxide films 86 

mainly because of the higher deposition rates,[13] uniform coverage, good 87 

reproducibility, and highly dense and pure films.[14] Aerosol-assisted CVD is a variant 88 

that has additional advantages over conventional CVD which includes that the 89 

precursors do not have to be highly volatile or thermally stable.[15] This opens up the 90 

possibility of using precursors that would not have been suitable for conventional 91 

CVD such as POMs. 92 

 93 

Keggin-type POMs have been deposited via AACVD[6, 16] however, this paper, to our 94 

knowledge, is the first study on the deposition of binary metal oxide thin films: 95 

vanadium doped MoOx (x = 2-3) and WO3 using single-source precursors called 96 
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substituted Keggin-type POMs via AACVD.  All POMs and films were characterized 97 

spectroscopically. 98 

 99 

100 
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Experimental 101 

 102 

The reagents were purchased from Sigma Aldrich (99.9% purity unless stated 103 

otherwise) and used without further refinement. The identity of the POMs was 104 

confirmed by 31P NMR and FT-IR which were consistent with XPS and EDX. POMs 105 

(1- 4) were prepared by literature procedures.[3, 17] 106 

 107 
Preparation of H4[PMo11VO40] (1) 108 

 109 

POM (1) was synthesised following a method given by ACAL Energy Ltd which was 110 

scaled down to suit to the quantities required in the present study.[17] V2O5 (0.45 g, 111 

2.47 mmol) and MoO3 (7.92 g, 55.02 mmol) were suspended in distilled water (50 112 

mL) with moderate stirring. 85% H3PO4 (0.57 g, 5.82 mmol) was added to the 113 

mixture followed by additional distilled water (45 mL). The pale yellow mixture was 114 

heated at reflux (120 oC). After two days, a drop of H2O2 was added and the mixture 115 

was left at reflux for a further five days, resulting in a clear orange/red solution. The 116 

solution was cooled to room temperature and clarified by vacuum filtration producing 117 

an orange solution. The solvent evaporated overnight in a fume hood leaving behind 118 

an orange solid. 119 

 120 
Preparation of H7[PMo8V4O40] (2) 121 

 122 

POM (2) was supplied in aqueous solution which was evaporated in a fume hood to 123 

leave behind an orange solid.[17] 124 

 125 
Preparation of [nBu4N]4[PVW11O40] (3) and [nBu4N]5[PV2W10O40] (4)[3] 126 

 127 

A stock solution of V(V) was prepared by dissolving NH4VO3 (5.85 g, 50.01 mmol) 128 

and NaOH (4.00 g, 100 mmol) in distilled water (100 mL). NaH2PO4.2H2O (0.08 g, 129 

1.43 mmol) was added to a solution of Na2WO4.2H2O (1.65 g, 6.32 mmol) in distilled 130 

water (80 mL) followed by the addition of conc. HCl (4.34 mL) and stirred. After 131 

stirring, the stock solution (1 mL) was added to the solution (4 mL was added when 132 

[nBu4N]5[PV2W10O40] was prepared). The solution turned from clear to yellow or 133 

orange, respectively. Further distilled water (20 mL) was added to the solution and 134 

heated under reflux (120 oC) for three days. n-Bu4NBr was added to the solution and 135 

the precipitates were filtered off and washed with distilled water and ethanol. 136 
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[nBu4N]4[PVW11O40] and [nBu4N]5[PV2W10O40] were collected as pale yellow and 137 

yellow solids, respectively. 138 

 139 
AACVD Procedure 140 

 141 

The depositions were carried out in an in-house built CVD rig at 550 oC.[18] The glass 142 

substrate consisted of 50 nm SiO2 barrier coated float-glass of size 90  45  4 mm 143 

(Pilkington NSG Ltd). The coating prevents the ions from within the glass diffusing to 144 

the surface preventing contamination of the film with metals such as sodium and 145 

calcium. The glass substrate was first cleaned with detergent and water, followed by 146 

propan-2-ol, propanone, and then air dried. The Mo films were deposited from a 147 

methanol based precursor solution ([H4[PMo11VO40] (1) (7.5 x 10-3 M) and 148 

[H7[PMo8V4O40] (2) (7.5 x 10-3 M)) and W films used acetonitrile as the solvent 149 

