
University College London

Doctoral Thesis

Optimisation Approaches for
Data Mining in Biological

Systems

Lingjian Yang

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Centre for Process Systems Engineering

Department of Chemical Engineering

December 2015

http://www.ucl.ac.uk
http://www3.imperial.ac.uk/centreforprocesssystemsengineering
http://www.ucl.ac.uk/chemeng


Declaration of Authorship

I, Lingjian Yang, declare that this thesis titled, ’Optimisation Approaches for

Data Mining in Biological Systems’ and the work presented in it are my own. I

confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

i



Abstract

The advances in data acquisition technologies have generated massive amounts of

data that present considerable challenge for analysis. How to efficiently and au-

tomatically mine through the data and extract the maximum value by identifying

the hidden patterns is an active research area, called data mining. This thesis

tackles several problems in data mining, including data classification, regression

analysis and community detection in complex networks, with considerable appli-

cations in various biological systems.

First, the problem of data classification is investigated. An existing classifier has

been adopted from literature and two novel solution procedures have been pro-

posed, which are shown to improve the predictive accuracy of the original method

and significantly reduce the computational time.

Disease classification using high throughput genomic data is also addressed. To

tackle the problem of analysing large number of genes against small number of

samples, a new approach of incorporating extra biological knowledge and con-

structing higher level composite features for classification has been proposed. A

novel model has been introduced to optimise the construction of composite fea-

tures.

Subsequently, regression analysis is considered where two piece-wise linear regres-

sion methods have been presented. The first method partitions one feature into

multiple complementary intervals and fits each with a distinct linear function.

The other method is a more generalised variant of the previous one and performs

recursive binary partitioning that permits partitioning of multiple features.

Lastly, community detection in complex networks is investigated where a new

optimisation framework is introduced to identify the modular structure hidden in



iii

directed networks via optimisation of modularity. A non-linear model is firstly

proposed before its linearised variant is presented. The optimisation framework

consists of two major steps, including solving the non-linear model to identify

a coarse initial partition and a second step of solving repeatedly the linearised

models to refine the network partition.
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Chapter 1

A General Introduction

The amount of data being generated nowadays has been growing exponentially.

Thanks to the advances in data acquisition and digital storage, it is estimated that

the world’s database doubles its size every 20 months, providing unprecedented

resources. Although containing rich information, most of the data is too compli-

cated to be understood by human brains, and therefore considerable interest has

been placed onto extracting maximum value from the available data resources and

infrastructures.

Data mining, or machine learning, is about creating computer programs that

automatically mine through datasets and identify their hidden patterns. The

unearthed true patterns should generalise well to make predictions for the future.

In the real world, the collected data is almost always dirty/noisy due to various

errors in the data generation and collection processes, and therefore data mining

algorithms need to be sufficiently robust to distinguish regularity from accidental

coincidences [1].

People who apply data mining techniques often have the following two major

goals: a) accurate forecasting of what will happen in the future by learning from

the data describing the past events, b) the patterns extracted by data mining

methods, which are used for prediction, are also compact descriptions of the un-

derlying structure of the data. Those patterns, which are often represented as

linear equations, rules or tree architectures, can offer users with useful insights

into the particular problems [2].

1



Chapter 1. A General Introduction 2

As an applied discipline, data mining has established as popular analytic tech-

niques in a wide range of application domains, including fraud detection [3], credit

scoring [4], cancer diagnosis and prognosis [5, 6], drug sensitivity prediction [7], etc.

This doctoral thesis aims to develop novel algorithms for various data mining

problems using mathematical programming-based optimisation techniques.

1.1 Data Classification and Regression

In data classification, a dataset is given in the form of a n x p data matrix, where

measurements are recorded for n samples/instances (rows) and p features/at-

tributes (columns). Depending on the particular problems in hand, samples may

be medical patients, companies or chemical reactions, and features can be clinical

measurements of the patients, financial performance of companies or environmen-

tal variables of reactions. Each sample is also annotated to one of a pre-defined

set of classes, e.g. patients who survive a surgery and patients who die from the

surgery, bankrupt companies and non-bankrupt companies and reactions of high

productivity, medium productivity and low productivity.

Given a dataset, a classification method, or classifier, learns a mapping f from

p features to class label. Classification is a supervised learning process because

the categories of the samples are known. For most of the classifiers in literature,

the mapping f, representing the underlying functional form of the classification

method, has a pre-specified structure with some unknown parameters. Training

a classifier refers to estimating those parameters of f so as to minimise a suitable

cost function on the given samples. Cost function can be defined as the number of

misclassified training samples, i.e. number of samples that the estimated mapping

f fails to classify correctly. The estimated functional mapping f can then be used

to determine the class label of new samples, providing only their measurement

values on p features. The above procedure of solving a classification problem is

shown in Figure 1.1 below.

Classification problems can be broadly divided into two main categories: bi-

nary and multi-class classification problems. The number of pre-defined classes



Chapter 1. A General Introduction 3

Figure 1.1: Overview of procedures of solving a classification problem.

is two for binary classification problems and more than two for multi-class prob-

lems. Many of the traditional classification methods were originally devised for

binary classification problems [8], including the well-known support vector ma-

chine (SVM) [9] and linear discriminative analysis (LDA) [10]. Common strategies

of tackling a multi-class classification problem include either solving the problem

once using a multi-class classification algorithm or decomposing the problem into

a series of binary problems and solving them using binary classifiers [11, 12].

While classification predicts categorical outcomes, regression analysis forecasts

output variables that take numerical values. Cost functions in regression analysis

can be any arbitrary monotonically increasing function of deviation, i.e. the differ-

ence between predicted outcome value from the model and real outcome value. In

practice, minimisation of squared or absolute errors are most frequently employed

to derive parameters of the regression functions.

A large number of learning algorithms have been proposed for classification and/or

regression analysis, such as multi-layer perception (MLP) [13–15], SVM, K -nearest
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neighbours (K -NN) [16, 17], multivariate adaptive regression splines (MARS) [18]

and tree classification and regression models [19, 20]. Furthermore, those stan-

dalone learning algorithms can be integrated into an ensemble model, who pro-

duces a single prediction by weighting and combining predictions made by the

single algorithms. Ensemble models are shown to often achieve more robust per-

formances than single methods [21].

In this thesis, we propose a number of novel standalone machine learning meth-

ods for both classification and regression tasks, the performances of which are

benchmarked against a number of state-of-the-art methods in open literature.

1.2 Disease Classification using High-Throughput

Genomic Data

Despite continuous research effort, the development and progression of complex

diseases remain poorly understood. Take breast cancer as an example, although

certain clinical variables have been demonstrated to correlate with prognosis to

some extent, including lymph node metastases, histological grade of tumour, tu-

mour size and mutation in the TP53 gene, they do not yield accurate personalised

prognosis for patients [22]. Furthermore, patients with the same disease status give

disappointingly varying responses to the same treatments and develop different

overall outcomes [23, 24]. Given the difficulty of accurate personalised prognosis

and treatment, the current clinical practice observes that the majority of early

stage breast cancer patients receive adjuvant therapies, including chemotherapy

and/or endocrine therapy [25]. Many of them, however, would have survived with-

out the aggressive treatments. It is estimated that during the past three decades

about 1.3 million women in the United States alone were over-treated, causing

significant long-term side effect on patient and healthcare cost [26]. It is clear that

accurate personalised prognosis and treatment prediction are needed to assist clin-

icians on offering the optimal therapeutic strategies [27].

Microarray profiling technology enables simultaneous examination of expression

levels of thousands of genes for each patient in a single chip, and a cohort study

typically contains multiple patients [28]. The millions of data points generated per
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cohort study carry rich information to study complex diseases, for example can-

cer and psoriasis, from gene level [29]. In one of the landmark works [30], breast

cancer patients are clustered into four distinct groups, based on the similarity in

their gene expression patterns. This study has suggested that breast cancer is a

heterogeneous collection of diseases with distinct molecular aberrations, changing

the traditional view that breast cancer is a single gene disease [23].

Classification techniques have also been widely applied to identify the depen-

dence between gene expression and the clinical outcomes of interest using the

gene expression data, with genes being the feature, patients being the sample and

clinical outcomes of patients being the class label. Two separate prognostic gene

signatures [6, 31], i.e. sets of genes, have been developed, with genes being se-

lected on the basis of differential expression between two phenotypic outcomes,

i.e. distant recurrence group and non-distant recurrence group. The two gene

signatures outperform the traditional pathological variables in predicting 5-year

distant metastasis for individual patients. The gene signature constructed in [31]

has been commercialised as MammaPrint and made available to patients in the

United States since 2007. Another gene signature [27] has been proposed that

stratifies breast cancer patients into three distinct clusters, including those who

survive without adjuvant treatments, those who require and respond well to the

treatment and those die despite the treatment. Similar work exists in literature

that proposes diagnostic or prognostic signatures for other complex diseases of un-

known mechanisms, including acute leukemias [32], diffuse large B-cell lymphoma

(DLBCL) [33], psoriasis [34] and lung cancer [35].

The major difficulty associated with classification with gene expression data lies

upon the inherent ”large p small n” nature of the high-throughput genomic data,

whereby the number of samples is usually two orders of magnitudes smaller than

the number of genes in a single transcriptomic profile, making it hard to extract

reliable information [28]. A close examination of the two landmark gene signa-

tures [6, 31] find that the prognostic accuracy of gene signature derived from one

patient cohort is significantly lower when validating on the other cohort [36]. Fur-

thermore, despite similar numbers of genes, the two signatures only share three

common genes. This lack of consensus and reproducibility between gene signatures

derived from different patient cohorts has later been confirmed as a common phe-

nomenon [37]. On the other hand, a recent study [38] has shown that more than
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half of the published gene signatures fail to provide statistically better prediction

than random gene signatures. Those observations indicate that the current gene

signatures cannot lead to biologically interpretable insights into the underlying

mechanism of breast cancer progression, albeit the predictive value. It is argued

that at least several thousand samples are needed to achieve a desired level of

robustness when deriving gene signatures from microarray profiles [37].

In order to identify biomarkers that offer higher predictive accuracy and more

biological insights, many recent publications have integrated biological knowledge

as a priori, typically in the forms of either biochemical pathways or protein in-

teraction network (PIN), into the analysis of microarray genomic data, and there-

fore approaching the problem of disease classification from the level of gene set.

Each biochemical pathway is an expert curated collection of genes that interact

with each other to perform specific cellular processes, for example metabolism,

membrane transport, signal transduction and cell cycle [39]. A human protein

interaction network is a graphical representation of interactions of genes or gene

products, where nodes represent genes or gene products and edges denote func-

tional interactions between them. Tackling disease classification problems on gene

set level provides several benefits: 1) the difficulty of analysing high dimensional

transcriptomic profiles is much alleviated since the genes fall within common path-

ways or connected to each other on PIN are remarkably smaller than the number

of genes characterised in microarray [40–42], 2) combining different sources of ex-

pert knowledge can greatly enhance the reliability of the discoveries [43], and 3)

disease genes do not act alone, rather collectively modulate cell fate, thus evaluat-

ing functional gene sets is more likely to yield biologically interpretable biomarkers

that help with understanding of disease mechanism [44, 45].

To date, gene set level analysis has already been demonstrated to produce encour-

aging results [40]. For example, methods have been proposed that successfully

identify some well-known oncogenic pathways, and suggest certain pathways or

gene modules as potentially disease relevant [46–48]. On the other hand, gene set

signatures are shown to outperform or at least match conventional gene signatures

in terms of both prediction accuracy and reproducibility across different patient

cohorts [41, 42, 48, 49]. Those results have clearly suggested that gene set level

analysis, by incorporating external biological knowledge, represents a step forward

in terms of finding robust biomarkers and releasing the true underlying mechanism
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of disease progression.

In this thesis, we present a gene set level computational approach for disease clas-

sification problems, by incorporating pathway information. A novel optimisation-

based computational method is proposed that leads to improved diagnostic and

prognostic accuracies than the existing methods in literature.

1.3 Clustering of Directed Networks

Networks are fundamental representations of many complex systems. At the ba-

sic level, a network is made up of a set of nodes and edges connecting pairs of

nodes. Edges in the networks can be weighted, directed and signed, with the

weights, directionality and sign respectively indicating the strength, direction and

activation or inhabitation of the relation. The rich amount of information that a

network representation can carry makes it a popular tool to model World Wide

Web [50], social network [51, 52], metabolic network [53, 54] and so on. In World

Wide Web network, html pages act as nodes and hyperlinks denote directed edges.

In metabolic networks, nodes can be various cellular constituents while edges are

chemical reactions that sustain the cellular functions. Over the past two decades,

extensive research has released several interesting topological properties that com-

monly exist in large-scale real world networks, for example degrees of nodes, i.e.

the number of direct neighbours, generally follow power law distribution [55] and

two arbitrary nodes in a network are usually connected via a relatively small num-

ber of intermediate nodes [56].

A particularly useful topological property of many real world networks is the pres-

ence of strong community structure, whereby the nodes can be clustered into

communities, or modules, with much denser within-community interactions than

cross-community interactions (Figure 1.2) [57]. Each community can be viewed

as a discrete building block of specific functionality, and discovery of those com-

munities provides insights into the formation of the network and the underlying

principles of the dynamics of the system [57, 58]. Studying the latent community

structure has already yielded many valuable discoveries. For example, in Web

network, pages that share similar topics are more likely to belong to the same
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community and understanding the inherent community structure of the Web net-

work helps build better search engines. Analysing the communities in metabolic

networks may identify the key components that are densely connected to other

components and maintain the integrity of the network.

Figure 1.2: Network community detection.

1.3.1 Community detection in undirected networks

Newman and Girvan [59] propose a metric, called modularity, which measures the

quality of network division for undirected networks. Informally, modularity (Q)

is defined as the fraction of the within-community edges in a network minus ex-

pected fraction of the within-community edges for the same network with random

placements of edges. High positive values of modularity suggest that, for the given

network division, the quantity of within-community edges are statistically higher

than what would be expected by chance. On the other hand, low modularity val-

ues suggest that the network division is close to random. Since the proposal of this

modularity function, a number of community detection algorithms have been pre-

sented that seek the optimal division of nodes into communities so as to maximise

the modularity metric. Due to the combinatorial nature of the problem, searching

of the optimal network division is known to be NP-complete, and therefore almost

all practical algorithms in literature are based on certain heuristics, greedy search,
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simulated annealing and so on [58, 60–64].

1.3.2 Community detection in directed networks

While most research on community structure detection is focusing on the simple

case of undirected networks, relatively little has been done for networks where

edges are directed. In reality, directionality of the edges often carry indispensable

information about the underlying complex systems. For example, in a citation

network where nodes are academic journal publications and a directed edge de-

notes existence of citation relationship, discarding the direction of the citation

relationships and treating the network as undirected is improper [65]; in a gene

regulatory network where genes are nodes and an edge represents the regulation

from one gene to the other, clearly ignoring the useful information on directional-

ity will likely lead to inaccurate findings [66].

Leicht and Newman [57] adopt the modularity function for undirected network

and generalise it to directed network by explicitly considering both the in-degree

and out-degree distributions of nodes, where in-degree and out-degree respectively

denote the numbers of edges pointing to the node and pointing from the node. A

few algorithms that were originally devised for modularity optimisation of undi-

rected networks have been modified for identifying community structure in directed

networks [57, 60, 67, 68].

In this work, a mathematical programming model is introduced for optimising

modularity function in division of directed networks. Observing that the amount of

computational resource required to achieve a quality solution of the models grows

exponentially with the size of the problem, an efficient heuristics-based solution

procedure has also been proposed in this thesis. Applied to benchmark directed

networks from different application domains, the proposed algorithms have been

demonstrated to outperform the state-of-the-art methods by identifying network

divisions of noticeably higher modularity.



Chapter 1. A General Introduction 10

1.4 Mathematical Programming Optimisation Tech-

niques

Mathematical programming, or mathematical optimisation, is applied throughout

this thesis to tackle the above problems. In general, mathematical programming

is an optimisation technique that formulates a given problem as a mathematical

model and identifies the optimal solution corresponding to the maximised/min-

imised objective function value [69].

A typical mathematical programming model looks as below:

min f(x)

s.t. g(x) ≤ 0

h(x) = 0

x ∈ X

where x ∈ X ⊆ Rq are the decision variables, f(x) is the objective function, and

g(x) ∈ Rr and h(x) ∈ Rs are the inequality and equality constraints, respec-

tively. Given a specific problem, one needs to identify the decision variables and

formulate the objective function and constraints. The constraints and subset X

define a feasible region, where there are multiple feasible solutions. The purpose

of mathematical programming optimisation is to find, within the entire feasible

region, the best set of values for decision variables so that the objective function

is maximised/minimised.

Mathematical programming models are classified into the following categories

based on the type of variables:

• Linear programming (LP): a LP model consists of linear objective function

and constraints, where all decision variables are continuous;

• Non-linear programming (NLP): there is non-linearity in objective function

and/or constraints, where all decision variables are continuous;
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• Mixed integer linear programming (MILP): similar to LP, while some of the

decision variables are restricted to take discrete values, i.e. 0, 1, 2, ...;

• Mixed integer non-linear programming (MINLP): similar to NLP, while some

of the decision variables are restricted to take discrete values.

Once a mathematical programming model is formulated and programmed in a

computer, certain general purpose solution algorithms can be employed to solve

them and identify the solutions. A lot of those algorithms exist, including the

revised simplex algorithm for linear programming formulations, interior point al-

gorithm for non-linear programming, and branch & bound and cutting plane algo-

rithms for mixed integer programming models. Thanks to the rapid computational

development, a large number of commercial software are currently available to pro-

gram mathematical models in computer recognisable formats, such as GAMS [70],

AIMMS [71] and EXCEL, and solve them by calling solvers that contain the above

algorithms, for example CPLEX, GUROBI, BARON, etc. Unless stated otherwise,

all the implementations in this thesis are conducted in GAMS 24.0 and executed

on a 3.20 GHz and 12.0 GB RAM desktop computer.

Solving large-scale mathematical optimisation problems are known to be com-

putationally expensive. LP models are theoretically demonstrated to be solvable

in only weakly polynomial time [72], while NLP, MILP and MINLP are generally

non-convex and therefore even harder to solve [73]. Thus, in most of the literature

and also this thesis, efficient solution procedures are proposed to achieve quality

locally optimal solutions at reasonable computational cost.

1.5 Scope and Contribution of the Thesis

In the midst of rapid accumulation of various sources of data, how to build algo-

rithms that automatically and efficiently extract the maximal value of those data

by identifying the implicit patterns has recently emerged as a popular research

avenue. We address several important topics in this thesis, including multi-class

data classification, disease classification using high-throughput genomic data, re-

gression analysis and modularity maximisation in directed network, by proposing

novel mathematical programming-based optimisation models and efficient solution

procedures. The major contributions of this thesis are outlined as below:
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1.5.1 Multi-class Data Classification

In classification problems, one seeks to accurately classify samples into one of the

pre-defined set of categories by inferring the relationship between features and

category. In this thesis, the problem of multi-class classification is studied, where

the number of pre-defined categories is more than two. An existing mathemati-

cal programming-based multi-class classifier [74] in literature is adopted and two

novel solution procedures are proposed to achieve solutions of better quality. To

demonstrate the applicability and efficiency of the proposed classifier, a number

of benchmark classification problems are employed, and the performance of this

novel classifier is studied against other state-of-the-art approaches.

1.5.2 Disease Classification using High-throughput Genomic

Data

The arrival of cost-effective and reliable high-throughput gene expression data has

made it possible to propose computational frameworks for disease diagnosis and

prognosis. Observing the fact that incorporating trustable biological knowledge as

a prior has generally proven to be beneficial in literature, this thesis also tackles

pathway level disease classification. Briefly, a novel mathematical optimisation

model is presented that summarises, for each pathway, the expression patterns

of its constituent genes into a composite feature, before performing classification

using the resulting composite features. Several datasets covering complex and

multifactorial diseases, e.g. breast cancer, prostate cancer, psoriasis, have been

used to test the robustness of our novel approach against other pathway-based

and traditional genes-based classification methods.

1.5.3 Data Regression

Similar to data classification, regression analysis aims to estimate the relationships

between several independent input variables/features and output variables, which

take continuous values. In this thesis, a novel piece-wise linear regression method

is firstly presented that partitions one feature into multiple mutually exclusive

regions and fit for each region one distinct multivariate linear regression function.
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The location of break-points and regression coefficients of each region are simul-

taneously optimised by a novel mathematical programming model.

The piece-wise linear regression method is subsequently generalised to a tree-

based regression model. Instead of partitioning one single feature into multiple

intervals, this tree-based regression model performs recursive binary partitions,

using the same optimisation model as proposed and restricting the number of

non-overlapping regions to two. The binary partitions are recursively performed

on different features and thus ensures that it can better accommodate complex

local non-linearity. Benchmark datasets have been used to demonstrate that the

two novel regression methods match or outperform the popular regression methods

in literature in terms of predictive accuracy.

1.5.4 Network Division in Directed Network using Modu-

larity Maximisation

On modularity optimisation of directed network, an MINLP formulation is firstly

presented. Exact linearisation of the non-linear constraints is performed, which

results in an MILP model. The MINLP formulation can quickly realise locally

optimal solutions while the MILP model theoretically guarantees global optimal

solution but is practically solvable for only small networks. Therefore, a two-step

hybrid system is introduced that first solves the MINLP model to yield a quality

initial partition of the network, before iteratively removing the module member-

ships of some nodes and re-allocating them by solving the MILP models. The

iterative procedure continues until the modularity value converges. This hybrid

system has been shown to convincingly outperform the existing network clustering

methods in literature.

1.6 Thesis Structure

The rest of this thesis is structured as below:

In Chapter 2, multi-class data classification problem is addressed. An existing

classifier based on hyper-box principle is introduced, before two refined solution
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procedures are described. Comparative studies are conducted to comprehensively

evaluate the performance of the new classifiers.

Chapter 3 focuses on a particular type of classification problem, i.e. data classifica-

tion on high-dimensional datasets. Assigning the features into different pathways

according to prior biological knowledge, a novel optimisation model is presented

that linearly combines the features in a pathway into a new composite feature,

whose discriminative power is maximised. A large number of real disease datasets

have been used to demonstrate the desirable performance of the introduced clas-

sification framework.

Chapter 4 and 5 address the regression problem. After introducing a base math-

ematical programming model partitioning a single feature into multiple regions

and fitting one linear function per region, two separate solution procedures are

employed that produce a piece-wise linear regression method and a tree-based re-

gression method. Again benchmark examples widely tested in literature are used

to calibrate the prediction performance of those two approaches against other pop-

ular counterparts.

Chapter 6 describes a new hybrid optimisation framework for clustering nodes in

a directed network into different non-overlapping communities so that to maximise

modularity of the partition. In the two-step procedure, the initial step consists of

solving a number of times a computationally cheap MINLP model and collecting

a quality solution for the second step. In the second step, some nodes are released

and allocated to other modules by solving a linearised version of the MINLP model.

The second step is conducted in an iterative manner until modularity does not im-

prove.

Finally, Chapter 7 concludes with the major findings of this thesis and outlines

the future directions.



Chapter 2

Mathematical

Programming-based Classification

Models

Data classification refers to the problem of applying computational models that,

when presented the input feature values and output class labels for various sam-

ples, automatically identify hidden relationships which can be used to assign un-

seen samples into one of these classes. Mixed integer programming optimisation

techniques have been frequently used in literature to design classification models.

In this chapter, an integer programming-based classifier [74], modelling decision

boundary as hyper boxes, has been adopted from literature and two novel solution

procedures have been proposed that lead to improved performance of the methods.

2.1 Introduction and Literature Review

Given a set of samples, each of which is described by certain measurable features

and labelled with a pre-determined class, data classification concerns identifying

the pattern within the data and predicting the class labels of new samples. Data

classification has a wide range of applications from financial analysis [75–77], im-

age classification [78–80], medical data for disease diagnosis or prognosis [81–83],

market price prediction [84] and document classification [85, 86].

15
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Over the past decades, a wide range of classification algorithms have been proposed

in literature to tackle various classification problems. Classification algorithms can

be broadly divided into two categories: binary and multi-class classifiers. A bi-

nary classifier is solely applicable to classification problems with two classes while

a multi-class classifier can deal with problems with more than 2 classes. Compared

with the large number of binary classifiers, there are relatively fewer multi-class

classifiers in literature [87]. Common strategies of tackling a multi-class classifica-

tion problem include either solving the problem once using a multi-class classifica-

tion algorithm or decomposing the whole problem into a series of binary problems

and solving iteratively the sub-problems using binary classifiers [88].

