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ABSTRACT: Thin films of CsBr deposited onto metals such as copper are
potential photocathode materials for light sources and other applications. We
investigate desorption dynamics of Br atoms from CsBr films grown on insulator
(KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses.
The experimental results demonstrate that the peak kinetic energy of Br atoms
desorbed from CsBr/Cu films is much lower than that for the hyperthermal
desorption from CsBr/LiF films. Kelvin probe measurements indicate negative
charge at the surface following Br desorption from CsBr/Cu films. Our ab initio
calculations of excitons at CsBr surfaces demonstrate that this behavior can be
explained by an exciton model of desorption including electron trapping at the
CsBr surface. Trapped negative charges reduce the energy of surface excitons
available for Br desorption. We examine the electron-trapping characteristics of
low-coordinated sites at the surface, in particular, divacancies and kink sites. We
also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of
irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of
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alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr.

I. INTRODUCTION

Surface electronic excitation is important in many fundamental
and applied processes. These include laser desorption and
ablation,"” surface photochemistry,” selective materials mod-
ification,” photocatalysis, photolithography,” and photoem-
ission.® Surface excitation of semiconductors and insulators may
create both electron—hole pairs and surface excitons, which
play a significant role in particle desorption.””” Alkali halides
are particularly well studied due to their relatively simple
crystalline and electronic structures and sensitivity to ultraviolet
light, gamma, X-ray, and particle irradiation. Several mecha-
nisms of photo- and electron-stimulated desorption of alkali
halides have been discussed in the literature.'”~"” Electronic
structure calculations provide significant insight into the nature
of the electronic excited states and desorption mechanisms.
Surface excitons are directly involved in halogen-atom
desorption.''™'*'®!” The essential components of the
pertinent processes have been established in a series of coupled
experimental and theoretical studies.'” >

Considerable and related ongoing research is focused on
developing new photocathode materials for next-generation
synchrotron and free electron laser (FEL) light sources™ and
dynamic and ultrafast transmission electron microscopy
(DTEM and UTEM).”* One promising approach uses thin
films of CsBr to modify the surface of metals and substantially
increase their photoemission yields.” For example, photo-
emission from Cu substrates coated with a thin CsBr film and
then irradiated with an ultraviolet laser light displayed a
quantum efficiency (QE) enhancement greater than 502
Maldonado et al. report that a 5 nm CsBr thin film on Nb
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substrates enhances the QE following activation at 257 nm by a
factor of several hundred*® and significant QE enhancement
was also achieved from Cr and Mo photocathodes coated with
CsBr.”””® Several hours of laser irradiation is necessary to
achieve the maximum QE enhancement in a process called laser
activation.”

Laser activation is primarily associated with photophysics of
the alkali halide thin film, although the Cu substrate plays a
significant role in the overall process. The first exciton peak of
bulk CsBr is 6.96 eV,” which is significantly higher than, for
example, the 4.66 eV photon energy of the 266 nm YAG fourth
harmonic output. Initial photoexcitation therefore proceeds
through a two-photon process that deposits 9.32 eV of photon
energy, leading to formation of electron hole pairs. Electrons
and holes subsequently recombine, in the CsBr thin film,
leading to the formation of bulk and surface excitons that then
decompose into F and H center defect pairs.'*™'® The
subsequent diffusion of H centers to the surface can then
lead to desorption of neutral Br atoms, while low-energy
photoexcitation of F centers, by visible room light, is thought to
cause desorption of Cs atoms. It is possible that some defects
are sufficiently metastable to produce a steady-state population
of intraband electronic states in the alkali halide thin film.*>~**
Intraband states, such as caused by F centers, could then
possibly undergo single photon excitation, leading to electron
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Figure 1. (a) Quadrant of Regions 1 and 2A of the embedding scheme and (b) cross-section of the two regions. Anions and cations are depicted in
red and blue in Region 1 and yellow and green in Region 2A, respectively. The interface ions are also included and are colored black. The numbered
anions indicate positions where negative charges have been placed, with the resultant desorption energy displayed in Table 1, where atomic labels 6
and 7 designate positions of anions in the bulk. Region 2B and auxiliary point charges are not shown.

photoemission. We note that similar considerations apply for
thin films of KBr.

As previously mentioned, the photophysics of alkali halide
crystals and thin films, in the absence of a metal substrate, is
reasonably well understood under single-photon ultraviolet
excitation; however, the presence of a metal substrate can affect
the alkali halide photophysics just as dramatically as the
presence of the alkali halide thin film alters the photoelectron
yield (or QE) of a metal photocathode. Irradiation of a simple
CsBr crystal, or thin film grown on an insulating substrate, by
6.4 eV excimer laser pulses produces surface excitons directly.
These surface excitons rapidly decompose to desorb neutral Br
atoms with hyperthermal kinetic energies and leave behind a
surface F center in the newly created vacancy.”'>'**° In the
present study we find that thin films of CsBr and KBr on Cu
substrates display distinctly different photodesorption proper-
ties than do simple single crystals or thin films grown on
insulating materials. In particular, the hyperthermal Br atom
peak kinetic energy is sharply decreased, from near 0.26 to 0.04
eV in the case of CsBr and from near 0.4 to 0.13 eV for KBr.
Surprisingly, we find that the observed kinetic energy reduction
does not depend on film thickness, even for films approaching
200 nm. Using a combination of experiment and theory we
describe the mechanisms of laser desorption from hybrid metal-
alkali halide systems and propose a model that rationalizes the
observed effects.