([nBu4N]4[PVW11O40] (3) (2.7 x 10-3 M) and [nBu4N]5[PV2W10O40] (4) (1.7 x 10-3 150 

M)). Deposition time for the methanol solution and acetronitrile solutions were 30 and 151 

45 minutes respectively. Different solvent systems were used as AACVD requires the 152 

precursor to be soluble in the solvent. Although all the POMs have a substituted 153 

keggin structure, the bulkier counter ion of the W POMs requires a less polar solvent 154 

to be soluble. The precursor solution was kept at room temperature. The aerosol of the 155 

precursor solution was generated by emersing the bubbler into a Vicks ultrasonic 156 

humidifier (at room temperature). The ultrasonic vibrations travel through the water 157 

and the flask to create the precursor aerosol mist. Nitrogen gas (99.9%; supplied by 158 

BOC) at a rate of 0.5 L/min was used to push the aerosol into the CVD chamber.  159 

Films were annealed at 600 oC in air for 30 minutes. 160 

 161 

 162 
Analysis of the POM precursors 163 

 164 
31P NMR was performed on a Bruker AMX300 (Mo POMs) and Bruker AV400 (W 165 

POMs) at 121.4 and 162.0 MHz, respectively.  The probe temperature was 166 

thermostated at 300 K and 292.4 K, respectively. The Mo POMs (1) and (2) were in a 167 

D2O solvent system and the W POMs (3) and (4) were dissolved in CD3CN. FT-IR 168 

analysis was carried out using a Bruker alpha platinum-ATR.  Energy dispersive X-169 

ray analysis (EDX) was carried out using a JEOL JSM-6301F Field Emission 170 

instrument with an acceleration voltage of 20 kV. Samples were placed onto 171 

conductive carbon tape that was attached to stainless steel holders. The samples were 172 
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then coated with a fine layer of carbon to stop charging. X-ray photoelectron 173 

spectroscopy (XPS) was carried out using a Thermo Scientific K-Alpha instrument 174 

with monochromatic Al-Kα source to identify the oxidation state and chemical 175 

constituents. The peaks modelled using CasaXPS software with binding energies 176 

adjusted to carbon (284.5 eV) in order to compensate for the effects of charging. 177 

 178 
Analysis of the films 179 

 180 

EDX and XPS analysis were performed using the same instruments as above. 181 

Scanning electron microscopy (SEM) was carried out using a JEOL JSM-6301F Field 182 

Emission instrument with acceleration voltage of 5 kV. For EDX and SEM 183 

measurements sample preparation involved cutting the films down to coupons of 10 184 

mm x 10 mm or less and attaching them on stainless steel holders using conductive 185 

carbon tape. Contacts from the top of the film to the carbon tape were made using a 186 

solution of silver paint. The samples were then coated with a fine layer of carbon or 187 

gold, respectively, to stop charging. X-ray diffraction (XRD) was done using a 188 

microfocus Bruker D8 GAADS powder X-ray diffractometer with monochromated 189 

Cu Kα1 (1.54056 Å) and Cu Kα2 (1.54439 Å) radiation with an intensity ratio of 2:1, a 190 

voltage of 40 kV and current of 40 mA. The X-ray incident angle was 5o and the 191 

detector angle was 22o. The sample height was adjusted to focus the X-ray beam.  192 

Peak positions were compared to patterns from the Inorganic Crystal Structure 193 

Database (ICDS). The lattice parameters were calculated from powder X-ray 194 

diffraction data using the software GSAS and EXPGUI via the Le Bail method. 195 

UV/Vis/Near IR transmittance and reflectance spectra were produced using the Perkin 196 

Elmer Precisely Lambda 950 spectrometer using an air background and recorded 197 

between 320-2500 nm. The data obtained from this was used to calculate the band gap 198 

via a Tauc plot. Water droplet (5 μL) contact angles were carried out using an FTA-199 

1000 drop shape instrument. 200 

 201 

 202 

203 
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Results and discussion 204 

 205 

Single source polyoxometalate precursors were synthesised for use in AACVD to 206 

deposit V-doped Mo and W oxide thin films. In general POM H4[PMo11VO40] (1) was 207 

synthesised via a reflux of V2O5 and MoO3 in the presence of Na2CO3 and a drop of 208 