The existing classifiers in open literature are based on diverse methodologies, in-

cluding support vector machine (SVM), neural network (NN), näıve Bayesian,

decision tree, mathematical programming optimisation techniques, and so on. We

provide below a brief summary of some of the most popular classification ap-

proaches, with some key classifiers shown in Figure 2.1.

Figure 2.1: Some key classifiers in literature. a: SVM; b: NN; c: decision
tree; d: piece-wise linear classifier
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2.1.1 Support Vector Machine (SVM)

SVM constructs hyper planes to separate samples from different classes. SVM

builds hyper planes under the condition of maximum soft margin, i.e. maximising

the margin between two classes while allowing certain amount of misclassifications

of the samples. The balance between distance of the constructed hyper plane to

different classes of samples and the amount of misclassifications is controlled by a

user-specified trade-off parameter. One of the features that make SVM powerful

is the so-called kernel trick, which maps the dataset to higher-dimensional inner

product space, where samples may be easier to separate. A number of kernel

functions, which greatly enhance the suitability of SVM in modelling non-linear

decision boundaries, can be employed, e.g., polynomial kernels and radial basis

function kernel. Solving SVM has been formulated as a convex quadratic pro-

gramming optimisation problem, which can be solved to global optimality.

SVM has been originally designed as a binary classification algorithm, and the

approach of decomposing a multi-class problem into a series of ”one vs. one” or

“one vs. all” sub-problems are commonly employed for it to be used for multi-

class classification tasks [89]. Despite the popularity, optimal tuning of the trade-

off parameters and choice of kernel functions remain problem-specific issues that

considerably affect the prediction power of SVM [90, 91].

2.1.2 Neural Network (NN)

Mimicking a biological neural network, NN classifier consists of a number of con-

nected layers of neurons, which transforms an input layer of features to an output

layer of class labels. Each neuron takes input as weighted summation of outputs

from all the neurons in the previous layer, and applies a non-linear activation func-

tion before passing the output to all the neurons in the next layer [92]. Frequently

used activation functions include: sigmoid, logarithmic and radial basis functions

[93]. Despite its capacity to tackle datasets with non-linear and complex deci-

sion boundaries, the number of hidden layers, how many neurons allowed for each

hidden layer, which activation function to use amount to a difficult optimisation

problem, which limits the generality of the method [94]. In reality, the structure

of the network, i.e. the number of layers, the number of neurons for each layer and

the types of activation function, are usually specified by the user, which reduces
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the problem of training a neural network classifier to tune the weights of connec-

tions between consecutive layers of neurons to minimise the classification error.

Training a neural network is known to be time consuming and can only guarantee

local optimality.

2.1.3 Naive Bayes

Näıve Bayes classifier belongs to the group of statistical classifiers. It is based on

the simple assumption that the effect of different features on class membership

predictions is independent from each other [95]. In general, Näıve Bayes simply

computes the support of each feature for each class so that the maximum likeli-

hood estimate is satisfied in the training samples set. With the derived Bayesian

rules the probability of a sample being predicted into a class can be calculated.

The simplicity of Näıve Bayes classifiers also ensures computational efficiency [96].

Although the assumption of independence among features is more often than not

violated in practical datasets, näıve Bayesian generally gives comparable perfor-

mance against much more sophisticated classifiers [97].

2.1.4 Decision Tree

Decision tree is a recursive partitioning method that sequentially splits samples

into subsets. Starting from the whole dataset, decision tree identifies one attribute

and a break point, before partitioning samples into subsets so as to improve the

homogeneity of the class label vector within the subsets. The partitioning proce-

dure is recurred for each child node until no further split can result in an increase

in training sample accuracy [98]. After growing a large tree, small leaves that

do not contribute significantly to the training accuracy are removed to improve

the generalisation of the constructed tree [99]. Interpretability is one of the main

strengths of decision tree classifiers. The set of sequential linear rules generated

are easy to understand, providing valuable insights into the mechanism of the un-

derlying system. Decision tree has been shown to be particularly vulnerable that

perturbing a small proportion of training samples or re-sampling the training set

are likely to result in a very different tree structure.
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2.1.5 Mathematical Programming-based Classifiers

Another group of classification models are built on mathematical programming

optimisation techniques. Gehrlein [100] proposes a classification formulation in

which each class is given a linear function, i.e. a linear combination of attributes.

For a given sample, one score is computed for each class by fitting its attribute

values into its linear function. A sample is considered correctly classified when the

score of its true class is greater than the scores of the other classes. The model

optimises the coefficients of linear functions so as to maximise the number of cor-

rectly classified samples. With the same concept of assigning one linear function

per class. Recently, Bal & Orkcu [87] employ the technique of goal programming

in their formulation. Given a sample, when the score of its true class is less than

the score of another class, misclassification happens and there is a positive devi-

ation equalling to the difference between the two scores. The objective function

is to minimise the total deviations of misclassified samples, instead of the number

of misclassifications. The model is formulated as a linear programming problem,

and therefore having the advantage of requiring little computational cost. Sueyoshi

published similar works on linear discriminative functions for binary or multi-class

classification problems, including [75, 77].

Ryoo [101] proposes a model that simultaneously constructs a number of hyper

planes forming piece-wise linear decision boundary for binary classification prob-

lems. The two classes of samples are respectively in either side of the decision

boundary. The number of hyper planes is a user-defined tuning parameter. Fur-

thermore, the choice of which class of samples to be enclosed in the convex region

of the piece-wise linear boundary also requires manual intervention. Lastly, the

proposed formulation is solely applicable to binary classification tasks. Bagirov

et al. [102] also focus on building piece-wise linear classifier to separate sam-

ples. Their proposed method firstly singles out a set of problematic instances

that are hard to classify correctly, followed by building piece-wise linear planes

with the number of the planes being incrementally increased. Bertsimas & Shioda

[103] present a model separating samples into a number of polyhedrons, which are

formed by multiple hyper planes. The class of a polyhedron is the one having the

greatest number of samples inside the polyhedron. The proposed formulation tries

to enclose as many samples belonging to the same class into the same polyhedrons

by optimising the positions of polyhedrons.
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On the other hand, Xu & Papageorgiou [74] produce a mathematical programming-

based formulation modelling a hyper box (HB) classifier. A hyper box is essentially

a multi-dimensional rectangle with the number of dimensions being equal to the

total number of attributes in the dataset. The proposed method aims to build for

each class a number of hyper boxes enclosing as many samples as possible. The

hyper boxes belonging to different classes are constrained to not overlap with each

other, and each hyper box defines a distinct rule enclosing a proportion of training

samples. In [104], a modified version of HB classifier has been developed which

requires only 1/3 to 1/2 computational time compared with the original HB. In-

spired by the promising performances of the HB classifier, we propose a refined

hyper box classifier in this work, aiming to improve the quality of the constructed

boxes.

2.1.6 Ensemble Classifiers

Besides the single classifiers described above, some recent research efforts have

been focusing on developing ensemble classifiers, which train a number of classi-

fiers and aggregate their classification outcomes to produce the final prediction.

Given a training sample set, Bagging [105] creates a number of bootstrap sample

sets by uniformly sampling with replacement, and each bootstrap sample set is

then learned by a classifier. The final prediction is an aggregation of decisions

made by each classifier, via either simple average or more sophisticated voting

strategy where certain classifiers have more votes in the final decision [106]. An-

other recent advance in ensemble classification algorithm is Boosting. One of the

most recognised Boosting algorithms is Adaboost [107], which trains a set of clas-

sifiers in an iterative manner so that the subsequent classifiers are constructed in

favour of those samples misclassified by the last classifier, by updating the weight

distribution of samples. Given a new sample with unknown class label, all the

single classifiers make their own predictions of which class it belongs to and their

decisions are combined to yield a final prediction.

In the following sections, both mathematical formulation and solution procedure

of the original HB classifier are firstly summarised, before two novel solution proce-

dures are introduced in a bid to improve the performance of the original classifier.
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Comparative studies have been done using benchmark datasets to demonstrate

the efficiency of the new classifiers.

2.2 A Hyper Box Classifier in Literature

As mentioned, this work is based on the classification method proposed in [74],

which describes a mathematical programming formulation modelling hyper box

classifier. A hyper box is a multi-dimensional rectangle and belongs to one class.

Multiple hyper boxes can be potentially created for each class. A sample is called

correctly classified when enclosed in (at least) one hyper box of its class. Training

of the hyper box classifier involves determining the coordinates of all the hyper

boxes so as to maximise the number of samples that can be enclosed in their cor-

responding hyper boxes, subject to the constraint that hyper boxes belonging to

different classes are prohibited to overlap, i.e. occupy the decision space. Then

the coordinates of the hyper boxes represent decision boundary between different

classes.

The original formulation is reviewed in the below subsection before the proposed

refinements are presented.

2.2.1 Original Mathematical Formulation of HB

The indices, parameters and variables associated with the model are listed below:
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Indices

s sample

m feature/attribute

i,j hyper box

is hyper box i that sample s is mapped into

c,k class/category

ic hyper box i that belongs to class c

Parameters

Asm numeric value of sample s on feature m

C the total number of classes

M the total number of features

U an arbitrarily large positive number

ε an arbitrarily small positive number

Free variables

Xim central coordinate of hyper box i on feature m

Positive variables

LEim length of hyper box i on feature m

Binary variables

Es 1 if sample s is correctly enclosed in its hyper box; 0 otherwise

Yijm 1 if on feature m lower bound of hyper box i is greater

than upper bound of hyper box j and thus ensuring non-

overlapping between the two boxes;

0 otherwise

Whether a sample s is enclosed in its corresponding hyper box is or not is modelled

using the following two sets of constraints:

Asm ≥ Xim − LEim/2− U(1− Es) ∀s, is,m (2.1)

Asm ≤ Xim + LEim/2 + U(1− Es) ∀s, is,m (2.2)

If Es takes the value of 1, sample s is correctly enclosed in hyper box is, i.e. value

of Asm lies between the lower bound (Xim − LEim/2) and upper bound (Xim +

LEim/2) of its hyper box is for all attributes; otherwise sample s is misclassified

as being outside its target box. In Figure 2.2 a, two dimensional representation

of samples being inside and outside their corresponding hyper boxes are provided.
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Figure 2.2: Graphic explanations of mathematical formulation of HB. a: sam-
ple s1, s2 and s3 are correctly enclosed in its hyper box (i.e. Es = 1) while
sample s4 lies outside the box (i.e. Es = 0); b: Non-overlapping constraints are

enforced for hyper boxes belonging to the same class.

Hyper boxes of different classes are not allowed to overlap, which is realised via

the following two sets of constraints:

Xim −Xjm + UYijm ≥ (LEim + LEjm)/2 + ε ∀m, ic, jk, c 6= k (2.3)

∑
m

(Yijm + Yjim) ≤ 2M − 1 ∀ic, jk, c < k (2.4)

In Equ. (2.3), when binary variable Yijm = 0, hyper box i and j belonging to

different classes are constrained not to overlap, because lower bound of box i is

greater than upper bound of box j on attribute m; when binary variable Yijm = 1

Equ. (2.3) become redundant. To avoid overlapping of the hyper boxes in M -

dimensional space, they need to not overlap in at least one dimension, which is

modelled by Equ. (2.4). In Figure 2.2 b, a graphical example of overlapping and

non-overlapping hyper boxes is given. The objective function is to minimise the

number of misclassifications (i.e. Es = 0):

min
∑
s

(1− Es) (2.5)
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The final formulation, named MCP in the original paper [74], is made up of ob-

jective function Equ. (2.5) subject to sample enclosing constraints Equ. (2.1) and

(2.2), and hyper box non-overlapping constraints Equ. (2.3) and (2.4). The com-

bination of linear objective function and constraints, and the presence of binary

variables define an MILP formulation, which can be solved to global optimality

using standard solution techniques, for example branch-and-bound.

2.2.2 Iterative Solution Procedure of Hyper Box Classifier

The last section describes a mathematical programming formulation for building

hyper boxes to separate samples. In [74], an iterative solution procedure has also

been developed to allow potentially multiple hyper boxes per class to improve the

quality of the solution. The original iterative procedure is outlined in Figure 2.3

below.

Figure 2.3: HB iterative solution procedure

Initially, one hyper box is created for each class of samples (initialise is) and the

MCP model is solved once to enclose as many as possible the samples into their
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own hyper boxes. Starting from the second iteration, for any class having at least

one misclassified sample (Es = 0), one additional hyper box is allowed for this

particular class, followed by updating is, i.e. the correct classified samples are still

mapped to their original hyper box while the misclassified samples are re-mapped

to the new box. For the classes that all their samples are correctly classified in

the last iteration, their sample-box mapping are kept. The iterative procedure

terminates when the number of misclassified samples does not decrease in two

adjacent iterations or when all the samples are correctly classified. An artificial

illustrative example is given in Figure 2.4 to illustrate the old iterative solution

procedure.

Figure 2.4: HB iterative solution procedure.

2.2.3 Predicting New Samples using Derived Hyper Boxes

After training the HB classifier the derived hyper boxes are used to predict the

class label of a new sample. The prediction procedure is intuitive as: 1) if a new

sample falls into one of the derived boxes, it is assigned the class label of the box;
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2) if a new samples lies outside all derived hyper boxes, it is assigned the class

label of its nearest box, based on Euclidean distance.

After reviewing the main features of hyper box classifier proposed in [74], a refined

HB classifier will be proposed in the next section.

2.3 A Sample Re-weighting Hyper Box Classifier

Inspired by the idea of boosting algorithms, which typically consists of iteratively

learning classifiers while updating the weight distribution of samples, a sample re-

weighting scheme is introduced into the traditional hyper box classifier in a effort

to improve its performance.

As mentioned earlier in the previous section, the traditional HB inherently involves

iterative training, i.e., after each iteration any class with misclassified samples is

updated with an extra hyper box and the MCP model is re-solved. The proposed

method mimics the behaviour of boosting algorithms by re-weighting samples be-

tween iterations. More specifically, after each iteration, we update the weights of

all samples by assigning higher weights to a subset of misclassified samples, thus

putting more emphasis into correctly classifying them in the next iteration. When

a sample s is misclassified by its hyper box, the misclassification can fall into two

categories: 1) misclassified sample lies outside all derived boxes; 2) misclassified

sample lies inside at least one of the derived boxes that belong to a different class.

In this study, the two types of errors are termed type 1 and 2, respectively. Figure

2.5 visualises the two types of misclassifications for a two dimensional case.

In Figure 2.5 a, two misclassified samples lie outside both derived hyper boxes

and before the next iteration, another box will be allocated for the two samples of

type 1 error. In the second iteration, the two samples will be correctly enclosed in

the additional hyper box. In Figure 2.5 b, however, the two type 2 misclassified

samples will still be misclassified in the next iteration despite another allocated

hyper box. In fact, type 2 misclassified samples have only slight chance of being

correctly classified in the following iterations. In this work, a sample re-weighting

scheme that gives more weights to the type 2 misclassifications is proposed, which

will increase the chance of them being correctly classified and achieving a better

final solution. In order to accommodate the different weights of samples, the
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Figure 2.5: Two types of hyper box misclassifications. a: type 1 misclassifi-
cation that samples are not enclosed correctly by its hyper box and are outside
all the boxes from other classes; b: type 2 misclassification that samples are
not enclosed correctly by its hyper box and are inside at least one of the boxes

belonging to another class.

objective function Equ. (2.5) in the traditional HB has been modified to the

following:

min
∑
s

Ps(1− Es) (2.6)

where Ps denote the weight of sample s, equivalent to the cost of misclassifica-

tion. Equ. (2.5) can be seen as a special case of Equ. (2.6) where Ps = 1

for all samples. Considering the new objective function, when different weights

are assigned to different samples, the model will prioritise those samples with

higher weights for the overall misclassification cost to reach globally minimum.

We keep other constraints Equ. (2.1)-(2.4) in the new formulation, which is

named W MCP (Weighting MCP). The W MCP formulation is still an MILP.

The flowchart of the modified iterative hyper box method, called SRW HB (Sam-

ple Re-Weighting Hyper Box), is constructed in Figure 2.6:
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Figure 2.6: Flowchart of the proposed SRW HB. The highlighted content in
red differentiates the SRW HB from the traditional HB.

The proposed SRW HB also implements an iterative solution procedure. The first

iteration is identical to the first iteration of the traditional HB that one box per

class is generated to minimise the total cost of misclassifications while all the

samples are having a weight value, Ps, of 1. If there are misclassified samples,

from the second iteration one more box is allowed for each class with at least one

misclassified sample. The sample-box mapping is updated that correctly classified

samples from the last iteration keep their mapping from the last iteration, while the

misclassified samples (both type 1 and 2) are re-mapped to their newly generated

hyper boxes. The misclassification cost for correctly classified samples and type 1

misclassified samples are set to 1, while the cost for type 2 misclassified samples

are set to a higher value CT (CT > 1). The W MCP model is re-solved and the

above procedure is repeated. The iterative solution procedure terminates when the

number of misclassified samples fail to improve in 2 consecutive iterations. The

testing procedure is the same as the original HB that a new sample is allocated

to its nearest derived hyper box and then assigned the membership of the hyper

box.
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2.4 A Data Space Partition Scheme

In the original publication [74], it is claimed that for some datasets, MCP models

cannot be solved to global optimality in 200s for all iterations. Note that compu-

tational complexity of an MILP problem is dependent on the size of the problem,a

data space partition scheme is proposed to ease the computational burden of build-

ing hyper boxes and attempt to identify better solutions.

Given a dataset Asm, the average value of all samples on each attribute m is cal-

culated as Averm, followed by computing the number of samples satisfying Asm ≥
Averm and Asm < Averm, respectively, which are denoted as RUm and RLm.

Compute for each attribute the difference between the numbers of samples placed

in the two disjoint regions partitioned from Averm as Diffm = |RUm − RLm|.
The attribute offering the most even partition, i.e. the smallest Diffm value is

selected as the partition attribute m*. When there are multiple attributes offer-

ing equally low Diffm value, the partition attribute is randomly chosen among

them. Subsequently the original dataset is partitioned into two disjoint regions

R1 and R2, which respectively contain samples satisfying Asm∗ ≥ Averm∗ and

Asm∗ < Averm∗. In each region, we train the proposed sample re-weighting hyper

box classifier (SRW HB). It is important to note that extra constraints are added

to the W MCP to make sure that the derived hyper boxes from each region are

not unnecessarily large to overlap with hyper boxes derived from the other region

on the partition attribute m*, thus ensuring the boxes in one region do not overlap

with the boxes in the other region:

Xim − LEim/2 ≥ Averm ∀i,m = m∗ (2.7)

Xim + LEim/2 ≤ Averm − ε ∀i,m = m∗ (2.8)

Equ. (2.7) are added to W MCP when solving R1 while Equ. (2.8) are added

to W MCP when training on samples in R2. An arbitrarily small positive con-

stant ε is inserted in Equ. (2.8) to ensure the two regions do not share the same

boundary. The final decision boundary is formed by all the derived hyper boxes

from both regions. The idea behind the data space partition method is that the

required computational time to solve an MILP grows exponentially with the num-

ber of training samples, making it hard to identify optimal solutions at feasible
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computational cost. Partition the dataset into two disjoint regions with similar

numbers of samples makes both regions roughly equally easy to solve. We name the

framework employing the proposed simple data space partition scheme to create

two disjoint sub-regions and construct sample re-weighting hyper box classifiers in

both regions as DR SRW HB, the flowchart of which is illustrated in Figure 2.7.

Figure 2.7: Flowchart of the proposed DR SRW HB

In this work we have tested the proposed data space partition scheme, which

splits the entire data space into two disjoint regions, on medium-size datasets. It

is important to note that for larger size datasets, the current proposed strategy

can be further generalised, i.e., partition the data space into 3,4 or more disjoint

parts, to accommodate more samples and attributes.
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2.5 Computational Results

In this section, the applicability and effectiveness of the proposed SRW HB and

DR SRW HB classifiers are demonstrated through 6 real world datasets, includ-

ing Phenol [108], Firm [74] and 4 datasets downloaded from UCI machine learning

repository (http://archive.ics.uci.edu/ml/), namely Ionosphere, glass, breast tis-

sue, and iris. We have implemented a number of literature classifiers to compare

the classification rates with our proposed SRW HB and DR SRW HB. The group

of classifiers include Näıve Bayes, Sequential minimal optimisation (SMO, which is

a realisation of support vector machine), Logistic regression, Bagging, Adaboost,

NN and three mathematical programming-based multi-class classifiers: HB [74],

Bal & Orkcu [87] and Gehrlein [100]. To comprehensively evaluate the overall

classification performances of various classification algorithms, we use two testing

scenarios as below:

Scenario 1 : perform 50 random partitions of each dataset into a training set

containing 70% samples and a testing set containing the 30% samples. For each

partition we train a classifier on training set and test the classification performance

on testing set.

Scenario 2 : conduct a leave-one-out cross validation that for each dataset hold

only one sample in the testing set while using the rest as training samples. The

process is repeated until all samples are used as testing sample.

All the mathematical programming-based classification methods, including SRW HB,

HB, and approaches proposed by Bal & Orkcu [87] and Gehrlein [100], are imple-

mented in General Algebraic Modeling System (GAMS) 24.1 [70] and solved using

CPLEX 12.3 solver on a 2.40 GHz speed, 2393 MHz cpu computer system. Op-

timality gap is set as 0 when solving MILP problems. For all hyper box-based

methods we limit the computational time per iteration as 200 cpu seconds.

Other classifiers are implemented in Waikato Environment for Knowledge Anal-

ysis (WEKA) machine learning software [109]. Default setting are retained for

Näıve Bayes, Logistic regression, SMO, Bagging and Adaboost. For SMO, default

setting include Complexity parameter C=1, polynomial kernel of exponent of 1
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is used. Bagging is done on REPtree with 10 iterations, with bag size percent-

age being equal to 100 %. For adaboost, DecisionStump is used as base classifier

with 10 iterations. With regards to NN, the following parameters from [74] are

used: hiddenLayers=2; learning rate=0.1; momentum=0.7; trainingTime=10000.

In WEKA, default setting for NN specifies one single hidden layer with the number

of neurons equalling to the sum of the numbers of features and classes divided by

2.

2.5.1 Real World Datasets

We use 6 real world datasets to test the applicability and competitiveness of the

proposed classification algorithms. Ionosphere concerns some radar data that given

34 attributes reflecting the received signals the task is to classify free electrons in

the ionosphere into 2 classes. The dataset Phenol [108] concerns classifying 274

phenols, characterised by 9 molecular descriptors that quantify their compounds,

into 4 possible toxicity mechanisms including polar narcotics, respiratory uncou-

plers, pro-electrophiles and soft electrophiles. Glass example is a collection of glass

samples belonging to 6 types of glass. Each sample is described by 9 attributes,

each of which corresponds to weight percentage of a chemical compound (sodium,

aluminium, calcium etc.) in corresponding oxide. Breast tissue dataset has 106

freshly excised tissue samples in the breast area, and are descripted by 9 attributes

such as area under spectrum, length of the spectral curve. Iris is one of the most

studied benchmark datasets in data classification. 150 instances from 3 types of

iris plant are characterised by 4 features, including sepal length, sepal width, petal

length and petal width. Firm dataset aims to predict the financial performance

of a number of companies, based on certain performance indices for example cash

to total assets, long-term debt to total assets, into a class of ‘good’ firms and the

other class of firms went bankrupt between 1996 and 2002. A brief summary of

the employed real world datasets is provided in Table 2.1.

2.5.2 Sensitivity Analysis of CT

In this section, a sensitivity analysis is performed to tune the user-specific param-

eter CT for the proposed SRW HB, which denotes the cost for type 2 misclassified
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Table 2.1: Summary of real world datasets

dataset Number of samples Number of attributes Number of classes
Ionosphere 351 34 2
Phenol 274 9 4
Glass 214 9 6
Breast tissue 106 9 6
Iris 150 4 3
Firm 83 13 2

samples and is higher than 1. We present in Figure 2.8 the results of sensitivity

analysis for all the 6 datasets.
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Figure 2.8: Sensitivity analysis of CT for the proposed SRW HB on two
testing scenarios. Blue line with circle markers denotes scenario 1 and red line

with rectangle markers denotes scenario 2.