Il. METHODS

A. Experimental Methods. The experimental technique
and data treatment have been previously described.'”'® Thin
films of CsBr are grown by heating 99.999% pure CsBr powder
to 425 °C or KBr powder to 450 °C in an effusion cell whose
opening is directed at the face of either a lithium fluoride (LiF)
or copper (100) (Cu) substrate. LiF substrates are first heated
to 500 °C to remove contaminants. Film growth rates are
calibrated using a quartz crystal microbalance positioned at the
crystal growth location and orientation. Films of between 7 and
200 nm thickness are then grown using the calibrated rate with
the substrate held at room temperature. We estimate the error
in the film thickness to be =+5%. The sample is then
transported, in vacuum, into the laser desorption chamber,
which has a base pressure 4 X 10™° Torr. The time between
film deposition and laser desorption experiments was limited to

<1 h to minimize the effects of water adsorption to the
extremely hygroscopic CsBr films.

The sample is irradiated using 5 ns excimer laser pulses at
193 nm (6.4 eV) or 157 nm (7.9 eV) and a 10 Hz repetition
rate. The desorbed atoms are detected using laser ionization
combined with time-of-flight (TOF) mass spectrometry. Laser
pulses are directed at the sample at a 60° angle of incidence to
the surface normal to induce desorption of neutral bromine
atoms. A focused probe laser pulse intersects the desorbed
atoms 3.8 mm above and parallel to the sample surface.
Tunable light of S ns pulse duration from a Nd:YAG pumped
frequency-doubled 10 Hz OPO laser tuned to 260.58 nm is
used to ionize ground state (*P;/,) bromine atoms in a (2 + 1)
REMPI scheme. Atomic masses are determined by a TOF mass
spectrometer using chevron microchannel plates to amplify the
ion signal. The output signal of the microchannel plates is input
to a S00 MHz video amplifier (X10) and then sent to a digital
oscilloscope. Data collection is computer-controlled and the
lasers can be independently delayed in time using computer
interfaced digital delay generators to facilitate measurement of
Br(*P;,) yields. Velocity profiles of photodesorbed atoms are
determined by integrating the Br-atom yield as a function of the
delay between excitation and probe lasers. Velocity profiles are
converted to kinetic energy distributions by applying a Jacobian
transformation.”’ Each data point represents an average of the
integrated mass selected ion signal from 60 laser pulses.

Surface charging was measured utilizing a McCallister
Technical Services KP6500 Kelvin probe. The sample surface
potential was measured both before and after irradiation with
similar laser fluences, as employed in the laser desorption
experiments and samples prepared using identical methods.
Sample surface charge measurements were performed within 2
min following 266 nm irradiation of between S and 15 min and
repeated multiple times for consistency. Accumulated surface
charge was observed to discharge over the course of several
hours.

B. Computational Methods. Both a-CsBr (CsCl-type bcc
lattice), and -CsBr (rocksalt-type fcc lattice) can be grown by
choice of a suitable substrate with a favorable lattice parameter
(o). Previous studies have grown the a-CsBr(110) surface on
LiF (ay = 4.04 A) and the -CsBr(100) surface on KBr (a, =
6.60 A).*>* Because the Cu(100) (a, = 3.61 A) surface has a
large lattice mismatch (33%) with a-CsBr and a relatively small
one (1%) with B-CsBr, we hypothesize that the preferred
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surface after growth is #-CsBr (100). We note that low-energy
electron diffraction®” shows that #-CsBr (100) is grown on KBr
(lattice mismatch 22 and 8.5% for @- and S-CsBr films,
respectively). Therefore, we assume that favorable lattice
mismatch will direct the 8-CsBr (100) growth on Cu(100) as
well and that Cu/KBr and Cu/CsBr samples exhibit the same
structures and surfaces. We will focus on CsBr/Cu in the
theoretical calculations, assuming that our qualitative results are
transferable to Cu/KBr.

The B-CsBr(100) surface was modeled using a QM/MM
embedded cluster method, and calculations were performed
using the GUESS code.”® To model the surface, a large 8-layer
thick nanocluster of 40 000 points ions of integer charge was
constructed, such that the electrostatic potential on the surface
is that of a half-infinite crystal to within 1 meV for every ion
within 25 A of the center of the cluster. The details of this
procedure are published elsewhere.”