H2O2.  POMs [nBu4N]4[PVW11O40] (3) and [nBu4N]5[PV2W10O40] (4) were 209 

synthesised by refluxing together a solution consisting of NaH2PO4.2H2O, 210 

Na2WO4.2H2O, concentrated HCl, and a stock solution made of NH4VO3 and NaOH. 211 

These POMs, like others reported in the literature, are easy to synthesise resulting in a 212 

good yield.  213 

 214 

The FTIR spectra of the POMs (1, 2, 3 and 4) show the characteristic bands for the 215 

Keggin structure: 780-800, 860-880 cm-1 (M-O-M; bridging), 960-990 cm-1 (M=O; 216 

terminal) and 1060-1080 cm-1 (P-O) where M corresponds to Mo or W.[19] However 217 

for POMs (1) and (2) these bands appear at reduced wavenumbers which is likely a 218 

feature of the substituted Keggin structure. The FTIR spectra of the W POMs (3) and 219 

(4) show an additional peak at 1480 cm-1 most likely due to a C-N or a C-H stretch 220 

originating from the counter ion.  It is noteworthy that bands were also seen in the 221 

3600, 3300 and 1600 cm-1 region for all of the POMs, which correspond to the 222 

symmetric stretching, asymmetric stretching and bending vibrations in water, 223 

respectively.[20] 224 

 225 

P 31NMR was also carried out on the powders. The 31P NMR spectra of (1) had a 226 

single major peak with a chemical shift of -3.0 ppm but the spectra of (2) contained a 227 

number of peaks including one in the region of -3 ppm. Other studies have also found 228 

multiple peaks in the NMR spectra when more than one V atom is present which is 229 

the case for (2).[21] The additional peaks represent different resonances due to the 230 

presence of different isomers.[21a] It has been reported in the literature that the peaks in 231 

the 31P NMR for [PVxM12-xO40] POMs depended on the value of x.[21b] POM (3) 232 

containing a single vanadium atom also produced a single peak in the 31P NMR 233 

spectra at -15.1 ppm[21b] and the spectra of (4) which has two V atoms showed a peak 234 

at -15.1 ppm and -14.1 ppm. Again, the presence of a second peak may also be 235 

explained by the different V-P resonances that arise because of the presence of 236 

different isomers. 237 
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X-ray photoelectron spectroscopy (XPS) was carried out on the four POM powders to 238 

determine their oxidation state. Sample XPS spectra for the Mo 3d and W 4f 239 

transitions of POM (1) and (3) is shown in Figure 1. The Mo based POMs (1) and (2) 240 

showed Mo 3d5/2 peaks at 232.9 and 232.7 eV respectively corresponding to Mo in 241 

the +6 oxidation state.[6, 22]  Peaks at lower binding energies corresponding to reduced 242 

states in the Mo 3d XPS spectra were also observed. This is common occurrence for 243 

Mo6+ species during XPS analysis.[23]  XPS of POMs (3) and (4) showed W in the +6 244 

oxidation state with both W 4f7/2 binding energies at 35.3 eV. [16, 24] All four POMs 245 

contained P and V in the +5 oxidation state as indicated by binding energies of 133.5 246 

(±0.2) and 517 (±0.5) eV respectively.[25] [26]  247 

 248 

The binding energy range for the O was between 530.5-533.6 eV matching ranges 249 

found in literature.[6, 27] There are four O environments in the substituted Keggin 250 

POMs in comparison with the three for a standard Keggin POM structure (the extra 251 

M-O environment; where M = Vanadium).  252 

   253 

 254 
Figure 1: Example XPS spectra of the Mo 3d and W 4f transitions for POM (1) and (3) 255 
respectively. The Mo 3d5/2 peak in POM appears at 232.9 eV corresponding to Mo6+ and the W 256 
4f7/2 peak is centred at 35.3 eV matching W6+. 257 

 258 

Energy dispersive X-ray spectroscopy (EDX) was used to determine atomic ratios of 259 

the POM powders (Table 1). The POMs are in close agreement with the stated 260 

formula of the anions. The discrepancies could be explained by the presence of other 261 

