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Abstract 

 

The adaptor protein Grb2 is a key element of mitogenetically important signaling 

pathways. With its SH2 domain it binds to upstream targets while its SH3 

domains bind to downstream proteins thereby relaying signals from the cell 

membranes to the nucleus. The Grb2 SH2 domain binds to its targets by 

recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn 

at the +2 position C-terminal to the pY with the residue either side of this Asn 

being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with 

its cognate peptide has shown that the peptide adopts a unique β-turn 

conformation, unlike the extended conformation that phosphopeptides adopt 

when bound to other SH2 domains. TrpEF1 (W121) is believed to force the 

peptide into this unusual conformation conferring this unique specificity to the 

Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance 

(EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here 

a series of experiments that explore the role of TrpEF1 in determining the 

specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does 

not adopt a pre-organized structure before binding to the SH2 domain, rather it 

is the interaction between the two that imposes the hairpin loop to the peptide. 

Furthermore, we find that the peptide adopts a similar structure when bound to 

both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that 

TrpEF1 is not the determining factor for the conformation of the 

phosphopeptide. 
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Introduction 

 

Src Homology 2 (SH2) domains are protein modules found in many signal 

transduction proteins. They mediate protein-protein interactions during 

signaling by specifically recognizing and binding to tyrosine-phosphorylated 

sites1. Although there have been extensive investigations aiming to understand 

how SH2 domains specifically recognize tyrosine-phosphorylated peptides 

(reviewed in Liu et al., 20122), some aspects of the mechanism that controls the 

interactions of SH2 domains with their targets still remain to be explored. One 

case in point is the SH2 domain of the adaptor protein Grb2. 

 The Grb2 SH2 domain belongs to a small group of 18 SH2 domains that 

show a strong binding proclivity for an Asn residue at the +2 position C-terminal 

of the phosphotyrosine (pY), with the general binding motif being pYxNx, where 

x can be any hydrophobic residue3. The SH2 domains of the Grb2/Grap/Gads 

family and Grb7 have been identified to recognize the pYxNx motif in vivo4,5,6,7. In 

the conventional SH2 domain binding mode (exemplified by the SH2 domain of 

the Src kinase8,9), the phosphorylated peptide usually binds to the SH2 domain in 

an extended, linear, conformation; the phosphotyrosine (pY) binds to a distinct 

pocket termed the “pY-binding” pocket of the domain while the sequence of the 

residues adjacent to the pY mediates binding specificity. In the case of the 

archetypal SH2 domain of the Src kinase (Src SH2 domain), binding specificity is 

primarily mediated by the interactions between another distinct pocket in the 

SH2 domain termed the “+3 specificity determining region/pocket” and the 

ligand’s third (+3) residue C-terminal to the pY. However, in the case of the Grb2 

SH2 domain, structural analysis of the domain bound to its cognate peptide has 

disclosed a unique peptide conformation10,11,12. When bound to the Grb2 SH2 

domain the peptide adopts a type I β-turn conformation, with the +2 Asn forming 

a network of hydrogen bonds with residues of the domain. The different binding 

mechanism of the Grb2 SH2 domain was attributed to the composition and 

structure of its EF loop (the naming of the secondary structures follows the 

nomenclature introduced by Eck et al, 199413). For the Grb2 SH2 domain, a Trp 

at the EF1 position of the loop (W121 or TrpEF1) is considered to be the key 

residue for its specificity10-12,14. With its bulky sidechain, TrpEF1 appears to force 
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the peptide into the hairpin conformation exposing the +2 Asn prominently for 

binding10,11,12.  

 The importance of TrpEF1 for the molecular recognition mechanism of 

the Grb2 SH2 domain has been demonstrated in several studies, the most 

detailed of which established that a mutation to Trp at the EF1 position of the Src 

SH2 domain resulted in the switch of its specificity to that of Grb214. The Src SH2 

domain binds preferentially to phosphopeptides with two Glu residues at the +1 

and +2 positions and an Ile at the +3 position C-terminal to the pY (motif 

pYEEI)3,15. However, the introduction of a Trp at the EF1 position of the Src SH2 

domain (ThrEF1Trp mutant) led to a 20-fold decrease in affinity for its pYEEI 

cognate peptide and to a 60-fold increase for a peptide containing the Grb2-

specific pYVNV motif14. Moreover, the Src SH2 ThrEF1Trp domain mutant 

behaves biologically like a Grb2 SH2 domain would, restoring vulva induction in 

C.elegans with a vulvaless phenotype14. Co-crystallization of the ThrEF1Trp 

mutant Src SH2 domain with a pYVNV motif-containing phosphopeptide 

revealed a mode of binding similar to that of the wild-type Grb2 SH2 

domain/pYVNV peptide interaction16. Superimposition of the wild-type Grb2 

SH2 domain/pYVNV peptide complex with the ThrEF1Trp mutant Src SH2 

domain/pYVNV complex showed that the TrpEF1 in both structures is capable of 

forming stabilizing interactions with the ligands, and as a result, the peptides in 

the two structures make identical interactions and form a similar β turn16. This 

was a groundbreaking finding in the study of the selectivity of SH2 domains 

suggesting that mutating a single residue is enough to switch the specificity of an 

SH2 domain.  