The nanocluster is divided into three regions. (See Figure 1.)
Region 1 contains atoms described by ab initio DFT methods,
with Gaussian basis sets and pseudopotentials used to describe
the valence and core electrons, respectively. Region 1 is
surrounded by a layer of interface cations, which have large-
core pseudopotentials. The interface cations perform the dual
role of confining the electron wave functions to Region 1 and
act to mediate between the quantum and classical regions.
Region 2 is further subdivided into Regions 2A and 2B, where
atoms in 2A are described using Eolarizable, core—shell
interatomic potentials by Atwood et al.”> Region 2A comprises
three layers of a square of 225 atoms. (See Figure 1.) Both
cores and shells are allowed to move driven by forces. Region
2B consists of fixed, nonpolarizable point ions and comprises all
other atoms otherwise not defined.

A modified version of the B3LYP functional®**” has been
used to describe the electronic structure of Region 1, where the
Hartree—Fock exchange-correlation contribution has been
raised from the standard 25 to 32.5%. This has been used in
previous studies to model excitons and defects in both bulk
CsBr’® and at CsBr surfaces.’® Small-core Stuttgart pseudopo-
tentials have been used to describe the closed shells of the
anions and cations, leaving the Brf[(Ar)3s23p63d10]4524p6 and
Cs*[Ne]4s*4p°ss® electrons to be described by (6s6pld)/
[4s4p1d] and (4sSp1d)/[2s3p1d] basis sets, respectively.”” All
calculations of the ideal surface and defects on the terrace have
been conducted with a Cs,oBr;; quantum cluster. The total
energy of Regions 1 and 2 was then minimized until the change
in energy per optimization step did not exceed 10™> Hartree.

The Cs—Br separation was calculated as 3.70 A in Region 1
and 3.68 A in Region 2. The discrepancy gave rise to a small
(<0.25% a) increase in the displacement of Region 1 ions in
the direction perpendicular to the plane of the surface.

Supplementary calculations of excitons on rough surfaces
using a slab model with 2D periodic boundary conditions have
also been performed to examine exciton relaxation at low-
coordinated surface sites using the CP2K code.** They also
serve to provide a check on the calculated exciton on the
terrace. These calculations have been conducted using the
PBEO functional”’** with an increased amount of exact
exchange (37.5% instead of 25%), with pseudopotentials on
the ions and the relatively large so-called DZVP-MOLOPT
double-¢ valence basis sets on the Cs and Br ions.** The value
of 37.5% exact exchange has been used so as to match the
calculated HOMO—LUMO energy difference to the exper-
imental band gap of 7.3 eV, similarly to the B3LYP calculations

in the embedding cluster model. This functional is sometimes
referred to as PBE38 in the literature, and it is widely used to
describe wide band gap insulators (e.g, see refs 44—46).

The unit cell used to model the kink site consisted of four
layers of a (S X S) surface unit cell (256 ions), with additional
atoms placed on the surface forming an incomplete layer, such
that there were 297 ions in total, and the nanocorner unit cell
consisted of a cube of 216 ions, with 12 A of vacuum in each
direction. The Cs—Br separation in CP2K was calculated as
3.70 A.

lll. RESULTS

A. Experimental Measurements. Figure 2 displays the
raw velocity profiles and associated normalized kinetic energy
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Figure 2. (a) Velocity profiles and (b) associated kinetic energy
distribution functions for Br-atom emission from 7 nm KBr films
deposited on LiF (red circles) and Cu (blue squares) substrates
following 6.4 eV laser excitation.

distributions for Br(*P,/,) emission obtained following 6.4 eV
laser photoexcitation of 7 nm KBr films grown on LiF and Cu
substrates. The Br-atom velocity profiles (Figure 2a) peak near
a laser delay of 4.0 ys for KBr films deposited on LiF, while the
peak is near 6 us for the films deposited on Cu. Figure 2b
shows the kinetic energy distributions that result from Jacobian
transformation of the velocity data. The KBr/LiF hyperthermal
kinetic energy distribution is well fit to a Gaussian with a peak
kinetic energy of 0.36 + 0.002 eV and a width of 0.13 + 0.003
eV (errors represent one standard deviation). The KBr/LiF
hyperthermal kinetic energy distribution is well fit to a Gaussian
with a peak kinetic energy of 0.36 eV and a width of 0.13 eV. In
contrast, the KBr/Cu kinetic energy distribution peaks near
0.13 eV and has a similar width. The guide line on the KBr/Cu
kinetic energy distribution displayed in Figure 2b was obtained
by simply translating the fit for the KBr/LiF distribution by
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0.235 eV. It is clear that the width of KBr/Cu kinetic energy
distribution is slightly smaller than that for KBr/LiF, but
otherwise the distribution appears nearly identical though
shifted. The decrease in width may be rationalized by realizing
that the distribution is necessarily limited on the low energy
side because the lowest kinetic energy measurable is near 0 eV.
This reduction in symmetry results in an apparent decrease in
the distribution width. This suggests that the major effect of the
copper substrate is a lowering of the Br-atom kinetic energy by
nearly 0.24 eV.