A series of values have been tested for CT, including 2, 3, 4 and 5. It is clear from

Figure 2.8 that varying CT has different effects on different datasets. For Iono-

sphere datatset and scenario 1, prediction accuracy first increases from CT = 2 to

CT = 3, and then falls down when CT is equal to 4 and 5. With regards to sce-

nario 2, the trend is similar that prediction rate goes up from CT = 2 to CT = 3,

and then decreases later on. For Phenol, as CT increases classification rate for

scenario 2 goes up from CT = 2 to CT = 3, 4 before decreasing when CT = 5,
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while classification rates for scenario 1 keep constant. Glass is the most affected

by different values of CT among all tested datasets that for both scenarios pre-

diction rates increase from CT = 2 to 4 by about 4%, which subsequently drops

down when CT = 5. With regards to Breast tissue case study, classification rates

for both scenarios fluctuate throughout the tested CT values and both peaked at

CT = 3. When it comes to Iris dataset, increasing CT appears to have minor

impact on scenario 1, while for scenario 2 prediction rate keeps constant between

CT = 2 and 4 before growing slightly with CT = 5. Lastly, for Firm dataset,

classification rate for scenario 2 keeps constant over the tested range while for

scenario 1 the accuracy goes down from CT = 4 to 5.

Overall, it is obvious that the sensitivity analysis for SRW HB does not yield

a clear optimal CT value, as in different datasets and different scenarios peak

prediction rates come from different CT values. On the other hand, it appears

that CT = 3 gives a robust performance as prediction rate often peaks at or near

CT = 3 (e.g. Ionosphere, Breast Tissue). Therefore we take CT = 3 for SRW HB

when comparing its classification performance against other implemented classi-

fiers in literature, which has good performance for almost all datasets investigated.

2.5.3 Classification Accuracy Comparison

In this section, we evaluate the classification performance of 10 classifiers, including

the proposed SRW HB and traditional HB. For the proposed SRW HB classifier,

we set CT = 3 for all datasets to offer a fair comparison. The results are presented

in Table 2.2 and 2.3 for scenario 1 and 2, respectively.
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Table 2.2: Classification rate comparison for scenario 1

Classifier/dataset Ionosphere Phenol Glass Breast tissue Iris Firm

SRW HB 90.69% 89.41% 71.09% 66.32% 95.64% 93.84%

HB 89.37% 87.02% 68.53% 63.16% 94.76% 93.92%

Gehrlein [100] 84.55% 86.05% 56.68% 52.32% 93.64% 86.67%

Bal & Orkcu[87] 89.15% 84.80% 61.59% 59.23% 86.93% 89.20%

Näıve Bayesian 82.52% 86.29% 48.13% 67.34% 96.00% 92.61%

SMO 87.94% 81.29% 55.84% 54.31% 96.67% 93.16%

Logistic regression 86.48% 88.07% 62.16% 64.56% 95.56% 86.73%

Bagging 90.96% 90.17% 68.69% 66.75% 94.67% 92.43%

Adaboost 90.36% 77.85% 42.78% 36.19% 94.36% 93.16%

NN 88.77% 87.99% 59.97% 60.66% 95.11% 93.23%

*The highest accuracy for each dataset is highlighted in bold, same for Table 2.3

Table 2.3: Classification rate comparison for scenario 2

Classifier/dataset Ionosphere Phenol Glass Breast tissue Iris Firm

SRW HB 91.17% 92.34% 66.36% 67.92% 96.00% 95.18%

HB 89.74% 90.51% 65.89% 66.98% 94.00% 95.18%

Gehrlein [100] 84.55% 86.05% 56.68% 52.32% 93.64% 86.67%

Bal & Orkcu [87] 87.18% 87.59% 64.95% 68.87% 88.67% 98.80%

Näıve Bayesian 82.62% 86.50% 49.53% 66.04% 95.33% 91.57%

SMO 88.03% 79.56% 54.67% 56.60% 96.67% 95.18%

Logistic regression 89.17% 89.05% 62.62% 68.87% 98.00% 84.34%

Bagging 92.02% 91.24% 72.90% 65.09% 94.00% 90.36%

Adaboost 90.88% 78.47% 44.86% 40.57% 97.33% 93.98%

NN 89.46% 88.69% 59.35% 60.38% 95.33% 91.57%

For both testing scenarios, no classifiers are showing dominant classification rates

against others, as different datasets play to the strengths of different classification

methodologies. This observation is consistent with the previous findings [110, 111].

A good classifier should maintain consistently good performance across many dif-

ferent classification problems. The proposed SRW HB, showing this desired consis-

tency, is usually among the top 3 out of the 10 classifiers. Note that the proposed

SRW HB outperforms the traditional HB for most scenarios.
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We summarise here the overall classification performance of the 10 implemented

classifiers by using a scoring scheme, employed also in [74]. Briefly, for each sce-

nario and a particular dataset, the classifiers are ranked in descending order accord-

ing to their prediction accuracies, i.e. the classifier with the highest classification

rate is awarded a score of 10; the classifier with the second highest classification

rate is assigned a score of 9, and so on. For each scenario, the average score across

all datasets is taken as the indication of the overall competitiveness of a particular

classifier. The higher the average score, the better the performance of the classifier.

The score ranking is presented in Figure 2.9, which shows that in both scenarios

the proposed SRW HB classifier not only gives improved classification accuracy

from the traditional HB, but also outperforms other state-of-the-art classifiers.

Figure 2.9: Overall standing of classifiers. In both scenarios, the proposed
SRW HB leads to the most robust classification performance across all imple-

mented classifiers.

2.5.4 DR SRW HB significantly reduces computational cost

while maintaining the classification accuracy com-

pared with SRW HB

In the last section, it is demonstrate that the proposed SRW HB classifier, which

modifies the traditional HB classifier by updating the misclassification costs for
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samples with type 2 errors after each iteration, gives overall better prediction ac-

curacy compared with a number of state-of-the-art classifiers. Recall that we have

proposed in Section 2.4, a DR SRW HB method that implements a simple data

space partition scheme to split the original data space into two disjoint regions,

followed by training the SRW HB for both regions. The idea is that each region

contains about half samples of the entire problem, which is then much easier to

solve.

We now test the effectiveness of the data space partition scheme, by comparing the

performance of DR SRW HB against SRW HB for both scenarios. With regard to

the proposed SRW HB method, the underlying model cannot be solved to global

optimality for at least one iteration (within 200 s) on 4 datasets (either scenario),

including Phenol, Glass, Breast tissue and Ionosphere. We therefore run the space

partition-based DR SRW HB on those 4 datasets and compare the prediction ac-

curacies with these achieved by SRW HB. The results are presented in Table 2.4.

For scenario 1, DR SRW HB leads to higher classification rate on Phenol while

SRW HB is more accurate on Glass, Breast tissue and Ionosphere. It should be

noted that compared other literature classifiers, DR SRW HB still shows better

overall performance. When it comes to scenario 2, DR SRW HB offers much higher

prediction rates on Glass example, ties with SRW HB on Phenol and Breast Tissue

while losing on Ionosphere example. We can see that DR SRW HB performs bet-

ter in scenario 2 than scenario 1, because scenario 2 requires more computational

effort than scenario 1 as a result of more samples involved in training of scenario

2,. Considering both two scenarios, it is therefore conclusive that the proposed

data space partition scheme can maintain the overall prediction rates of SRW HB

on complex examples.

Table 2.4: Classification rate comparison between two proposed classifiers
DR SRW HB and SRW HB

Scenario 1 Ionosphere Phenol Glass Breast tissue

DR SRW HB 90.08% 90.41% 69.19% 63.55%

SRW HB 90.69% 89.41% 71.09% 66.32%

Scenario 2 Ionosphere Phenol Glass Breast tissue

DR SRW HB 89.74% 92.34% 73.36% 67.92%

SRW HB 91.17% 92.34% 66.36% 67.92%
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Recall that the DR SRW HB has been proposed to overcome the high computa-

tional cost of tackling complex classification problems, we report here, for scenario

2, the average computational time per run consumed by three variants of hy-

per box-based classifiers, namely HB, SRW HB and DR SRW HB. The results,

presented in Figure 2.10, clearly show that by partitioning a complex problem

into two sub-problems and solving two relatively easy problems, the computa-

tional cost dramatically decreases. On Phenol and Breast tissue, DR SRW HB

constructs hyper boxes in a matter of seconds while the CPU time consumed by

HB and SRW HB are significantly higher. While it takes hundreds of seconds for

DR SRW HB to train hyper boxes on Glass and Ionosphere, the actual compu-

tational time is still small fractions of the consumption of HB and SRW HB. For

scenario 1, the trend is similar that the proposed data space partition method

considerably reduces computational cost (data not shown).

We also compare our proposed DR SRW HB with an alternative solution pro-

cedure proposed in literature for hyper box classifier [104], in which after each

iteration, correctly classified training samples are removed and the dimensions

of established hyper boxes are fixed before optimising the hyper boxes for the

next iteration. It has been shown that the proposed solution procedure results

in the computational cost saving of 2 3 fold and generally decreased classifica-

tion accuracy. Our proposed DR SRW HB classifier clearly outperforms [104]

by offering much higher computational cost reduction. Thus, it is concluded that

DR SRW HB results in huge CPU savings of 1 or 2 orders of magnitude, compared

with HB and SRW HB. Overall, we propose here a strategy that for a classifica-

tion problem which SRW HB struggles to identify globally optimal solutions for

all iterations, the DR SRW HB is used instead; otherwise for an easy classification

problem, the SRW HB is used.
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Figure 2.10: Computational cost comparison between HB, SRW HB and
DR SRW HB. In the figure, average computational time per run of scenario
2 is reported for traditional HB, SRW HB and DR SRW HB on 4 datasets Phe-

nol, Glass, Breast tissue and Ionosphere.

Despite the significant reduction in computational time, DR SRW HB, based on

mixed integer programming, is still generally consuming more computational re-

source than the existing methods in literature. We note here that the prediction

accuracy remains the most important aspect of many real world data classification

problems, for example medical disease classification problems [81]. The classifiers

proposed in this work are aimed to achieve higher prediction accuracy for off-line

classification problems where computational time is not of major concern.
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2.6 Concluding Remarks

Data classification is an important data mining area subject to extensive on-going

research interest. Inspired by the promising classification rates of a hyper box clas-

sifier [74] in literature, we propose in this work two new solution procedures that

aim to improve the performance of hyper box classifier. The first improvement,

SRW HB, updates the samples weights during each iteration of the training pro-

cess so that the type 2 misclassified samples, i.e. misclassified samples enclosed

in one of the hyper boxes from another class, are given more weights than the

other samples. Through 6 binary and multi-class real world datasets, it is demon-

strated that the proposed SRW HB can provide consistently good classification

rates, outperforming the traditional HB and other state-of-the-art classifiers for

example SVM, NN and Logistic regression.

A data space partition method has also been introduced to reduce the compu-

tational cost of SRW HB, which works by splitting the dataset into two disjoint

regions, each of which is then solved independently using SRW HB. On the 4 com-

plex datasets, the proposed DR SRW HB appears to consume dramatically less

computational time than the original HB and SRW HB, often in 1 to 2 orders of

magnitude, on the basis of maintaining the desirable level of prediction accuracy

compared with the proposed SRW HB classifier.

A natural extension of this work in the near future is to investigate a more generic

data space partition scheme. The sample partition scheme presented and used

for DR SRW HB proves to significantly reduce computational cost but can only

perform binary partition. For large-scale data classification problems, the pro-

posed DR SRW HB may struggle to identify quality solution in training proce-

dure. Therefore, a generic data space partition method, which splits data into

multiple regions and each one of which is easy to solve, can help scale up the

hyper box classifiers to large-size problems.

Furthermore, classification accuracy, defined as the percentage of correctly pre-

dicted samples, is used as the metric for comparing the performance of various

competing methods in this work. It is noted here that when it comes to a prac-

tical problem, more comprehensive examination of the performance of a classifier

should be conducted on the basis of individual samples to yield better insights.
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For example, identify the set of consistently misclassified samples may help release

the weakness of a classifier, i.e. the range where the particular classifier does not

predict well.



Chapter 3

Pathway-level Classification of

Complex Diseases using High

Throughput Gene Expression

Profiles

For complex diseases, traditional clinical variables are shown to poorly correlate

with patients’ phenotypic outcomes. High throughput microarray profiling tech-

nology analyses, in a single snapshot, the expression levels of thousands of genes

for all patients in the cohort. This chapter focuses on developing a novel com-

putational framework that accurately classify patients into their corresponding

phenotypic outcomes using gene expression data.

3.1 Introduction and Literature Review

For complex diseases, the current diagnostic and prognostic factors fail to accu-

rately distinguish patients of different clinical outcomes [6, 24, 27, 30], mainly

because of the heterogeneous nature of disease aetiology and poorly understood

underlying mechanisms [112]. The advent of high throughput methods, where

snapshots of gene or gene product activity (feature) are profiled in samples of

varying disease states (class), has provided a powerful means of relating disease

phenotypes to latent genetic mechanisms. In charactering disease, the gene expres-

sion matrix serves as input to a classification task where each sample is allocated

43
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to a relevant phenotypic class via specific gene signatures or biomarkers that can

best differentiate between outcomes. Such disease classification tasks have been

successful in deriving biomarkers for diagnosis [113], prognosis [6, 25, 114] and

response to treatment [115, 116] in complex disorders.

Despite successful reports, disease classification is impeded by the so-called “large

p small n“ property, whereby the number of samples is typically several orders

of magnitude smaller than the number of genes (features), making it difficult to

extract reliable information from the transcriptomic profiles. Therefore, to obtain

statistically reliable gene signatures capable of accurate prediction of samples into

their corresponding phenotypic outcomes, suitable reduction of dimensionality is

sought. Dimension reduction aims to reduce the number of features in the original

gene expression matrix to a size that is conducive for efficient disease classifica-

tion. Traditional computational methods estimate the discriminative power of

individual genes, whose expression pattern can best distinguish the samples, and

a classifier is subsequently applied on the reduced set of differentially expressed

genes. However, gene-based disease classification approaches have been shown in

various recent studies to yield non-reproducible gene signatures of moderate pre-

diction accuracy [117, 118]. Thus, current studies have increasingly focused on

integrating biological data a priori, including protein interaction networks (PIN)

[42] or biological pathway information [41] into gene expression data and proposing

biomarkers at the level of functional sets of genes. It has been demonstrated that

biomarkers represented as groups of genes result in higher prediction accuracy,

more reproducibility across different datasets and better mechanistic interpreta-

tion [42, 48, 119].

In the below subsections, both traditional gene-based disease classification ap-

proaches and more recent gene set-based approaches are briefly reviewed.

3.1.1 Single Gene-based Approaches

In general, disease classification approaches where all genes are considered si-

multaneously employ a feature selection algorithm to select a subset of highly

differentially expressed genes from the entire set of profiled genes, before train-

ing a classifier on the selected genes. In [6] and [31], genes were rank-ordered by

their degree of correlation with the breast cancer distant-metastasis-free survival
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time and breast cancer outcome respectively, and gene signatures have been con-

structed by sequentially adding genes from the ranked lists until the maximum

prediction performance is reached. A similar sequential gene selection method has

been described in [120], which takes into account both the discriminative power of

individual genes and their correlation. The underlying idea is that addition of a

new candidate gene into the optimal gene set must contribute towards increased

classification performance while maintaining a low level of correlation with the

current genes in the set to reduce redundant information. An optimisation model

that outputs a user-specified subset of genes is proposed in [121], where group of

genes is selected to achieve maximal cross-class separability, minimal same-class

tightness and gene pair-wise correlation. Similar methods are proposed in other

studies [33, 81, 82, 113, 122].

A number of ensemble methods are also available, which combine the advantages

of many different classification methods, so as to derive a more efficient frame-

work in comparison to stand-alone feature reduction and classifiers. For example,

principal component analysis is employed in [123] to project the expressions of

genes into 10 dominant principal components, followed by inner cross validation

procedure where an artificial neural network classifier was trained for each training

sample subset. All constructed classifiers subsequently cast a vote to determine

the phenotype of a testing sample. In [124], a list of genes with best discrimina-

tive power is constructed and then assigned to different gene subsets. A neural

network classifier is trained with each subset of genes and the final ensemble clas-

sifier is formed with majority voting strategy. Given a training sample set, the

method from [125] creates a number of bootstrap sample sets by drawing with

replacement and determining for each bootstrap sample set the weights of genes.

Ensemble feature ranking is achieved by aggregating gene weights over all boot-

strap sample sets to produce a final gene ranking. In [126], information gain is used

to evaluate both the separability of genes and gene-gene dependence, followed by

clustering genes into different gene groups with a Markov blanket. Subsequently,

different gene sets are constructed by randomly sampling one representative gene

from each gene group, and an ensemble classifier is built by learning from each

gene set. Similar ensemble-based approaches using microarray samples for disease

classification are reported in [127–129].

Gene markers constructed across different datasets share disappointingly little
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overlap, despite similar predictive power [42, 117, 118]. This lack of agreement

limits the applicability of such methods and renders mechanistic interpretability

problematic. Such diagnostic or prognostic profiles relate to genes that do not

act in isolation, but in fact work in concert, forming sub-networks that collec-

tively modulate or determine cell fate. Accounting for such molecular synergies in

feature reduction and disease classification protocols can also alleviate challenges

of single-gene classifiers related to cellular heterogeneity in tissue, genetic hetero-

geneity among patients, measurement noise, thereby leading to increased biological

interpretability of biomarkers and enhancing insights into the mechanisms of the

disease. Therefore, feature selection and classification methods where all genes are

treated independently are increasingly replaced by approaches where the effects

of groups of genes on disease prediction are considered simultaneously. Such gene

sets can either reflect curated biochemical pathways or functional modules derived

from protein interaction networks, discussed in the following sections.

3.1.2 Network-based Approaches

The past few years have seen remarkable growth of protein interaction data. Net-

work principles, where nodes represent genes or their products and edges indicate

some type of interaction between them, have served as a particularly suitable

abstraction basis to develop computational procedures for understanding system

properties [130]. Disease module-based methods assume that all cellular compo-

nents that belong to the same topological, functional or disease module have a

high likelihood of being involved in the same disease [131]. This strategy involves

constructing the interactome by integrating available data from online databases

in the tissue or cell lines of interest and then identifying functional units that

contain most of the disease-associated genes. Disease modules are then validated

by, for example, showing that the genes in a module have related functions or

correlated expression patterns.

Several methods have been proposed that extract functional modules of genes,

whose expression patterns can distinguish samples from different phenotypes [42,

119, 132]. Analysis of two breast cancer patient cohorts have revealed that altered

modularity of the human interactome may be useful as an indicator of breast can-

cer prognosis [133]. In [42, 132], a greedy search is performed over a PIN network

to identify a number of gene modules whose average expression is locally maximal.
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The averaged expression values per module for each sample, called module activ-

ity, are used as features for a subsequent classification task. Discriminative power

and correlation among genes in a linear path search is employed [119]. Linear

paths are then combined to form modules, and module activity is inferred with a

probabilistic method. In [134], a traditional support vector machine classifier is

modified to consider the structure of gene interactions and force adjacent genes

to contribute similarly when building the classifier. Minimal modules where num-

bers of differentially expressed member genes exceeded a pre-specified threshold

are investigated in [135].

Each of those disease modules may reflect a specific functional pathway relevant

to development of the disease of interest. However, it is argued that PIN data

is generally unreliable and noisy, as PIN networks typically represent a collection

of many interactions under various experimental conditions and cell cycle phases.

Another problem of using PIN data is the high false positive rate, meaning that

part of recorded interactions may not actually exist [136, 137], which in turn may

lead to false discovery of biomarkers. Therefore, the adoption of canonical path-

ways, rather than protein interaction modules, using expertly curated knowledge

may provide clearer insight into the interplay between genes in complex diseases.

3.1.3 Pathway-based Approaches

Biological pathways are a trusted expert-curated collection of molecular interac-

tion networks. The availability of pathway information from publc databases, for

example Kyoto Encyclopedia of Genes and Genomes (KEGG) [138], Gene Ontol-

ogy (GO) [139] and Reactome [140], provide the possibility of analysing functional

sets of genes that fall within common pathways and identifying the disease-relevant

pathways as biomarkers. Initial efforts of gene set-based approaches included gene

set enrichment analysis [141], which calculates to what extent a set of genes show

statistically significant difference between samples belonging to either of two phe-

notypes. Other similar computational tools have also been reported [142–144].

However, those statistical frameworks commonly assign one score for each set of

genes to quantify the deregulation of this gene set under disease status of inter-

est, but does not provide more information on the level of gene set deregulation

for each sample. It is argued that this drawback compromises their potential in

personalised pathway analysis [40].
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Therefore, a more informative approach may be to assign a score to each pathway

and sample, which represents the activity of that particular pathway for that sam-

ple. The mean and median expression value across all constituent genes within

a pathway, termed pathway activity, has been proposed in [145]. Other studies

produce pathway activity measures based on principal component analysis (PCA)

to derive the top principal component that captures the maximum variance in

the dataset [40, 48, 146]. More recently a supervised greedy search algorithm

was proposed that ranks genes according to their individual discriminative power

and then searches for a subset of highly ranked genes whose averaged expression

profiles yield better discriminative power [41]. This method was modified so that

it accounts for up- and down-regulated genes by assigning positive sign and neg-

ative sign respectively [147]. Both methods are inherently applicable to binary

classification problems. A statistical inference method [148] proposes to aggregate

the probabilistic evidence of all genes within a pathway for predicting a sample

into one of the two phenotypes. Other relevant studies based on the concept of

pathway activity either require other biological information as prior, for example

copy number variation and protein interactions [149] or are not designed for clas-

sification tasks [147, 150].

Pathway activity-based classification approaches provide competitive or higher

prediction accuracy when compared to traditional single genes-based classifiers

[41, 151], so extending or refining their use is a promising avenue for biomarker

discovery. Despite rapidly increasing interest in developing novel and robust path-

way activity inference methods, most of the existing methods still use rather sim-

ple means of summarising the expression patterns of either some or all constituent

genes into the composite pathway level attribute, for example the mean or median

value of sample expression across all or a subset of constituent genes [41, 145].

PCA-based methods [40, 48, 146, 152], calculate the first principal component,

representing the maximum variance of the data set, as pathway activity. However

such methods do not take into account the phenotype information of samples.

Furthermore, some current pathway activity inference methods are constrained to

two-phenotype (binary) classification problems [41, 147–149], disallowing their use

in more complex problems of multi-phenotype classification.

In this work, we propose a novel multiclass method that infers pathway activity
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in a supervised manner. The proposed method summarises expression patterns

of constituent genes into pathway activity via weighted linear summation of gene

expression. As opposed to some methods in literature where gene weights are

taken as a prior, in our work gene weights are decided by the model, so that

the constructed pathway activity can optimally distinguish samples from different

phenotypes. Furthermore, the mathematical framework of this method offers the

ability to the user to explicitly constraint the maximum number of constituent

genes contributing to pathway activity inference. Using a number of published

gene expression profile datasets, we show that this pathway activity inference

method is robust in terms of the number of constituent genes allowed to deter-

mine the pathway activity metric. Comparative analyses show that the method is

an effective means of reducing classification features, as it either outperforms or

at least matches competing pathway activity inference methods in two-phenotype

disease classification problems, and provides significantly better classification rates

in multi-phenotype classification problems.

3.2 A Pathway Activity-based Disease Classifi-

cation Procedure

An overview of the computational procedure developed for pathway activity-based

disease classification is illustrated in Figure 3.1. A microarray gene expression

profile and a set of pathways with their constituent genes form the input to create

pathway-specific gene expression matrices. For each pathway, m denotes member

genes, s samples and Asm the expression value of gene m in sample s. To ensure

gene expressions are of similar scales, data normalisation is performed on the raw

data Asm. More specifically, for each gene m, its expression values across all

samples s are normalised to have mean of 0 and standard deviation of 1. This

gives to the normalised expression data Gsm. The first stage of our computational

procedure derives a new composite feature, pathway activity pas, from the pathway

specific gene expression profile Gsm. The second stage of our protocol, the inferred

pathway activities for all pathways are assembled to form a pathway activity profile

matrix, on where a classifier is trained to predict the phenotype of a new sample.

In next section, we present a novel mathematical model, which infers pathway

activity with optimal classification accuracy.
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Figure 3.1: Schematic flow chart of the DIGS-based approach for multiclass
disease classification problems.

