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Epidemic Spread and Variation of Peak Times in Connected Regions Due to
Travel-Related Infections—Dynamics of an Antigravity-Type Delay Differential

Model∗
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Abstract. National boundaries have never prevented infectious diseases from reaching distant territories; how-
ever, the speed at which an infectious agent can spread around the world via the global airline
transportation network has significantly increased during recent decades. We introduce an SEAIR-
based, antigravity model to investigate the spread of an infectious disease in two regions which are
connected by transportation. As a submodel, an age-structured system is constructed to incorporate
the possibility of disease transmission during travel, where age is the time elapsed since the start
of the travel. The model is equivalent to a large system of differential equations with dynamically
defined delayed feedback. After describing fundamental but biologically relevant properties of the
system, we detail the calculation of the basic reproduction number and obtain disease transmission
dynamics results in terms of R0. We parametrize our model for influenza and use real demographic
and air travel data for the numerical simulations. To understand the role of the different charac-
teristics of the regions in the propagation of the disease, three distinct origin-destination pairs are
considered. The model is also fitted to the first wave of the influenza A(H1N1) 2009 pandemic
in Mexico and Canada. Our results highlight the importance of including travel time and disease
dynamics during travel in the model: the invasion of disease-free regions is highly expedited by
elevated transmission potential during transportation.
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1. Introduction. The global network of human transportation has played a paramount
role in the spatial spread of infectious diseases. The high connectedness of distant territories
by air travel makes it possible for a disease to invade regions far away from the source faster
than ever. Some infectious diseases, such as tuberculosis, measles, and seasonal influenza,
have been known to be transmissible during commercial flights. The importance of the global
air travel network was highlighted in the 2002–2003 SARS outbreak (WHO [38]) and clearly
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EPIDEMIC SPREAD IN CONNECTED REGIONS 1723

contributed to the global spread of the 2009 pandemic influenza A(H1N1) (Khan et al. [15]).
Therefore, mathematically describing the spread of infectious diseases on the global human
transportation network is of critical public health importance.

There are a few well-known studies which constructed and analyzed various meta-population
models for disease spread in connecting regions (see Arino [2], Arino and van den Driessche
[3], Ruan, Wang, and Levin [5, 25], Rvachev and Longini [26], Wang and Zhao [37], and the
references therein). These studies focus mainly on the impact of spatial dispersal of infected
individuals from one region to another, and do not consider transportation as a platform of
disease dynamics. However, during long-distance travel, such as intercontinental flights, a sin-
gle infected individual may infect several other passengers (Wagner, Coburn, and Blower [36],
European Center for Disease Prevention and Control [12]), thus potentially inducing multiple
generating infections in the destination region. It is therefore desirable to properly describe
the spread of the disease via long-distance travel, in a way that incorporates into the models
the transmission dynamics during the transition and travel.

Cui, Takeuchi, and Saito [8] and Takeuchi, Liu, and Cui [31] modeled the possibility
that individuals may contract a disease while traveling by a system of ordinary differential
equations based on the standard SIS (susceptible-infected-susceptible) epidemic model. They
discovered that the disease can persist in regions connected by human transportation even
if the infection died out in all regions in the absence of travel. Liu, Wu, and Zhou [18]
noted that the previously proposed models [8, 19, 31] implicitly used the assumption that
the transportation between regions occurs instantaneously. For some diseases of major public
health concern, such as SARS and influenza, the progress of the disease is so fast that even a
short delay (a fraction of a day) can be significant. Based on such considerations, Liu, Wu,
and Zhou [18] introduced the time needed to complete the trip into the SIS-type epidemic
model, and also the possible infections during this time. Nakata [22] described the global
dynamics of this system for two identical regions in terms of the basic reproduction number.
The model was later generalized by Nakata and Röst [23] to the case of n regions with different
characteristics and arbitrary travel networks. An SIR (susceptible-infected-recovered)-based
model with a general incidence term was analyzed in Knipl and Röst [17] to describe the
spread of infection in multiple regions with travel considered.

The purpose of this work is to formulate a model to properly describe the temporal evo-
lution of an epidemic in regions connected by long-distance travel, such as intercontinental
flights. The European Centre for Disease Prevention and Control (ECDC) developed a risk
assessment guideline [12] for infectious diseases transmitted on aircrafts, like influenza. Exist-
ing studies confirmed that on-board transmission was possible in flights even with a duration
of less than eight hours. For most diseases that pose a threat of a global pandemic, an SIS-
type model is not adequate. For this reason, here we use the SEAIR (susceptible-exposed-
asymptomatic infected-infected-recovered) model as a basic epidemic model building block
in the regions and also during travel. The SIS model can be reduced to a logistic equation
and then can be solved analytically. This property was heavily used in the analysis done in
[18, 22, 23]. However, the lack of closed form solution causes substantial technical difficulties
in the analysis of SEAIR-type models, as will be shown in this paper.

More significantly the aforementioned existing models did not distinguish local residents
from temporary visitors in the model setup. In reality, the large part of travels are return
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1724 D. H. KNIPL, G. RÖST, AND J. WU

trips, and not only the number of visitors, but also the average time that visitors spend in
the other region may significantly affect the speed of spatial spread of the disease. If visitors
spend more time in a region which is a hotspot of the disease, they will more likely carry the
disease back to their region of origin. In addition, visitors and local residents may have very
different contact rates and mixing patterns, for example if the visitors are typically on holiday
and stay in selected resorts and hotels. Hence in our model we use different compartments
for residents and visitors to capture this phenomenon.

Many multiregional epidemic models, especially the gravity-type models, are based on the
assumption that the speed of the spread of epidemics between regions is inversely proportional
to the distance between those regions (see, for example, Tuite et al. [32] for the recent cholera
outbreak in Haiti). However, in the case of air travel, the travel behavior is different and can
be just the opposite. First, the number of travelers does not depend directly on the distance
between regions, but is determined by other more important factors, such as business and
cultural relations or touristic attractivity. Second, the transmission rate of an infectious
disease can be much higher than usual when a large number of passengers are sharing the
same cabin, and the longer the flight (which means the larger the distance between regions),
the greater the number of infections that can be expected (Wagner, Coburn, and Blower [36]).
Hence the air travel model we are proposing here is in principle “antigravity.”

The paper is organized as follows. In the next section we formulate an age-structured
model (where age means time elapsed since the start of travel), which leads to a nonlinear
system of functional differential equations. In section 3 we determine some fundamental
properties of the model. Section 4 is concerned with the computation of local and global
reproduction numbers. We parametrize our model for influenza in section 5, and then in
section 6 we introduce three prototype origin-destination pairs (Canada-Mexico, Canada-
China, Canada-UK) and run simulations using real air traffic and tourism data. In the last
section we discuss our findings.

2. Model description. We formulate a dynamical model describing the spread of an in-
fectious disease within and between two regions, and also during travel from one region to
the other. We divide the entire populations of the two regions into the disjoint classes Sm

j ,
Em

j , Am
j , Imj , Rm

j , j ∈ {1, 2}, m ∈ {r, v}, where the letters S, E, A, I, and R represent
the compartments of susceptible, exposed, asymptomatic infected, symptomatic infected, and
recovered individuals, respectively. Lower index j ∈ {1, 2} specifies the current region, upper
index m ∈ {r, v} denotes the residential status of the individual in the current region (resident
versus visitor). For instance, Sv

1 is the compartment of individuals who are susceptible to the
disease and staying in region 1 as a visitor (hence, they originally belong to region 2); members
of Ar

2 are those who are asymptomatic infected residents in region 2.
Let Sm

j (t), Em
j (t), Am

j (t), Imj (t), Rm
j (t), j ∈ {1, 2}, m ∈ {r, v}, be the number of individu-

als belonging to Sm
j , Em

j , Am
j , Imj , Rm

j , respectively, at time t. The transmission rate between
an infected individual with residential status m and a susceptible individual with residential
status n in region j (j ∈ {1, 2},m, n ∈ {r, v}) is denoted by βm,n

j . Let F r
j denote the force of

infection of residents, and F v
j the force of infection of visitors in region j. Model parameter

μ
E
denotes the inverse of the incubation period, μ

A
and μ

I
are the recovery rates of asymp-

tomatic and symptomatic infected individuals. Let ρ be the reduction factor of infectiousness
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of asymptomatic infected individuals (we assume they are capable of transmitting the disease,
but generally with a lower rate than symptomatic infected individuals). Let p denote the
probability that an infected individual develops symptoms, and let δ denote disease-induced
mortality rate. We assume constant recruitment terms Λj , while drj and dvj denote natural
mortality rates of residents and visitors in region j. We denote the travel rate of residents
between region j and region k by αj , and the rate at which visitors of region j travel back
to region k by γj ; thus 1/γj is the average time visitors spend in region j. For the total
population of residents, visitors, and all individuals currently in region j at time t, we use the
notation

(1)

N r
j (t) = Sr

j (t) + Er
j (t) +Ar

j(t) + Irj (t) +Rr
j(t),

Nv
j (t) = Sv

j (t) + Ev
j (t) +Av

j (t) + Ivj (t) +Rv
j (t),

Nj(t) = N r
j (t) +Nv

j (t).