POMs that may have been synthesised, such as [PMo12O40]
n-, since the methods of 262 

synthesis are similar. 263 

  264 
Table 1: The approximate ratio of atoms relative vanadium in the POMs.  An average of the 265 
atomic ratios was by analysis three different areas per sample.  266 
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POM 

Approximate ratio of atoms relative to vanadium 

P Mo/W V O 

H4[PMo11VO40] (1) 1 12 1 37 

H7[PMo8V4O40] (2) 1 9 4 38 

[nBu4N]4[PVW11O40] (3) 2 10 1 42 

[nBu4N]5[PV2W10O40] (4) 2 11 2 49 

 267 

 268 

The POM powders - H4[PMo11VO40] (1), H7[PMo8V4O40] (2), [nBu4N]4[PVW11O40] 269 

(3) and [nBu4N]5[PV2W10O40] (4) – were then used as precursors in the deposition of 270 

V doped α-MoO3 and WO3 thin films. AACVD was carried out at 550 oC using 271 

nitrogen as a carrier gas at a flow rate of 0.5 L/min.  Methanol and acetonitrile were 272 

used as the solvents in the deposition of Mo and W films respectively. 273 

 274 

V doped α-MoO3 from H4[PMo11VO40] (1) and H7[PMo8V4O40] (2) 275 

 276 

Methanol solutions of H4[PMo11VO40] (1) and H7[PMo8V4O40] (2) were used as 277 

precursors to deposit V-doped α-MoO3 thin films.  The as deposited black, non-278 

adherant and X-ray amorphous films were annealed under air at 600 oC for 30 minutes. 279 

The annealed films were translucent yellow in appearance and well adhered to the 280 

substrate, passing the ScotchTM tape test.   281 

 282 

X-ray diffraction studies showed that the annealed films were crystalline and 283 

consisted of orthorhombic α-MoO3 with preferential orientation (Figure 2).  284 
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 285 
Figure 2: XRD pattern of the films deposited from POMs, H4[PMo11VO40] (1) and 286 
H7[PMo8V4O40] (2). 287 

The diffraction patterns of films (1) and (2) were fitted to a Le Bail refined model 288 

which an approximately 4% expansion in the α-MoO3 unit cell compared to standard 289 

values (Table 2) - this is consistent with the observed shift to lower 2θ values in the 290 

XRD patterns.[28] The expansion also suggested that substitutional doping of α-MoO3 291 

with V5+ had not occurred as the ionic radii of V5+ is smaller than that of Mo6+. 292 

However, due to the layered nature α-MoO3 it is possible that V5+ is intercalated 293 

leading to the observed expansion in the unit cell of the α-MoO3. This has previously 294 

been reported with Li ions forming LixMoO3 precipitates between layers of MoO3.
[29]  295 

 296 
Table 2: Lattice parameters of films from POMs H4[PMo11VO40] (1) and H7[PMo8V4O40] (2) 297 
calculated from XRD data via the Le Bail method. 298 

Film a / Ǻ b / Ǻ c / Ǻ 
Unit Cell 

Volume / Ǻ 

Volume 

expansion 

/ % 

H4[PMo11VO40] (1) 4.0135(7) 14.308(4) 3.6772(4) 211.16(8) 4.05(9) 

H7[PMo8V4O40] (2) 3.996(1) 14.044(4) 3.759(3) 211.0(2) 3.99(3) 

 299 
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Furthermore, the 4% expansion in the α-MoO3 framework of both films is in spite of 301 

film (2) having a higher V content compared to film (1) as determined by EDX 302 

analysis. This suggests that the excess V in film (2) may exists in the amorphous 303 

oxide form. 304 

 305 

Mo in the annealed films (1) and (2) was in the +6 oxidation state as shown by a 306 

3d5/2 peaks for both films at 232.7 eV (Figure 3a). As with the XPS spectra of the 307 

POM powders, peaks at lower binding energies (230.9 eV) corresponding to reduced 308 

surface states were observed.[23] XPS also showed the dopant V species to be in the 309 

+5 oxidation state with 2p3/2 peaks for the two α-MoO3 films centered at 517.1 eV 310 