3.2.1 A novel mathematical programming formulation to

infer pathway activity

The indices, parameters and variables used in the model to infer pathway activity

for each pathway are described below:
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Indices

s sample

m pathway member gene/feature

c,k class label/phenotype

cs class label for sample s

Parameters

Asm expression level of gene m on sample s

Gsm standarised gene expression profile

U an arbitrarily large positive number

ε an arbitrarily small positive number

NoG number of member genes allowed to have non-zero weight in

building pathway activity for each pathway, a user-specific

value

Positive variables

rpm positive influence of gene m towards pathway activity infer-

ence

rnm negative influence of gene m towards pathway activity infer-

ence

Free variables

pas inferred pathway activity of sample s

LOc lower bound of range of class c on pathway activity

UPc upper bound of range of class c on pathway activity

Binary variables

Es 1 if pathway activity of sample s falls within the range of its

class;

0 otherwise

Lm 1 if effect of gene m on pathway activity inference is positive;

0 if negative effect

Ykc 1 if upper bound of pathway activity range for class k is lower

than lower bound of that for class c;

0 otherwise

Wm 1 if gene m is active in pathway activity inference (have non-

zero weight);

0 otherwise

Two sets of positive variables rpm and rnm are introduced, quantifying the positive
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and negative weights of gene m towards pathway activity inference. For sample

s, pathway activity, pas, is defined as the summation of the standardised gene

expression values, Gsm multiplied by the gene weight (rpm−rnm) over all member

genes:

pas =
∑
m

Gsm(rpm − rnm) ∀s (3.1)

Both positive and negative weights of a gene m are defined as positive continuous

variables, and their values are determined by the optimisation model. One set

of binary variables, Lm, which takes values of either 0 or 1 has been introduced,

while the following equations ensure that for each gene m at most one of rpm and

rnm can take positive values:

rpm = Lm ∀m (3.2)

rnm = 1− Lm ∀m (3.3)

When Lm = 1, rpm can take any value between 0 and 1 while rnm is forced to be

equal to 0 ; otherwise when Lm = 0, rpm is forced to be equal to 0 while rnm can

be between 0 and 1. In either case, both rpm and rnm can be equal to 0, which

means this particular gene has zero weight in inferring pathway activity. Overall,

a gene can have positive, negative or zero weight towards the composite feature

construction. For normalisation purpose, the summation of absolute gene weights

should be equal to one: ∑
m

(rpm + rnm) = 1 (3.4)

Inspired by [41], where a small subset of member genes is selected (usually less

than 7) to construct pathway activity, we add constraints to limit the number of

genes having non-zero weights in inferring pathway activity. Thus a new set of

binary variables, Wm, are introduced to the model to indicate whether a member

genem is active, i.e. having non-zero weights in constructing pathway activity or

not:

rpm + rnm ≤ Wm ∀m (3.5)

If Wm takes the value of 0 then both positive weight (rpm) and negative weight

(rnm) of gene m are forced to be equal to 0, while when Wm is equal to 1, gene m
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is allowed to take any weight (rpm − rnm) between -1 and 1. The next equation

restricts the maximum number of genes allowed to have non-zero weights to a

manually specified value (NoG):

∑
m

Wm ≤ NoG (3.6)

In the case where NoG is equal to or larger than the number of member genes

available in the pathway, the constraint is redundant as all the member genes will

be allowed to take any weight (rpm−rnm) between -1 and 1. We aim to construct

pathway activity as a feature with good discriminative power, which can separate

samples from different phenotypes as much as possible.

For each phenotype/class c, two continuous variables have been introduced as

LOc and UPc, denoting the lower and upper bound respectively, of the range of

pathway activity for phenotype c. In addition, a set of binary variables, Es, have

been introduced, which is equal to 1 if activity value of sample s falls within the

lower and upper bounds of its class range; 0 otherwise. The following constraints

are also introduced:

0 ≤ pas − LOc + U(1− Es) ∀s, cs (3.7)

pas − UPc − U(1− Es) ≤ 0 ∀s, cs (3.8)

where cs is the phenotype for sample s and U is an arbitrarily large positive

constant. On the constructed pathway activity, ranges of different classes are not

allowed to overlap. A set of binary variables, Ykc, have been introduced as being

equal to 1 if upper bound of range for class k is lower than lower bound of range

for class c on pathway activity; 0 otherwise. The additional two sets of constraints

have been introduced to guarantee the non-overlapping condition:

UPk + ε ≤ LOc + U(1− Ykc) ∀k < c (3.9)

UPc + ε ≤ LOk + UYkc ∀k < c (3.10)

where ε is an arbitrarily small positive number ensuring that pair-wise classes do
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not share a border. Equ. (3.9) and (3.10) are generated for each pair of classes.

The objective of the optimisation problem is to infer the pathway activity such that

it is as discriminative as possible, i.e. as many samples as possible can fall within

the range of its corresponding classes (Es = 1). In other words, the objective

function is to minimise the number of misclassified samples:

min
∑
s

(1− Es) (3.11)

The resulting mathematical programming-based formulation for inferring pathway

activity is summarised below:

Objective function (3.11)

Subject to:

Pathway activity definition (3.1)

Positive and negative gene effect constraints (3.2) and (3.3)

Normalisation constraint (3.4)

Restriction of the number of active genes (3.5) (3.6)

Pathway activity enclosing constraints (3.7) and (3.8)

Non-overlapping constraints for ranges of different classes (3.9) and (3.10)

Lm, Es, Wm, Ykc ∈ {0, 1}; rpm, rnm ≥ 0; pas, LOc, UPc: unrestricted

The proposed mathematical programming formulation consists of a linear objective

function and a number of linear constraints. The linearity and presence of binary

and continuous variables define an MILP model, named DIGS (DIfferential Gene

Signatures) in this work, and can be solved to global optimality using some of the

standard algorithms like branch-and-bound.

3.2.2 Comparison of the DIGS Model with Other Pathway

Activity Inference Methods and Single Gene-based

Methods

To compare the results obtained with the DIGS model, a number of pathway activ-

ity methods from the literature (summarised in Table 3.1) have been implemented.

In overview, these methods include: i) the method that uses the microarray gene

expression profile without pathway information, for example SG; ii) the method
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that utilises pathway information but is based on the pathway specific gene ex-

pression profile instead of inferring pathway activity, for example Per pathway

[45], and iii) those that take advantage of pathway information and infer pathway

activity, for example [41, 145, 146].

In detail, comparative results are presented by implementation of the following

methods: i) a gene-based approach has been implemented for comparison where,

given a whole gene expression profile, a feature selection [153] method is applied

to select a subset of top genes with the best discriminative power for classification.

The multiclass feature selection method [153] used here employs a distance met-

ric, for example weighted L1 metric or K-L divergence and gives a subset of top

attributes/genes with respect to the aggregated pair-wise class distances, where

the number of attributes in the subset obtained is pre-set by the user. A classifier

is then trained using only the small subset of discriminative genes for disease clas-

sification problems; ii) the Yang et al. [45] method, where each pathway-specific

gene expression profile is treated independently, i.e. training and testing are con-

ducted for each pathway-specific expression profile separately and classification

accuracies across all pathways are averaged to obtain the final classification rate

(referred as per pathway), and iii) the two methods from Guo et al. [145] (referred

as mean and median, respectively), which take either the mean or median gene

expression values of all genes within a pathway for each sample. The Bild et al.

[146] approach (referred as PCA) of using the first principal component as repre-

sentation of pathway activity, which represents a family of principal component

analysis-based methods. The Lee et al. [41] method, which works by identifying

and averaging a subset of condition-responsive genes (referred as CORGs), has

been implemented only for two-phenotype disease classification problems, as it is

not suited to multi-class problems.
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Table 3.1: Overview of evaluated methods

Guo et al. [145] Abbreviation: Mean

Computational basis: Pathway activity

Description: Create pathway-specific gene expression profiles; for

each pathway, pathway activity for sample is its mean expression

value among all member genes; a classifier is trained on pathway

activity profile.

Guo et al. [145] Abbreviation: Median

Computational basis: Pathway activity

Description: Create pathway-specific gene expression profiles; for

each pathway, pathway activity for sample is its median expression

value among all member genes; a classifier is trained on pathway

activity profile.

Bild et al. [146] Abbreviation: PCA

Computational basis: Pathway activity

Description: Create pathway-specific gene expression profiles; for

each pathway, top principal component is calculated as the pathway

activity; a classifier is trained on pathway activity profile.

Lee et al. [41] Abbreviation: CORGs

Computational basis: Pathway activity

Description: Create pathway-specific gene expression profiles; for

each pathway, apply t-test to rank genes and perform a greedy

search to find a subset of genes whose averaged expression values

is locally maximal in t-test value; a classifier is trained on pathway

activity profile; only applicable for two-class problems.

Yang et al. [45] Abbreviation: Per pathway

Computational basis: Single genes

Description: Create pathway-specific gene expression profiles; a

classifier is trained on each pathway-specific gene expression profile

separately, and prediction rates achieved by all pathway classifiers

are averaged as the final prediction rate.

Single genes Abbreviation: SG

Computational basis: Single genes

Description: Apply [153] to select a subset of top genes; a classifier

is trained on reduced gene expression profile.

Proposed Abbreviation: DIGS

Computational basis: Pathway activity

Description: Create pathway-specific gene expression profiles;

Apply the proposed DIGS model to construct pathway activity

as weighted linear summation of gene expressions; a classifier is

trained on pathway activity profile.
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3.3 Comparative Studies

A number of case studies have been employed to benchmark the performance of

the proposed DIGS disease classification approach.

3.3.1 Data Sources

Complex diseases such as breast cancer and psoriasis are the product of multiple

gene interactions that collectively contribute to the etiology of the disease through

largely unknown mechanisms. Breast cancer is the most frequently diagnosed ma-

lignancy and has been intensively studied by gene expression profiling [6, 27, 31].

Psoriasis is a systemic, inflammatory skin disease with autoimmune underpinnings

affecting 2-3% of the world population [154, 155]. Prostate tumor is the most fre-

quently diagnosed cancer in American men [156] and displays a broad range of

clinical and histological behaviors [113]. Diffuse large B-cell lymphoma (DLBCL)

is the most common lymphoid malignancy in adults [33] with less than 40% pa-

tients responding desirably to the current therapy while the remainders succumb

to the disease, highlighting the unidentified molecular heterogeneity in the tumors

[157].

A total number of 8 published microarray gene expression profiles were obtained

that represent these diseases (Table 3.2). In terms of disease phenotypes in these

datasets, used as class outcomes in the relevant classification tasks, for psoriasis

samples are either lesional or non-lesional tissue from psoriasis patients, as well as

healthy controls [34, 158]. For breast cancer, 49 samples belong to three disease

classes, apocrine, basal and luminal [159]; 139 samples are divided into healthy,

luminal, ERBB2 and basal [27]; expression profiles of 230 breast cancer patients 48

of whom became residual invasive cancer free in the breast or lymph nodes after a

6-month preoperative chemotherapy and the remainder still had residual invasive

cancer after the treatment. Gene expression data were generated using specimens

of breast cancer before any treatment [115]; lymph-node negative breast cancer

patients with some of them diagnosed with distant metastasis [25]. For prostate

cancer, 102 expression profiles are used to distinguish tumour samples from nor-

mal samples [113]. Finally, 77 expression profiles of patients either diagnosed with

diffuse large B-cell lymphoma (DLBCL) or follicular lymphoma (FL) are used [33].
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All microarray datasets have been obtained on Affymetrix platforms. For each

dataset, raw data have been downloaded and pre-processed using the Bioconduc-

tor package LIMMA [160]. KEGG C2 functional gene sets have been downloaded

from MsigDB database (v3.0, Sep 2010) [161], which included a total number of

186 expert-curated pathways.

Table 3.2: Microarray gene expression datasets

Dataset Disease # of samples Phenotype Source

Swindell [158] Psoriasis 180 Health control

Psoriatic non-lesional skin

Psoriatic lesional skin

GSE13355

Yao [34] Psoriasis 82 Health control

Psoriatic non-lesional skin

Psoriatic lesional skin

GSE14905

Farmer [159] Breast

cancer

49 Apocrine tumour

Basal tumour

Luminal tumour

GSE1561

Pawitan [27] Breast

cancer

139 Normal

Luminal tumour

ERBB2

Basal

GSE1456

Singh [113] Prostate

cancer

102 Normal

Tumour

broadinstitute.org

Shipp [33] DLBCL 77 DLBCL

FL

broadinstitute.org

Popovici [115] Breast

cancer

230 Residual invasive cancer

No residual invasive cancer

GSE24061

Desmedt [25] Breast

cancer

198 Metastatic

Non-metastatic

GSE7390

3.3.2 Evaluation of Classification Performance

The performances of various pathway activity metrics are evaluated by the clas-

sification accuracy achieved across the eight disease datasets. For each dataset,

samples are split randomly in training and testing sets of 70% and 30% respectively

and this procedure is repeated fifty times. Composite features are constructed us-

ing Mean, Median, CORGs, PCA and DIGS on the training samples, resulting in

low dimensional matrix of samples across pathway activities, on which five popu-

lar classifiers SMO, NN, K-NN, Logistic Regression (Logistic) and HB are trained.
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The classifiers are then tested on the testing sample set and the prediction ac-

curacy is calculated as the number of correctly classified samples divided by the

total number of testing samples, averaged across the fifty testing sets.

The above procedure is modified where pathway activities are not used, i.e. in

the SG and per pathway approaches. In the gene-based approach, the feature

selection method [153] has been applied using training samples only and the top

genes are selected. The number of top genes is set to be identical to the number

of pathways (i.e. 186 ) in order to derive comparable dimensionalities between the

pathway activity-based and gene-based approach. For the per pathway approach,

each of the 5 classifiers have been trained using training samples only and then

validated on the testing samples sets for each pathway separately.

Overall, 8 microarray gene expression profiles (DATASET), 7 competing meth-

ods (METHOD) and 5 classifiers (CLASSIFIER) are employed in our study.

For each combination of DATASET, METHOD and CLASSIFIER, classification

accuracies over 50 individual testing sets are averaged as the prediction accuracy

for this combination. It is important to note that CORGs [41] is applicable for

only two-phenotype problems, therefore we divide the 8 DATASETS into a group

of 4 binary DATASETS and the other group of 4 multiclass DATASETS. For

the binary classification comparison, for each METHOD we average the predic-

tion accuracies over all 4 binary DATASETS and all 5 CLASSIFIERS, which

gives a comprehensive indication of the efficiency of the evaluated METHODS

(i.e. Mean, Median, PCA, CORGs, per pathway, SG and the proposed DIGS).

For the multiclass case, the same analysis is applied and all comparative analyses

are discussed in the next section.

The DIGS model has been implemented in GAMS using the CPLEX MILP solver

in a CentOS 5.2 64 bit Unix computer environment. The optimality gap is set as

0. Computational resource limit is set as 200 CPU seconds per run. Among the 5

classifiers SMO, NN, K-NN and Logistic have been implemented in WEKA, with

the following parameters for NN: hidden layers 2, learning rate 0.1, momentum

0.2, training time 10000; and for K-NN: the number of nearest neighbours is se-

lected as 5. For other classifiers, their default settings have been retained. HB has

been reproduced in GAMS according to its original publication [74].
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3.3.3 Sensitivity Analysis for NoG

Parameter NoG determines the maximum number of pathway member genes that

have non-zero weight in activity inference. Tuning this parameter is important

as a small value may not fully utilise the discriminative member genes, while an

excessively large value may potentially cause over-fitting, i.e. in the case where too

many genes are allowed to take non-zero weights for pathway activity against a rel-

atively small number of training samples, leading to decreased prediction accuracy.

Here, the DIGS model is applied to infer pathway activity with NoG set to 5,

10, 15 and 20, followed by training and testing using a range of classifiers for each

microarray dataset. As a comparison, DIGS is also run with NoG set equal to the

number of member genes for each pathway, so as to allow all member genes in a

pathway to take non-zero weights for pathway activity inference. The prediction

rates achieved by these different values of NoG are denoted by DIGS 5, DIGS 10,

DIGS 15, DIGS 20 and DIGS ALL and are shown in Figure 3.2 A and B with

SMO and NN classifiers and other classifiers in Figures A.1, A.2 and A.3 in

Appendix section.

Generally, the DIGS model is robust with respect to parameter NoG, as in the

range of 5 to 20, classification prediction performance is found to be mostly stable,

with some improvement observed between NoG=5 and 20. Overall, it is noted

that prediction performance is case-dependent, not only depending on the dataset

under investigation, but also varying with the particular pathway in question (e.g.

number of member genes per pathway). In some cases, some improvement is ob-

served against the case of no selection, for example on Yao, Farmer and Pawitan

datasets with SMO classifier classification rates increase from 83.7%, 88.3% and

92.9% to 89.5%, 97.6% and 98.8% (NoG=5 ), respectively (Figure 3.2 A).

The model performs well even in the case where the number of genes is not reduced

(see DIGS ALL in Figures 3.2 and A.1, A.2 and A.3), indicating that, although

reducing the total number of genes per pathway through parameter NoG may be

beneficial to a particular application, it is by no means compulsory. Therefore,

NoG offers the flexibility of feature reduction, if looking into the effect of a subset

of genes is desired, without imposing any additional limitations that would stem
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from cases where parameter specification would be mandatory. For the imple-

mentations discussed below, NoG equal to a value of 10 was chosen as a sensible

compromise of the effects discussed above.

3.3.4 Classification Rate Comparison against Other Meth-

ods

The performance of the proposed DIGS model against other competing methods

in literature is compared and discussed here. As described in the previous section,

extensive comparisons were implemented across 8 datasets (DATASET) and 7

competing methods (METHOD). To also account for the effect of classifier choice

in the computational procedure, we tested the DIGS model across 5 classifiers

(CLASSIFIER). The results across all DATASET, METHOD and CLASSIFIER

combination are illustrated in Figures 3.3 A and B (for 5-NN and NN classifiers)

and in the Appendix A.4, A.5 and A.6 (for SMO, HB and logistic).

It is obvious from Figure 3.3 A that using 5-NN as classifier DIGS-based clas-

sification approach achieves higher classification rates than other pathway activ-

ity inference methods, including Mean, Median, PCA and CORGs. On all 8

datasets, DIGS model inferring pathway activity has always outperformed other

pathway activity inference methods. It is not a surprise as DIGS seeks to infer

pathway activity as of optimal discriminative power. It is also true that DIGS-

based pathway activity classification approach results in higher prediction accuracy

than Per pathway, where pathway-specific gene expression profiles are trained and

tested independently without constructing pathway activity features. Lastly, the

same observation can be made when comparing DIGS to SG, where 186 genes

of best discriminative power are selected for classification. DIGS leads to better

classification rates than SG on six occasions (Singh, Popovici, Desmedt, Swindell,

Farmer and Pawitan), while being tied with SG on Yao and trailing SG by marginal

extent on Shipp. Overall it is evident that the proposed DIGS-based classification

approach leads to more robust and accurate classification than other state-of-the-

arts approaches in literature.

With regards to the actual prediction rates, the combination of DIGS model in-

ferring pathway activity and 5-NN classifier offers prediction rates of above 90%

for 4 out of 8 employed datasets, including Singh, Shipp, Yao and Farmer, around
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Figure 3.2: Sensitivity analysis of parameter NoG for DIGS model with SMO
(A) and NN (B) classifiers. For each of the 8 datasets, the proposed DIGS
model is applied to infer pathway activity while setting NoG, i.e. the maximum
number of member genes in a pathway allowed to have non-zero weights, to 5,
10, 15 and 20. In addition, DIGS model is also applied with NoG set to equal
to the number of available member genes in a pathway, i.e. all member genes

can take non-zero weights to construct pathway activity.
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Figure 3.3: Classification accuracy comparison of 7 competing methods using
5-NN (A) and Neural Network (B) classifiers. The proposed DIGS pathway
activity inference method is compared against other pathway activity inference
methods (Mean, Median, PCA and CORGs) and also genes-based methods (SG
and Per pathway). Classification accuracy is summarised as average prediction
rates over 50 runs of random partition of datasets into a 70% training set and
a 30% testing set. With 5-NN classifier (A) and Neural Network classifier (B).

80% for another 3 datasets, including Popovici, Swindell and Pawitan, while still

managed 70% for the last dataset Desmedt. The generally high prediction rates

demonstrate the applicability and efficiency of the proposed DIGS model in prac-

tice.
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To show that the desirable prediction rates achieved by DIGS-based approach

is not due to a specific bias of DIGS model with 5-NN classifier, we present the

classification accuracy comparison using Neural Network classifiers in Figure 3.3

B. According to Figure 3.3 B, when employing Neural Network classifier, DIGS-

based disease classification approach again shows great competitiveness in 4 binary

datasets that it gives the highest classification rate in Popovici; is tied as the top

method in Singh with single genes-based approach and in Desmedt with CORGs;

in Shipp DIGS trails the most accurate approach only marginally. In terms of 4

multiclass datasets, DIGS-based classification approach dominates in all of them.

The same phenomenon can be observed using the other 3 implemented classifiers

that DIGS model either provides competitive classification accuracies or gives the

highest classification rate (See Figures A.4, A.5 and A.6 for more details).

To obtain an overview of how our methodology compares across all combinations

of DATASET, METHOD and CLASSIFIER, we used a simple normalisa-

tion procedure where for each pair of DATASET and CLASSIFIER the actual

prediction rates for every METHOD is divided by the highest prediction rates

achieved throughout all METHODS. In other words, the normalised prediction

rates, scaled between 0 and 1, reflect the relative performance of a particular

METHOD compared against the best performance across all methods for this

specific combination of METHOD and CLASSIFIER. For example, on the

Popovici dataset with 5-NN as classifier, the highest prediction rate across all

7 METHODS (achieved by DIGS as 80.14%) is given a score of 1 and for all

other methods their prediction rates are divided with the highest prediction rate

(in this case for DIGS), to express the relative performance of that method to the

best, e.g. raw prediction accuracy of 75.13% achieved by CORGs is normalised

to: 75.13%/80.14% = 0.9375. For each combination of METHOD and CLASSI-

FIER, normalised prediction rates are averaged over 4 binary DATASETS and

4 multiclass DATASETS and are shown in Tables 3.3 and 3.4 respectively.

In terms of binary datasets, Table 3.3 clearly indicates that DIGS pathway infer-

ence model comes at the top of all METHODS. This is true in the case of most

classifiers used and it is only when using with logistic as classifier where DIGS is

outperformed by CORGs and SG. For multi-class datasets (Table 3.4) DIGS is

the best method throughout, indicating the strength of our proposed methodology

for the most challenging cases where multiple outcomes need to be predicted. This
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highlights that one of the contributions of this work is to design, according to the

authors’ best knowledge, the first supervised pathway activity inference method

applicable to both binary and multiclass datasets.

Table 3.3: Mean normalised classification rates over 4 two-phenotype datasets

two-class 5-NN NN SMO HB Logistic Average

DIGS 0.9988 0.9973 0.9757 0.9835 0.9318 0.9774

SG 0.9071 0.9584 0.9474 0.9730 0.9816 0.9535

Mean [145] 0.8737 0.9323 0.9435 0.8819 0.8902 0.9043

Median [145] 0.8751 0.9004 0.9225 0.8707 0.8789 0.8895

Per pathway [45] 0.8903 0.9041 0.9325 0.8547 0.8632 0.8890

PCA [146] 0.8389 0.9480 0.9704 0.8402 0.8482 0.8891

CORGs [41] 0.9371 0.9769 0.9645 0.9595 0.9684 0.9613

*The highest normalised mean accuracy for each classifier is highlighted in bold,

same for Table 3.4

Table 3.4: Mean normalised classification rates over 4 multi-phenotype
datasets

two-class 5-NN NN SMO HB Logistic Average

DIGS 1 1 1 1 1 1

SG 0.9532 0.9488 0.9335 0.9241 0.8290 0.91772

Mean [145] 0.8126 0.9402 0.9372 0.7518 0.5614 0.80064

Median [145] 0.8090 0.9334 0.9246 0.7639 0.5440 0.79498

Per pathway [45] 0.8158 0.8322 0.8521 0.7893 0.5589 0.76966

PCA [146] 0.8696 0.9585 0.9452 0.8043 0.6450 0.84452

3.3.5 DIGS identifies disease relevant pathways

Besides the high classification rates achieved by the proposed DIGS model, we

have also identified a number of breast cancer pathways that may indicate pathway

biomarkers. For Pawitan, where around 90% classification rates can be achieved

using DIGS with all 5 classifiers, we employed an information gain feature ranking

method in WEKA to rank the constructed pathway activities for each random

training set. We record 11 pathways that are ranked more than 20 times as the

most discriminative. As we have constrained the proposed DIGS model to allow
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only 10 genes per pathway to participant in pathway activity inference, we further

extract for each identified significant pathway the set of constituent genes included

in the active genes more than 10 times.

The set of pathways and genes that are found as most discriminant with our

method are listed in the Table 3.5 below. Apart from obvious links to cancer

pathways, such as prostate cancer, and other well-known signalling pathways that

are known to be deregulated in tumorigenesis (Wnt signalling [162, 163]), we note

deregulation of nitrogen metabolism that has recently been linked to breast cancer

[164]. Ubiquitin-mediated proteolysis is also identified, in accordance to previous

reports about the importance of this pathway in disease [165] and is linked to poor

survival in breast cancer [166]. Glycosylation is also known to be altered in cancer

cells where overexpression of large glycoproteins such as mucins has been charac-

terized [167]. Enzymes from the family of GALNT6 and GALNT14 that we have

identified were found to be elevated in breast and gastric carcinomas [168]. We

also identify the adherens junction complex, that comprises of cadherins and the

catenins, is a major adhesion structure in endothelial cells and has been implicated

in playing a fundamental role in controlling the transport across the endothelial

barrier and in regulating angiogenesis [169] and has been shown to be affected in

invasive breast cancer [170].