We divide the population during travel into the classes smj,k, e
m
j,k, a

m
j,k, i

m
j,k, r

m
j,k. Letters s,

e, a, i, r denote susceptible, exposed, asymptomatic infected, symptomatically infected, and
recovered travelers, respectively. Lower indices j, k ∈ {1, 2}, j �= k, indicate that individuals
are traveling from region j to region k. Upper index m ∈ {r, v} determines individuals’
residential status in the region they have just left: for instance, an individual who is now
in rv1,2 is recovered, traveling from region 1 to region 2, and was a visitor in region 1, which
means that the individual originally belongs to region 2.

Let τ > 0 denote the average time required to complete a one-way trip. To describe the
disease dynamics during travel, we define smj,k(θ, t∗), e

m
j,k(θ, t∗), a

m
j,k(θ, t∗), i

m
j,k(θ, t∗), r

m
j,k(θ, t∗),

j, k ∈ {1, 2}, j �= k, m ∈ {r, v}, as the density of individuals who started travel at time t∗ and
belong to classes smj,k, e

m
j,k, a

m
j,k, i

m
j,k, r

m
j,k with respect to θ, where θ ∈ [0, τ ] denotes the time

elapsed since the beginning of the travel. Let

(2) nm
j,k(θ, t∗) = smj,k(θ, t∗) + emj,k(θ, t∗) + amj,k(θ, t∗) + imj,k(θ, t∗) + rmj,k(θ, t∗),

where j, k ∈ {1, 2}, j �= k, m ∈ {r, v}, and let

(3) nj,k(θ, t∗) = nr
j,k(θ, t∗) + nv

j,k(θ, t∗).

Thus,
∫ θ1
θ2

nj,k(θ, t − θ)dθ is the number of individuals who left region j in the time interval
[t − θ1, t − θ2], where τ ≥ θ1 ≥ θ2 ≥ 0. In particular, for θ1 = τ and θ2 = 0, this gives the
total number of individuals who are in the travel transition from region j to region k at time
t. We assume that infected individuals do not die during travel; hence nj,k(θ, t∗) = nj,k(0, t∗)
for all θ ∈ [0, τ ]. During the course of travel, infected individuals can transmit the disease at
the rate βT . We use the notation μT

E
, μT

A
, μT

I
for the inverse of the incubation period and

the recovery rates of asymptomatic and symptomatic infected individuals during travel. Let
F T
j,k denote the force of infection during travel from region j to region k. Then smj,k(τ, t− τ),

emj,k(τ, t − τ), amj,k(τ, t − τ), imj,k(τ, t − τ), rmj,k(τ, t − τ) gives the inflow of individuals arriving
from region j to compartments Sn

k , E
n
k , A

n
k , I

n
k , R

n
k , j, k ∈ {1, 2}, j �= k, m,n ∈ {r, v},m �= n,

respectively, at time t.
All variables and model parameters are listed in Tables 1 and 2. The flow chart of the

model is depicted in Figure 1. Based on the assumptions formulated above, we obtain the
following system of differential equations for disease transmission in the two regions:
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Table 1
Model variables (j, k ∈ {1, 2}, j �= k). In the table, “density” means the density with respect to the age

since the start of travel.

Variables

F r
j Force of infection of residents in region j

F v
j Force of infection of visitors in region j

F T
j,k Force of infection during travel from region j to region k

Sr
j , E

r
j , A

r
j , I

r
j , R

r
j Susceptible, exposed, asymptomatic, symptomatic

infected, and recovered residents in region j
Sv
j , E

v
j , A

v
j , I

v
j , R

v
j Susceptible, exposed, asymptomatic, symptomatic

infected, and recovered visitors in region j
Nr

j , N
v
j , Nj Total population size of residents, visitors, and

all individuals in region j
srj,k, e

r
j,k, a

r
j,k, i

r
j,k, r

r
j,k Density of susceptible, exposed, asymptomatic,

symptomatic infected, and recovered individuals
during the travel from j to k (traveling to visit k)

svj,k, e
v
j,k, a

v
j,k, i

v
j,k, r

v
j,k Density of susceptible, exposed, asymptomatic,

symptomatic infected, and recovered individuals during
the travel from j to k (returning to k from visiting j)

nr
j,k, n

v
j,k, nj,k Total density of residents, visitors, and

all individuals during the travel from j to k

Table 2
Key model parameters (j, k ∈ {1, 2}, j �= k).

Key model parameters

Λj Recruitment rate in region j
drj , d

v
j Natural death rate of residents and visitors of region j

δ Disease-induced death rate
βm,n
j Transmission rate between an infected individual

with residential status m and a susceptible individual
with residential status n in region j (m,n ∈ {r, v})

βT Transmission rate during the travel
αj Traveling rate of residents of region j to region k
γj Inverse of duration of visitors’ stay in region j
τ Duration of travel between the regions
p Probability of developing symptoms
ρ Reduction of infectiousness of asymptotic infecteds

μE , μT
E

Reciprocal of the length of the incubation period
in the regions and during the travel

μA , μ
T
A

Recovery rate of asymptomatic infecteds
in the regions and during the travel

μI , μ
T
I

Recovery rate of symptomatic infecteds
in the regions and during the travel
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E1r

A1r

I1r

S1r

R1r

S2r

E2r

I2r

A2r

R2r

S1v

E1v

A1v

I1v

R1v

S2v

E2v

A2v

I2v

R2v

Travel

er1,2

rr1,2

sr1,2
sv1,2

ar1,2

ir1,2
iv1,2

av1,2

ev1,2

rv1,2

sv2,1

ev2,1

iv2,1

av2,1

rv2,1

er2,1

ar2,1

ir2,1

rr2,1

sr2,1

Region 1 Region 2

Figure 1. Color-coded flow chart of disease transmission and travel dynamics. The disease transmission in
the two regions is shown in two different columns; the disease progresses vertically from top to bottom. Classes
having the same origins are marked by the same colors. Red corresponds to the classes originating from region
1; blue represents classes of region 2. Arrows colored with the same colors indicate how the disease progresses.
Green dashed-dotted arrows represent traveling. Green solid arrows show the dynamics of the pandemic during
the course of the travel. The description of the variables can be found in Table 1.
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(L)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡr
j (t) = Λj − Sr

j (t)F
r
j (t)− (drj + αj)S

r
j (t) + svk,j(τ, t− τ),

Ėr
j (t) = Sr

j (t)F
r
j (t)− (drj + μ

E
+ αj)E

r
j (t) + evk,j(τ, t− τ),

Ȧr
j(t) = (1− p)μ

E
Ej − (drj + αj + μA)A

r
j(t) + avk,j(τ, t− τ),

İrj (t) = pμ
E
Ej − (drj + αj + δ + μI)I

r
j (t) + ivk,j(τ, t− τ),

Ṙr
j(t) = μII

r
j (t) + μAA

r
j(t)− (drj + αj)R

r
j(t) + rvk,j(τ, t− τ),

Ṡv
j (t) = −Sv

j (t)F
v
j (t)− (dvj + γj)S

v
j (t) + srk,j(τ, t− τ),

Ėv
j (t) = Sv

j (t)F
v
j (t)− (dvj + μ

E
+ γj)E

v
j (t) + erk,j(τ, t− τ),

Ȧv
j (t) = (1− p)μ

E
Ev

j (t)− (dvj + γj + μA)A
v
j (t) + ark,j(τ, t− τ),

İvj (t) = pμEE
v
j (t)− (dvj + γj + δ + μI)I

v
j (t) + irk,j(τ, t− τ),

Ṙv
j (t) = μII

v
j (t) + μAA

v
j (t)− (dvj + γj)R

v
j (t) + rrk,j(τ, t− τ),

where

F r
j (t) =

1

Nj(t)

(
βrr
j (Irj (t) + ρAr

j(t)) + βvr
j (Ivj (t) + ρAv

j (t))
)
,

F v
j (t) =

1

Nj(t)

(
βrv
j (Irj (t) + ρAr

j(t)) + βvv
j (Ivj (t) + ρAv

j (t))
)
.