Figure 3 displays the analogous velocity profiles and kinetic
energy distributions for Br-atom desorption following 6.4 eV
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Figure 3. (a) Velocity profiles and (b) associated kinetic energy
distribution functions for Br-atom emission from CsBr films deposited
on LiF (red circles) and Cu (blue squares) substrates following 6.4 eV
laser excitation.

photoexcitation of 7 nm CsBr films grown on both LiF and Cu
substrates. The peak of the velocity distribution (Figure 3a) for
Br-atom emission from CsBr films on LiF is ~4.6 us, while for
analogous films on copper, the peak is near 12 us. The
transformed kinetic energy distribution for CsBr thin films
grown on LiF can be fitted to a Gaussian with peak energy of
0.26 + 0.003 eV and a width of 0.15 + 0.004 eV (Figure
3b).The transformed kinetic energy distribution for CsBr thin
films grown on LiF can be fitted to a Gaussian with peak energy
of 0.26 eV and a width of 0.15 eV (Figure 3b). These values are
consistent with a previous report’’ and significantly smaller
than the result from the KBr thin films. By analogy to results
from KBr films displayed in Figure 2, the guide line on the
CsBr/Cu kinetic energy distribution is simply a translation of
the CsBr/LiF fit by 0.23 eV, although the width decreases
significantly to 0.06 eV. In this case, Br atoms emitted from

CsBr films have a significantly smaller maximum energy
available; therefore, a reduction of 0.23 eV produces a
distribution with a peak much closer to zero kinetic energy
and therefore a much more significant change in the observed
width as previously outlined for KBr films on copper.

The data displayed in Figures 2 and 3 are from nominally 7
nm thick films, but we have performed identical measurements
on films ranging between 3 and 200 nm in thickness. Figure 4

® 77 nm KBr on LiF

g 1.0 A 12 nm KBr on Cu
= B 72 nm KBron Cu
o 0.8
Z
o 0.64
-
L]
= 0.4
ﬁ |
y

00 02 04 06 08 1.0
Kinetic Energy (eV)

Figure 4. Kinetic energy distribution functions for Br-atom emission
from 77 nm thick KBr films deposited on LiF (red circles) and a 12
nm thick KBr film deposited on Cu (blue squares) and a 72 nm thick
KBr film deposited on Cu (green triangles) following 6.4 eV laser
excitation. The nominal film thickness does not appreciably change the
recorded kinetic energy distribution function.

displays results from both a thick (72 nm) and thin (12 nm)
KBr film grown on Cu as well as a thick (77 nm) KBr film
grown on LiF for comparison. The general result is that the
kinetic energy distributions and, in particular, the peak kinetic
energies for the films grown on Cu, do not change appreciably
over these thickness ranges, within a kinetic energy error range
of +0.02 eV. In addition, the peak kinetic energy of the 77 nm-
thick KBr film is nearly identical with the thin (7 nm thick) film
displayed in Figure 2 and is consistent with single-crystal KBr
results."" Thickness-dependent results on CsBr films grown on
copper up to nominal 200 nm thickness show similar results,
where the kinetic energy distributions do not depend
significantly on film thickness.

Kelvin probe experiments conducted ~2 min after irradiation
measure a small negative potential at the surface of —0.15V,
which is equivalent to a charge density of ~10° electron/cm?

B. Theoretical Calculations. Theoretical Model. The-
oretical models of Br-atom desorption from the a-CsBr (CsCl-
type lattice) and -CsBr (rocksalt-type lattice) surfaces induced
by 6.4 and 7.9 eV ns laser pulses have been discussed in ref 30.
The experimental band gap of S-CsBr is 7.3 eV,"” and the first
singlet exciton peak occurs at 6.96 €V.”” The position of the
surface exciton peak is not established experimentally, but our
calculations predict it at ~6.4 eV.” This suggests that 6.4 eV
photons can excite surface excitons but are unlikely to excite
bulk excitons.

The main mechanisms by which 6.4 eV photons interact with
the Cu/CsBr system are schematically depicted in Figure S.
The process (1) corresponds to photons creating excitons at
the surface. Excitons on the terrace can relax by desorbing a Br
atom, which has been established to be the primary source of
desorbed Br atoms from CsBr grown on insulating surfaces.*’

DOI: 10.1021/acs.jpcc.5b08275
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Figure S. Three ways of interaction for incident photons. Radiation will: (1) create excitons on the surface, either at the terrace or at low-coordinated
sites; (2) penetrate the film and induce photoemission of electrons from the Cu substrate; and (3) ionize low-coordinated sites at the surface, leaving

trapped holes, which may then lead to desorption.