 In the study presented here, a mutant Grb2 SH2 domain, in which a far 

less bulky Gly replaced TrpEF1 (TrpEF1Gly), was constructed in order to further 

investigate the importance of the EF1 position for the specificity of the Grb2 SH2 

domain. We hypothesized that the substitution of TrpEF1 by Gly would relieve 

the constraints that appear to impose a β-turn conformation on the 

phosphopeptide ligand, resulting in the peptide binding in an extended, linear, 

conformation as observed for most SH2 domain ligands. We co-crystallized the 

mutant Grb2 SH2 domain with the SpYVNVQ peptide, which represents the Grb2 

binding site at Tyr-317 of the human Shc protein, a native target of the Grb2 SH2 
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domain. The structure revealed a domain-swapped dimer where, surprisingly, 

the peptide binds in a similar mode as in the wild-type Grb2 SH2 domain, 

indicating that a Trp at position EF1 is not required to force a turn conformation 

on the peptide. This surprising result was confirmed by investigating the 

interaction of the peptide with wild-type and mutant Grb2 SH2 domains in 

solution using Electron Paramagnetic Resonance (EPR) spectroscopy in 

conjunction with nitroxide spin-labeling17,18. The structure of the pYVNV motif-

containing peptide alone was also investigated and found to be flexible 

suggesting that the bound turn conformation is indeed imposed by binding. 

Finally, in order to investigate the possibility that the TrpEF1Gly mutation of the 

Grb2 SH2 domain might have switched the binding specificity to that of Src, ITC 

experiments were performed on both mutant and wild-type SH2 domains of 

both Src and Grb2, the results demonstrating that i- a TrpEF1Gly mutation in the 

Grb2 SH2 domain reduces binding of its cognate peptide by only 10-fold and 

increases binding of the Src-specific pYEEI peptide by only 6-fold, ii- conversely, 

a ThrEF1Trp mutation in the Src SH2 domain results in only a modest affinity 

gain of about 7-fold to the Grb2-specific pYVNV peptide while decreasing affinity 

to its cognate pYEEI peptide by 6-fold. We thus conclude that the position EF1 in 

both Grb2 and Src SH2 domains only plays a minor role in both peptide 

conformation and binding specificity. 
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Results and Discussion 

 

Crystal structure of the Grb2 SH2 TrpEF1Gly domain in a complex with a pYxNx 

motif-containing peptide 

During the purification, both wild-type Grb2 SH2 domain and the TrpEF1Gly 

mutant eluted in a dimeric and monomeric state. The concentration of the two 

states was equal for the wild-type domain while the proportion of monomers 

was higher (80%) for the mutant (results not shown). In all the experiments 

described below, only the monomeric fraction was used. However, the crystal 

structure revealed a domain-swapped dimer, which agrees with previous 

findings that the domain-swapped dimer is metastable19. 

 The complex of the Grb2 SH2 domain bound to the SpYVNVQ peptide 

crystallized with 32 molecules in the asymmetric unit; 16 SH2 domains forming 

8 domain-swapped dimers with all binding sites being occupied by a 

phosphopeptide. The crystal structure contains the SH2 domain residues from 

Glu 54 to Gln 153 and the -1 Ser, pY, +1 Val, +2 Asn, +3 Val, +4 Gln residues of the 

peptide ligand. The domain-swapped area of each domain includes residues 122-

153. Each swapped Grb2 SH2 domain has an environment essentially identical to 

the monomeric SH2 domain, consisting of two α-helices and 5 β-strands, ordered 

αβββββα, forming a central anti-parallel β-sheet sandwiched between the α-

helices (Figure 1A). 

 All 8 dimers have similar structures with root-mean square deviation 

(RMSD) on Cα positions upon superposition ranging between 0.5 and 1.5 Å. The 

two molecules of the dimers differ to a limited degree from each other with 

RMSD on Cα positions upon superposition of the two monomers ranging between 

1.1 and 2.5 Å with the main differences being in the loop regions. The 

temperature factors of the residues that interact with the peptide in each 

monomer are similar. Here, we will describe only one dimer of the asymmetric 

unit corresponding to chains Y and Z in the PDB file. 

 The wild-type Grb2 SH2 domain has been crystalized in a domain-

swapped mode previously12,19,20,21. The structure of the Grb2 SH2 TrpEF1Gly 

domain is comparable to the previously described structures with the main 
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variability found at the domain-swapped C-terminal part (alignment with 1FYR 

dimer19, RMSD 2.8 Å). 