For each given t∗, the following system (T ) describes the evolution of the densities during
the travel initiated at time t∗:

(T )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dθ
srj,k(θ, t∗) = −srj,k(θ, t∗)F

T
j,k(θ, t∗),

d

dθ
erj,k(θ, t∗) = srj,k(θ, t∗)F

T
j,k(θ, t∗)− μT

E
erj,k(θ, t∗),

d

dθ
arj,k(θ, t∗) = (1− p)μT

E
erj,k(θ, t∗)− μT

A
arj,k(θ, t∗),

d

dθ
irj,k(θ, t∗) = pμT

E
erj,k(θ, t∗)− μT

I
irj,k(θ, t∗),

d

dθ
rrj,k(θ, t∗) = μT

A
arj,k(θ, t∗) + μT

I
irj,k(θ, t∗),

d

dθ
svj,k(θ, t∗) = −svj,k(θ, t∗)F

T
j,k(θ, t∗),

d

dθ
evj,k(θ, t∗) = svj,k(θ, t∗)F

T
j,k(θ, t∗)− μT

E
evj,k(θ, t∗),

d

dθ
avj,k(θ, t∗) = (1− p)μT

E
evj,k(θ, t∗)− μT

A
avj,k(θ, t∗),

d

dθ
ivj,k(θ, t∗) = pμT

E
evj,k(θ, t∗)− μT

I
ivj,k(θ, t∗),

d

dθ
rvj,k(θ, t∗) = μT

A
avj,k(θ, t∗) + μT

I
ivj,k(θ, t∗),
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where j, k ∈ {1, 2}, j �= k, and

F T
j,k(θ, t∗) =

βT

nj,k(θ, t∗)
(irj,k(θ, t∗) + ivj,k(θ, t∗) + ρ(arj,k(θ, t∗) + avj,k(θ, t∗))),

nj,k(θ, t∗) = αj(S
r
j (t∗) + Er

j (t∗) +Ar
j(t∗) + Irj (t∗) +Rr

j(t∗))

+ γj(S
v
j (t∗) + Ev

j (t∗) +Av
j (t∗) + Ivj (t∗) +Rv

j (t∗))

= αjN
r
j (t∗) + γjN

v
j (t∗).

For θ = 0, the densities are determined by the rates at which individuals start their travels
from one region to the other at time t∗. Hence, the initial values for system (T ) at θ = 0 are
given by

(IVT )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

srj,k(0, t∗) = αjS
r
j (t∗), svj,k(0, t∗) = γjS

v
j (t∗),

erj,k(0, t∗) = αjE
r
j (t∗), evj,k(0, t∗) = γjE

v
j (t∗),

arj,k(0, t∗) = αjA
r
j(t∗), avj,k(0, t∗) = γjA

v
j (t∗),

irj,k(0, t∗) = αjI
r
j (t∗), ivj,k(0, t∗) = γjI

v
j (t∗),

rrj,k(0, t∗) = αjR
r
j(t∗), rvj,k(0, t∗) = γjR

v
j (t∗)

for j, k ∈ {1, 2}, j �= k.
Now we turn our attention to the terms smj,k(τ, t−τ), emj,k(τ, t−τ), amj,k(τ, t−τ), imj,k(τ, t−τ),

rmj,k(τ, t − τ) in system (L), which are the densities of individuals arriving to classes Sn
k , E

n
k ,

An
k , I

n
k , R

n
k , j, k ∈ {1, 2}, j �= k, m,n ∈ {r, v},m �= n, respectively, at time t, upon completing

a one-way trip from region j. At time t, these terms are determined by the solution of system
(T ) with initial values (IVT ) for t∗ = t− τ at θ = τ :

(i) individuals who enter region k at time t are those who left region j at time t− τ ;
(ii) residents of region j become visitors of region k and vice versa (m �= n) upon com-

pleting a one-way trip;
(iii) an individual may move to a different compartment during travel; for example, a

susceptible resident who travels from region j may arrive as an infected visitor to region k
(j, k ∈ {1, 2}, j �= k), as given by the dynamics of system (T ).

Next we specify initial values for system (L) at t = 0. Since travel takes τ units of time to
complete, arrivals to region j are determined by the state of region k (j, k ∈ {1, 2}, j �= k) at
t− τ , via the solution of systems (T ) and (IVT ). Thus, we set up initial functions as follows:

(IVL)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sr
j (u) = ϕr

S,j(u), Sv
j (u) = ϕv

S,j(u),

Er
j (u) = ϕr

E,j(u), Ev
j (u) = ϕv

E,j(u),

Ar
j(u) = ϕr

A,j(u), Av
j (u) = ϕv

A,j(u),

Irj (u) = ϕr
I,j(u), Ivj (u) = ϕv

I,j(u),

Rr
j(u) = ϕr

R,j(u), Rv
j (u) = ϕv

R,j(u),

where u ∈ [−τ, 0], and each ϕm
K,j is a continuous function for j ∈ {1, 2}, m ∈ {r, v}, K ∈

{S,E,A, I,R}.
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Note that systems (L) and (T ) are interconnected; in order to determine the dynamics
of the model, simultaneous solution of both is required. Considering the fact that disease
transmission is possible during travel, the solution of system (T ) at (τ, t − τ) is required for
all t ≥ 0 to find the solution of (L). However, in order to obtain the solution of (T ) at (τ, t−τ),
it is necessary to use the solution of (L) at t− τ , because (T ) takes the initial conditions from
(L). Hence, in order to describe the disease transmission in the regions, the solution of another
differential equation system is required at each time t, which has initial values depending on
the earlier state of the system on the regions. Thus (L) is a delay differential system, where
the delayed feedback is determined by a solution of a parallel system of ordinary differential
equations. In previous papers with travel delay, such as [18, 22, 23], the authors used an
SIS-type system during travel, which was analytically solvable; thus it was possible to express
the delayed feedback explicitly. Unlike the SIS model, the SEAIR model is not analytically
solvable; therefore, here we have to deal with a system of functional differential equations,
where the delay term is given only implicitly via a solution of a nonlinear system of ordinary
differential equations.

3. Basic properties of the model. In this section, we show that our model is equivalent to
a system of nonlinear functional differential equations where the delay term is defined dynam-
ically, via the solution of another system of differential equations. Then we also investigate
some biologically relevant properties of the system. Set

Xr
j =

⎛
⎜⎜⎜⎜⎜⎝

Sr
j

Er
j

Ar
j

Irj
Rr

j

⎞
⎟⎟⎟⎟⎟⎠ , Xv

j =

⎛
⎜⎜⎜⎜⎜⎝

Sv
j

Ev
j

Av
j

Ivj
Rv

j

⎞
⎟⎟⎟⎟⎟⎠ , xrj,k =

⎛
⎜⎜⎜⎜⎜⎝

srj,k
erj,k
arj,k
irj,k
rrj,k

⎞
⎟⎟⎟⎟⎟⎠ , xvj,k =

⎛
⎜⎜⎜⎜⎜⎝

svj,k
evj,k
avj,k
ivj,k
rvj,k

⎞
⎟⎟⎟⎟⎟⎠ ,

where j, k ∈ {1, 2}, j �= k, and set

X =

⎛
⎜⎜⎝
Xr

1

Xv
1

Xr
2

Xv
2

⎞
⎟⎟⎠ , x =

⎛
⎜⎜⎝
xv2,1
xr2,1
xv1,2
xr1,2

⎞
⎟⎟⎠ ,

so that X ∈ R
20 and x ∈ R

20. For a given t∗ we define the system (T ∗) as

(T ∗)
∂

∂θ
x(θ, t∗) = f(x(θ, t∗)),

x(0, t∗) = g(X(t∗)),

where t∗, θ ∈ R+, f, g : R20 → R
20,

gi(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ2yi if i = 1, . . . , 5,

α2yi if i = 6, . . . , 10,

γ1yi if i = 11, . . . , 15,

α1yi if i = 16, . . . , 20,
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and fi(x) equals the right-hand side of the equation for xi in system (T ). For instance,

f7(x) = βT x6∑10
j=1 xj

(x4 + x9 + ρ(x3 + x8))− μT
E
x7.