In contrast with CsBr films grown on an insulating substrate,
photons penetrating the CsBr films grown on Cu induce
photoemission of electrons from Cu, as (2). A study of
photoemission following irradiation of Cu at 6.2 eV indicates a
wide distribution of electron kinetic energies ranging from 0 to
2 eV, peaking at ~1 eV.* A previous study has measured a
reduction of the work function of bare Cu after the application
of a 7 nm CsBr film from 4.2 to 3.4 eV.*” This would increase
the mean of electron distribution energies to 1.8 eV, with
photoemitted electrons of 2.8 eV at the high-velocity end of the
distribution. Previous studies also suggest that electrons at
these energies have a large mean free path in CsBr.*’~>' We
can expect some of the electrons passing through CsBr to the
surface to either become trapped by defects or low-coordinated
surface sites or to excite defects. Finally, as (3), incoming
photons can ionize low-coordinated sites, and the Br atom on
which a hole is localized can become more loosely bound to the
surface and subsequently desorb. Irradiated CsBr films grown
on LiF can induce desorption by pathways (1) and (3);
however, desorption from CsBr/Cu is affected by electrons
photoemitted as (2). Therefore, one of the reasons for the
difference between the desorbed Br velocity distributions could
be due to the presence of these electrons. Another reason could
be related to the difference in morphology of CsBr surfaces for
films grown on LiF and Cu. Below we undertake an analysis of
several desorption pathways.

Exciton Decomposition at the (100) Surface of p-CsBr. An
excitonic mechanism of irradiation-induced halogen atom
desorption from alkali halide surfaces has been discussed in a
series of papers'”'¥'"7** and summarized in a review.’” It is
based on the idea that surface excitation can initially lead to the
formation of a localized one-center triplet exciton, which can
relax by desorbing a halogen atom (so-called hyperthermal
desorption) or by forming a surface self-trapped exciton. The
latter can either recombine and thus restore the perfect lattice
or produce a pair of Frenkel defects, a neutral halogen vacancy,
and interstitial halogen atom. The excitonic mechanism

describes the desorption of alkali halides and has been shown
to explain the experimental data on Br desorption from the a-
CsBr and f-CsBr surfaces.’”” Therefore, we assume that the
difference in peak kinetic energy of Br atoms desorbing from
CsBr/Cu with respect to CsBr/LiF could be caused by some
perturbation of surface exciton state and start our calculations
from modeling surface excitons.

After singlet excitation, excitons in alkali halides are known to
quickly convert into the lower triplet state.””>* The triplet
excited state of CsBr surface can be modeled using ground-state
DFT methods, as the lowest energy triplet state corresponds to
the promotion of an electron from the valence band into the
conduction band. In both QM/MM and periodic calculations,
the triplet state of the perfect surface has both the excited
electron and the hole fully delocalized by the surface ions. The
exciton localization on a particular surface ion results from
small thermal fluctuation. By pulling Br ion out of the surface
by 0.1 A (~2%a,), within vibrational displacements of surface
anions at room temperature, we model a Frenkel-type one-
center exciton localized on the surface before full relaxation has
occurred. The classical shells in Region 2A are allowed to relax
to correctly simulate charge screening effects. To examine the
electron density distribution we have used the so-called natural
population analysis technique to assign electronic den31ty to
orbitals about ionic centers, described in more detail here.”> A
natural population analysis of the exciton shows 0.4lel of the
hole in the protruding Br 4p orbital polarized perpendicular to
the surface, with 0.5lel contributions from the four nearest
neighbor Br 4p orbitals. The electron component is more
diffuse, appearing to bulb out of the surface, with 0.35lel and
0.2lel in the four nearest neighbor Cs 6s and 6p orbitals,
respectively. The remaining electron density is spread across
the Cs 6s orbitals of the cluster. This exciton state is described
in more detail in ref 30.

Br desorption energy is defined as the energy difference
between the unrelaxed exciton (initial state) and an F center at
the surface and a Br atom at infinite separation (final state).

DOI: 10.1021/acs.jpcc.5b08275
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Positive values mean that the Br atoms have an extra energy
equal to the upper limit of kinetic energy available. The part of
this energy lost to exciton relaxation and phonons during
desorption process is not calculated here. We have checked that
there is no energy barrier for Br desorption via this mechanism.

F centers on the surface have been modeled by removing an
anion and replacing it with a “ghost” basis set equal to that on
the Br anions at the vacancy site. The ionic coordinates of all
atoms in Regions 1 and 2A are then allowed to relax driven by
forces until the energy is minimized. The electron trapped at
the surface F center has an energy level 1.7 eV below the
vacuum level. A natural population analysis shows O0.1lel
described by the vacancy s orbitals, 0.7lel by the neighboring
Cs 6s orbitals, and the remainder consisting of contributions
from the Cs Sd orbitals. The calculated maximum kinetic
energy of Br atom is 0.65 eV, in good agreement with a
previous study’ using periodic boundary conditions, which
predicted 0.66 eV and with the results presented in Figure 3.