We also draw pathway activity heat maps for the significant pathways identified

in Pawitan. In Figure 3.4, pathway activities are inferred using all samples.

Pathways are clustered based on similarity of activities on Euclidean distance.

It is clear from Figure 3.4 that pathways are divided into two main clusters,

showing distinct patterns of expression. Ubiquitin mediated proteolysis pathway,

Erbb signalling pathway, O glycan biosynthesis pathway, Dorso ventral axis for-

mation pathway and prostate cancer pathway are shown to be associated with

up-regulation in Luminal tumour, and down-regulation in Basal tumour. The

other significant pathways appear to have the opposite regulation mechanism, i.e.

they are down-regulated in Luminal tumour and up-regulated in Basal tumours.
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Table 3.5: Significant pathways and constituent genes identified by the pro-
posed DIGS model for Pawitan

Pathway Significant constituent genes
PROSTATE CANCER EGFR, TCF7L1, GSTP1, PDGFRA, CCNE1, CHUK,

PIK3R3, ERBB2, PIK3R1
UBIQUITIN MEDIATED PRO-
TEOLYSIS

UBE2E3, MID1, SKP2, BRCA1, WWP1

WNT SIGNALING PATHWAY FZD7, SOX17, TCF7L1, SKP1, SFRP1, FZD8
O GLYCAN BIOSYNTHESIS GALNT3, GALNT7, GALNT11, GALNT6, GCNT3,

B4GALT5, GALNT8, C1GALT1, GALNT12, GCNT4,
GALNT14, GALNT10, GALNT2, ST3GAL2, GCNT1,
ST3GAL1, C1GALT1C1, GALNT1

ADHERENS JUNCTION EGFR, ERBB2, TCF7L1, TCF7L2, MET, RAC3,
SMAD3, MLLT4, RHOA

ERBB SIGNALING PATHWAY EGFR, NCK2, ERBB2, AKT3, PAK4, EREG, MAPK9,
AKT2

NITROGEN METABOLISM CA12, CA5A, CA9, GLUL, CA3, CA14, CA8, CA7,
CA5B, GLUD1, CA2, AMT, CA6, CA1, CTH, GLS2,
GLUD2, HAL, CA4, ASNS, CPS1

DORSO VENTRAL AXIS FOR-
MATION

EGFR, NOTCH1, GRB2, MAPK3, NOTCH3, SOS1,
CPEB1, PIWIL2 ETS2, MAPK1, NOTCH4, ETV6,
PIWIL1, MAP2K1, NOTCH2, SOS2, ETS1, ETV7,
KRAS

ENDOMETRIAL CANCER EGFR, TCF7L1, ERBB2, TCF7L2, MLH1, ELK1,
NRAS, AKT3, ARAF, CTNNA2, PIK3CB, AKT2,
CCND1, FOXO3, LEF1

NON SMALL CELL LUNG
CANCER

EGFR, AKT3, E2F3, ERBB2, BAD, E2F1, RARB,
CDKN2A, PLCG2, GRB2, HRAS, MAPK3, PIK3CD,
RXRG, TGFA

PANCREATIC CANCER EGFR, ERBB2, AKT3, CDKN2A, MAPK9, PLD1,
RAC3, RALA, CCND1, E2F3, JAK1, PIK3R1

3.4 Concluding Remarks

Incorporating pathway information as biological priori with microarray gene ex-

pression profile has been demonstrated to be a promising alternative to conven-

tional gene-based approach in various disease classification problems. However to

the author’s best knowledge there are no supervised pathway activity inference

methods for multiclass disease classification problems. In this work, a novel su-

pervised pathway activity inference method for both binary and multiclass disease

classification problems, DIGS, has been proposed using mathematical program-

ming optimisation techniques. For each pathway, a new composite feature, called

pathway activity, is constructed as a weighted linear summation of expressions

of member genes. In each pathway the number of member genes contributing to

pathway activity inference by taking non-zero weights is constrained explicitly.

The proposed DIGS model provide three main benefits over the existing pathway
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Figure 3.4: Pathway activity of the significant pathways in Pawitan. Pathway
activities are inferred with DIGS model using all samples. Red/green blocks in-
dicate up-/down- regulation of pathways (rows) in samples (columns). Pathways

are clustered according to similarity of their activities.

activity inference methods in literature: (a) the weights of constituent genes in

building pathway activity are optimised by DIGS in order to maximise the discrim-

inative power of the pathway activity; (b) the maximum number of constituent

genes taking non-zero weights when building pathway activity can be explicitly

specified by user; (c) the proposed pathway activity inference model is applicable

to both binary and multiclass disease classification problems.

A total number of 8 microarray gene expression profiles totalling 877 samples

and 100,000 genes have been used to demonstrate the applicability and efficiency

of the proposed pathway activity inference scheme. The classification results show

that for 4 two-class problems DIGS-based classification approaches lead to higher

normalised classification performance compared to other existing pathway-based

approaches as well as genes-based approaches. In terms of multiclass classifica-

tion problems, mathematical programming inferring pathway activity here gives

consistently the highest prediction accuracies that with the same classifier DIGS

always outperforms others by distance.
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One shortcoming of our previous pathway activity inference method 27 is its

computational complexity. Due to the combinatorial nature of inferring path-

way activity, the required computational time grows exponentially as the number

of samples and pathway constituent genes. It is generally infeasible to achieve

globally optimal solution for microarray datasets of moderate to large sizes. In

terms of future work, we plan to propose computationally more efficient alter-

native optimisation models via replacing much of the difficulty binary variables

with continuous variables. Another possible future direction is to accommodate

non-linearity in the pathway activity inference. The existing activity inference

methods in literature almost all assume a simple linear algebraic relationship be-

tween phenotypic outcome and constituent genes. A non-linear pathway activity

inference method would be more flexible and powerful to model complex gene-

phenotype relationships. One possible means to achieve this can be introduction

of new pseudo genes as higher order polynomials and pair-wise products of the

original genes before optimising the weights for both original and pseudo genes.

To ensure computational efficiency and reliability, a gene selection method, for

example t test or information gain, should be implemented to select only a small

subset of highly differentially expressed original genes, which serve as the basis of

creating pseudo genes.



Chapter 4

A Novel Piece-wise Linear

Regression Model

Data regression aims to address the problem of predicting continuous output vari-

ables from several independent input variables by approximating their relationship.

In this chapter, a novel piece-wise linear regression model is presented, based on

mathematical programming optimisation techniques. The proposed method sepa-

rates samples into multiple regions by segmenting one input feature, and fits one

distinct linear regression function per region to minimise the training error. An

efficient solution algorithm has also been proposed that identifies the key parti-

tioning feature and the number of regions.

4.1 Introduction and Literature Review

In data mining, regression is a type of analysis that predicts continuous output/re-

sponse variables from several independent input variables. Given a number of sam-

ples, each one of which is characterised by certain measurable input and output

variables, regression analysis aims to approximate their functional relationship.

The estimated functional relationship can then be used to predict the level of

output variables for new enquiry samples. Generally, regression analysis can be

useful under two circumstances: 1) when the process of interest is a black-box,

i.e. the knowledge of the underlying mechanism of the system is incomplete. In

this case, regression analysis can make predictions on the level of output variables

70
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from the relevant input variables without requiring details of the however com-

plicated inner mechanism [171–174]. Quite frequently, the user would also like to

gain some valuable insights into the true underlying functional relationship, which

means the interpretability of a regression method is also of importance, 2) when

the detailed simulation model relating input variables to output variables, usually

via some other intermediate variables, is known, yet is too complex and expen-

sive to be evaluated comprehensively in feasible computational time. In this case,

regression analysis is employed to approximate the overall system behaviour with

much simpler functions while preserving a desired level of accuracy, and can then

be more cheaply evaluated [175–179].

A large number of regression analysis methodologies exist in the literature, in-

cluding: linear regression, support vector regression (SVR), kriging, radial basis

function (RBF) [180], multivariate adaptive regression splines (MARS), multilayer

perceptron (MLP), random forest, K-nearest neighbour (KNN) and piecewise re-

gressions. Those regression methodologies are briefly summarised before present-

ing our proposed method.

4.1.1 Linear Regression

Linear regression is one of the most classic types of regression analysis, which pre-

dicts the output variables as linear combinations of the input variables. The re-

gression coefficients of the input variables are usually estimated using least squared

error or least absolute error approaches, and the problems can be formulated as ei-

ther quadratic programming or linear programming problems, which can be solved

efficiently. In some cases when the estimated linear relationship fails to adequately

describe the data, a variant of linear regression analysis, called polynomial regres-

sion, can be adopted to accommodate non-linearity [181]. In polynomial regression,

higher degree polynomials of the original independent input variables are added as

new input variables into the regression function, before estimating the coefficients

of the aggregated regression function. Polynomial functions of second-degree have

been most frequently used in literature due to its robust performance and compu-

tational efficiency [182].

Another popular variant of linear regression is called least absolute shrinkage and

selection operator (LASSO) [183]. In LASSO, summation of absolute values of
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regression coefficients is added as a penalty term into the objective function. The

nature of LASSO encourages some coefficients to equal to 0, thus performing im-

plicit feature selection [184].

Automated learning of algebraic models for optimisation (ALAMO) [185, 186] is a

mathematical programming-based regression method that proposes low-complexity

functions to predict output variables. Given the independent input features,

ALAMO starts with defining a large set of potential basis functions, such as poly-

nomial, multinomial, exponential and logarithmic forms of the original input vari-

ables. Subsequently an mixed integer linear programming model is solved to select

the best subset of basis functions that optimally fit the data. The cardinality of

the subset is initially set equal to 1 and then iteratively increased until the Akaike

information criterion, which measures the generalisation of the constructed model,

starts to increase [187]. The model aims to capture the synthetic effect of differ-

ent basis functions, which is considered more efficient than traditional step-wise

feature selection. Note that the combinational nature of the integer programming

model poses great computational difficulty for large-size datasets, making it hard

to identify quality solutions.

4.1.2 SVR

Support vector machine is a very established statistical learning algorithm, which

fits a hyper plane to the data in hand [188]. SVR minimises two terms in the objec-

tive function, one of which is ε-insensitive loss function, i.e. only sample training

error greater than an user-specific threshold, ε, is considered in the loss func-

tion. The other term is model complexity, which is expressed as sum of squared

regression coefficients. Controlling model complexity usually ensures the model

generalisation, i.e. high prediction accuracy in testing samples. Another user-

specified trade-off parameter balances the significance of the two terms [189]. One

of the most important features that contribute to the competitiveness of SVR is

the kernel trick. Kernel trick maps the dataset from the original space to higher-

dimensional inner product space, at where a linear regression is equivalent to an

non-linear regression function in the original space. A number of kernel functions

can be employed, e.g. polynomial function, radial basis function and fourier series.

Formulated as a convex quadratic programming problem, SVR can be solved to

global optimality.
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Despite the simplicity and optimality of SVR, the problem of tuning two pa-

rameters, i.e. training error tolerance ε and trade-off parameter balancing model

complexity and accuracy, and selection of suitable kernels still considerably affect

its performance accuracy [190, 191].

4.1.3 Kriging

Kriging is a spatial interpolation-based regression analysis methodology [192].

Given a testing sample, kriging estimates its output as a weighted sum of the

outputs of the nearby training samples. The weights of samples are computed

solely from the data by considering sample closeness and redundancy, instead of

being given by an arbitrary decreasing function of distance [193]. The interpola-

tion nature of kriging means that the derived interpolant passes through the given

training data points, i.e. the error between predicted output and real output is

zero for all training samples. Different variants of kriging have been developed in

literature, including the most popular ordinary kriging [194] and universal kriging

[195].

4.1.4 MARS

MARS [18] is another type of regression analysis that accommodates non-linearity

and interaction between independent input variables in its functional relationship.

Non-linearity is introduced into MARS in the form of the so-called hinge func-

tions, which are expressions with max operators and look like max(0, X − const).
If independent variable X is greater than a constant number const, the hinge

function is equal to X-const, otherwise the hinge function equals to 0. The hinge

functions create knots in the prediction surface of MARS. The functional form of

MARS can be a weighted sum of constant, hinge functions and products of multi-

ple hinge functions, which makes it suitable to model a wide range of non-linearity.

The building of MARS usually consists of two steps, a forward addition and a

backward deletion step. In the forward addition step, MARS starts from one

single intercept term/constant and iteratively adds pairs of hinge functions (i.e.
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max(0, X−const) and max(0, const−X)) that leads to largest reduction in train-

ing error. Afterwards, a backward deletion step, which removes one by one those

hinge functions contributing insignificantly to the model accuracy, is employed to

improve generalisation of the final model [196]. The presence of hinge functions

also make MARS a piece-wise regression method.

4.1.5 MLP

Multilayer perceptron is a feedforward artificial neural network, whose structure

is inspired by the organisations of biological neural networks [197]. A MLP typi-

cally consists of an input layer of measurable features, an output layer of response

variables, sandwiching multiple intermediate layers of neurons. The network is

fully interconnected in the sense that neurons in each layer are connected to all

the neurons in the two neighbour layers. Each neuron in the intermediate layers

takes a weighted linear combination of outputs from all neurons in the previous

layer as input, applies an non-linear transformation function before supplying the

output to all neurons of the next layer. The use of non-linear transformation

functions, including sigmoid, hyperbolic tangent and logarithmic functions, makes

MLP suitable for modelling highly non-linear relationship [198].

Identifying the optimal configuration of a MLP, i.e. the number of intermediate

layers, the number of neurons for each intermediate layer, the type of activation

function for each neuron and the weights of connection between consecutive layers

of neurons, is known to be time-consuming and traps in local optimal solutions

[199]. The large degree of freedom in training a MLP is often blamed for data

over-fitting. The architecture of a MLP is almost always fixed by the user and

back-propagation is used to tune only the weights of connection between neighbour

layers of neurons [200].

4.1.6 Random Forest

Before introducing random forest we first describe regression tree, which is a de-

cision tree-based prediction model. Starting from the entire set of samples, a

regression tree selects one independent input variable among all and performs bi-

nary split into two child sets, under the condition that the two child nodes give
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increased purity of the data compared with its single parent node. Purity is often

defined as the deviation of predicting with the mean value of the output variable.

The process of binary split is recursively applied for each child node until a termi-

nating criterion is satisfied. The nodes that are not further partitioned are called

terminal leaves. After growing a large tree, a pruning process is employed to re-

move the leaves contributing insignificantly to the purity improvement [19, 201].

In order to improve model fit, a linear regression model can be fitted for each leaf

[202].

Random forest is an ensemble learning method of regression trees. In general,

random forest [203, 204] builds a forest of multiple regression tree models and

aggregate the decisions from all the trees to produce a final prediction. Given a

dataset, multiple bootstrap sample sets are first created by random sampling with

replacement. Each of the bootstrap sample set is then learned by a revised re-

gression tree algorithm, which differs from the classic regression tree by randomly

selecting a candidate subset of features for each binary split of node [205]. The

accuracy of each regression tree can be estimated on the training samples absent

from the bootstrap set, and the final prediction can be either simple average of pre-

dictions from all trees or weighted average considering the estimated accuracy. It

is demonstrated that random forest achieves more robust prediction performance

compared with single regression tree method [206].

4.1.7 KNN

KNN belongs to the category of lazy learning algorithms, due to the fact that

prediction is based on the available instances without an explicit training phase of

constructing mathematical models, thus making it one of the simplest regression

methods in literature [207]. Given a testing sample, KNN first identifies K closest

instances in the training sample set, the exact value of K is given a priori. The

closeness of samples can be measured by different distance metrics, for example

Euclidean and Manhattan distances. Prediction is then taken as weighted mean

of the outputs of the K nearest neighbours, with weight often being defined as the

inverse of distance [208]. Despite its simplicity, KNN usually provides competitive

prediction performance against much more sophisticated algorithms.



Chapter 4. Piece-wise Linear Regression 76

4.1.8 Previous Work on Piece-wise Regression

Piece-wise functions have been frequently studied in literature as well. In [209],

univariate piece-wise linear functions have been used to fit ecological data and

identify break-points that represent critical threshold values of a phenomenon. In

[210], a method based on statistical testing is proposed to estimate the number

of break-points for an univariate piece-wise linear function. Malash & El-Khaiary

[211] also apply piece-wise linear regression techniques on univariate experimental

adsorption data. Piece-wise function is determined by solving a non-linear pro-

gramming model.

SegReg (www.waterlog.info/segreg.htm) is a free software that permits estimating

of piece-wise regression functions with up to two independent variables. For one

independent variable, SegReg splits from a series of candidate break-points and for

each one fits a linear regression for either side of the break-point. The break-point

corresponding to the largest statistical confidence is taken as the final solution.

In the case of two independent variables, SegReg first determines the two-region

piece-wise regression function between the dependent variable and the most signif-

icant input variable, before computing the relation between its residual/deviation

and the second input variable. Segmented [212] is a package written in R [213],

which also outputs a simple form of piece-wise linear regression functions. Seg-

mented requires a user to specify the segmented input variables, the number of

break-points and also the initial guess of each break-point. Starting from the those

supplied initial positions of break-points, Segmented iteratively searches around

the neighbour of the initial guess points to identify break-points of the best qual-

ity [214]. However, in practice, it is difficult to reasonably supply good starting

points especially for multivariate datasets, where visual examination is extremely

difficult if not impossible. This limitation makes it hard to identify quality solu-

tions. On the other hand, in Segmented, only the input variables being segmented

can have different regression coefficients across different segments, while the other

input variables keep the same coefficients across the whole range.

Both Magnani & Boyd [215] and Toriello & Vielma [216] publish work on data

fitting with a special family of piece-wise regression functions, called max-affine

functions. The form of max-affine functions is defined as the maximum of a se-

ries of linear functions, i.e. a sample is projected to all linear functions, and the
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maximum projected value among all is taken as final predicted value from the

piece-wise functions. The use of max-affine functions limits the fitted surface to

be convex. In [215], a heuristic method is used to ease the difficulty of direct

solving the highly non-linear max-affine functions, while in [216], big-M constraint

is used to reformulate the problem into an non-convex mixed integer non-linear

programming model. However, computational complexity is limiting their appli-

cations to examples of small scale.

In this work, we propose a novel piece-wise regression method for multivariate

regression problems using mathematical programming optimisation techniques. A

single input variable is partitioned to separate samples into multiple regions, while

each region is fitted with a unique linear regression function. It is first assumed

that both the partitioning feature and the number of break-points are known. Un-

der this assumption, we propose an optimisation model that optimally estimates

the position of all break-points and the linear regression coefficients for each region

simultaneously so that the total absolute deviation is minimised. Furthermore, a

solution procedure is used to identify the key partitioning feature and the number

of break-points. A number of multivariate benchmark datasets have been used to

demonstrate the applicability and efficiency of the proposed regression method.

4.2 A Novel Piece-wise Linear Regression Method

A novel piecewise linear regression method is proposed in this work. The core

idea of the proposed method is to identify a single input feature, and separate the

samples into complementary regions on this feature. One unique linear regres-

sion function is fitted for each local region. The sample partition and calculation

of local regression coefficients are performed simultaneously within the proposed

optimisation to achieve least absolute error.

4.2.1 A Novel Regression Method

In this section, we first describe a novel mathematical programming model that

optimises the location of break-points and regression coefficients for each region

so as to achieve minimal training error, given as prior the key partitioning feature

and the total number of regions. Subsequently, a solution procedure is proposed
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to identify the best partition feature and the number of regions.

The indices, parameters and variables associated with the proposed model are

listed below:

Indices

s sample, s=1,2,...,S

m feature/independent input variable, m=1,2,...,M

r region, r=1,2,...,R

m* the single feature where segmentation takes place

Parameters

Asm numeric value of sample s on feature m

Ys real output value of sample s

U’, U” arbitrarily large positive numbers

Free variables

W r
m regression coefficient for feature m in region r

Br intercept of regression function in region r

Predrs predicted output for sample s in region r

Xr

m* break-point r on partition feature m*

Ds training error between predicted and real outputs for sample s

Binary variables

F r
s 1 if sample s falls into region r ;

0 otherwise

Assume first that both the partitioning feature m* and the number of regions R

are given, the R-1 break points are arranged in an ordered way:

Xr−1
m ≤ Xr

m ∀m = m*, r = 2, 3, ..., R (4.1)

Binary variables F r
s are introduced to model if sample s belongs to region r or not.

Modelling of which sample belongs to which region is achieved with the following

constraints:

Xr−1
m − U ′(1− F r

s ) ≤ Asm ∀s, r = 2, 3, ..., R,m = m* (4.2)

Asm ≤ Xr
m + U ′(1− F r

s ) ∀s, r = 1, 2, ..., R− 1,m = m* (4.3)
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When sample s belongs to region r (i.e. F r
s = 1), A

sm* falls into the region bounded

by the two consecutive break-points Xr−1
m* and Xr

m* on feature m∗; otherwise the

two sets of constraints become redundant. A visualisation of break-points and

regions is provided in Figure 4.1:

Figure 4.1: Break-points and regions. On the key partitioning feature m∗,
break-points are arranged so that Xr1 < Xr2 < Xr3 ....

The following constraints restrict that each sample belongs to one and only one

region: ∑
r

F r
s = 1 ∀s (4.4)

For sample s, its predicted output value for region r, Predrs, is as below:

Predrs =
∑
m

AsmW
r
m +Br ∀s, r (4.5)

For any sample s, its training error/residual is equal to the absolute deviation

between the real output and the predicted output for the region r where it belongs

to (i.e. F r
s = 1):

Ds ≥ Ys − Predrs − U ′′(1− F r
s ) ∀s, r (4.6)

Ds ≥ Predrs − Ys − U ′′(1− F r
s ) ∀s, r (4.7)

The objective function is to minimise the sum of absolute training error:

min
∑
s

Ds (4.8)
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The final model, named as Optimal Piece-wise Linear Regression Analysis (OPLRA)

in this work, is summarised as below:

Objective function (4.8)

Subject to:

Positions of break-points (4.1)

Sample enclosing constraints (4.2) and (4.3)

One-region constraints (4.4)

Sample predicted output values (4.5)

Sample residual (4.6) and (4.7)

Ds ≥ 0, F r
s ∈ {0, 1}, W r

m, Br, Predrs, X
r
m∗ : unrestricted

OPLRA consists of a linear objective function and several linear constraints, and

the presence of both binary and continuous variables define an MILP problem. A

heuristic solution procedure is also proposed in this work to identify the partition-

ing feature (m∗) and the number of regions (R), as described in Figure 4.2 below.

The heuristic procedure starts with solving a multivariate linear regression on the

entire set of training data with least absolute deviation. Subsequently, each in-

put feature in turn serves as partition feature m* once and the OPLRA model

is solved while allowing two regions (i.e. R = 2). The feature corresponding to

the minimum training error is kept and if its error represents a percentage re-

duction of more than β from the global linear regression without data partition

(ErrorR=1−ErrorR=2

ErrorR=1
≥ β), the procedure continues; otherwise it is decided that two-

region piecewise linear regression does not provide a desirable improvement upon

the classic linear regression model, and the initially derived linear regression func-

tion without sample partition is obtained for prediction. The parameter β, taking

value between 0 and 1, quantifies the percentage reduction in training error that

justifies adding one more region. If two-region piecewise regression is accepted, the

corresponding partition feature is retained for further analysis while the number

of regions is iteratively increased, until the β training reduction criterion is not

satisfied between iterations.

β is the only user-specific parameter in our proposed regression method, which

requires fine tuning. A small value may cause over-fitting, i.e. too many regions
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Figure 4.2: A heuristic procedure to identify the partition feature and the
number of regions.

are allowed and each region contains only small number of samples, which then

results in unreliable construction of local linear regression functions; while a value

excessively large will lead to premature termination of growing regions, which then

under-fit the data. In the next section, a series of values is tested on a number

of benchmark datasets and the optimal value corresponding to the most robust

prediction performance can be easily identified.

The constructed piecewise linear regression functions are then used to predict

the output value of new samples. A testing sample is firstly assigned to one of

the regions, and the linear regression formula for that particular region is used to

estimate its output value.
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4.2.2 An Illustrative Example

In order to better illustrate the training of the proposed regression method, a

simulation model is taken from literature. In brief, the illustrative example [217]

describes the operation of a continuous stirred tank reactor, where a chain re-

action of A → B → C takes place. An inlet stream containing both reactant

A and B enters the reactor and the desirable output is component B. There are

4 independent input variables to the simulation model, including temperature of

the reactor (T ), volume of the reactor (V ), concentration of A and B in the inlet

stream (CAin and CBin). The output to be predicted is the production rate of B

(P ). The process and associated variables are described in Figure 4.3.