Define G : R20 → R
20, where Gi(X) is given by the right-hand side of the equation of Xi in

(L) without the inflow from travel. For instance,

G16(X) = − X16∑20
j=11 Xj

(βrv
2 (X14 + ρX13) + βvv

2 (X19 + ρX18))− (dv2 + γ2)X16.

Let x̂(θ, t∗;Y ) denote the solution of the initial value problem (T ∗) for t∗ with initial value
x̂(0, t∗) = g(Y ), where Y ∈ R

20, and let H(Y ) := x̂(τ, t − τ ;Y ), H : R20 → R
20. Then our

system (L) can be written in closed form as a system of functional differential equations,

(L∗) Ẋ(t) = F(X(t),X(t − τ)),

where F(X(t),X(t − τ)) = G(X(t)) + H(X(t − τ)), F : R20 × R
20 → R

20. Clearly (T ∗) is
also a compact form of (T ). To study the dynamics of (L∗), we define our phase space as
the nonnegative cone C+ = C([−τ, 0],R20

+ ) of the Banach space of continuous functions from
[−τ, 0] to R

20, equipped with the supremum norm. For each Φ ∈ C+, standard arguments
guarantee that there exists a unique solution of system (L∗) with initial values X(u) = Φ(u),
u ∈ [−τ, 0] (see [16, 17]). Using the notation of (IVL), we have Φ = (Φr

1,Φ
v
1,Φ

r
2,Φ

v
2)

T , where
Φr
j = (ϕr

S,j , ϕ
r
E,j , ϕ

r
A,j, ϕ

r
I,j , ϕ

r
R,j)

T , Φv
j = (ϕv

S,j , ϕ
v
E,j, ϕ

v
A,j , ϕ

v
I,j , ϕ

v
R,j)

T , j ∈ {1, 2}.
Proposition 1. For any Φ ∈ C+, the solution of system (L∗) is nonnegative.
Proof. It is straightforward to see that (T ∗) preserves nonnegativity; thus H(Y ) ≥ 0 if

Y ≥ 0. Since our functions F(y, z) : R20
+ × R

20
+ → R

20 and Fy(y, z) are continuous on R
20

and for every i = 1, . . . , 20, for every y, z ∈ R
20
+ , yi = 0 implies Fi(y, z) ≥ 0, all the conditions

of Theorem 3.4 in [27] hold. This implies that for nonnegative initial data the corresponding
solution of system (L∗) remains nonnegative.

We define the disease-free subspace Cdf
+ as

Cdf
+ =

{
Φ|Φ = (ϕr

S,j, 0̂, 0̂, 0̂, ϕ
r
R,j , ϕ

v
S,j, 0̂, 0̂, 0̂, ϕ

v
R,j)

T
} ⊂ C+,

where 0̂ denotes the constant 0 function. If Φ ∈ Cdf
+ , then

Er
j (t) = Ev

j (t) = Ar
j(t) = Av

j (t) = Irj (t) = Ivj (t) ≡ 0

for all t ≥ 0, and hence the disease-free subspace is positively invariant.
Proposition 2. In the disease-free subspace Cdf

+ there exists a unique positive equilibrium of

system (L∗) which is globally asymptotically stable in Cdf
+ .

Proof. Using the definition of N r
j and Nv

j (see Table 1) in section 2, for these variables we
derive the following differential equation system:

(4)
Ṅ r

j (t) = Λj − (drj + αj)N
r
j (t) + γkN

v
k (t− τ),

Ṅv
j (t) = −(dvj + γj)N

v
j (t) + αkN

r
k (t− τ),
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where j, k ∈ {1, 2}, j �= k. One can find that the positive equilibrium (N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 ) is

given by

(5)

⎛
⎜⎜⎜⎝
N̂ r

1

N̂v
1

N̂ r
2

N̂v
2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝
dr1 + α1 0 0 −γ2

0 dv1 + γ1 −α2 0
0 −γ2 dr2 + α2 0

−α2 0 0 dv2 + γ2

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝
Λ1

0
Λ2

0

⎞
⎟⎟⎠ .

Set M r
j (t) := N r

j (t) − N̂ r
j , Mv

j (t) := Nv
j (t) − N̂v

j , j ∈ {1, 2}. We obtain the decoupled
linear systems

(6)
Ṁ r

1 (t) = −(dr1 + α1)M
r
1 (t) + γ2M

v
2 (t− τ),

Ṁv
2 (t) = −(dv2 + γ2)M

v
2 (t) + α1M

r
1 (t− τ),

and

(7)
Ṁ r

2 (t) = −(dr2 + α2)M
r
2 (t) + γ1M

v
1 (t− τ),

Ṁv
1 (t) = −(dv1 + γ1)M

v
1 (t) + α2M

r
2 (t− τ).

Since dr1, d
v
1, d

r
2, d

v
2 and α1, α2, γ1, γ2 are positive, and since (dr1 + α1)(d

v
2 + γ2) > α1γ2 and

(dr2+α2)(d
v
1+γ1) > α2γ1, condition (16) in [30] holds. Thus, the zero solutions of systems (6)

and (7) are asymptotically stable, which implies that the positive equilibrium (N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 )

is asymptotically stable.
Since on the disease-free subspace d

dθr
r
j,k(θ, t∗) = 0 and d

dθr
v
j,k(θ, t∗) = 0, from (IVT ) we

obtain rvk,j(τ, t − τ) = γkR
v
k(t − τ) and rrk,j(τ, t − τ) = αkR

r
k(t − τ) for j, k ∈ {1, 2}, j �= k.

Consider the following subsystem:

(8)
Ṙr

j(t) = −(drj + αj)R
r
j(t) + γkR

v
k(t− τ),

Ṙv
j (t) = −(dvj + γj)R

v
j (t) + αkR

r
k(t− τ).

With similar argument as for systems (6) and (7), we obtain that the equilibrium
(R̂r

1, R̂
v
1, R̂

r
2, R̂

v
2) = (0, 0, 0, 0) is asymptotically stable. We conclude that Rr

j(t), R
v
j (t) → 0

as t → ∞, j, k ∈ {1, 2}, j �= k. In the disease-free subspace, N r
j (t) = Sr

j (t) + Rr
j(t) and

Nv
j (t) = Sv

j (t) +Rv
j (t), j ∈ {1, 2}; thus Sr

j (t) → N̂ r
j and Sv

j (t) → N̂v
j as t → ∞.

Henceforth, in the disease-free subspace, the solutions of (L∗) converge to the equilibrium
N̂ = (N̂ r

1 , 0, 0, 0, 0, N̂
v
1 , 0, 0, 0, 0, N̂

r
2 , 0, 0, 0, 0, N̂

v
2 , 0, 0, 0, 0)

T .
As an immediate consequence of Propositions 1 and 2, we have that in the disease-free

subspace the solutions of (L∗) are bounded.
Proposition 3. If δ = 0, then the total populations (N r

1 (t), N
v
1 (t), N

r
2 (t), N

v
2 (t)) converge to

(N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 ), which is given by (5).

Proof. If δ = 0, then it is easy to see that N r
1 (t), N

v
1 (t), N

r
2 (t), N

v
2 (t) satisfy system (4);

hence we obtain the same positive equilibrium (N̂ r
1 , N̂

v
1 , N̂

r
2 , N̂

v
2 ), which is globally asymptot-

ically stable.
Proposition 4. Solutions of system (L∗) are bounded.
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Proof. For any Φ ∈ C+, the system of N r
1 (t), N

v
1 (t), N

r
2 (t), N

v
2 (t) becomes

(9)
Ṅ r

j (t) = Λj − (drj + αj)N
r
j (t)− δIrj (t) + γkN

v
k (t− τ),

Ṅv
j (t) = −(dvj + γj)N

v
j (t)− δIvj (t) + αkN

r
k (t− τ).