These results confirm that 6.4 eV photon excitation can
cause desorption of Br atoms with hyperthermal velocities from
CsBr surface terraces. This means that the surface will evolve
during repeating laser pulses. To understand better the
character of this evolution we investigate the desorption of
Cs atoms.

Cs Atom Desorption and Formation of Divacancies.
Although anion desorption caused by surface excitation of the
alkali halides is well studied, cation desorption is much less
understood and the experimental data are scarce. Almost equal
depletion of Cs and Br has been observed in the XPS spectra of
thick CsBr/Cu films irradiated by UV (266 nm) light," and
AFM images of electron bombarded KBr show that
stoichiometry is largely preserved and the surface evolves via
the formation and expansion of rectangular pits.*® Emission of
ground-state Na atoms has been observed from NaCl samples
after an optical excitation of electron-irradiated samples.”” The
theoretical calculations suggested that Na desorption from
NaCl may be due to electronically excited F centers (F*),
although the calculations using the Hartree—Fock methods
predicted a substantial barrier to this process (2.1 eV).*®

The calculated energy difference between the perfect surface
and a surface with a neutral cation vacancy and a Cs atom at
infinite separation is 6.0 eV. The difference in energy between
an F center at the surface and a divacancy and Cs atom at
infinite separation is significantly reduced, at 1.3 eV, but still too
large to expect spontaneous emission.

To investigate the mechanism proposed in ref 58, we have
pulled the Cs atom from the surface and calculated the
adiabatic potential energy surface (APES) for three different
scenarios: (a) desorption from a terrace site; (b) desorption
from a site adjacent to an F center; and (c) desorption from a
site adjacent to an electronically excited F center, F*. In the
latter case, the calculations were carried out using time-
dependent (TD)-DFT for each position of the Cs ion. The
excited F-center orbital is initially delocalized on the four
neighboring Cs ions. After pulling a neighboring Cs ion out of
the surface by a value of 0.01 A, within thermal vibrational
amplitudes at room temperature, the lowest energy transition
involves excitation of the F-center electron onto the Cs* ion
protruding from the surface, forming a neutral Cs atom. The
energy surface is flat up to 1.25 A from the surface, and the
difference in energy between F* state and a divacancy and Cs
atom at infinite separation is calculated as 0.08 eV (Cs atom
desorption energy). These calculations predict Cs atoms desorb

at lower energies than Br atoms. We checked that Cs atoms
prefer to desorb perpendicular to the (100) surface in all three
cases. The initial excitation energy of the F center on the
surface is calculated as 2.14 eV, well within the energies
available to photoemitted electrons.

These results suggest that Cs desorption from the sites
adjacent to excited F centers is feasible and could lead to the
formation of divacancies. Surface F centers can be excited by
hot electrons photoemitted from the Cu substrate and traveling
in the CsBr conduction band, an analogue of the so-called
Franck-Hertz effect in solids.”” The excitation of F-center
electrons by electrons in the conduction band in AlL,O; has
been extensively studied,”’ as has the luminescence behavior of
electron-excited Ag* and Tl impurity ions in similar alkali
halides such as RbCl and KCL°"**

Alternative Br Desorption Pathways. To provide a
comprehensive analysis of other potential pathways, which
may contribute to Br desorption, we examined also exciton
creation at low-coordinated sites, excited states of surface
defects induced by photoemitted electrons, and the possibility
of desorption via hole creation at low-coordinated sites
corresponding to processes (1)—(3) in Figure S.

Apart from interacting with surface terraces, 6.4 eV photons
may create excitons at nanocorner and kink sites. To examine if
these excitons can contribute to the desorbed Br distribution,
excitons and F centers have been modeled at nanocorner and
kink sites. In contrast with all other calculations in this study,
which use the embedding cluster scheme, the periodic model
implemented in the CP2K code has been used to calculate
these defects as computation is relatively efficient, and the
defects are neutral. The resulting desorption energy has been
calculated as 0.70, 0.30, and 0.38 €V on the terrace, nanocorner,
and kink sites, respectively. The decrease in energy is largely
due to the exciton being of lower energy. The calculation of the
APES for Br atom desorption perpendicular to the surface
plane shows the energy monotonically decreases in all cases,
indicating that there are no barriers to these processes. We note
that the cross-section of photon interaction with the terrace will
be much larger than that with nanocorner and kink sites, as
there are significantly more terrace sites. Nevertheless, part of
the low-energy desorbed Br atoms can originate from exciton
relaxation at these low-coordinated sites.

Photoemitted electrons from the Cu substrate, as (2) in
Figure 5, can interact with existing defects at the surface, which
can potentially contribute toward atomic desorption. In
particular, as previously shown, electrons can excite F centers,
leading to cation desorption. Excitons may also be created at
surface divacancy sites. To establish whether the relaxation of
excited divacancies can contribute to the Br desorption, we
calculated the energy difference between the initial exciton state
and a trivacancy and Br atom at infinite separation. An exciton
at a divacancy has been calculated by promoting the system
into a triplet state. The trivacancy, with two neighboring anion
vacancies, has also been calculated; however, the final state is
higher in energy by 0.6 eV, suggesting that this mechanism
cannot contribute to the desorption process.