Figure 4.3: Illustrative example of a continuous stirred tank reactor. The inlet
stream contains both reactant A and B. The chain reaction A→ B → C takes
place within the tank with the reaction kinetics known. The desired output is

component B.

With latin hypercube sampling technique [218] employed to specify a set of data

points, we run the simulation model and collect 300 samples. The goal of the

regression analysis is to approximate the functional relationship between output

variable P and input variables including T , V , CAin and CBin using piece-wise

linear functions. The step-wise description of the training procedure is presented

in Table 4.1 below.

Initially, a linear regression function is fitted to the entire dataset without feature

segmentation, which gives a sum of absolute deviation of 1677.78. The second

iteration of the method solves 4 independent OPLRA models allowing 2 regions

each, respectively specifying T, V, CAin and CBin as partitioning feature. The



Chapter 4. Piece-wise Linear Regression 83

two-region piece-wise linear functions constructed while partitioning on T appears

to yield lower training errors (i.e. 1030.63) than the other 3, and therefore is

taken as the solution for iteration 2. This represents a significant improvement

(i.e. 1677.78−1030.63
1677.78

= 38.57%) from the initial global linear regression function.

From iteration 3, the partitioning feature is fixed as T while one more region is

allocated for each increased iteration. Iteration 3 and 4 respectively lowers the

training error to 876.66 and 807.12. The iterative procedure terminates when the

β criterion is not satisfied, e.g. if β = 20%, then the iterative procedure terminates

at the third iteration and the final regression function has 2 regions; if β = 10%,

then the final regression function has 3 regions.

Table 4.1: Piecewise regression functions built at each step of training proce-
dure

Iteration Number
of re-
gions

Partition
feature

Training
error

Training error
improvement

Functional relationship

1 1 NoneE 1677.78 P = 1.0240T + 0.0054CAin + 0.0125CBin + 0.4340V − 333.54

2 2 T 1030.63 38.57% P =

{
0.7413T + 0.0040CAin + 0.0102CBin + 0.3406V − 238.74, T ≤ 213.21

1.7156T + 0.0111CAin + 0.0315CBin + 0.7574V − 592.63, T > 213.21

2 V 1143.49 P =

{
0.5952T + 0.0033CAin + 0.0056CBin + 0.4533V − 194.26, V ≤ 42.38

1.4781T + 0.0083CAin + 0.0195CBin + 0.4773V − 48.70, V > 42.38

2 CAin 1485.65 P =

{
0.8930T + 0.0057CAin + 0.0152CBin + 0.4161V − 293.45, CAin ≤ 3528.43

1.4857T + 0.0073CAin + 0.0070CBin + 0.5929V − 489.45, CAin > 3528.43

2 CBin 1627.73 P =

{
1.0242T + 0.0056CAin + 0.0118CBin + 0.4241V − 333.49, CBin ≤ 458.21

1.1105T + 0.0050CAin − 0.1405CBin + 0.5813V − 291.00, CBin > 458.21

3 3 T 876.66 14.94% P =


0.5815T + 0.0030CAin + 0.0097CBin + 0.2654V − 184.45, T ≤ 303.25

1.1353T + 0.0062CAin + 0.0176CBin + 0.4579V − 373.68, 303.25 < T ≤ 316.62

1.8764T + 0.0119CAin + 0.0394CBin + 0.8617V − 654.41, T > 316.62

4 4 T 807.12 7.93% P =


0.5815T + 0.0030CAin + 0.0097CBin + 0.2654V − 184.45, T ≤ 303.25

1.2648T + 0.0054CAin + 0.0148CBin + 0.4510V − 409.61, 303.32 < T ≤ 312.21

1.4872T + 0.0084CAin + 0.0202CBin + 0.6667V − 503.10, 312.21 < T ≤ 320.77

1.9930T + 0.0128CAin + 0.0360CBin + 0.8871V − 695.65, T > 320.77

...

Overall, the key features of our proposed piecewise linear regression method are

summarised here: 1) our method identifies one key partitioning feature and sep-

arates samples into multiple complementary regions on it, 2) each region has the

flexibility of being fitted by its own linear regression function, with all input fea-

tures allowed to have different regression coefficients across different regions, 3)

there is only one tuning parameter β, 4) compared with algorithms like kernel-

based SVR and MLP, the constructed regression function is easy to understand,
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as it exhibits linear relationships for different regions. In the next section, a num-

ber of real world regression problems are employed to benchmark the predictive

performance of our proposed model.

4.3 Results and Discussion

A total number of 6 real world datasets have been downloaded from UCI machine

learning repository (http://archive.ics.uci.edu/ml/) [219] to test the prediction

performance of our proposed method. The first regression problem Yacht Hydro-

dynamics predicts the hydrodynamic performance of sailing yachts from 7 features

describing the hull dimensions and velocity of the boat for 308 samples. Energy

Efficiency [220] collects data corresponding to 768 building shapes, described by 8

features including wall area, root area and so on. The aims are to establish the re-

lationships between either heating or cooling requirements and the 8 parameters of

the building. The third example, Concrete Strength [221], looks into the relation-

ship between compressive strength of concrete and 8 input variables, including

water concentration and age, with 1030 samples of different concretes. Airfoil

dataset concerns how the different airfoil blade desings, wind speed and angles of

attack affect the sound pressure level. The last case study, White Wine Quality

[173], aims to predict experts’ preference of white wine taste with 11 physicochem-

ical features of the wines. Around 4900 white wine samples have been obtained

for analysis.

For each of the 6 benchmark datasets, a 5-fold cross validation, is performed to

estimate the predictive accuracy of the proposed method. Given a dataset, 5-fold

cross validation randomly splits the samples into 5 subsets of equal size. Each

subset is in turn held out once while the other 4 subsets of samples are merged

and used as the training samples to derive the regression function. The holdout

set is then used to validate the predictive accuracy of the constructed regression

function. We conduct 10 rounds of 5-fold cross validation by performing different

random sample splits, and the mean absolute prediction errors (MAE) are aver-

aged over 50 testing sets as the final error. The smaller the error, the better the

prediction accuracy of a regression method.

For comparison purposes, a number of state-of-the-art regression methods have
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been implemented, including linear regression, MLP, kriging, SVR, KNN, MARS,

PaceRegression and ALAMO. Among all, Linear regression, MLP, kriging, SVR,

KNN and PaceRegression are implemented in WEKA machine learning software

[109]. Linear regression is performed with backward feature selection using M5’

algorithm, which is to ensure generalisation of the constructed model to unseen

samples when the number of features is large. For KNN, the number of nearest

neighbours is selected as 5. With regards to other methods, their default set-

tings have been retained. In WEKA, default setting for MLP includes: learning

rate=0.3, momentum=0.2, one single hidden layer with number of neurons equal

to the number of features divided by 2, and training time=500. For SVR, com-

plexity coefficient is set as 1 and polynomial kernel with exponent of 1 is used.

The MATLAB toolbox called ARESlab [222] is implemented for MARS, with sec-

ond order interaction between features permitted. ALAMO is reproduced using

the General Algebraic Modeling System (GAMS) [70], and basis function forms

including polynomial of degrees up to 3, pair-wise multinomial terms of equal ex-

ponents up to 3, exponential and logarithmic forms are provided for each dataset.

Our proposed method is also implemented in GAMS. Both ALAMO and our pro-

posed model are solved using Cplex MILP solver, with optimality gap set as 0.

Computational resource limit is set as 200 seconds for each solving of OPLRA

model in our proposed method, and each iterative procedure in ALAMO.

4.3.1 Sensitivity Analysis for β

In this subsection, a sensitivity analysis is performed for the parameter β, which

serves as a terminating criterion of the iterative training procedure for our pro-

posed method. Taking value between 0 and 1, β defines the minimum percentage

training error reduction that must be achieved to justify the allocation of an extra

region. A range of values have been tested, including: 0.2, 0.15, 0.10, 0.05, 0.03

and 0.01. The results of the sensitivity analysis are provided in Figure 4.4.

Figure 4.4 describes how mean absolute error changes with β. The numbers

attached to the points in each plot are the average numbers of final regions over

50 training runs, which always go up as β decreases. For Yacht Hydrodynamics

example, setting β = 0.20 results in just more than 4 final regions. Decrease the β

value to 0.15 increases slightly the prediction error with marginally higher number

of regions. Further decrease β to 0.10 leads to lowest mean prediction error of
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Figure 4.4: Sensitivity analysis of β for the proposed piece-wise linear regres-
sion method. Each line describes how mean absolute prediction error varies
with different values of β. The numbers above points in each plot correspond

to the average numbers of final regions over 50 training runs.

0.648 with an average of 5 regions, before excessively low values of β over-fits the

unseen testing samples by yielding much increased prediction error. For Energy

Efficiency Heating case study, when β = 0.10,0.15 and 0.20 our proposed regres-

sion method constructs piece-wise regression functions of an average of 3 regions,

yielding MAE of 0.907. Smaller values of β leads to about 5 regions, which are

shown to predict the testing samples with higher accuracy (MAE around 0.810).

In terms of Energy Efficiency Cooling and Concrete Strength examples, similar

phenomenon can be observed that when β takes excessively high values (i.e. 0.20,

0.15 ), the proposed method terminates prematurely with only 2 regions and rel-

atively high MAE. More regions are allowed by lowering β, which gives higher

prediction accuracies. On Airfoil case study, the proposed method outputs global
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multiple linear regression functions without data partitions when β = 0.20. As β

decreases, more regions are permitted, which predict unseen samples with better

accuracy. On the last example of White Wine Quality, 2-region piece-wise regres-

sion functions achieved with β = 0.01, 0.03, 0.05 outperforms global multiple

linear regressions for higher values of β.

It can be seen from Figure 4.4 that the range of values between 0.01 and 0.05

generally lead to smaller prediction error than higher values of β. For all datasets

except Yacht Hydrodynamics, prediction errors of β = 0.01, 0.03 and 0.05 are

evidently smaller than that of β = 0.10, 0.15 and 0.20. Within the range between

0.01 and 0.05, there is no clear optimal value for β as different values have dif-

ferent effects on the accuracy. The consistently small MAE, while β is between

0.01 and 0.05, show that our proposed regression method is robust with respect to

the only user tuning parameter β. Finally, when comparing with other competing

methods in literature, β is set to 0.03 which gives consistently desirable prediction

accuracy across a wide range of problems.

4.3.2 Prediction Performance Comparison

After identifying a value (i.e. 0.03 ) for the only tuning parameter β in our pro-

posed regression method, we now compare the accuracy of the proposed method

against some popular regression algorithms with the same set of 6 examples. The

results of the comparison are available in Table 4.2 below.

Table 4.2: Comparative testing of different regression methods on benchmark
datasets

Yacht Energy Efficiency Energy Efficiency Concrete Airfoil White Wine
Hydrodynamics Heating Cooling Strength Quality

linear regression 7.270 2.089 2.266 8.311 0.037 0.586
MLP 0.809 0.993 1.924 6.229 0.035 0.623
Kriging 4.324 1.788 2.044 6.224 0.030 0.576
SVR 6.445 2.036 2.191 8.212 0.037 0.585
KNN 5.299 1.937 2.148 7.068 0.026 0.537
MARS 1.011 0.796 1.324 4.871 0.035 0.570
PaceRegression 7.233 2.089 2.261 8.298 0.037 0.586
ALAMO 0.787 2.722 2.765 8.044 0.032 0.639
Proposed 0.706 0.810 1.278 4.870 0.029 0.551
*The lowest MAE for each dataset is highlighted in bold.

On Hydrodynamics problem, the proposed method in this work provides an MAE
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of 0.706, which is lower than any other competing algorithm. ALAMO, MLP and

MARS follow closely with MAE of 0.787, 0.809 and 1.011, respectively. Mean error

rates of the rest of the methods are significantly higher and between 3 and 8. On

Energy Efficiency Heating, MARS emerges as the most accurate algorithm with

an mean absolute error of 0.796, which is closely matched by the proposed method

and MLP. Mean prediction errors of the other approaches are almost all twice as

large as that of the MARS. In terms of Energy Efficiency Cooling dataset, the

proposed method, MARS and MLP are the top 3 performers with MAE between

1.278 and 1.924. On Concrete Strength, the proposed approach and MARS, with

an MAE of 4.870 and 4.871, again emerge as the leading methods from Kriging,

MLP and the others. When it comes to Airfoil example, all the competing algo-

rithms achieve similar prediction accuracies, with KNN topping the league with an

MAE of 0.026. The proposed approach in this work is a merely 0.003 far behind,

with kriging a further 0.001 behind. A mere difference of 0.011 separates the 10

methods. Lastly, on the White Wine Quality example, the proposed approach is

ranked as the second best method after KNN.

Overall, for 3 out of the 6 datasets, including Yacht Hydrodynamics, Energy Effi-

ciency Cooling and Concrete Strength, the proposed piece-wise regression method

achieves the lowest prediction errors. For the other 3 tested examples, including

Energy Efficiency Heating, Airfoil and White Wine Quality, the proposed method

still performs competitively as being second on all of them.

As there does not exist a single regression method which can always outperform

others on all datasets, a desirable regression algorithm should demonstrate consis-

tently competitive prediction accuracy. In order to more comprehensively evaluate

the relative competitiveness of all the implemented approaches, we employ the fol-

lowing scoring strategy: for each problem, the regression methods are ranked in

descending order according to their mean prediction error. The best regression

method corresponding to the lowest prediction error is awarded the maximum

score of 9, the second best regression method corresponding to the second lowest

prediction error is assigned a score of 8 and so on. The scores of each regression ap-

proach are averaged over the 6 datasets, which represent the overall performance

of the method. The higher the score, the better the relative performance of a

method. The scores of the different regression approaches used in this work are

presented in Figure 4.5 below.
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Figure 4.5: Scoring of regression methods. A scoring strategy is employed to
evaluate the overall prediction performance of the implemented methods.

According to Figure 4.5, the proposed method is shown to be the most accu-

rate and robust regression algorithm among all, achieving a score of 8.5 out of a

possible 9. MARS is second with scores of 7, followed by Kriging, KNN and MLP

in descending order. The advantages of the proposed regression method is quite

obvious compared with other implemented methods.

Lastly, we apply the proposed piece-wise linear regression model to all the avail-

able samples in each dataset and take a look at the number of regions and the key

partitioning feature determined. The results are summarised in Table 4.3. It is

clear that the proposed segmented regression method provides good interpretabil-

ity as the number of regions are small (usually between 2 to 4 and at most 5). The

partitioning features may release important insights into the underlying system as

the output variables change more dramatically across different ranges alone this

feature.



Chapter 4. Piece-wise Linear Regression 90

Table 4.3: Number of regions and partition feature by our proposed method

Dataset Number of regions Partitioning feature
Hydrodynamics 5 Froude number
Energy Heating 3 Wall Area
Energy Cooling 3 Wall Area
Concrete 3 Age
Airfoil 4 Frequency
White Wine 2 Volatile acidity

4.3.3 Piece-wise Linear Regression May Serve as A Surro-

gate Model

Besides desirable prediction accuracy, the simplicity and the explicit algebraic

forms of the proposed piece-wise linear regression method make it possible for it

to be further applied as a surrogate model. For example, in a typical chemical engi-

neering modular flowsheet process, where different unit operations are sequentially

connected to perform a task, global optimisation of design or operational variables

poses great computational difficulty [175]. The reasons are that the individual unit

operations can be highly complex and non-linear, usually making the optimisation

of the entire flowsheet a difficult mixed integer non-linear programming problem,

where quality solutions are hard to obtain. Under those circumstances, the pro-

posed method in this chapter can serve as a surrogate model by replacing the

computationally troublesome unit operations with much simpler piece-wise linear

function, yet accurately mimics the behaviour of the original model.

To briefly demonstrate this applicability, the illustrative example discussed in

section 4.2.2 is reviewed. In the illustrative example, the underlying simulation

model consists of several non-linear equations that describe the relationship be-

tween production rate of reactant B (P ) and 4 independent input variables, i.e.

concentration of both reactant A and B (CAin, CBin, respectively), tempera-

ture of reactor (T ) and volume of reactor (V ). Assuming 4 intervals (R = 4),

our proposed segmented regression method conveniently approximates the orig-

inal simulation model with the following block of equations. The first of those
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equations are written below:

0 <Tr1 ≤ 303.25Er1

303.25Er2 <Tr2 ≤ 312.21Er2

312.21Er3 <Tr3 ≤ 320.77Er3

320.77Er4 <Tr4 ≤ UEr4

(4.9)

where r denotes the interval and Er is binary variable that are equal to 1 if

temperature of reaction is in region r, defined by the two consecutive break-points;

0 otherwise. Tr is equal to the reaction temperature T if T falls into region r, and

is equal to 0 otherwise. U is an arbitrarily large number used to bound Tr4.

Temperature of the reaction can only fall into one of the intervals:

4∑
r=1

Er = 1 (4.10)

Each different temperature interval has its own multiple linear function:

Pr1 = 0.5815Tr1 + 0.0030CAin
r1 + 0.0097CBin

r1 + 0.2654Vr1 − 184.45Er1

Pr2 = 1.2648Tr2 + 0.0054CAin
r2 + 0.0148CBin

r2 + 0.4510Vr1 − 409.61Er2

Pr3 = 1.4872Tr3 + 0.0084CAin
r3 + 0.0202CBin

r3 + 0.6667Vr1 − 503.10Er3

Pr4 = 1.9930Tr4 + 0.0128CAin
r4 + 0.0360CBin

r4 + 0.8871Vr1 − 695.65Er4

(4.11)

where CAin
r , CBin

r and Vr are all intermediate variables that equal to CAin, CBin

and V , respectively, if temperature T is in region r (Er = 1), and equal to 0

otherwise:

0 ≤ CAin
r ≤ UEr ∀r (4.12)

0 ≤ CBin
r ≤ UEr ∀r (4.13)

0 ≤ Vr ≤ UEr ∀r (4.14)

Finally, the intermediate variables need to be linked to the original variables:

P =
4∑

r=1

Pr (4.15)
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CAin =
4∑

r=1

CAin
r (4.16)

CBin =
4∑

r=1

CBin
r (4.17)

T =
4∑

r=1

Tr (4.18)

V =
4∑

r=1

Vr (4.19)

The block of equations from (4.9) to (4.19) are linear and involves merely 4 binary

variables (Er), and thus is computationally cheap to evaluate. The feature of

the piece-wise linear regression functions to be used as surrogate models will be

investigated with real world case studies as future work.

4.4 Concluding Remarks

In this chapter, we have proposed a new method for multivariate data regres-

sion problem. The method separates samples into multiple regions by segmenting

a single key partition feature, while simultaneously fitting one linear regression

function per region. Assuming both partition feature and number of break-points

are known, a novel MILP model, which optimally determines the locations of

break-points and regression coefficients for each region corresponding to least ab-

solute deviation, has been presented. A heuristic procedure has been used to find

the key partition feature and the number of break-points.

Six benchmark regression datasets, from various application domains and of differ-

ent sizes (number of samples from a few hundreds to up to 5000), have been used to

demonstrate the applicability and efficiency of the proposed method. Comparing

against a number of popular regression methods in literature, including kriging,

MARS, SVR and MLP, it is shown that our proposed method achieves consistently

high prediction accuracy as leading to the lowest prediction errors for 3 out of 6

datasets, and second lowest errors for the other 3 datasets. The results confirm

our proposed method as a reliable alternative to traditional regression analysis

methods in literature.
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Besides the acceptable prediction accuracy, our proposed method is much more

interpretable than most of the machine learning algorithms, for example kernel-

based support vector machine, neural network, statistical methods of kriging, as

it approximates the input-output relationship as a piece-wise linear algebraic for-

mula. Therefore the proposed method in this work can also be used as surrogate

model and help solve complex chemical engineering-based flowsheet optimisation

problems, where the behaviour of each unit can be complicated and highly non-

linear, making the whole process extremely difficult to optimise directly. In this

case, the piece-wise linear regression can approximate the complex relationship

between design variables with simpler piece-wise algebraic functions for each unit

separately. Global optimisation can then be carried on the simplified process

model.



Chapter 5

A Novel Regression Tree Model

In the last chapter, a piece-wise linear regression model (OPLRA) has been pro-

posed, which partitions a key feature into several intervals and fits one unique

multivariate linear regression model for each interval. One of the shortcomings

of the method is that only one feature is segmented, limiting its application to

model more complex relationships. In this chapter, a novel solution procedure is

proposed so that segmentation of multiple features is made possible. The resulting

input-output relationship becomes a regression tree, i.e. an variant of decision tree

for classification.

5.1 Introduction and Literature Review

Since the novel solution procedure introduced later in this chapter learns a tree-

like regression model, different regression tree-based learning algorithms are firstly

reviewed in this section, including classification and regression tree (CART), M5’,

Cubist, smoothed and unsmoothed piecewise-polynomial regression trees (SUP-

PORT) and generalised, unbiased interaction detection and estimation (GUIDE).

5.1.1 CART

CART [201] is probably the most well known regression tree learning algorithm

in literature. Given a set of samples, CART identifies one input variable and

one break-point, and partitions the samples into two child nodes. Starting from

94
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the entire set of available training samples (root node), recursive binary partition

is performed for each child node until no further split can enhance the training

performance or another terminating criteria is satisfied. At each node, best split

is identified by exhaustive search, i.e. all potential splits on each input variable

and each break-point are tested, and the split corresponding to the minimum

deviations, obtained by respectively predicting two child nodes of samples with

their mean output variables, is selected. After the tree growing procedure, typically

an excessively large tree is constructed, resulting in lack of model generalisation.

A procedure of pruning is employed to remove one by one the splits contributing

least to training accuracy. The tree is pruned from the maximal-sized tree all

the way back to the root node, resulting in a sequence of candidate trees. The

optimal candidate tree can be selected using external validation data or inner-cross

validation [223, 224]. Given an enquiry sample, it is firstly assigned into one of

the terminal leaves (non-splitting leaf nodes) and then predicted with the mean

output value of the samples belonging to the leaf node. Despite the simplicity and

good interpretation, the simple rule of predicting with mean output values at the

terminal leaves often means prediction performance is compromised [225].

5.1.2 M5’ and Cubist

M5’ [226, 227] is considered an improved version of CART. The tree growing

process is the same as that of the CART, while several modifications have been

introduced in tree pruning process. After the full size tree is produced, a multiple

linear regression model is fitted for each node. An empirical metric is proposed

that estimates model generalisation error as a function of training error, the num-

bers of training samples and model parameters. The constructed linear regression

function per node is then simplified by removing insignificant input variables us-

ing a greedy algorithm in order to achieve locally maximal model generalisation

error metric. Starting from the bottom of the tree, pruning is tested for each

non-terminal node. If the parent node offers higher model generalisation than the

sum of its two child nodes, then the child nodes are pruned away.

Prediction procedure used by M5’ also differs substantially from CART. Given

a new sample, it is assigned to one of the terminal leaves. All nodes along the

path from the root node to the terminal leave make their own predictions, which

are aggregated using another empirical formula. The effect of this is to smooth the
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predictions when the nodes along the path predict the new samples very differently.

The modifications of fitting linear regression functions to each node, simplifying

linear regression functions, pruning trees and smoothing predictions make M5’ a

much more powerful tool than the conventional CART.

Cubist [228] is rule-based regression model, which further extends the work of

M5’. Cubist starts with building a M5’ tree. Each path from the root node

to a terminal leaf defines an unique rule. Those rules are then pruned and/or

combined, which leads to a new set of simplified and possibly overlapping rules,

i.e. the rules are not mutually exclusive and therefore a new sample may satisfy

more than one rule. In this case the predicted values from all rules are aver-

aged to yield the final prediction. The classification version of Cubist is called

C5.0 [229] (https://www.rulequest.com/see5-info.html), which can express classi-

fication boundary as a collection of if-then decision rules, as Cubist does. C5.0

has been designed to have better scalability, memory efficiency and smaller tree

size than its predecessor decision tree classifiers.

5.1.3 SUPPORT and GUIDE

SUPPORT [230] is another decision learning algorithm for regression analysis.

Given a node, SUPPORT fits a multiple linear regression function and computes

the residual of each sample. The samples with positive deviations and negative

deviations are respectively assigned into two classes. For each input variable,

SUPPORT compares the distribution of the two classes of samples along this in-

put variable by applying two-sample t test. The input variable corresponding to

the lowest P value, i.e. the most significant difference in the distributions of the

two classes, is selected as splitting feature and the average of the two class means

on this splitting variable is taken as break-point.