By Proposition 1, Nm
j (u), Imj (u), j ∈ {1, 2}, m ∈ {r, v}, are nonnegative; thus by a standard

comparison argument (see Theorem 4.1 in [13]), solutions of (9) are bounded by the solutions
of (4), which are convergent according to Proposition 2. Thus, we conclude that N r

j (t) and
Nv

j (t), j ∈ {1, 2}, are bounded. Since

0 ≤ Sr
j (t), E

r
j (t), A

r
j(t), I

r
j (t), R

r
j (t) ≤ N r

j (t),

0 ≤ Sv
j (t), E

v
j (t), A

v
j (t), I

v
j (t), R

v
j (t) ≤ Nv

j (t),

solutions of system (L∗) are bounded.

4. The basic reproduction number. The basic reproduction number (R0) is a central
quantity in epidemiology, as it determines the average number of secondary infections caused
by a typical infected individual during the period of infectiousness. In section 2 we introduced a
dynamical model describing the temporal evolution of an infectious disease in and between two
regions connected by public transportation. This section is devoted to the computation of the
basic (global) reproduction number of the model. It is defined as the dominant eigenvalue of
the next generation matrix (NGM), as introduced in [9, 10]. First we apply some modifications
to the model setup and calculate the NGM. Then we show that the reproduction number works
as a threshold quantity for the stability of the disease-free equilibrium of the system.

We define the local reproduction numbers as we consider our model in the absence of travel.
In this case the two regions are isolated; hence to obtain the (local) reproduction number of
region j, j ∈ {1, 2}, it suffices to follow a typical infected individual during the infectious
period in region j. Given that the probability of developing symptoms is p, the reduction of
infectiousness of asymptomatic infecteds is ρ, and the average length of the infectious period
in classes I and A is 1/μ

I
and 1/μ

A
, respectively, we arrive at the formula

RL,j = βrr
j

(
p

μ
I

+ (1− p)
ρ

μ
A

)
,

where βrr
j is the transmission rate in region j. In the case of isolated regions, the global

reproduction number arises as the maximum of the local reproduction numbers. However, the
unlimited number of travels and the possibility of disease transmission during travel make it
very complicated to trace secondary cases if we incorporate air transportation.

In this section, we neglect the transition from exposed to infected and from infected to
recovered classes during travel; i.e., we assume that μT

E
= μT

A
= μT

I
= 0. Although with this

limitation we ignore the possibility of changing to being infectious or recovered on the plane,
this assumption also ensures that individuals do not undergo multiple disease states during
the same trip. For realistic values of the travel duration τ it is quite unrealistic to expect that,
for instance, someone who was susceptible before travel arrives as recovered upon completing
the trip. As shown below, this hypothesis also allows us to calculate the basic reproduction
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number explicitly, and the most important part of the transmission dynamics during travel,
namely exposure of susceptibles to the infection, is still fully considered in the modified model.

With the assumption of μT
E
= μT

A
= μT

I
= 0, our system (T ) becomes

(T’ )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dθ
srj,k(θ, t∗) = −srj,k(θ, t∗)F

T
j,k(θ, t∗),

d

dθ
erj,k(θ, t∗) = srj,k(θ, t∗)F

T
j,k(θ, t∗),

d

dθ
arj,k(θ, t∗) =

d

dθ
irj,k(θ, t∗) =

d

dθ
rrj,k(θ, t∗) = 0,

d

dθ
svj,k(θ, t∗) = −svj,k(θ, t∗)F

T
j,k(θ, t∗),

d

dθ
evj,k(θ, t∗) = svj,k(θ, t∗)F

T
j,k(θ, t∗),

d

dθ
avj,k(θ, t∗) =

d

dθ
ivj,k(θ, t∗) =

d

dθ
rvj,k(θ, t∗) = 0,

with

F T
j,k(θ, t∗) =

βT

nj,k(θ, t∗)
(irj,k(θ, t∗) + ivj,k(θ, t∗) + ρ(arj,k(θ, t∗) + avj,k(θ, t∗))),

nj,k(θ, t∗) = αjN
r
j (t∗) + γjN

v
j (t∗)

for j, k ∈ {1, 2}, j �= k. Using systems (T’ ) and (IVT ), we obtain the densities of asymp-
tomatic, symptomatic infected, and recovered individuals during travel with respect to θ as

(10)

arj,k(θ, t∗) = arj,k(0, t∗) = αjA
r
j(t∗), avj,k(θ, t∗) = avj,k(0, t∗) = γjA

v
j (t∗),

irj,k(θ, t∗) = irj,k(0, t∗) = αjI
r
j (t∗), ivj,k(θ, t∗) = ivj,k(0, t∗) = γjI

v
j (t∗),

rrj,k(θ, t∗) = rrj,k(0, t∗) = αjR
r
j(t∗), rvj,k(θ, t∗) = rvj,k(0, t∗) = γjR

v
j (t∗)

for all t∗, θ ∈ [0, τ ], and j, k ∈ {1, 2}, j �= k. Then, using (10), the force of infection F T
j,k arises

as

F T
j,k(θ, t∗) = βT

αjI
r
j (t∗) + γjI

v
j (t∗) + ρ(αjA

r
j(t∗) + γjA

v
j (t∗))

αjN
r
j (t∗) + γjN

v
j (t∗)

,

where θ ∈ [0, τ ] and j, k ∈ {1, 2}, j �= k, and we can determine the density of susceptible
individuals during travel for θ ∈ [0, τ ], j, k ∈ {1, 2}, j �= k, as

(11)

srj,k(θ, t∗) = srj,k(0, t∗)e
− ∫ θ

0 FT
j,k(ν,t∗)dν

= αjS
r
j (t∗)e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjN

v
j
(t∗) ,

svj,k(θ, t∗) = svj,k(0, t∗)e
− ∫ θ

0 FT
j,k(ν,t∗)dν

= γjS
v
j (t∗)e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjN

v
j
(t∗) .
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Last, using the definition of nm
j,k(θ, t∗) (j, k ∈ {1, 2}, m ∈ {r, v}), we obtain the density of

exposed individuals during travel as

(12)

erj,k(θ, t∗) = nr
j,k(θ, t∗)− arj,k(θ, t∗)− irj,k(θ, t∗)− rrj,k(θ, t∗)− srj,k(θ, t∗)

= αjN
r
j (t∗)− αjA

r
j(t∗)− αjI

r
j (t∗)− αjR

r
j(t∗)− srj,k(θ, t∗)

= αj

(
Sr
j (t∗)

(
1− e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjN

v
j
(t∗)

)
+ Er

j (t∗)

)
,

evj,k(θ, t∗) = nv
j,k(θ, t∗)− avj,k(θ, t∗)− ivj,k(θ, t∗)− rvj,k(θ, t∗)− svj,k(θ, t∗)

= γjN
v
j (t∗)− γjA

v
j (t∗)− γjI

v
j (t∗)− γjR

v
j (t∗)− svj,k(θ, t∗)

= γj(S
v
j (t∗) + Ev

j (t∗))

− γjS
v
j (t∗)e

−θβT
αjI

r
j (t∗)+γjI

v
j (t∗)+ρ(αjA

r
j (t∗)+γjA

v
j (t∗))

αjN
r
j
(t∗)+γjN

v
j
(t∗) .

Choosing θ = τ and t∗ = t− τ , the inflow terms smj,k(τ, t− τ), emj,k(τ, t− τ), amj,k(τ, t− τ),
imj,k(τ, t − τ), and rmj,k(τ, t − τ) (j, k ∈ {1, 2}, m ∈ {r, v}) determined in (10), (11), and (12)
arise as delay terms of Sm

j , Em
j , Am

j , Imj , and Rm
j . In what follows, we use the notation (L′)

to refer to the special case of (L) with these particular inflow terms.
We use the notation of section 3 and define H̄ : R20 → R

20 as H̄i equals the inflow term
of the right-hand side of the equation for Xi in (L′). For instance,

H̄1(Y ) = γ2Y16e
−τβT α2Y14+γ2Y19+ρ(α2Y13+γ2Y18)

α2
∑15

j=11
Yj+γ2

∑20
j=16

Yj , H̄18(Y ) = α1Y3.