 The peptide recognition sites are formed by both molecules of the 

domain-swapped dimer and are accessible on opposite sides of the dimer 

(Figure 1A). The binding of the SpYVNVQ peptides to the domain-swapped 

mutant Grb2 SH2 domains follows the same principles as with the wild-type 

monomeric Grb2 SH2 domain. -1 Ser of the peptide forms hydrogen bonds with 

the positively charged guanidinium group of ArgαA2 (R67). The pY is inserted in 

the pY-binding pocket where it forms multiple stabilizing interactions with 

residues ArgαA2 (R67), ArgβB5 (R86), SerβB7 (S88), SerBC2 (S90) and SerβC3 

(S96), which is in perfect agreement with what has been previously described in 

the literature10,12 (Figure 1B). +1 Val displays Van der Waals interactions with 

PheβD5 (F108) and GlnβD3 (Q106) of the SH2 domain while its main chain 

amide group interacts with the carbonyl group of HisβD4 (H107) of the domain, 

as previously stated. +2 Asn interacts via two hydrogen bonds with the main 

chain carbonyl oxygen and amide proton of LysβD6 (K109) (Figure 1C) and 

forms a third hydrogen bond with the main chain carbonyl oxygen of Gly EF1 

(G121). In the wild-type domain-swapped Grb2 SH2 domains that have been 

crystallized previously, TrpEF1 (W121) was engaged in no interactions with the 

peptide unlike in the Grb2 SH2 monomeric domain structure where it forms 

close contacts with +2 Asn of the ligand in all reported structures12,19,20. +3 Val 

does not interact with the SH2 domain and points to the solvent while the side 

chain carboxyl of +4 Gln interacts with the main chain amide proton of LysβF1 

(K124) via a hydrogen bond. 

 The structure of a monomeric Grb2 SH2 domain with a peptide with the 

sequence PSpYVNVQN has been previously described (PDB entry code: 1JYR)12. 

This peptide and the peptide in the structure presented here (chain J) align well 

with an RMSD of 0.4Å (Figure 1, D and E) and adopt a similar conformation. A 

common characteristic of the phosphopeptides when in complex with the Grb2 

SH2 domain is an intra-molecular hydrogen bond between the pY and the +3 

residue. In the mutant Grb2 SH2 domain/SpYVNVQ complex, the formation of a 

similar hydrogen bond is likely since the distance between the main-chain 

oxygen of pY and the main-chain nitrogen of the +3 Val is 3.17Å. However, the 
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torsion angles φ and ψ of the +2 Asn (-98.07 and 30.84) differ from the typical I 

β-turn torsion angles (-90 and 0) forcing the peptide to adopt a more twisted 

conformation. A similar peptidic conformation has been previously observed in 

the binding of a CD28-derived peptide, with the pYMNM sequence, to the wild-

type Grb2 SH2 domain22. 

 

EPR spectroscopy of the interaction of the Grb2 SH2 domain with its cognate 

binding motif 

 We used EPR spectroscopy in order to obtain structural information for 

the interaction of the wild-type Grb2 SH2 and the TrpEF1Gly Grb2 SH2 domains 

with the pYVNV peptide in solution. For the experiments, a peptide with two 

cysteine residues at the N- and C-terminus, respectively, was used (sequence 

CSpYVNVQC). The covalent modification of this peptide with two nitroxide spin 

labels using a monobromo-maleimide spin label is described in the Materials and 

Methods section. Line broadening in continuous-wave (cw)-EPR spectroscopy 

experiments at ambient temperature confirmed the interaction of the labeled 

peptide with both the wild-type and the mutant Grb2 SH2 domains (Figure 2A). 

Binding of the peptide was observed via line broadening and a reduced high-field 

peak intensity of the bound form(s) when compared to the apo form (Figure 2A). 

EPR distance measurements using the 4-pulse DEER sequence23 of both the Grb2 

SH2 domain wild type and the Grb2 SH2 domain TrpEF1Gly mutant in a complex 

with the CSpYVNVQC peptide showed that the distance of the two spins for the 

major population of the peptide was between 1 and 3 nm (Figure 2, C and D). 

Modeling of the labels to the CSpYVNVQC peptide (PDB code: 1JYR12) using the 

Maestro program (Schrödinger, LLC, New York, NY) predicted a distance of 1.86 

nm (18.6 Å) between the two labels (Figure 2B), which is consistent with the 

distances obtained from the DEER experiments. 