(Figure 3b).[30]  311 
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Figure 3: a) Sample XPS spectrum of Mo 3d taken from α-MoO3 film 1. The 3d5/2 peak was seen 313 
at 232.7 eV corresponding to Mo3+ , a peak at 230.9 eV corresponds to 3d5/2 peak for Mo in a 314 
reduced state. b) Sample XPS spectrum of the V 3d and O 1s peaks. V2p3/2 at 517.1 eV matches 315 
well with literature reports for V5+.  316 

Figure 4 shows the surface morphology of the α-MoO3 films as probed with a 317 

scanning electron microscope. Film (1) was dominated by clusters of irregularly 318 

stacked diamond shaped flat discs. The diamond shaped discs were almost regular in 319 

shape (0.5 x 0.3 μm) with a thickness of 0.1 μm. Film (2) consisted of a mixture of 320 

tapered long needles and spherical particles. The long needles appeared to be roughly 321 

the same size (1.5 x 0.2 μm) and the majority of the spherical particles had a diameter 322 

of 0.5-2 μm.  In both films the space between the particles is assumed to be bare glass. 323 

 324 

 325 

Figure 4: SEM of films produced using POMs H4[PMo11VO40] (1) and H7[PMo8V4O40] (2). 326 

 327 

As expected films (1) and (2) showed high transmittance with the latter having a 328 

much greater transparency of 90% at 550 nm (Figure 5).  The observed variation 329 

between the two films is most likely an outcome of the composition of the POM used 330 

for depositing the MoO3 films. 331 

 332 

The indirect band gaps were calculated using data collected from UV-vis via the Tauc 333 

plot.[31] The band gaps for the V-doped MoO3 films (1) and (2) were 2.85 eV and 2.98 334 

eV, respectively. The band gaps of these are in close agreement with literature values 335 

for the polycrystalline structure (2.8 eV).[23]  336 
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 337 
Figure 5: The transmission (black) and reflectance (red) spectra for the films using the POMs 338 
H4[PMo11VO40] (1) (solid line) and H7[PMo8V4O40] (2) (dashed line).  339 

 340 

 341 

V doped WO3 from [nBu4N]4[PVW11O40] (3) and [nBu4N]5[PV2W10O40] (4) 342 

 343 

The W POMs - [nBu4N]4[PVW11O40] (3) and [nBu4N]5[PV2W10O40] (4) - were used as 344 

precursors to deposit V doped WO3 in an acetonitrile solution at 550 oC and a 345 

nitrogen flow rate of 0.5 L/min.  Brown poorly adherent films were deposited on the 346 

top plate and XRD showed that they were amorphous. Upon annealing at 600 oC for 347 

30 minutes the films became adherent and translucent.  XRD showed that the 348 

annealed films were crystalline monoclinic WO3 (Fig. 5). The annealed films were 349 

studied using a variety of analytical techniques. 350 
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 351 
Figure 6: The XRD pattern of the tungsten films deposited using the POMs [nBu4N]4[PVW11O40] 352 
(3) and [nBu4N]5[PV2W10O40] (4).   353 

 354 

A minor shift in the XRD pattern was observed when compared to a standard WO3 355 

pattern.[32] Films from (3) and (4) were fitted to a Le Bail refined model which 356 

indicated that the unit cell of (3) shows a minor contraction of 0.23%, however this is 357 

within error hence the unit cell size volume remains similar (Table 5). The unit cell of 358 

(4) had expanded by 3%, indicating possible interstitial doping of V into the WO3 359 

unit cell as V5+ has a smaller ionic and crystal radii than W6+ (Table 5).  360 

 361 
Table 3: Lattice parameters of films deposited from POMs [nBu4N]4[PVW11O40] (3) and 362 
[nBu4N]5[PV2W10O40] (4) calculated from XRD data via the Le Bail method. 363 

Film a / Ǻ b / Ǻ c / Ǻ 
Unit Cell 

Volume / Ǻ 

Volume 

Change / % 

[nBu4N]4[PVW11

O40] (3) 
7.281(1) 7.5429(3) 7.6975(7) 422.77(7) 0.23(3) 

[nBu4N]5[PV2W10

O40] (4) 
7.400(1) 7.5932(9) 7.755(1) 435.72(11) 2.83(1) 

 364 

XPS analysis showed the presence of W and V in the AACVD grown WO3 films (3) 365 

and (4) (Figure 7). The W 4f7/2 peak was at 35.5 eV and 35.3 eV respectively, thus 366 

confirming the presence of W+6.[33] The peak for V2p3/2 appears at 517.2 eV 367 

matching to V+5.[34] 368 
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 369 