System (L′) can be written in the compact form of

(L̄) Ẋ(t) = F̄(X(t),X(t − τ)),

where F̄(X(t),X(t − τ)) = G(X(t)) + H̄(X(t − τ)), F̄ : R20 × R
20 → R

20. Now we focus on
system (L̄), and we detail the computation of the reproduction number.

Notice that the disease-free equilibrium N̂ =
(
N̂ r

1 , 0, 0, 0, 0, N̂
v
1 , 0, 0, 0, 0, N̂

r
2 , 0, 0, 0, 0,

N̂v
2 , 0, 0, 0, 0

)
of system (L∗) defined in section 3 is the unique positive equilibrium of (L̄)

in the disease-free subspace. In the initial stage of the epidemic, we can assume that system
(L̄) is near the equilibrium N̂ and approximate the equations of classes Em

j , Am
j , Imj , j ∈

{1, 2}, m ∈ {r, v}, with the linear system

(13) z′(t) = Az(t) + Bz(t− τ),

where z : R → R
12, A,B ∈ R

12×12 and A = DG(N̂), B = DH̄(N̂) hold. Matrices A and B
have the form

A =

⎛
⎜⎜⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

⎞
⎟⎟⎠ ,
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where Aj,k, Bj,k ∈ R
3×3 for j, k ∈ {1, 2, 3, 4}, and Aj,k and Bj,k can be obtained as follows:

A11 =

⎛
⎜⎝ −(μ

E
+ α1 + dr1) ρβrr

1
N̂r

1

N̂r
1+N̂v

1

βrr
1

N̂r
1

N̂r
1+N̂v

1

(1− p)μ
E

−(μ
A
+ α1 + dr1) 0

pμE 0 −(μI + α1 + δ + dr1)

⎞
⎟⎠ ,

A12 =

⎛
⎜⎝ 0 ρβvr

1
N̂r

1

N̂r
1+N̂v

1

βvr
1

N̂r
1

N̂r
1+N̂v

1

0 0 0
0 0 0

⎞
⎟⎠ ,

and A1,3 = A1,4 = O, where we denote the matrix with 0-entries by O; moreover,

B13 =

⎛
⎜⎝ 0

τβT ρα2γ2N̂v
2

α2N̂r
2+γ2N̂v

2

τβTα2γ2N̂v
2

α2N̂r
2+γ2N̂v

2

0 0 0
0 0 0

⎞
⎟⎠ , B14 =

⎛
⎜⎝ γ2

τβT ργ2
2 N̂

v
2

α2N̂r
2+γ2N̂v

2

τβT γ2
2N̂

v
2

α2N̂r
2+γ2N̂v

2

0 γ2 0
0 0 γ2

⎞
⎟⎠ ,

and B1,1 = B1,2 = O. Matrix elements Aj,k, Bj,k, j ∈ {2, 3, 4}, k ∈ {1, 2, 3, 4}, can be derived
similarly.

Next we decompose the matrix A+B as F−V, where F is the transmission part, describing
the production of new infections, and −V is the transition part, describing changes in state (see
[9, 34] for some details). To do that, we first determine what we call reproduction here, i.e., in
what kind of situations do new infections occur. We define two possible ways of reproduction:

(i) a susceptible moves to the exposed class while being in a region;
(ii) an exposed individual, who was susceptible before travel, arrives to a region upon

completing a trip.
With this definition in mind, we obtain F ∈ R

12×12 and V ∈ R
12×12 as

F =

⎛
⎜⎜⎝

F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

⎞
⎟⎟⎠ , V =

⎛
⎜⎜⎝

V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44

⎞
⎟⎟⎠ ,

where Fj,k, Vj,k ∈ R
3×3 (j, k ∈ {1, 2, 3, 4}). It is easy to see that

F11 =

⎛
⎜⎝ 0 ρβrr

1
N̂r

1

N̂r
1+N̂v

1

βrr
1

N̂r
1

N̂r
1+N̂v

1

0 0 0
0 0 0

⎞
⎟⎠ , F12 =

⎛
⎜⎝ 0 ρβvr

1
N̂r

1

N̂r
1+N̂v

1

βvr
1

N̂r
1

N̂r
1+N̂v

1

0 0 0
0 0 0

⎞
⎟⎠ ,

F13 =

⎛
⎜⎝ 0

τβT ρα2γ2N̂v
2

α2N̂r
2+γ2N̂v

2

τβTα2γ2N̂v
2

α2N̂r
2+γ2N̂v

2

0 0 0
0 0 0

⎞
⎟⎠ , F14 =

⎛
⎜⎝ 0

τβT ργ2
2 N̂

v
2

α2N̂r
2+γ2N̂v

2

τβT γ2
2N̂

v
2

α2N̂r
2+γ2N̂v

2

0 0 0
0 0 0

⎞
⎟⎠ ,
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and elements Fj,k, j ∈ {2, 3, 4}, k ∈ {1, 2, 3, 4}, arise similarly. The elements of −V represent
rates at which individuals progress from one class to another:

V11 =

⎛
⎝ μ

E
+ α1 + dr1 0 0

−(1− p)μ
E

μ
A
+ α1 + dr1 0

−pμ
E

0 μ
I
+ α1 + δ + dr1

⎞
⎠ , V14 =

⎛
⎝ −γ2 0 0

0 −γ2 0
0 0 −γ2

⎞
⎠ ,

while V1,2 = V1,3 = O and elements Vj,k, j ∈ {2, 3, 4}, k ∈ {1, 2, 3, 4}, can be obtained
similarly. Clearly F is a positive matrix, that is, all of its entries are nonnegative, and it
is easy to check that −V is positive-off-diagonal, that is, all entries are nonnegative except
possibly those on the diagonal. For a square matrix M we define the spectral bound s(M) and
the spectral radius ρ(M) by s(M) := sup{Re(λ) : λ ∈ σ(M)}, ρ(M) := sup{|λ| : λ ∈ σ(M)},
where σ(M) denotes the set of eigenvalues of M . One can show that s(−V) < 0; this is
equivalent to the statement that V is invertible and V−1 is a positive matrix (for the proof of
the equivalence, see, e.g., Lemma 6.12 of [9]). We state the following proposition.

Proposition 5. The zero solution of the linear delay differential equation

z′(t) = Az(t) + Bz(t− τ)

is asymptotically stable if ρ(FV−1) < 1 and unstable if ρ(FV−1) > 1.
Proof. The principal result of section 5 in Chapter 5 in [28] is that the stability of an

equilibrium of a cooperative and irreducible system of delay differential equations is the same
as that for an associated system of cooperative ordinary differential equations. System (13)
is cooperative since A is positive-off-diagonal and B is a positive matrix. Every column of B
contains at least one nonzero element, which together with the irreducibility of matrix A+B
implies that system (13) is irreducible. Corollary 5.2 in [28] states that the zero solution of
the linear delay differential equation (13) is asymptotically stable (unstable) if and only if the
zero solution of the linear ordinary differential equation

(14) w′(t) = (A+ B)w(t)
is asymptotically stable (unstable). We can reformulate (14) as

w′(t) = (F − V)w(t).
We have seen that F is a positive matrix and −V is a positive-off-diagonal matrix with
s(−V) < 0. The stability of the zero steady state of w′(t) = (F − V)w(t) is determined by
the sign of s(F −V), which coincides with the sign of ρ(FV−1)− 1 (see Theorem A.1 in [11]).
The proof is now complete.

The statement of Proposition 5 extends to the nonlinear system (L̄) by the principle of
linearized stability.

Proposition 6. The disease-free equilibrium of system (L̄) is asymptotically stable if ρ(FV−1)
< 1, and unstable if ρ(FV−1) > 1.