Finally, we examined whether ionization of Br corner and
kink sites, as process (3) in Figure S, could subsequently lead to
Br atom desorption. The ionization energies of the kink and
nanocorner sites are 5.9 and 6.2 eV, respectively, and they can
be ionized by incoming 6.4 eV photons. This leads to the
formation of trapped holes, essentially Br atoms at these sites.
Although this leads to a significant reduction of bonding of Br
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atoms with the surface, the barriers for Br atom desorption are
0.7 and 0.6 eV, for the kink and nanocorner sites, respectively.
Therefore, we conclude that thermally activated desorption via
this mechanism is possible but comparatively insignificant with
respect to exciton-induced desorption.

Effect of Negative Surface Charging on Br Desorption.
The Kelvin probe measurement indicates that a small negative
charge is present on the CsBr surface after irradiation,
suggesting that charges at the surface may be playing a role
in reducing the energy available for desorbing Br atoms. The
embedded cluster method allows the addition of charge in
Region 2 while leaving the spin state of Region 1 unchanged,
such that we can study the triplet exciton using DFT in the
presence of extra electrons. The effect of trapped electrons/
holes at the surface was simulated by changing the charge of the
classical shells in Region 2A at sites labeled in Figure 1 and
recalculating the exciton and F-center electronic structures.
Charges have also been placed in the layers immediately below
the surface. The shells of Region 2A are allowed to relax, with
all other coordinates fixed.

The Br kinetic energies for different positions of single
negative charge at the surface are given in Table 1, along with

Table 1. Calculated Desorption Energy (Ep,) with Negative
Charges at Positions Indicated in Figure 1, with the
Corresponding Distances between the Charge and Exciton

()

position r (A) Ep (eV)
1 15.7 0.34
2 20.8 0.50
3 26.0 0.58
4 14.8 0.50
S 13.3 0.48
6 18.8 0.45
7 31.2 0.57
no charge 0.66

the corresponding distance to the center of the cluster where an
exciton is localized. Positive charges were found to increase the
available energy and have not been further investigated.

We note that the presence of negative charge reduces the
kinetic energy by as much as 0.3 eV. The surface F-center
formation energy is calculated as 5.30 eV in all cases, except
when the charge is placed at position 1, where it decreases
slightly to 5.18 eV.

The effect of the negative charge on the electron component
of the exciton is relatively small, with the bulk of the difference
in energy due to the raising of the hole energy level. The hole
energy level rises by 0.5 eV as the charge is moved from
position 1 to position 3, and rises by 1 eV with the charge at
position 1 with respect to the uncharged surface. We note that
the local environment of charges at positions 1, 2, and 3 is
characterized by a line of anions between the charge and the
exciton, whereas charges at positions 4 and 5 are separated
from the exciton by both anions and cations. The difference in
polarizability of the Br™ and Cs* ions (approximately 6 and 2.4
A3, respectively®) and their consequent screening accounts for
the difference in desorption energy for charges at similar
distances from the exciton but at different positions (e.g.,, 1 and
S).

These results suggest that electrons trapped at the surface
can affect exciton states and reduce kinetic energies of

desorbing Br atoms; however, to induce the observed shift
the concentration of electron trapping sites should be high,
approximately 1 in 100 atoms. Later we investigate possible
electron trapping sites at the CsBr surface.

Electron Trapping Sites at the [-CsBr (100) Surface.
Electrons can be trapped in the bulk at grain boundaries and
dislocations.”* F centers in bulk CsBr can also trap
electrons,*®*®° and become F~ centers. The additional electron
raises the energy of the state due to the Coulomb repulsion
between the two electrons, and the occupied energy level rises
in energy. The F center has been calculated previously as being
lower in energy than the F~ center in the bulk by 1.0 V.** The
one-electron energy levels of the F center and F~ center in the
bulk have been calculated as being 2.7 and 0.5 eV below the
conduction band, respectively.*®

In Table 2 we summarize the results for electron interaction
with several surface sites. We calculate vertical electron affinities

Table 2. Results for the Calculated EA, IP, and AE of Each
Trapping Site, Where a Positive Number for AE Indicates
That the System with an Extra Electron Is of Lower Energy
than without the Electron

EA (eV) IP (eV) AE (eV)

terrace —0.66

F center —-0.35 0.30 -0.13
divacancy -0.22 0.85 0.28
trivacancy -0.30 0.47 0.05
quad-vacancy -0.47 0.22 -0.12
step —0.03 0.14 0.08
kink 0.01 0.45 0.23
nanocorner —0.13 0.23 0.08

(EAs), which characterize the electron trapping cross-section;
vertical ionization potential (IP) after the full relaxation of the
negatively charged defect, which characterizes the depth of the
potential well; and thermal ionization energy of the extra
electron (AE), the difference in total energies between the fully
relaxed states with and without an extra electron.