GUIDE [231] adopts similar philosophy as the SUPPORT. Given a node, the same

step of fitting samples with a linear regression model and separating samples into

two classes based on the sign of deviations is employed. For each input variable,

its numeric values are binned into a number of intervals before a chi-square test

is used to determine its level of significance. The most significant input variable

is used for split. In terms of break-point determination, either a greedy search or
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median of the two class mean on this splitting variable can be used. Other in-

variants of decision tree-based regression learning methods also exist in literature,

including but not limited to: [20, 232–234].

Decision and regression trees can also be constructed using genetic program-

ming. Evolutionary learning of globally optimal classification and regression trees

(evtree) [235] employs evolutionary algorithms to derive trees while considering

not only the next split but also potential splits further down the tree, attempting

to identify a more optimised tree structure. Some other existing work in literature

that induct tree models using genetic programming techniques include but are not

limited to [236], [237] and [238].

The traditional means of node splitting are dominated by either exhaustively

searching the candidate split corresponding to the maximum variance reduction

by predicting using mean output values in either child node [201, 226, 227], or

more sophisticated fashion of examining distribution of sample deviation from fit-

ting one linear regression function to all the samples in the parent node [230, 231].

However, it is noticed that for those algorithms where terminal leaf nodes are fitted

with linear regression functions [226–228], the determinations of splitting feature,

break-point and regression coefficients are done sequentially, i.e. the splitting fea-

ture and break-point are estimated during tree growing procedure while regression

coefficients for each child node are computed at pruning step.

An alternative node splitting strategy is to simultaneously optimise the splitting

feature, the position of break-point and the linear regression coefficients for each

parent node. In this case, the quality of a split can be directly calculated as the

residual sum of all samples in either subset. A straightforward exhaustive search

algorithm for this problem can be: for each input variable and each possible break-

point, samples are separated into two subsets and one multiple linear regression

function is fitted for each subset. After examining all possible splits, the optimal

split is chosen as the one corresponding to the minimum sum of residual. The

problem with this approach is, however, that as the numbers of samples and in-

put variables grow, the quantity of multiple linear regression functions need to

be evaluated increases exponentially, requiring infeasible computational time. For

example, given a regression problem of 500 samples and 10 input variables and
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assuming for each input variable, each sample takes an unique value, then it re-

quires construction of 499*10*2 multiple linear regression functions in order to

find the optimal binary split for the root node. The amount of computational

time required to grow a maximal-sized tree will prove to be unaffordable.

In this work, we adopt the OPLRA model from last chapter, which can solve

the problem of binary splitting to global optimality in affordable computational

time. A novel recursive splitting procedure is introduced to grow a regression

tree. Recursive splitting terminates when the amount of reduction in training

error achieved by node splitting is below an user-specific value, which is also the

only tuning parameter in the proposed method. Since the size of tree is manually

controlled via the tuning parameter, a pruning procedure is not implemented. The

benchmark regression datasets introduced in the last chapter have been used to

demonstrate the efficiency of the proposed regression-tree method.

5.2 A Novel Regression Tree Model

In this section, detailed descriptions of a novel recursive partitioning method used

to construct a regression tree model and the procedure for predicting a new sample

after building a tree are provided.

5.2.1 A Novel Recursive Partitioning Tree Growing Method

Similar to almost all other decision tree learning algorithms, recursive partitioning

is used to grow the tree from root node until a split of node cannot yield sufficient

reduction in deviation. The pseudocode for building a tree is given below.

Given training samples, the first step of our proposed tree growing strategy is to

fit a multiple linear regression function to the entire set of training samples min-

imising absolute deviation, which is noted as ERRORroot. The absolute deviation

of root node multiplying a scaling parameter β, taking value between 0 and 1,

is specified as the condition for node splitting, i.e. a node is split into two child

nodes only if the optimal split of the node results in reduction in absolute devia-

tion greater than β ∗ERRORroot. Then starting from the root node, each feature

m is specified in turn as splitting feature m∗ once, while solving model OPLRA
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Tree growing algorithm

1. Fit a multiple linear regression model to root node containing all training samples
minimising absolute deviation, recorded as ERRORroot.

2. Starts from the root node.

3. For each input feature m, specify it as splitting feature (m = m∗) and solve model
OPLRA while allowing two regions (R = 2). The deviation is noted as ERRORm.

4. Find the best split corresponding to the minimum absolute deviation, noted as
ERRORsplit = min

m
ERRORm.

5. If ERRORparent − ERRORsplit ≥ β ∗ ERRORroot, the current node is split.
ERRORparent is simply the absolute deviation of multiple linear regression on the
parent node and β is user-specific parameter.

6. Apply step 3-5 to each child node in turn.

minimising the sum of absolute deviations of two child nodes. The best split of the

current node is identified as the one corresponding to minimum absolute error. If

the best split brings down absolute deviation from its parent node by more than

β ∗ERRORroot, then the split takes place; otherwise the current node is finalised

as terminal leaf node.

A common problem that regression tree methods face is the non-smoothness of the

derived models. In other words, as the decision space is partitioned into disjoint

regions and each region is fitted with a constant (CART) or a multivariate func-

tion (M5’), the predicted output values from both child nodes usually are sharply

different near the break-point. This leads to non-smoothness of the model and

decreased prediction accuracy. In terms of the proposed ORTREE, model non-

smoothness is moderate. When the density of the samples is sufficiently large so

that there is no void in the decision space, multivariate functions from two child

nodes nearly meet each other at the break-point, giving to a reasonably smooth

model (data not shown).

5.2.2 Predicting New Samples

After building a regression tree, predicting the level of output variable for a new

sample is intuitive. A new sample is assigned to one of the terminal leaf nodes,

before predicting it using the multiple linear regression function derived for this ter-

minal node in the training procedure. The predicted output value is also bounded
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by the minimum and the maximum output values of the training samples be-

longing to this particular terminal node. In other words, if the predicted value

is greater than the maximum output value (or smaller than the minimum out-

put value) among all the training samples in this terminal node, the prediction

is modified to equal to the maximum output value (or the minimum output value).

The proposed regression tree method, referred to as ORTREE (Optimal Regres-

sion TREE), is applied to the real world regression problems introduced in the

last chapter to demonstrate its applicability and efficiency.

5.3 Results and Discussion

In this section, we aim to evaluate the behaviour of the proposed ORTREE using

all the 6 real world benchmark datasets introduced in the last chapter, includ-

ing Yacht Hydrodynamics, Energy Efficiency Heating, Energy Efficiency Cooling,

Concrete Strength, Airfoil and White Wine Quality. A comprehensive sensitivity

analysis for the tuning parameter β is firstly conducted in order to identify a ro-

bust value that gives consistently good prediction accuracy. After that, prediction

accuracy comparison is performed to evaluate ORTREE against certain decision

tree learning algorithms and some other regression methodologies. Lastly, the

interpretability of the constructed tree models are evaluated by examining the

number of terminal leaf nodes.

To assess the relative competitiveness of the proposed ORTREE in terms of pre-

diction accuracy, some decision tree learning algorithms and regression methods

based on various other methodologies have been implemented for comparison.

More specifically, we compare the proposed ORTREE to CART, M5’, Cubist, lin-

ear regression, MLP, Kriging, SVR, KNN, MARS, PaceRegression, ALAMO and

segmented regression, which is proposed in the last chapter. CART and Cubist

are implemented in R [213] using the package ’rpart’ [239] and ’Cubist’ [228], re-

spectively. M5’, Linear regression, SVR, MLP, kriging and KNN are implemented

in WEKA machine learning software [109]. For KNN, the number of nearest

neighbours is selected as 5, while for other methods their default settings have

been retained. The MATLAB toolbox called ARESlab [222] is used for MARS.

ALAMO is reproduced using the General Algebraic Modeling System (GAMS)
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[70], and basis function forms including polynomial of degrees up to 3, pair-wise

multinomial terms of equal exponents up to 3, exponential and logarithmic forms

are provided for each dataset. Segmented regression and the proposed ORTREE

are also implemented in GAMS. ALAMO, segmented regression and ORTREE are

solved using Cplex MILP solver, with optimality gap set as 0.

5.3.1 Sensitivity analysis for β

In this section, we first perform a comprehensive sensitivity analysis on the single

tuning parameter β in the proposed ORTREE. Recall in the tree growing pro-

cedure, β controls termination of recursive node splitting. A node is split into

two child nodes if the optimal split leads to reduction in absolute training devi-

ation of more than a threshold value, defined as the amount of absolute training

deviation of a multiple linear regression analysis on the entire set of training sam-

ples (ERRORroot) multiplying the scaling parameter (β). The tree grows larger

as β decreases. Identifying a suitable value for β is a non-trivial problem as an

excessively high value would terminate the node splitting prematurely without

adequately describing the data, while an excessively small value can over-fit the

unseen samples by constructing a very large tree. In this work, we test a series of

values, including 0.05, 0.025, 0.015, 0.01, 0.005, 0.0025 and 0.001. The results

of the sensitivity analysis are presented in Figure 5.1.

According to Figure 5.1, we can clearly observe a phenomenon that as β goes

down from 0.05 to 0.01, prediction error keeps declining. This improved predic-

tion accuracy is attributed to the fact that decreased β allows the tree to grow

larger, and thus better describing the pattern in the data. MAE appears to vary

in different patterns in different datasets with lower values of β. For example,

on Yacht Hydrodynamics, Concrete Strength and White Wine Quality, error rate

monotonically goes up as β decreases, suggesting that the constructed trees are

too large and over-fit the unseen samples. On the other 3 datasets, MAE drops

initially with lower value of β between 0.01 and 0.0025, before prediction becomes

significantly worse at β = 0.001.

It is well known that in data mining, parameter fine tuning is required for a

particular method to reach optimal performance for a specific dataset. Thus, it

is our interest here to identify a value for β that corresponds to robust prediction
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Figure 5.1: Sensitivity analysis of β for ORTREE. Each line describes how
mean absolute prediction error varies with different values of β.

accuracy for a range of different tested benchmark examples. In this study, β =

0.005 appears to be a satisfactory value, as its prediction accuracies are the second

best on 4 datasets and third best on the other 2 datasets, giving the most stable

performance. MAE of higher and lower values of β are much less stable, e.g. when

β = 0.0025, MAE are noticeably higher than the lowest MAE on Yacht Hydro-

dynamics, Concrete Strength and White Wine Quality, even though it yields the

lowest MAE for the other 3 datasets. The same instability can be observed for

β = 0.01. Overall, it is concluded that β = 0.005 is a suitable parameter setting

for the proposed ORTREE.
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5.3.2 Performance comparison across different regression

methods

After identifying a value (i.e. 0.005 ) for the only user-specific parameter, β, in the

proposed ORTREE, we now compare the prediction performance of the ORTREE

to a number of state-of-the-art regression methods. To ensure unbiased compari-

son, β is set to 0.005 thorough the comparative study. For each of the benchmark

examples, we compare the MAE achieved by various competing methods, the re-

sults of which are summarised in Table 5.1.

Table 5.1: Prediction accuracy (MAE) comparison across different regression
methods

Yacht Concrete Energy Efficiency Energy Efficiency Airfoil White Wine
Hydrodynamics Strength Heating Cooling Quality

Tree-based regression methods
ORTREE 0.608 4.159 0.356 0.995 0.014 0.547
CART 1.607 7.224 2.000 2.385 0.035 0.603
M5’ 0.959 4.722 0.692 1.205 0.021 0.561
Cubist 0.603 4.289 0.351 0.887 0.017 0.546

Non-tree-based regression methods
Linear regression 7.270 8.312 2.089 2.266 0.037 0.586
MLP 0.809 6.229 0.993 1.924 0.035 0.623
Kriging 4.324 6.224 1.788 2.044 0.030 0.576
SVR 6.445 8.212 2.036 2.191 0.037 0.585
KNN 5.299 7.068 1.937 2.148 0.026 0.537
MARS 1.011 4.872 0.796 1.324 0.035 0.570
PaceRegression 7.233 8.298 2.089 2.261 0.037 0.586
ALAMO 0.787 8.044 2.722 2.765 0.032 0.639
Segmented regression 0.706 4.870 0.810 1.278 0.029 0.551

Three major findings can be noticed from Table 5.1. Firstly, ORTREE always

leads to smaller prediction errors than segmented regression. This is hardly a sur-

prise as ORTREE allows segmenting multiple features and therefore is capable of

modelling more complex local non-linearity, while segmented regression can only

partitions a single feature. Secondly, 3 tree-based regression methods, includ-

ing ORTREE, M5’ and Cubist clearly outperform counterparts based on other

methodologies, including the segmented regression proposed in the last chapter,

MARS, kriging, KNN and so on. In addition, Cubist appears to predict slightly

better than ORTREE, as it beats the proposed ORTREE in 4 out of 6 problems,

while ORTREE is more accurate in the other 2 problems.

More specifically, on Yacht Hydrodynamics dataset, the best performing method is
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Cubist with an MAE of 0.603, followed closed by ORTREE and segmented regres-

sion with MAE of 0.608 and 0.706, respectively. On Concrete Strength dataset,

ORTREE and Cubist again lead others with MAE of 4.159 and 4.289, respec-

tively. M5’, segmented regression and MARS are ranked between third and fifth

with MAE being lower than 4.9. Similar phenomenons are observed for Energy

Efficiency Heating, Energy Efficiency Cooling and Airfoil, where ORTREE and

Cubist occupy the top two spots and offer very similar accuracies. M5’ are the

third best method for the above 3 datasets but the margin to the top 2 is obvious.

On the last dataset of White Wine Quality, Cubist and ORTREE are ranked the

second and third methods after KNN.

The scoring strategy used in the previous chapter is repeated here to produce an

overall ranking of various regression methods over 6 datasets. In the current case,

the best method is awarded a score of 13, which is the total number of regression

methods implemented in this comparative study and the method corresponding

to the largest MAE is given a score of 1. The mean scores and ranking of each

method are given in Figure 5.2. Figure 5.2 supports our previous statements

that Cubist, ORTREE and M5’ are the top 3 methods, and segmented regression

is ranked fourth and is the best among non-tree-based methods.

Figure 5.2: Scoring of tree-based and non-tree-based regression methods.

Overall, it is obvious from the comparison that the proposed ORTREE regression

tree learning method has managed to closely match the prediction performance of

the state-of-the-art methods in literature. ORTREE performs comparatively to

Cubist and beat other methods by convincing margins.
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Figure 5.3: Constructed tree by CART on Energy Efficiency Heating example.

5.3.3 Comparison of actual constructed trees by different

regression tree methods

Last section has demonstrated that the novel ORTREE regression tree learning

method offers superior prediction capacity. Compared to certain regression meth-

ods whose output models cannot be interpreted, for example kernel-based SVR

and MLP, tree learning algorithms are well-known for their easy interpretability.

The sequence of the derived rules can be simply visualised as tree, making it easily

understandable and possible to gain some insights into the underlying mechanism

of the studied system. The interpretability of a constructed tree model decreases

as the tree grows larger. In this section, attention is turned into comparing the

number of terminal leaf nodes of the trees constructed by CART, M5’ and OR-

TREE. Taking Energy Efficiency Heating as an example and using all the available

samples as training set, the trees grown by CART, M5’ and MPT are presented

in Figures 5.3, 5.4 and 5.5, respectively.
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Figure 5.4: Constructed tree by M5’ on Energy Efficiency Heating example.
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Figure 5.5: Constructed tree by ORTREE on Energy Efficiency Heating ex-
ample.

According to Figure 5.3, CART has built a simple tree for the 768-sample ex-

ample. On the top of the tree, CART splits the entire set of samples on feature

m1 at break-point of 0.361 into two child nodes, which are in turn further split

on feature m7 and m1, respectively. There are a total number of 7 terminal leaf

nodes and the depth of the tree is equal to 4. From Figure 5.4, it is apparent

that M5’ has constructed a much larger tree than the CART. The top part of the

M5’ tree is almost identical as the tree built by CART, which is not surprising

as the two algorithms share great similarity during tree growing procedure and

only significantly different from each other on pruning procedure. Overall, the

tree grown by M5’ has a depth of 8 and 27 terminal leaf nodes, which is much

harder to understand and interpret. Figure 5.5 visualises the actual tree built by

our proposed ORTREE method. The size of the derived tree is similarly small as

that of CART with 7 terminal leaf nodes and depth of 3, yet the two trees are
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quite different as the root nodes of the two trees are split on different features.

ORTREE, optimising the node splitting, picks feature m3 as partition feature, in

contrast to feature m1 selected by CART. Overall on the Energy Efficiency Heat-

ing example, CART and ORTREE appear to build trees that are small in size,

while M5’ outputs a significantly larger tree.

The same analysis has been repeated on the other 5 benchmark datasets, and

the results of which are available in Table 5.2. The same observation can be made

that for the other examples, CART and ORTREE derive trees of similar numbers

of terminal leaf nodes, while M5’ sometimes builds trees of comparable sizes as

the other two (i.e. Yacht Hydrodynamics and Concrete Strength) but more often

outputs trees of several folds larger (i.e. Energy Efficiency Heating, Energy Effi-

ciency Cooling, Airfoil and White Wine Quality).

Table 5.2: The number of terminal leaf nodes of the constructed trees by
different regression tree learning methods

Yacht Concrete Energy Efficiency Energy Efficiency Airfoil White Wine
Hydrodynamics Strength Heating Cooling Quality

CART 5 13 7 4 18 7
M5’ 4 10 24 24 44 55
ORTREE 5 14 7 12 14 6

5.4 Concluding Remarks

Regression analysis is data-driven tool that aims to accurately predict a continu-

ous output variable from a set of independent input variables. In this chapter, a

novel solution procedure is proposed that extends the piece-wise linear regression

method presented in the last chapter. The novel solution procedure recursively

partitions the samples into two child nodes, with the OPLRA model being used

to optimise the node binary splitting. The advantage of the novel solution pro-

cedure is that segmentation of multiple features is allowed, which is not possible

for the previously proposed segmented regression method, which partitions one

feature into multiple intervals. The novel solution procedure grows a regression

tree model, named ORTREE.
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A number of 6 benchmark datasets have been used to demonstrate the appli-

cability and efficiency of the proposed ORTREE. Popular regression learning al-

gorithms have been implemented for comparison, including tree-based CART, M5’

and Cubist and methods based on other methodologies, including MARS, MLP,

kriging, segmented regression, etc. The results of cross validation clearly indi-

cate that ORTREE always result in lower prediction error than the segmented

regression model. In terms of comparison against other methods, ORTREE offers

consistently good predictive performance as it trails the accuracy of Cubist by

very narrow margin while comprehensively outperforming other methods.

In the near future, a few aspects can be investigated in order to further refine

the ORTREE method. Most of the existing regression tree learning algorithms,

including the proposed ORTREE, perform binary splits recursively to keep the

tree growing. Splitting a parent node into multiple child nodes, instead of two, is

likely to better explore the structure of the dataset. In the proposed ORTREE,

child nodes are fitted with multiple linear regression functions, which may be in-

adequate when the local relationship exhibits very strong non-linear relationship.

More basis functions, for example quadratic, logarithmic terms can be easily added

to the underlying ORTREE model so that the child nodes can model higher order

non-linearity.



Chapter 6

Identifying Community Structure

in Directed Networks Maximising

Modularity

Network is a powerful means of representing various types of complex systems,

where nodes denote the entities and edges define the existence of interactions

between the entities. One important topological property of many real world

networks is called community structure, where in various sub-graphs of a network,

the density of edges within each subgraph is much higher than across different

subgraphs. Each of those sub-graphs can be viewed as a community/module. In

literature, a metric called modularity is defined that measures the quality of a

partition of nodes into different mutually exclusive communities. One means of

deriving community structure is modularity maximisation. In this chapter, a novel

mathematical programming-based model is proposed that tackles the problem of

maximising modularity for directed networks.

6.1 Introduction and Literature Review

It is increasingly clear that a wide range of systems across different disciplines can

be described using network representations. The edges in a network can be bi-

nary/boolean, weighted, directed and with positive or negative sign, thus making

network a suitable tool to model diverse types of interactions. One of the most

110
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fundamental phenomenon observed from the graph analysis of those real world

networks is that real world networks are not random graphs with homogeneous

edge distribution. Rather, high density of edges exist within certain subsets of

nodes, while the density of edges between those subsets of nodes are much lower,

giving rise to the presence of strong community structure [240].

Uncovering the community structure in networks can provide insightful views into

the systems under study, as each community can be viewed as an independent

building block of nodes that are likely to share similar properties and/or collec-

tively perform specific tasks. In protein interaction networks, proteins that have

similar functions are more likely to be grouped into the same community [241].

Therefore, community detection can be used as a tool to predict unknown func-

tion of proteins by assigning them to modules of known functionality. Accurate

identification of protein functional modules is also important for applications like

drug design, where relevant modules of proteins can serve as potential drug targets

[242]. In Web networks, Web pages deal with similar topics are clustered into the

same modules [243]. Identifying community structures has been shown to be help-

ful in building powerful search engines. In scientific collaboration network, where

researchers are nodes and an edge exists if two researches co-author a publication,

communities structures are shown to be strong [56].

Informally, community detection refers to the procedure of identifying the in-

herent higher order structure of a network by partitioning nodes into different

modules. A metric, called modularity (Q), is defined by Newman and Girvan [59]

for undirected networks, which measures the quality of network divisions. Scaled

between 0 and 1, modularity is computed as the number of edges placed within

modules minus the expected number of edges that should fall within the modules

in an equivalent network with randomly placed edges (null case). High modularity

value indicates strong evidence that the given network division owns a statistically

significantly larger proportion of edges within the modules than random, thus pos-

ing strong community structure. On the contrary, low modularity values (close

to 0) suggest that the identified network division is not better than random. It

is generally believed that a modularity value of more than 0.3 suggests significant

underlying community structure.

With modularity being used as objective function, community detection can be
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formulated as an optimisation problem of modularity maximisation. Modularity

maximisation has been proven to be NP-complete [244], and therefore exhaustive

search algorithm is only applicable to very small networks as the number of possi-

ble partitions increases at least exponentially with the number of nodes. Effective

algorithms have been proposed in literature that are based on a number of method-

ologies, including simulated annealing [245, 246], greedy algorithms [59], extremal

optimisation [247], spectral algorithm [248] and also integer programming-based

optimisation model [58, 62].

While modularity optimisation for undirected network has been well studied over

the past decade, little has been done for module detection in directed network.

Many real world networks, however, are inherently directed, including World Wide

Web networks where an edge represents a hyperlink from one page to another. In

brain neural networks, directed connections between subjects denote the informa-

tion flow [249]. In a metabolic network, directed edge represents material flow

from one substrate to a product, which may be irreversible. In literature, the

conventional manner of tackling the problem of community detection in directed

networks is simply to discard the directionality of edges, treat the networks as

undirected, and apply the methods described above [250]. Unfortunately, this ap-

proach essentially loses valuable information carried in the edge directions.

Leicht and Newman [57] generalises the original modularity for undirected net-

work to modularity for directed network by explicitly considering the in-degree

and out-degree distributions of node. In-degree and out-degree of a node respec-

tively refers to the number of edges points into and from this node. A number

of methods exist in literature that are either designed specifically for optimising

directed modularity or originally proposed for undirected modularity but can ac-

commodate directed modularity as well. Those methods are briefly summarised

below before a novel optimisation framework is introduced in subsequent sections.

6.1.1 Tabu Search

In [67], the stochastic-based tabu search is adopted to optimise modularity for

undirected network, and the method can be directly applied for modularity opti-

misation of directed network by only modifying the objective function of modu-

larity formula. Starting from an initial network division, tabu search iteratively
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updates the partition by exploring the neighbourhood space. During each iter-

ation, tabu search picks one node at a time, randomly assigns it to one of the

other modules or a new module and evaluate the new modularity value. The best

solution is selected and passed to the next round of iteration. To help escape local

optimality, for each iteration, a set of nodes being recently updated are prevented

from moving. The set of frozen nodes is constantly updated so that a node added

to the set at one point will be removed after certain number of iterations.

6.1.2 Extremal Optimisation

Duch and Areans [247] introduce a new division community detection method

which is based on extremal optimisation. Firstly, a given network is randomly

divided into two modules of the same number of nodes. An iterative procedure is

employed to improve the binary partition. The procedure works by calculating the

relative contribution of each node towards modularity value in the current partition

and moving the node contributing least to the opposite community. After each

movement of node, the relative contribution of nodes need to be re-computed,

before the least contributing node is re-allocated to the other community. This

procedure stops when no improvement is observed with node re-assignment. After

that, the two modules are isolated, i.e. the edges connecting one module to the

other are deleted, and the above procedure of random splitting and iterative node

allocation is applied to each module in turn. The whole method terminates when

no module division can further increase modularity.