After obtaining stability results for (L̄), a system of delay differential equations, we con-
sider the following associated system of ODEs:

(15) Ẋ(t) = G(X(t)) + H̄(X(t)),

D
ow

nl
oa

de
d 

10
/1

8/
13

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1738 D. H. KNIPL, G. RÖST, AND J. WU

where H̄ was introduced previously in this section and X and G were defined in section 3.
The concept of the next generation matrix (NGM) of an epidemic model was introduced
in Diekmann, Heesterbeeck, and Metz [10] (and elaborated in [9, Chapter 5]) as a matrix
whose elements give the number of newly infected individuals in specific categories. To obtain
this matrix, one considers the equations of the system that describe the production of new
infections and changes in state among infected individuals; in case of system (15), this infected
subsystem consists of the equations for Em

j , Am
j , Imj , j ∈ {1, 2}, m ∈ {r, v}. Clearly N̂ works

as the unique disease-free equilibrium of (15), so we can linearize the infected subsystem about
the disease-free steady state and get

(16) w′(t) = (A+ B)w(t) = (F − V)w(t).

Diekmann, Heesterbeeck, and Robert [11] refer to FV−1 ∈ R
12×12 as KL, the next generation

matrix with large domain for system (15). However, this matrix does not equal the NGM K
of the ODE system (15), because the decomposition of A+B relates to the expected offspring
of individuals of any state and not just epidemiological newborns (new infections). Since in
the case of system (15) only states Er

1 , E
v
1 , E

r
2 , and Ev

2 are involved in the action of the NGM
K, it is clear that K ∈ R

4×4. [11] claims that ρ(KL) = ρ(K), and it can be shown that for
(15) the NGM can be obtained as K = (KL)

1,4,7,10
1,4,7,10.

Next we determine the NGM N and the reproduction number R0 for the delay system
(L̄). Then we show that N = K; i.e., the NGM for the delay system (L̄) equals the NGM
for the ODE system (15). Since R0 is defined as the dominant eigenvalue of N (the existence
of the dominant eigenvalue is guaranteed by the Frobenius–Perron theorem), and, moreover,
KL = FV−1 and ρ(KL) = ρ(K) hold, we obtain that R0 = ρ(FV−1). If so, then it follows
from Proposition 6 that R0 works as a threshold quantity for the stability of the disease-free
equilibrium of system (L̄).

We construct the NGM N for system (L̄) as we divide all exposed individuals into four
groups: residents of region 1 (Er

1), visitors of region 1 (Ev
1 ), residents of region 2 (Er

2), and
visitors of region 2 (Ev

2 ). We denote the number of new infections among individuals of region
k with residential status n generated by an exposed individual of region j with residential
status m by Rm,n

j,k , where j, k ∈ {1, 2}, m, n ∈ {r, v}. Then N ∈ R
4×4 has the form

N =

⎛
⎜⎜⎝

Rrr
11 Rvr

11 Rrr
21 Rvr

21

Rrv
11 Rvv

11 Rrv
21 Rvv

21

Rrr
12 Rvr

12 Rrr
22 Rvr

22

Rrv
12 Rvv

12 Rrv
22 Rvv

22

⎞
⎟⎟⎠ .

We can obtain the elements of N by biological reasoning, directly from the specification of the
system, and using our definition of reproduction. For the calculations (from which it follows
that N = K), see the appendix.

4.1. The dependence of R0 on key model parameters. Throughout this subsection
we demonstrate how the reproduction number depends on various key model parameters.
We previously described the calculation of R0 as the dominant eigenvalue of the NGM. We
obtained that each element of this 4 × 4 matrix arises as a complex formula of the model
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20 25 30 35 40 45 50
ΒT

1.4

1.6

1.8

2.0

R0

Figure 2. The dependence of R0 on βT . Parameter values were chosen as RL,1 = 1.4, RL,2 = 1.4, τ = 0.5,
γ−1
1 = γ−1

2 = 7, μ−1
E

= 1.4, μ−1
I

= 3, μ−1
A

= 4.1, p = 0.6, ρ = 0.1.

parameters (see the appendix for details); hence due to the complicated structure, here we
present not analytic results but numerical simulations with reasonable parameter values. We
performed a systematic analysis to reveal the dependence of R0 on several model parameters.
We chose reasonable values for the parameters (see section 5 for plausible parameter ranges
for influenza), population sizes, and travel rates (see [14]). In this subsection we assume
that the two regions are symmetric in population sizes, travel rates, and epidemiological
characteristics. This assumption enables us to focus on a better understanding of the role of
the key parameters. The findings support our intuitions about the dependence of the basic
reproduction number on epidemiological parameters like the transmission rates and duration
of infectious periods: increasing the values of these parameters results in an increase of the
value of the reproduction number. However, we observed some unexpected behavior when
examining R0 as a function of the transmission rate during travel and the travel rate of
visitors.

Figure 2 shows R0 as a function of βT when other model parameters are fixed and the
local reproduction numbers are set to 1.4. For βT < 30 the reproduction number settles at
around 1.4; however, the function approaches a line with a strictly positive slope as we further
increase the parameter value. Numerical simulations proved that there is an eigenvalue of the
NGM whose dependence on βT is almost linear. As the parameter value grows, this eigenvalue
dominates the one which is close to 1.4 for each value of βT . Next we set βT = 40 and examine
the effect of parameters γ1 and γ2 on the reproduction number. If we ignore the time needed
to complete a one-way trip, the value of these parameters does not influence the value of R0

in the case of identical regions: if τ = 0 and the two regions are symmetric in population
sizes and values of epidemiological parameters including the local reproduction numbers, then
R0 = RL,1 = RL,2 holds. However, for positive values of τ we obtain some nonmonotonic
behavior of R0 as a function of the duration of visitors’ stay (reciprocal of γ1 and γ2), as
shown in Figure 3. To understand this phenomenon we examined how the elements of the
NGM depend on 1

γ1
and 1

γ2
. We found that these parameters do not significantly influence

most of the matrix elements if one considers realistic parameter range (0 < 1
γ1
, 1

γ2
< 50

(days)). However, Rvr
21, R

vv
21 , R

vr
12, and Rvv

12 have similar nonmonotonic shapes as obtained by
the reproduction number.
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0 2 4 6 8 10 12 14
1�Γ1,1�Γ2

1.4

1.6

1.8

2.0

2.2

2.4
R0

Figure 3. The dependence of R0 on 1
γ1

and 1
γ2

in the case of γ1 = γ2 and τ > 0. Parameter values were

chosen as RL,1 = 1.4, RL,2 = 1.4, τ = 0.5, βT = 40, μ−1
E

= 1.4, μ−1
I

= 3, μ−1
A

= 4.1, p = 0.6, ρ = 0.1.

γ γ

(a) Rrr
11.

γ γ

(b) Rvr
11.

γ γ

(c) Rrr
21.

γ γ

(d) Rvr
21.

Figure 4. The dependence of some elements of the next generation matrix on 1
γ1

and 1
γ2

in the case of

γ1 = γ2 and τ > 0. Parameter values were chosen as RL,1 = 1.4, RL,2 = 1.4, τ = 0.5, βT = 40, μ−1
E

= 1.4,
μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6, ρ = 0.1.

See Figure 4 for the graph of four elements of the NGM. The values of Rrr
11 and Rrr

21 do
not depend strongly on the length of visitors’ stay, as for real air traffic data travel rates of
residents are low; hence with high probability the exposed resident never becomes a visitor.
The longer visitors stay in the foreign region on average, the higher Rvr

11 is (it converges to
RL,1 as 1

γ1
and 1

γ2
tend to infinity). The element Rvr

21 defines the number of new infections
among residents of region 1 caused by a single exposed visitor of region 2. Following our

D
ow

nl
oa

de
d 

10
/1

8/
13

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EPIDEMIC SPREAD IN CONNECTED REGIONS 1741
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Figure 5. The dependence of R0 on 1
γ1

and 1
γ2

in the case of γ1 = γ2 and τ = 0; i.e., we neglect the
time required to complete a one-way trip. Parameter values were chosen as RL,1 = 1.2, RL,2 = 1.6, τ = 0,
μ−1

E
= 1.4, μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6, ρ = 0.1.

definition of reproduction, Rvr
21 counts new infections accrued while the visitor was traveling

to region 1 and while the visitor was staying there. If the duration of visitors’ stay is short, the
probability that a visitor leaves region 2 before finishing his exposed period is high, and as we
neglected the possibility of moving to classes I or A during travel, he will start his infectious
period only in region 1. Choosing realistic values for travel rates makes the chance of leaving
region 1 small; thus, for small values of 1

γ1
and 1

γ2
, Rvr

21 approximately equals 1.4, the value of
the local reproduction number RL,1. As the length of visitors’ stay increases, the chances for
the visitor to move to class I or A before traveling back to region 1 rise. This results in the
elevated number of newly infected individuals due to increased transmission potential during
travel. However, if the duration of visitors’ stay is much longer, the probability that the
visitor travels back to region 1 and gets into contact with residents there (in region 1) is low;
hence the expected number of such new infections is close to 0. The graphical interpretation
of other elements of the NGM can be explained similarly. We remark that the nonmonotonic
behavior of the reproduction number as a function of the duration of visitors’ stay is observed
in the case of asymmetric regions as well. However, if we neglect the duration of travel
and assume different local reproduction numbers in the regions, the graph of R0 becomes
monotonically decreasing, as shown in Figure 5. This shows that including travel-related
infections can fundamentally change the way the reproduction number depends on various
model parameters, and in the case of a nonmonotone dependence on a parameter, one has to
be very careful when proposing control measures which change the given parameter.