These data indicate that the peptide behaves in a comparable way when 

bound to both the wild-type and the Grb2 SH2 domain mutant confirming the 

crystallography data that a Trp residue at position EF1 is not the determining 

factor for the conformation of the phosphopeptide, as has been previously 

suggested10,12.   
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 An EPR distance measurement was also recorded for the free peptide in 

solution (Figure 2, C and D). According to our data, when free in solution, the 

CSpYVNVQC peptide presents high mobility and adopts a wide range of 

conformations leading to a far broader distance distribution than for the bound-

peptides. Note that spin-spin distances smaller than 1.5 nm are also likely to be 

present, but can not be directly observed by DEER as indicated by the dotted 

lines in Figure 2D. This result demonstrates that the ligand does not adopt a pre-

organized structure before binding to the SH2 domain and it is the interaction 

between the two that imposes the hairpin loop to the peptide. 

 

ITC analysis of Src and Grb2 wild-type and mutant SH2 domains with their cognate 

peptides 

ITC experiments were employed to probe the binding properties of both the 

wild-type and the Grb2 SH2 TrpEF1Gly domains to the Grb2-specific SpYVNVQ 

ligand and the PQpYEEIPI (Src-specific) ligand (Table 1). The substitution of the 

TrpEF1 by a Gly led to a ~10-fold loss in the binding affinity to the SpYVNVQ 

peptide mainly attributed to a lower binding enthalpy (~30% less). The wild-

type Grb2 SH2 domain bound with a low affinity to the PQpYEEIPI peptide 

(Kd=167μM), indicating that this is not a specific interaction. The removal of the 

bulky side chain of the TrpEF1 increased the affinity of the Grb2 SH2 domain for 

the PQpYEEIPI peptide by only ~6-fold, suggesting that the removal of the 

aromatic TrpEF1 is not sufficient for the Grb2 SH2 domain to switch specificity 

to the PQpYEEIPI peptide.  

 The wild-type Src SH2 domain was shown to bind to the PQpYEEIPI 

peptide with a dissociation constant (Kd) of 0.22 μM. The measured affinity 

agrees with published data (Kd= 0.18 μM24). Moreover, the Src SH2 domain 

bound to the SpYVNVQ peptide with a Kd of 8 μM; ~40-fold lower than the 

affinity for the PQpYEEIPI peptide. Inserting a Trp at the corresponding EF1 

position of Src SH2 domain (Src SH2 ThrEF1Trp mutant) resulted in a similar 

binding affinity for both the PQpYEEIPI and SpYVNVQ peptides (Kd= 1.3 and 1.1 

μM, respectively). The affinity of the Src SH2 domain ThrEF1Trp was decreased 

by ~6-fold for the PQpYEEIPI peptide but increased by ~7-fold for the SpYVNVQ 

peptide when compared to the wild-type. The interaction with both peptides was 
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entropically driven. The decrease in affinity for the PQpYEEIPI peptide is readily 

explicable from the structure, as the indole ring of the Trp residue sterically 

prevents the interaction of the peptide’s +3 residue with the specificity-binding 

pocket16. Moreover, the increase in the binding affinity of the Src SH2 ThrEF1Trp 

domain for the SpYVNVQ peptide could be partially explained from the Van der 

Waals bonds that TrpEF1 forms with the +2 Asn of the peptide16. These results 

differ from previously published data where, in SPR experiments, the specific 

point mutation of the Src SH2 domain led to a 20-fold decrease in affinity for a 

pYEEI-containing motif peptide (sequence EPQpYEEIPIYLK) and to a 60-fold 

increase for a pYVNV-containing peptide (sequence DPSpYVNVQNLDK)14.  

 

Conclusion 

The Grb2 SH2 domain has previously been shown to bind specifically to 

tyrosine-phosphorylated peptides with the pYxNx motif. Such peptides adopt a 

characteristic type I β-turn upon binding. This unique peptide conformation has 

been attributed to a Trp at the EF1 position of the SH2 domain, which is only 

found in the Grb2 SH2 domain and the closely related Grap and Gads SH2 

domains. In our study, a Grb2 SH2 domain mutant where TrpEF1 is substituted 

to Gly binds to the pYVNV motif-containing ligand by forming a similar network 

of interactions as has been described for the wild-type Grb2 SH2 domain, 

suggesting that a Trp at this position does not impose constraints on the 

conformation of the peptide ligand. EPR analysis confirms that, in the bound 

state, the conformation of the peptide is the same whether bound to the wild-

type and mutant SH2 domains, a conclusion reinforced by ITC results. These also 

indicate that Trp at position EF1 plays a much less important role than 

previously suggested as the reduction in affinity is only 10-fold compared to 

wild-type. 

 The pYVNV motif-containing peptide forms most of its interactions with 

the main chain atoms of the Grb2 SH2 domain, suggesting that any SH2 domain 

using its backbone hydrogen bonding capabilities could bind to some extent to a 

peptide with the pYxNx motif. This explains why the Src SH2 ThrEF1Trp domain 

binds with relatively high affinity to the SpYVNVQ peptide (this study and 14,16). 

However, the increased affinity of the Src SH2 ThrEF1Trp domain for the 
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SpYNVNQ peptide is, in our hands, much less pronounced than previously 

reported: a 7-fold increase compared to a 60-fold increase by Marengere et al. 