F centers will be dynamically produced on the surface as
products of desorption. The vertical electron affinity (EA) of F
centers at the surface is calculated as —0.35 eV, although after
relaxation into an F~ center the IP is calculated as 0.3 eV. The
cations and anions relax toward and away from the defect,
respectively. The F and F~ centers are depicted in Figure 6a,b,
along with the geometric relaxation induced by the electron. A
natural population analysis of the F~ center shows 1.6lel and
0.2lel described by the four neighboring Cs 6s and 6p orbitals,
respectively, with 0.2lel on the Cs 6s orbital immediately below
the surface defect and almost no electron density described by
the vacancy basis. Because there is an energy cost associated
with the initial capture of an electron and the IP is small, we
expect F centers to act as transient electron traps, although it
seems unlikely that such shallow traps can account for all of the
negative charge that our calculations and experiment predict to
be at or around the surface.

The divacancy has been calculated as having a vertical EA of
—0.22 eV, but after relaxation of the surrounding ions the IP is
calculated as 0.85 eV. The bulk of the electron density is in the
anion vacancy, with some density spilling over into the vacant
cation site. The HOMO iso-surfaces and the local geometric
relaxation of the F center and divacancy with and without a
trapped electron are depicted in Figure 6¢,d.
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Figure 6. Iso-surfaces of the HOMO of (a) an F center, (b) an F~
center, (c) a divacancy, and (d) a divacancy with a trapped electron.
The geometric relaxation is given with respect to the defectless surface
for (c) and with respect to the neutral defects (ie, (a) and (c),
respectively) for (b) and (d), with the length of the arrow
corresponding to the magnitude of displacement in the directions
indicated.

In contrast with F centers, divacancies are deep electron
traps, and should contribute to the negative charge at the
surface. We undertake here an examination of other potential
trapping sites at the CsBr surface.

Both trivacancies and quad-vacancy pits have been calculated
to determine their electron-trapping characteristics. Step,
nanocorner, and kink sites have also been examined as
potential electron trapping sites. The results are summarized
in Table 2.

The electron trapped at the trivacancy (two neighboring
anion vacancies and an adjoining cation vacancy) occupies an
orbital primarily distributed over the two anion vacancies and in
equal proportion. The negative charge induces relaxation of
neighboring cations toward the void. This lowers the
electrostatic potential at the two anion vacancy sites such that
the occupied energy level rises and the electron affinity
decreases. This effect increases with the pair of adjacent
divacancies, or quad-vacancy, where the electron is sitting in a
similar orbital with a higher energy level again.

These results demonstrate that divacancies, corner, and kink
sites are the most likely electron traps at the surface. The
calculated density of surface negative charge required to reduce
the peak kinetic energy of desorbing Br atoms by 0.2 to 0.3 eV
corresponds to approximately one electron trapped per (13 X
13) atomic surface units, which is equivalent to a charge density
of 4 X 10" electrons/cm? On the contrary, the Kelvin Probe
measurement of the charge at the surface at room temperature
~2 min after irradiation reveals a small negative charge of ~10°
electron/cm’. The difference in charge density can be explained
by the results presented in Table 2. We can expect electrons to
escape shallow potential wells thermally, for which the third
column of Table 2, the difference in energy between the depths

of the potential well with and without an electron (AE), acts as
a lower bound. All examined trapping sites have thermal
ionization energies under 0.3 eV. After 2 min we would expect
the vast majority of these sites to discharge, with any remaining
charge likely to be trapped at divacancies or kink sites.

IV. CONCLUSIONS

We have presented the results for photoinduced desorption
from KBr and CsBr films grown on an insulator and metal
substrates. The kinetic energy distributions of emitted Br atoms
change from a single narrow peak for film on an insulator to a
distribution that peaks at a lower energy with a high energy tail
on the metal substrate. The lack of dependence on the
thickness of the KBr and CsBr films suggests that this difference
is not due to direct interaction between the metal and the KBr
or CsBr surface. The results of ab initio calculations suggest
that the difference in the photophysics of CsBr films grown on
an insulator and a metal can be explained by trapping of
electrons photoemitted from Cu at low-coordinated sites and
vacancy clusters at the CsBr surface. In a dynamic process of
electron escape and replenishment by new photoemitted
electrons on an evolving surface, these electrons affect the
energies of surface triplet excitons. Previous experiments by
Bennewitz et al.’® reveal a layer-by-layer desorption of KBr
induced by 1 keV electron bombardment through the
formation of expanding pits with increased number of kink
sites. We assume that the photoexcited surface of CsBr
undergoes similar transformation. Our results provide new
insights into the mechanisms of photoinduced structural
evolution of alkali halide films on metal substrates and
activation of metal photocathodes coated with CsBr.
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