Figure 7: a) The XPS spectrum for W 4f (film (3)) showing the 4f7/2 peak positioned at 35.5 eV - 370 
matching W+6. b) The V in films from (3) and (4) was in the +5 oxidation state as evident from the 371 
V 2p3/2 peak being centered at 517.2 eV. 372 

 373 

The morphology of films (3) and (4) is shown in Figure 8. Film (3) consists of a 374 

porous network of particles that are 250 nm or smaller which cover the whole area 375 

analysed. Film (4) is however composed of clusters of WO3 which are made up of 376 
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particles that up to 250 nm in width. Both films have varying morphologies even 377 

though they consist of WO3 which, as with films (1) and (2), is due to the nature of 378 

the POM used to deposit the films. 379 

  380 

 381 
 382 

 383 
Figure 8: SEM of the tungsten films, deposited using the POMs, [nBu4N]4[PVW11O40] (3) and 384 
[nBu4N]5[PV2W10O40] (4). 385 

 386 

The maximum transmittance at 550 nm was observed to be 85% for the film 387 

deposited from POM (4) whereas film (3) reached similar maxima but at a higher 388 

wavelength (Fig. 7).  In general, all films were found be poorly reflective (<18%). 389 
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Figure 9: The transmission (black) and reflectance (Red) spectra of the tungsten films deposited 391 
using the POMs, [nBu4N]4[PVW11O40] (3) (solid line) and [nBu4N]5[PV2W10O40] (4) (dashed line).  392 

 393 

The band gaps of these films were calculated using the same method described for 394 

films 1 and 2 (see above). The band gaps were found to be 2.6 eV and 2.7 eV for 395 

films from POMs (3) and (4), respectively, lower than the value (3.2 eV) for un-doped 396 

tungsten oxide films.[35] Although doping generally increases the band gap due to the 397 

Moss-Burstein effect,[18] there have been reports suggesting that doping vanadium 398 

into WO3 can reduce the bandgap.[4a]  399 

 400 

Water contact angles 401 

 402 

Water contact angles were calculated for the films.  Film from POM (1) had a water 403 

contact angle of 98.5o indicative of a hydrophobic nature whereas (2) had an angle of 404 

41.6o suggesting it is hydrophilic. The films differed in V atom content and 405 

morphology.  Therefore, it would seem reasonable to suggest that the hydrophobicity 406 

of the film was reduced with greater V doping and/or film morphology (Fig. 3).  407 

Ashraf et al.[6] found MoO2 films to have a water contact angle between 75-125o and a 408 

needle-like morphology.  However, in the present study, it was the film from (2) that 409 

had a needle-like morphology (Fig. 3).  The water contact angles for the W films (3) 410 

and (4) were much lower, with angles of 22.7o and 13.4o, respectively, suggesting that 411 

the films were hydrophilic in nature.  These are in good agreement with literature 412 

values for WO3 films annealed at 500 oC.[36] 413 

 414 
 415 
Conclusion 416 

 417 

The present study has showed the use of polyoxometalates, with general formula 418 

[PM12-xVxO40]
n- (M=Mo or W),  as single-source precursors to form vanadium doped 419 

metal-oxide films via aerosol assisted chemical vapour deposition. This technique was 420 

an advantageous method as the precursor only needed to be soluble in a suitable 421 

solvent and volatility was not a requirement. Depositions were carried out at 550 oC 422 

with methanol or acetonitrile as the solvent for Mo and W, respectively. The POMs 423 

(1) and (2) deposited films were amorphous and non-adherent. However, on annealing 424 

the films consisted of vanadium-doped MoO3. The films deposited using the tungsten 425 

POMs, (3) and (4), also followed a similar trend with the as-deposited films being 426 

amorphous and after annealing they were characterised as vanadium-doped WO3. The 427 
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range of film morphologies obtained had important implications on the water contact 428 

angles of the film.  429 

 430 

It can be concluded that POMs provide a single-source route to the formation of 431 

doped metal oxide films; furthermore controlled amounts of dopants could be 432 

incorporated, to some extent, into the film, which have implications on the functional 433 

properties.   434 
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