6.1.3 Fast Algorithm

Newman proposes a greedy algorithm [60] aiming to tackle medium to large net-

works at small computational cost. The agglomerative hierarchical method starts

by assigning each node to their own communities. Subsequently, two communities

are repeatedly selected and merged to form a larger community. At each step of

joining communities in pairs, all combinations of pair-wise communities are tested

and the one yielding greatest improvement in modularity is selected. Among the

series of divisions generated, the one with best modularity value is taken as the

final solution. This method has been demonstrated to be computationally cheap

for very large networks.
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6.1.4 PageRank Random Walk

Different from the above algorithms who optimises the modularity for directed

network directly, the method proposed in [251] uses a PageRank random walk

to transfer a directed network into an undirected network. PageRank is used to

evaluate the similarity between pair-wise nodes in the directed networks, explicitly

taking into account the edge directionality. The similarity matrix can be inter-

preted as an undirected but weighted network, where the similarity corresponds

to edge weights. At last, standard module detection methods presented for undi-

rected network can be employed to identify communities.

In the following section, a mathematical programming-based optimisation frame-

work is built as an alternative approach to the existing ones in literature. Firstly,

a mixed integer non-linear programming model is proposed to tackle the prob-

lem of maximising modularity of directed network. The non-linear constraints are

later linearised, which result in an MILP model. An efficient iterative solution

procedure is introduced that, by repeatedly fixing the community memberships of

certain nodes and allowing other nodes to move to other communities, reduces the

problem of solving a large MILP into solving a series of small MILP problems. A

number of directed networks are used to benchmark the performance of various

methods.

6.2 A Mathematical Programming-based Opti-

misation Framework for Modularity Optimi-

sation in Directed Networks

In this section, a novel approach is proposed for the problem of community de-

tection in directed network via modularity optimisation. The proposed integer

programming models and iterative solution procedure are described in detail be-

low.
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6.2.1 A Mixed Integer Non-linear Programming Model for

Modularity Optimisation

The problem of maximising modularity for directed, and possibly weighted, net-

works can be conveniently formulated as an MINLP model. The indices, parame-

ters and variables associated with the proposed model are listed below:

Indices

n,e node

m module

lne directed edge pointing from node n to e

Parameters

βne weight of edge point from node n to e

dinn sum of weights over all edges points to node n; in-coming edge

weight

doutn sum of weights over all edges points from node n; out-going

edge weight

L total amount of weights over all edges in the given network

Binary variables

Ynm 1 if node n belongs to module m;

0 otherwise

Free variables

Din
m sum of dinn for all the nodes belong to module m (Ynm = 1)

Dout
m sum of doutn for all the nodes belong to module m (Ynm = 1)

Lm sum of edge weights in module m

In community detection, we are mainly concerned with hard parition, i.e. one

node can only be allocated to exactly one module, which is modelled via the

below constraints: ∑
m

Ynm = 1 ∀n (6.1)

where binary variables Ynm are equal to 1 if node n is assigned into module m.

For a given directed network, the sum of weights of edges coming into node n are

denoted as parameter dinn , while the sum of weights of edges pointing from node n

are doutn . For an unweighted network, dinn and doutn are respectively reduced to the

in-degree and out-degree of node n. For a module m, the sum of dinn and doutn over
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all nodes belonging to this module (Ynm = 1) are respectively calculated as below:

Din
m =

∑
n

dinn Ynm ∀n (6.2)

Dout
m =

∑
n

doutn Ynm ∀n (6.3)

For module m, the sum of weights of edges βne belonging to this module is com-

puted as:

Lm =
∑

n,e∈lne

βneYnmYem ∀m (6.4)

In the above equations, an edge from node n to e is included in a module m if and

only if both nodes n and e belong to module m, i.e. Ynm = 1, Yem = 1. Modularity

is defined as the number of directed edges fall into communities minus the expected

number of edges that should fall into communities in an null configuration of the

equivalent network with edges being randomly placed [57]:

max Q =
∑
m

(
Lm

L
− Din

mD
out
m

L2
) (6.5)

The MINLP model is summarised as below:

Objective function (6.5)

Subject to:

One module for each node (6.1)

Sum of in-coming edge weights over all nodes in a module (6.2)

Sum of out-going edge weights over all nodes in a module (6.3)

Total edge weights in a module (6.4)

Din
m , D

out
m , Lm ≥ 0, Ynm ∈ {0, 1}

The presence of non-linearity, combined with the use of integer variables present

considerable computational difficulty for finding globally optimal solution. Solving

MINLP problems typically involves repeatedly specifying different initial starting

points and solving the model to identify locally optimal solutions, which can gen-

erally be realised in very affordable computational time. However quality of the

solutions are hard to guarantee. Thus, this MINLP model can be used to provide

an initial network division, before a more sophisticated method can be applied to
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refine the division. In the next section, the MINLP model is reformulated to an

MINLP by linearising the two non-linear constraints.

6.2.2 A Mixed Integer Linear Programming Model for Mod-

ularity Optimisation

The two non-linear constraints are exactly linearised, i.e. the linearised constraints

are exact representations of the original non-linear constraints and therefore keep-

ing the original decision space intact, leading to an MILP reformulation. Firstly,

Equ. (6.4) can be replaced with the following three sets of constraints:

LSnem ≤ βneYnm ∀n, e ∈ lne,m (6.6)

LSnem ≤ βneYem ∀n, e ∈ lne,m (6.7)

Lm =
∑

n,e∈lne

LSnem ∀m (6.8)

where LSnem are newly introduced positive intermediate variables. For edge from

node n to e, LSnem is equal to its weight βne if it belongs to module m; 0 otherwise.

The non-linear term in the objective function, Din
mD

out
m , can be re-written as below:

Din
mD

out
m = Din

m(
∑
n

doutn Ynm)

=
∑
n

doutn (Din
mYnm)

where Din
mYnm is the product of a continuous variable Din

m and a binary variable

Ynm, and can be linearised using the following set of equations:

DYnm ≥ Din
m − U(1− Ynm) ∀n,m (6.9)

DDin out
m ≥

∑
n

doutn DYnm ∀m (6.10)

where DYnm are introduced as new positive variables to replace Din
mYnm, DDin out

m

are introduced to replace Din
mD

out
m and U is an arbitrarily large number. The
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objective function now becomes:

max Q =
∑
m

(
Lm

L
− DDin out

m

L2
) (6.11)

The final model, getting rid of all the non-linearity, is named Di MOD (Directed

MODularity) and contains new objective function (6.11) and constraints (6.1),

(6.2) and (6.6)-(6.10). The MILP model can be solved to global optimality for

small problems, but still consumes large computational resource for larger prob-

lems. Therefore, an iterative solution procedure is also derived in the next section,

which achieves an improved solution quality via repeatedly solving reduced MILP

models.

6.2.3 An Iterative Algorithm Improves the Quality of Net-

work Division

As vast majority of the module detection methods in literature, we derive a new

iterative solution procedure to improve the quality of the final network partition.

The pseudocode of the iterative method is provided below:

An initial network partition is required as input to the proposed iterative algo-

rithm. Although in general any community detection method in literature can be

utilised to serve the purpose, we make use of the MINLP model presented ear-

lier in this chapter. The MINLP model has the advantage of producing a coarse

network division at small computational cost. Specifically, the MINLP model is

solved NMINLP times, each from a different random initial starting point. The

solution corresponding to the highest modularity value is retained as the initial

network division and passes to the iterative algorithm.

Given the initial network partition, a module is picked and Nrelaxed nodes are ran-

domly selected from the module, whose community memberships are relaxed/deleted.

For all other nodes in the network, their community memberships are fixed. The

reduced Di MOD is then solved maximising modularity by determining only the

community memberships of the relaxed nodes. Any of the relaxed nodes can ei-

ther stay in the current community, move to another existing community to a new

community. Note that by controlling Nrelaxed to be reasonably small, the resulting
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Iterative Algorithm for Identifying Network Division

1.) An initial network division need to be provided. Here we make use of the MINLP
model proposed earlier in this chapter, although any other algorithm in literature can
be employed as well. The MINLP model is repeatedly solved from different random
initial solutions NMINLP times. Each run outputs a different network division.

2.) From 1.), the solution giving highest modularity value is kept as the initial network
division.

3.) Do steps 4.)-6.) for each module.

4.) Randomly select Nrelaxed nodes in the current module and relax them by removing
their node-module allocations (Ynm). For all the other nodes in the network, their
node-module allocations are fixed.

5.) Solve a reduced Di MOD model maximising modularity and determining the com-
munity memberships of the relaxed nodes.

6.) Within the current module, each node must be relaxed once and only once. If there
are still nodes yet to be relaxed in the current module, repeat 4.) and 5.). Note
that if the number of nodes haven’t been relaxed in the current module is less than
Nres, then select all of them for the next repetition of 4.) and 5.).

7.) Do 3.) for a total number of Niteration iterations.
8.) The solution at the end of the final iteration is taken as the final network division.

Note that NMINLP , Nrelaxed and Niteration are all user-specific parameters.

reduced Di MOD model is several orders of magnitude smaller than one complete

Di MOD model on the entire network. Each node within the current module

must be relaxed once and only once. The procedure of random node selection and

re-allocation continues until all the nodes within the current module have been

relaxed. Note that the last repetition of the above procedure for each community

may select less than Nrelaxed nodes, as total number of yet relaxed nodes is smaller

than Nrelaxed.

Perform the above procedure sequentially for each module in turn, which com-

pletes one round of iteration. The total number of iterations is controlled by

Niteration. The final solution at the end of the last iteration is taken as the output

network division. NMINLP , Nrelaxed and Niteration are all user-specific parameters.

Compared to solving one large Di MOD model directly optimising the commu-

nity memberships of all nodes simultaneously, solving a series of reduced Di MOD

has the advantage of reaching global optimality for each reduced problem in small

computational cost. In the next section, a number of directed networks are used to

demonstrate the applicability and efficiency of the proposed community detection

algorithm.
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6.3 Results and Discussion

In this section, performance of the community detection method proposed in this

work is tested against other established methods in literature on 4 directed net-

works. A directed and weighted network representing neural network of Caenorhab-

ditis Elegans, referred to as C. Elegans in this chapter, has been compiled in [252].

The network consists of a total number of 297 nodes and 2345 distinct weighted

edges. The second network, Roget, contains 994 nodes and 5058 directed and un-

weighted connections. Roget network details cross-references between categories

of English words, where one edge points from one category to another if a reference

is provided to the latter among the words of the former. Roget network is down-

loaded from: http://vlado.fmf.uni-lj.si/pub/networks/data/dic/roget/Roget.htm.

The other two networks, i.e. Mycobacterium Tubecrulosis and Plasmodium Falci-

parum, represent biological pathways at the molecular and cellular levels. Node

entries include protein or DNA, while each edge denotes a certain type of physical

interaction between two nodes, e.g. one node activates another. Mycobacterium

Tubecrulosis and Plasmodium Falciparum respectively owns 194 nodes, 849 edges

and 1390 nodes, 6497 edges. The above 4 networks are summarised in Table 6.1.

Table 6.1: Summary of benchmark directed networks

number of nodes number of directed edges weighted or unweighted
C. Elegans 297 2345 weighted
Roget 994 5058 unweighted
Mycobacterium Tubecrulosis 194 849 unweighted
Plasmodium Falciparum 1390 6497 unweighted

A total number of 3 module detections methods are implemented for comparison,

including tabu search [67], extremal optimisation [247] and fast algorithm [60].

All 3 methods are realised in the software Radatool (http://deim.urv.cat/ ser-

gio.gomez/radatools.php). Heuristics-based tabu search and extremal optimisa-

tion have stochastic behaviours, which means multiple executions may result in

different network divisions. Thus both methods are executed 10 times for each

network, and the best network division is reported for comparison. It is important

to stress that greater numbers of execution runs have been tried, which fail to

improve the best solution. For the fast algorithm, its deterministic nature means

only one run is required.
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In terms of the proposed community detection approach, MINLP are solved us-

ing SBB solver 100 times (NMINLP = 100). 60 nodes are relaxed for each solve

of the reduced Di MOD (Rrelaxed = 60). Di MOD is solved using Cplex solver

with optimality gap set as 0, i.e. globally optimal solution is always achieved.

For the number of iterations of the solution algorithm, 100 rounds are specified

(Niteration = 100). The deterministic nature of the proposed approach means only

one single execution is required.

6.3.1 The Iterative Algorithm Improves the Quality of Net-

work Division

Using the 4 benchmark directed networks, the effectiveness and efficiency of the

iterative algorithm presented in the last section is tested. Table 6.2 provides the

comparison between the modularity of the initial coarse network division provided

by solving MINLP model and that of the final refined one identified by iterative

algorithm.

Table 6.2: Modularity improvement achieved by iterative algorithm

C. Elegans Roget Mycobacterium Tubecrulosis Plasmodium Falciparum
Initial network division 0.4934 0.5209 0.4839 0.7044
Final network division 0.5076 0.5854 0.5073 0.7236
Percentage improvement 0.0288 0.1238 0.0486 0.0273

According to Table 6.2, the refined network division generally represents a notice-

able improvement over the initial division. Roget is the network benefiting most

from the iterative procedure which improves the modularity value of the commu-

nity structure by more than 10 %. The iterative algorithm also successfully boosts

modularity by nearly 5 % on Mycobacterium Tubercrulosis. On C. Elegans and

Plasmodium Falciparum, improvements of just below 3% can be observed. It is

stressed here that the initial network division is obtained by executing 100 runs of

MINLP model from different random initial starting points, and increase the num-

ber of runs from 100 to 1000 only marginally increase the modularity value, and

the extend of increase is ignorable compared with that of the iterative algorithm.
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6.3.2 Comparative Results

After demonstrating the efficiency of the iterative algorithm, comparison is per-

formed between the proposed approach and 3 widely employed methods in litera-

ture with respect to modularity values, the results of which is provided in Table

6.3.

Table 6.3: Comparative testing of different community detection methods on
benchmark datasets

C. Elegans Roget Mycobacterium Tubecrulosis Plasmodium Falciparum
Tabu search 0.4398 0.4942 0.4294 0.6485
Extremal optimisation 0.4729 0.5503 0.4605 0.6664
Fast algorithm 0.5059 0.5561 0.4567 0.6846
Di MOD 0.5076 0.5854 0.5073 0.7236

Table 6.3 offers concrete evidence that the proposed module detection optimisa-

tion approach in this work outperforms the 3 established methods in literature by

clear margins. In C. Elegans network, the proposed method slightly outscores

fast algorithm, with both achieving modularities of more than 0.5. The net-

work divisions provided by extremal optimisation and tabu search respectively

give modularities of around 0.47 and 0.44. The advantage of the proposed method

is more obvious in the other 3 networks. In Roget example, the proposed approach

identifies a community structure of modularity of 0.5854, with fast algorithm, ex-

tremal optimisation and tabu seach separately returns modularity values of 0.5561,

0.5503 and 0.4942. In the two biological directed networks, the margins between

the proposed method and the second best, which in both cases is fast algorithm,

are around 0.05. Overall, the novel methodology proposed here consistently and

convincingly beat the other 3 methods widely employed in literature.

6.4 Concluding Remarks

This chapter addresses the problem of community structure detection in directed

network. Network is an useful means to represent and study various complex sys-

tems. One interesting property observed in real world networks is the presence of

community structure, where nodes in the network tend to cluster into several mu-

tually exclusive tightly connected modules with higher within-module edge density

than across-module edge density. A metric called modularity exists in literature

that quantities the quality of division of nodes into communities, which essentially
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transfers the problem of community detection into an optimisation problem of

modularity maximisation.

While modularity optimisation has been extensively studied for undirected net-

works, there is little research effort to detect modules in directed networks. A

mathematical programming-based optimisation approach has been introduced to

fill the gap in literature. Modularity optimisation for directed network can be

conveniently formulated as an MINLP model, which converge to locally optimal

solutions quickly for even large networks. The MINLP model is then reformulated

to an MILP model via linearisation, which can be solved to obtain globally optimal

solution for small networks. The novel community detection method proposed in

this chapter consists of two major steps, taking advantage of both models. Firstly,

the MINLP model is solved to produce an initial coarse network division. Given

the initial network division, the iterative algorithm works by repeatedly removing

the community memberships of random sets of nodes, solving the reduced MILP

model and re-allocating the relaxed nodes to communities.

Using 4 directed networks covering a wide range of node and edge sizes, the pro-

posed iterative algorithm appears to considerably improve the quality of the initial

coarse network partition. Compared with 3 popular community detection methods

in literature, the proposed approach in this work is demonstrated to consistently

identify the best network division giving largest modularity value. Another advan-

tage of the proposed approach is its deterministic nature, which means multiple

executions will desirably converge to the same network division.



Chapter 7

Conclusions and Future Work

This thesis has tackled several important problems in data mining, including multi-

class data classification, disease classification, regression analysis and community

detection maximising modularity. In this final chapter, we make a conclusion for

the work presented early in the thesis before providing some research directions

for the future work.

7.1 Concluding Remarks

In this doctoral thesis, mathematical programming models and heuristics-based

solution procedures have been introduced for several topics in data mining.

Chapter 1 gives a general introduction for the 4 main topics of this thesis and

mathematical programming optimisation techniques. The scope and overall struc-

ture of the thesis are also presented.

Chapter 2 addresses the problem of data classification. A classification model

in literature has been adopted where two novel solution procedures have been pro-

posed to construct more efficient classifiers. The first improvement updates the

weight distribution of samples during the iterative training procedure and assigns

higher weights to some misclassified samples in the last iteration. Using real world

benchmark examples, the new classifier is demonstrated to almost always lead to

better predictions from the original method and also outperforms other popular

methods in literature. The second refinement has been introduced to reduce the

124
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computational cost of the training process, by partitioning the samples into two

disjoint regions and thus decomposing the whole problem into two sub-problems.

This scheme is shown to decrease the computational cost by the orders of 1 to 2

magnitudes while generally maintaining the same level of prediction accuracies.

In Chapter 3, a special type of classification problem of disease classification

is tackled, where the number of features far exceeds that of the samples. Making

use of reliable extra biological information on pathway gene sets, a novel optimi-

sation model is proposed which summarises the expression patterns of genes in a

pathway into a new composite feature, called pathway activity. Pathway activity

is inferred in a supervised manner by maximising its discriminative power. Using

a large number of published datasets covering several complex diseases, it is shown

that the novel pathway activity inference model results in consistently higher pre-

diction rates than other competing methods in literature, for both binary and

multi-class problems.

Chapter 4 deals with regression analysis. An optimisation is proposed that seg-

ments a given feature into multiple mutually exclusive intervals while simultane-

ously fits one distinct linear regression model per interval. A heuristic procedure

is also introduced that determines the key partitioning feature among all and the

number of intervals. Real world datasets have been employed to demonstrate

that the proposed piece-wise linear regression model achieves robust performance

and outperform several state-of-the-arts approaches based on other methodologies.

The regression method proposed in Chapter 4 is further generalised in Chap-

ter 5. The refined method employs the underlying optimisation from the last

Chapter but performs recursive binary partitions, therefore permitting segment-

ing more than one feature. The resulting method gives a tree-like structure. Using

the same benchmark problems, it is shown that this refined method always pro-

vides better predictions than the original piece-wise linear regression model, and

consistently matches the best regression tree method in the existing literature.

The problem of community detection in directed networks is investigated in Chap-

ter 6. An MINLP model has firstly been introduced which partitions nodes in

a network into clusters while maximising modularity value. Exact linearisation

of non-linear constraints is then performed to produce a MILP model. A hybrid
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method is formed by solving multiple times the MINLP models for identification

of a good initial solution and then iteratively solving reduced MILP models to

improve the initial network partition. With 4 case studies describing directed net-

works of various sizes, we show that this hybrid framework is capable of identifying

network clusters that correspond to convincingly higher modularity values than

other established methods.

A number of peer reviewed journal publications have arisen from the work of

this thesis, which are listed in Appendix ??.

7.2 Future Work

This section makes some suggestions on the future research directions of the topics

this thesis has covered. For multi-class data classification, a natural extension of

the work of this thesis is to generalise the data partitioning scheme so that more

than 2 disjoint regions can be created, making it suitable for problems with large

number of samples.

With regards to disease classifications, it is observed that the DIGS model pro-

posed in this thesis is only able to achieve locally optimal solutions in feasible com-

putational time. A possible avenue is to consider reformulating the current model

so that some of the difficult binary variables can be replaced by easy continuous

variables, thus potentially achieving a higher quality solution. On the other hand,

disease classification can be approached by incorporating other biological knowl-

edge, for example protein interaction network. Protein interaction network details

general non-context specific gene-gene interactions, which can be integrated with

pathway information to create pathway-specific gene-gene networks. Algorithms

can be proposed which searches a small module in each pathway-specific network

whose member genes can be combined into module activity for better classification.

For regression analysis, the current OPRLA model can be generalised to model

higher order non-linearity by including more polynomial functions of the features.

Furthermore, the proposed regression tree method can be extended to allow mul-

tiple instead of binary partitions per node.
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In addition, one possible direction for future work of community detection is to

extend the current work to perform soft partition, whereby each node can be allo-

cated to more than one cluster. The motivation is that nodes are often members

of more than one group in practical networks, for example a protein can belong to

multiple protein complexes and a person can be present in more than one friend

circles. Uncovering those structures can provide valuable insights into the system

as the nodes participating in multiple clusters are likely to have special functions

worth further attentions.

Lastly, the performance of a data mining method can be affected by parame-

ter tuning to a considerable extent, especially for algorithms like neural network

and support vector machine, where true optimal performance can only be found

by carefully examining a wide range of parameter space. Therefore, it is of great

interest as future work to thoughtfully compare the performance of the various

proposed methods in this work against the existing ones in literature, by making

parameter tuning an integral part of the training process.
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Figure A.1: Sensitivity analysis of parameter NoG for DIGS model with 5-
NN. For each of the 8 datasets, the proposed DIGS model is applied to infer
pathway activity while setting NoG, i.e. the maximum number of member genes
in a pathway allowed to have non-zero weights, to 5, 10, 15 and 20. In addition,
DIGS model is also applied with NoG set to equal to the number of available
member genes in a pathway, i.e. all member genes can take non-zero weights to

construct pathway activity.
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Figure A.2: Sensitivity analysis of parameter NoG for DIGS model with HB.

Figure A.3: Sensitivity analysis of parameter NoG for DIGS model with lo-
gistic regression classifier.
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Figure A.4: Classification accuracy comparison of 7 competing methods using
SMO classifier. The proposed DIGS pathway activity inference method is com-
pared against other pathway activity inference methods (Mean, Median, PCA
and CORGs) and also genes-based methods (SG and Per pathway). Classifica-
tion accuracy is summarised as average prediction rates over 50 runs of random

partition of datasets into a 70% training set and a 30% testing set.

Figure A.5: Classification accuracy comparison of 7 competing methods using
HB classifiers.
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Figure A.6: Classification accuracy comparison of 7 competing methods using
logistic regression classifier.
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dataset source previous usage
Swindell [158] ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13355 [253], [254], [255]
Yao [34] ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14905 [256], [257], [258]
Farmer [159] ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1561 [259], [260], [261]
Pawitan [27] ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1456 [262], [263], [264]
Singh [113] broadinstitute.org/publications/broad895 [265], [266], [267]
Shipp [33] broadinstitute.org/cancer/software/genepattern/datasets [268], [269], [270]
Popovici [115] ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24061 [271], [272], [273]
Desmedt [25] ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390 [274], [275], [276]

Figure B.1: Snapshot of part of Pawitan dataset.
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Figure B.2: Snapshot of part of Popovici dataset.
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Lingjian Yang, Chrysanthi Ainali, Aristotelis Kittas, Frank O. Nestle, Lazaros G.

Papageorgiou, Sophia Tsoka. Pathway-level disease data mining through hyper-

box principles. Mathematical Biosciences, 260:25-34, 2014.

Lingjian Yang, Chrysanthi Ainali, Sophia Tsoka, Lazaros G. Papageorgiou. Path-

way activity inference for multiclass disease classification through a mathematical

programming optimisation framework. BMC Bioinformatics, 15:390, 2014.

Lingjian Yang, Songsong Liu, Sophia Tsoka, Lazaros G. Papageorgiou. Sample

re-weighting hyper box classifier for multi-class data classification. Computers &

Industrial Engineering, 85:44-56, 2015.

Lingjian Yang, Songsong Liu, Sophia Tsoka, Lazaros G. Papageorgiou. Math-

ematical programming for piecewise linear regression analysis. Expert Systems

with Applications, 44:156-167, 2016.

Lingjian Yang, Songsong Liu, Sophia Tsoka, Lazaros G. Papageorgiou. Mathe-

matical programming building regression tree model. Journal of Machine Learning

Research, under review.
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