(1994)14. There is no structural evidence of the binding of the wild-type Src SH2 

domain to a peptide bearing the pYxNx motif, but molecular dynamics 

simulations have suggested that a pYxNx motif-containing peptide would also 

adopt a β-turn conformation when bound to the Src SH2 domain25. In the same 

study the free energy of binding of the Src SH2 domain to a pYVNV motif-

containing peptide was estimated using fluorescent polarization binding assays 

to be -29.1 kJ/mol, which is in excellent agreement with the free energy 

measured in the ITC experiments reported here (ΔG = -29.08 kJ/mol). Consistent 

with these data, in vivo targets of Grb2 and Src SH2 domains have been identified 

where both domains recognize the same sequence26,27.  

 Key to SH2 domain binding thermodynamics is the conformation of the 

peptide ligand in its unbound state28,29. It has been suggested that decreasing 

conformational sampling might lower the entropic cost of binding. Studies have 

suggested that the SpYVNVQ peptide might be able to adopt a β-turn 

conformation in solution but the EPR data presented here suggest it does not and 

is instead conformationally flexible, implying a entropic cost component to its 

binding thermodynamics. 

 Detailed studies of Src SH2 domain binding thermodynamics have all 

pointed to the fact that the range of affinities within which SH2 domains appear 

to operate is relatively narrow. Until now, the Grb2 SH2 domain appeared to be 

an exception. However, our study demonstrates that this is not the case. Instead, 

our data confirm that the binding specificity of SH2 domains, even that of Grb2, 

results from multiple factors and does not depend merely on the nature of one 

particular residue.  
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Materials and Methods  

 

DNA constructs. 

The Grb2 SH2 domain in the pQE-60 vector was provided from Dr Stephen F. 

Martin (University of Texas at Austin, TX, USA). The Src SH2 domain, in the pET-

3a plasmid, was as described in Waksman et al., 19928. 

 

Peptides 

The peptides used in this study were synthesized by Biosynthesis Inc (Lewisville, 

TX). The sequences of the peptides that are described in this study are the 

following; SpYVNVQ: Ac-S(pY)VNVQ-CONH2, CSpYVNVQC: Ac-CS(pY)VNVQC-

CONH2, PQpYEEIPI: Ac-PQ(pY)EEIPI-CONH2. The purity of the peptides was 

assessed by HPLC and ESI-MS. The extinction coefficient used was determined as 

described by Bradshaw et al., 199830.  

 

Site-directed mutagenesis 

All mutagenesis was carried out using the QuikChange protocol (Stratagene, 

2004), a PCR-based technique for site- directed mutagenesis. Forward and 

reverse mutagenic oligonucleotide primers were designed in accordance with 

the QuikChange protocol (Table 2). The KOD Hot Start DNA Polymerase 

(Novagen) was used in all the mutagenesis experiments. 

 

Protein Purification 

 Ni-NTA chromatography was used for the purification of the Grb2 SH2 

domain constructs. The cells expressing the 6His-tagged proteins were lysed in 

0.1 M Sodium Phosphate pH 7.2, 300 mM NaCl, 50 mM Imidazole. After 

clarification the lysate was passed through a 5 ml Ni-NTA Superflow column 

(Qiagen), connected to an AKTA Prime (GE Healthcare), at a flow rate of 1.5 

ml/min. The column was washed using 10 column volumes of the binding buffer 

and the Grb2 SH2 domain constructs were eluted using 300 mM Imidazole, 0.1M 

Sodium Phosphate pH 7.2, 300 mM NaCl. Fractions containing the 6His-tagged 

SH2 domains were identified using SDS-PAGE gels, pooled and concentrated. 
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 For the Src SH2 domain constructs, the cells were lysed in 0.1 M Sodium 

Phosphate pH 7.0, 1 mM EDTA, 5 mM DTT and after clarification the lysate was 

applied to an SP- sepharose column (GE Healthcare) connected to an AKTA 

Prime. Bound proteins were eluted using a 0-1M NaCl gradient. Fractions 

containing the SH2 domain constructs were identified using SDS-PAGE gels, 

pooled and concentrated.  

 After the first purification step the eluent was concentrated to 2-3 mls 

using Amicon centrifuge devices with a 3 kDa cut-off and then loaded to a 

prepacked Sephacryl S-100 column (GE Healthcare) using an AKTA Prime 

system. The column was pre-equilibrated in a gel filtration buffer, the 

composition of which was dependent on the type of experiments the samples 

were subsequently subjected to, and run at 0.8 ml/min. Fractions containing the 

appropriate peaks, as assessed by SDS-PAGE, were pooled and concentrated. 

 

Crystallization experiments 

Grb2 SH2 TrpEF1Gly domain with a C-terminal 6His-tag was purified by affinity 

and size exclusion chromatography and its purity was assessed by SDS-PAGE. 

Before setting up crystal trials the buffer of the protein was exchanged to 50 mM 

Sodium Cacodylate pH 6.5 by ultrafiltration using Amicon centrifugation devices 

with 3 kDa cut-off. The protein was then concentrated to ∼20-40 mg/ml. The 

SpYVNVQ peptide was dissolved in the same buffer and added to the protein at a 

1:1.5 molar ratio.  Crystallization experiments were performed by vapour 

diffusion using the hanging drop method with reservoirs containing 0.2 M 

Sodium Thiocyanate, Potassium Thiocyanate between 0.31 M to 0.3975 M, and 

the PEG-8000 between 28% to 33% (w/v)). The optimal crystals were grown at 

0.335 M Potassium thiocyanate, 31% (w/v) PEG 8000. Crystals and 

cryoprotectants were tested with the in house Rigaku RA-Micro7 HFM tabletop 

rotating anode X-ray generator. Datasets were collected at the beamline ID29 at 

the ESRF synchrotron radiation facility in France and at the Proxima1 

microfocus beamline with an ADSC Quantum 315r CCD detector at the SOLEIL 

synchrotron radiation facility in France.  

 Images were processed using the XDS software package31. BALBES32 was 

used for molecular replacement and ligand building and structure manipulation 
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was achieved using Coot33 and PHENIX34 (see Table 3 for data collection and 

final refinement statistics). 

 

EPR Spectroscopy 

Spin-Labeling. 

Labeling of the CSpYVNVQC peptide was attempted with MTSSL (Sigma-Aldrich) 

according to standard protocols. However, labeling resulted in greatly reduced 

solubility and thus a monobromo-maleimide (3-bromo-2,5-dioxo-2,5-dihydro-

pyrrole-1-carboxylic acid methyl ester) spin label was synthesized in analogy to 

the dibromo-maleimide (3,5-dibromo-2,5-dioxo-2,5-dihydro-pyrrole-1-

carboxylic acid methyl ester) described in Schumacher et al. 201335. 

 The label was dissolved in 100% DMF at a concentration of 10 mM and 

was added in 0.2 mM of peptide (20 mM Hepes pH 7.5, 150 mM NaCl, 5 mM 

EDTA) to reach a 1:2 peptide/label molar ratio. The reaction was incubated at 

room temperature for 2 hours in the dark. The labeling was assessed using ESI-

MS and the yield calculated to be 97%. 

Cw-EPR.  

The protein (200 µM) was mixed with the peptide (1:0.5 ratio of protein: 

peptide, to ensure that all the peptide molecules are in a bound state) in 20 mM 

Hepes pH 7.5, 150 mM NaCl. Cw-EPR experiments at ambient temperature were 

performed on a EMXPlus EPR spectrometer (Bruker Biospin) operating at X-

Band (9.7 GHz, 0.3 T) equipped with a 4122SHC resonator. All measurements 

were carried out with 2 mW microwave power, 100 kHz modulation frequency, 

0.1 mT modulation amplitude and 20 ms conversion time and time constant.  

EPR distance measurements.  

The protein (50 µM) was mixed with the peptide (1:0.5 ratio of protein) in 20 

mM Hepes at pH 7.5, 150 mM NaCl. 5% glycerol was added and the samples were 

frozen in liquid N2. Experiments were performed at 50 K on an ELEXSYS E580 

EPR spectrometer (Bruker Biospin) operating at X-Band (9.2 GHz, 0.3 T) 

equipped with an ER-4118-X-MS-3W resonator. The four-pulse DEER sequence21 

was chosen with π/2obs −τ1 −πobs −(τ1 +t) −πpump −(τ2 −t) −πobs −τ2 −echo, 

where the observer pulse length was 16 ns for π/2 and 32 ns for π pulses. The 

pump pulse length was 12 ns, the long interpulse delay was t = 2 µs. All other 
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parameters were used according to Pannier et al., 200023. The DEER spectra 

were analyzed using the program DeerAnalysis201436. The dipolar evolution 

was background-corrected by assuming a homogeneous three-dimensional 

distribution. The distance distributions obtained were checked for stability 

according to the DeerAnalysis2010 manual. 

 

ITC 

The ITC experiments described in this study were performed on a VP-ITC 

Microcalorimeter (Malvern Instruments, Malvern, UK). The protein samples 

were concentrated to 50-100 µM and dialyzed extensively against 20 mM Hepes 

pH 7.5, 100 mM NaCl. The peptides were dissolved to a concentration of ∼0.5-1.5 

mM in the same buffer. In order to reduce errors arising from heats of dilution 

due to buffer differences between the samples in the syringe and the reaction 

vessel, the peptides were dialyzed against the same buffer used with the 

proteins. Both peptide and protein concentrations were determined using 

measured A280 values. The experimental concentration of the protein was taken 

as 98% of the calculated value (in accordance with manufacturers 

recommendations) to account for dilution from residual buffer in the cell. 

Samples of protein, peptide and dialysis buffer were degassed for 10 minutes at 

25 °C prior to the experiment. The reference power was set to 10 µCal/sec and 

the cell contents were stirred continuously at 25°C and 310 rpm in order to 

ensure sufficient mixing while keeping baseline noise at a minimum. The 

injection sequence consisted of an initial 2µl injection to prevent artifacts arising 

from the filling of the syringe, followed by 35 x 8µl injections until final 

saturation was observed and the heat changes were monitored. A binding 

isotherm was generated by plotting the heat change of each injection against the 

molar ratio of the ligand to the protein. Using Origin (Malvern Instruments, 

Malvern, UK) a binding isotherm was fit by a single binding site model using a 

non-linear least squares method. During the fitting, all the parameters were 

allowed to float. In the experiments with low binding affinity, c<20, the curve 

fitting becomes over parameterized and, thus, the stoichiometry was set to 1 

leaving only two variable parameters for fitting37. Data were corrected for heats 

of dilution before further analysis, by subtracting the basal heat that remained 
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following saturation. From the nonlinear least squares fit of the binding curve 

the stoichiometry n of the binding (ligand:protein), the equilibrium binding 

constant Ka and the change in enthalpy ∆H were defined. The change in free 

energy ∆G was calculated from Equation ∆G = ∆H − T ∆S. Dissociation constant 

values (Kd) were calculated as the reciprocal of the observed binding constant 

(Kd = 1/ Ka).  
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Table 1. Thermodynamical analysis of the Grb2 and Src constructs interactions with the SpYVNVQ and PQpYEEIPI peptides. 

  
Isothermal titration calorimetry data for the binding of the SpYVNVQ and PQpYEEIPI peptides to the wild-type Grb2 and Src SH2 

domains as well as the Grb2 SH2 TrpEF1Gly and Src SH2 ThrEF1Trp domains. ITC experiments were conducted in duplicates at 25 °C 

with the same batch of ligand and in HEPES at pH 7.5. Uncertainties represent deviations from the average. 

 

 
 
 
 

SpYVNVQ 

SH2 domain 

Stoichiometry 

(n) 

Kd 

(μM) 

ΔG 

(kJ mol
−1

) 

ΔH 

(kJ mol
−1

) 

-TΔS 

(kJ mol
−1

 ) 

Grb2 SH2 wt 1.1±0.1 0.3±0.1 -37.3±0.1 -31.4±1.0 -5.9±1.1 

Src SH2 wt 0.9±0.1 8.0±0.1 -29.1 ±0.1 -12.4±6.2 -16.7±6.2 

Grb2 SH2 TrpEF1Gly 1.1±0.1 2.9±0.4 -31.6±0.3 -20.8±0.1 -10.9± 0.2 

Src SH2 ThrEF1Trp 1.2±0.1 1.1±0.1 -34.0±0.2 -13.1±0.1 -20.9±0.1 

PQpYEEIPI 

Grb2 SH2 wt 1.0±0.1 167.8±31.1 -21.6±0.5 -29.5±8.8 7.9±9.3 

Src SH2 wt 1.1±0.2 0.2±0.1 -38.0±2.5 -24.1±1.9 -13.9±2.3 

Grb2 SH2 TrpEF1Gly 0.9±0.1 27.8±1.0 -26.0±0.1 -18.5±2.8 -7.5±2.8 

Src SH2 ThrEF1Trp 1.0±0.1 1.3±0.3 -33.5±0.6 -11.1±1.2 -22.4±1.8 
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Table 2: Oligonucleotide primer sequences used in this study 
 
Mutation  Name of Primer Sequence of primer   

Grb2 SH2 
TrpEF1Gly  
 

W121Ggrb2-fw 5’ GGG AAG TAC TTC CTC GGA GTG GTG AAG 
TTC AAT TC 3’ 

W121Ggrb2-rv 5’ GA ATT GAA CTT CAC CAC TCC GAG GAA GTA 
CTT CCC 3’ 

Src SH2 
ThrEF1Trp  

T225W-fw 5’ GC GGC TTC TAC ATC TGG TCA CGC ACA CAG 
TTC 3’ 

T225W-rv 5’ GAA CTG TGT GCG TGA CCA GAT GTA GAA 
GCC GC 3’ 
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Table 3. Statistics for data collection and structure refinement 

Grb2 SH2 domain (W121G) / pYVNV peptide complex 

Data collection  
Space group P1211 
Cell dimensions   
    a, b, c (Å) 82.6, 72.1, 172.1 
    α, β, γ (°)  90.0, 93.3, 90.0 
Resolution (Å) 41.3 – 2.6 
Rsym (%) a 8.0 (61.4) 
I/σI 12.0 (2.2) 
Completeness (%)  98.9 (93.1) 
Total reflections 
Unique reflections 

230816  
62044 

Multiplicity 3.7 (3.4) 
 

Refinement 
 

Resolution (Å) 41.3 – 2.6 
Rwork/Rfree 

b, c 23.6/29.4 
No. atoms 13190 
    Ligand/ion 0 
    Water 99 
B-factors (Å2)  
    Wilson B 51.5 
    Protein average 58.5 
R.m.s deviations  
    Bond lengths (Å)  0.002 
    Bond angles (°) 
Ramachandran favored (%) 
Ramachandran allowed (%) 
Ramachandran outliers (%) 
 
Molprobity38 

Clashscore (100th percentile)* 
Overall score (100th percentile)* 
 

0.6 
96.3 
3.6 
0 
 
 
2.1 
1.2 

  
a Rsym = Σ|I - <I>|/Σ<I>, where I is the observed and <I> is the average intensity of the 
given reflection. 
b Rwork = Σhkl ||Fobs| - |Fcalc|| / Σhkl |Fobs|. 
c Rfree is defined as above but calculated for 5% of reflections randomly excluded from 
the refinement. 
Numbers in parentheses are for the highest resolution shell (2.6-2.7 Å). 
* 100th percentile is the best among structures of comparable resolution; 0th 
percentile is the worst. 
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Figure legends 

 

Figure 1. The structure of the Grb2 SH2 TrpEF1Gly dimer in complex with the 

SpYVNVQ peptide. (A) Structure of a domain-swapped dimer in complex with 

their phosphopeptide ligands. Each SH2 domain is in ribbon representation 

color-coded in cyan and magenta. Peptides are shown in sticks representation 

color-coded in yellow, red, orange and blue for carbon, oxygen, phosphorus and 

nitrogen atoms, respectively. The main secondary structures of the SH2 domain 

are labelled in black while the residues in the peptide are labelled in yellow. (B) 

The interactions between the phosphotyrosine (pY) and the SH2 domain. The 

main-chain trace of the SH2 domain is shown as cyan ribbon representation with 

the side-chains of some key residues shown in sticks representation. The 

phosphopeptide is shown in sticks representation. The dashed lines indicate 

hydrogen bonds. Color-coding of atoms and labelling of residues are as in A. (C) 

The interactions of the +2 Asn of the peptide and the SH2 domain. SH2 domain, 

peptide ligands, labelling and H-bonds are representated and indicated as in C. 

(D and E) Superposition of 2 peptides bound to Grb2 SH2. The SH2 domain is 

shown as grey ribbon, whereas the phosphopeptides are shown as sticks 

representation, color-coded red for the SpYVNVQ peptide ligand of the present 

work, and green for a pYVNV-containing motif peptide (sequence PSpYVNVQN) 

bound to the wild-type Grb2 SH2 domain determined by Nioche et al. 200212 

(PDB entry code 1JYR). Orientation in D and E are similar to that in C and A, 

respectively. 

 

Figure 2. EPR analysis of the binding of the wild-type and mutant Grb2 SH2 

domains to the CSpYVNVQC peptide variant. (A) CW-EPR spectra of the peptide 

alone (blue; CSpYVNVQC), the Grb2 SH2 domain/CSpYVNVQC complex (red; 

Grb2 wt CSpYVNVQC) and the Grb2 SH2 TrpEF1Gly domain/CSpYVNVQC 

complex (amber; Grb2 TrpEF1Gly (W121G) CSpYVNVQC). The CW-spectra 

mainly provide information about the mobility of the spin labels and thus about 

the local environment of the labeled residues. In the spectra of the bound 

peptide, line broadening is observed in comparison with the apo peptide. This is 

evident in the decrease in relative intensity of the high-field peak. This effect 
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arises from the restriction of the peptide when bound to the Grb2 SH2 domains. 

(B) Stick representation of the modeled CSpYVNVQC peptide labeled with two 

bromo-maleimide nitroxide spin labels. The nitroxide spin labels were modeled 

using the Maestro program (Schrödinger). The red dots represent the static 

distance between the two NO moieties of the labels. (C) Dipolar evolution of the 

DEER measurements. Color code corresponds is the same as in (A). (D) 

Corresponding distance distributions of the dipolar evolution function of the 

three measurements shown in (C). The broader distance distribution of the apo 

peptide in comparison to the bound peptides is apparent. A dashed gray line 

signifies the modeled spin-spin distance of the labeled peptide when bound to 

Grb2 SH2. 

 

Figure 3. ITC measurements of the Grb2 SH2 TrpEF1Gly domain binding to the 

SpYVNVNQ peptide (left) and the PQpYEEIPI peptide (right). Top panels show 

the raw data titration and lower panels show the data and best-fit curves 

obtained from data analysis using a single site model. 
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