4.2. R0 as the threshold quantity for epidemic outbreaks. The importance of param-
eter βT in the computation of the reproduction number has been revealed in the previous
subsection. However, it is not clear how the nonlinear dependence of R0 on the transmission
rate during travel is reflected on the epidemic curves or the final epidemic size. We consider
the hypothetical case when the two regions are symmetric in the population sizes, travel rates,
and values of every model parameter except the local reproduction numbers (RL,1 = RL,2

would result in identical epidemic curves). See section 5 for realistic travel rates, population
sizes, and epidemiological parameters for influenza.

If both the regional reproduction numbers are greater than 1, increasing βT does not have
a significant effect on the disease outbreak: although the curves peak earlier for larger values
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(a) Peak time in region 1: day 178, peak time in
region 2: day 122, when RL,1 = 1.2, RL,2 = 1.4,
βT = 25.
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(b) Peak time in region 1: day 126, peak time in
region 2: day 103, when RL,1 = 1.2, RL,2 = 1.4,
βT = 50.

Figure 6. Epidemic curves and attack rates of region 1 (red and red-dashed) and region 2 (orange and
orange-dashed) for two values of βT when both the local reproduction numbers are greater than 1. The increase
in the value of βT significantly alters the value of R0, but its effect on the epidemic curves only manifests in
earlier peak times. Parameter values were chosen as RL,1 = 1.2, RL,2 = 1.4, τ = 0.5, μ−1

E
= 1.4, μ−1

I
= 3,

μ−1
A

= 4.1, p = 0.6, ρ = 0.1, γ−1
1 = γ−1

2 = 7, α1 = 5 · 10−5, α2 = 5 · 10−5, Nr
1 (0) = 3.4 · 107, Nr

2 (0) = 3.4 · 107.

of the parameter, peak sizes and attack rates (defined as the fraction of individuals who have
contracted the disease) remain similar in both regions. However, as illustrated in Figure 6,
the difference manifests in the value of the basic reproduction number: changing βT from 25
to 50 can increase R0 from 1.4 to 2 in this particular case.

There is no epidemic outbreak in the absence of travel if we assume that both regional
reproduction numbers are less than 1. In the case of connected regions, minor outbreaks can
occur if the value of βT is set to ensure that R0 exceeds 1. However, further increasing βT

may result in long-continued outbreaks with small peak sizes but relatively high values of the
reproduction number and the attack rates, as indicated in Figure 7. These examples clearly
show that although—as we have proved in section 4—R0 works as a threshold regarding the
stability of the disease-free state (that is, relevant to the initial growth of an epidemic), it is
not necessarily a good predictor for the entire course of the outbreak and the attack rates.

5. Parametrization for influenza. We parametrize our model for the 2009 A(H1N1) pan-
demic influenza. We ignore demography and set parameters Λj , d

r
j , and dvj , j ∈ {1, 2}, equal

to 0; moreover, we neglect the possibility of disease induced mortality and let δ = 0. Sev-
eral studies ([1, 4, 6, 7, 12, 20, 33, 35, 36] and the references therein) have estimated the
local reproduction number and values of key epidemiological parameters for recent influenza
pandemics. In Table 3 we give an overview of the ranges of these parameters and choose
reasonable values from the ranges for our simulations. Parameter βT , the transmission rate
during travel, is estimated to be 10–20, as [36] claims that the expected number of H1N1
infections caused by a single infectious case varies between 5 and 10, considering transmission
during an 11-hour-long flight.

In the model description, several parameters were introduced to characterize transporta-
tion between the regions: travel rate of residents from their origin, duration of visitors’ stay,
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(a) RL,1 = 0.9, RL,2 = 0.99, βT = 25. (b) RL,1 = 0.9, RL,2 = 0.99, βT = 50.

Figure 7. Epidemic curves and attack rates of region 1 (red and red-dashed) and region 2 (orange and
orange-dashed) for two values of βT when both the local reproduction numbers are below 1 but R0 > 1. The
relatively high value of the reproduction number is reflected in the size of the outbreak: the dashed curves show
that for βT = 50 more than 40% of the populations of both regions 1 and 2 have been infected by day 4500.
Parameter values were chosen as RL,1 = 0.9, RL,2 = 0.99, τ = 0.5, μ−1

E
= 1.4, μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6,

ρ = 0.1, γ−1
1 = γ−1

2 = 7, α1 = 5 · 10−5, α2 = 5 · 10−5, Nr
1 (0) = 3.4 · 107, Nr

2 (0) = 3.4 · 107.

Table 3
Parameters for simulations (j ∈ {1, 2}, m,n ∈ {r, v}).

Parameter Value for simulations Range from literature

Λj , d
m
j , δ 0

μ−1
E

1.4 (1–2.62) [4, 33, 35]
μ−1

I
3 (1.1–4.69) [4, 33, 35]

μ−1
A

4.1 (2.06–4.69) [20, 33]
ρ 0.1 (0–0.5) [1, 6, 20]
p 0.6 (0.5–0.75) [1, 7]

βT 15 (10–20) [12, 36]
RL 1.3, 1.4 (1.05–1.88) [4, 33, 35]
βm,n
j Calculated from RL

αj , γj , τ See specific cases

duration of travel. We determine the values of these parameters for specific cases: we pick
Canada to be region 1 (origin), and we consider three possible destinations as region 2 (for
the destinations, see section 6). We derive travel rates from [14], which provides the annual
volume of passengers toward Canada from several international sources. However, neither
records about travelers’ origin (Canadian resident or visitor of Canada) nor data about the
volume of passengers traveling in other directions are available in this study. For many des-
tinations available from Canada, the surveys of Statistics Canada [29] provide information
about the ratio of the volume of foreign travelers to Canada and Canadian travelers to the
other region. We assume that all Canadian residents who leave Canada will return some time
later; therefore, for a specific region 2, the ratio of the annual volume of residents of this
region traveling to Canada and Canadians returning home from the region is explicitly given
by the statistics. Thus, given the annual volume of all passengers from a specific region 2
toward Canada, we can determine Ω2, the annual volume of residents of region 2 traveling
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Table 4
Annual travel volumes and statistics for three origin-destination pairs. The annual volumes of passengers

toward Canada were derived from [2]. The statistics of [29] provide the ratio of Canadian residents and residents
of the other region (China/the United Kingdom/Mexico).

Origin-destination pair Khan et al. [14] Statistics Canada 2009 [29]

Canada – China 786.569 9 : 5
Canada – UK 1.203.272 14 : 11

Canada – Mexico 655.219 15 : 2

to Canada, and the annual volume of Canadian residents returning home from region 2. We
assume that this number equals Ω1, the annual volume of Canadian passengers to region 2.
The annual volume of passengers toward Canada and the ratio of Canadian residents and
residents of region 2 traveling between Canada and region 2 for three origin-destination pairs
can be found in Table 4.

We need α1 and α2, the traveling rates of Canadian residents and residents of region
2. In our simulations, we define the traveling rate of residents of region j at time t as
αj(t) =

Ωj

365
1

Nr
j (t)

, j ∈ {1, 2}. (The definition is slightly different in the case of the origin-

destination pair Canada–Mexico; see the corresponding subsection.) Parameters γj and τ are
determined for each specific origin-destination pair. Initial values are set as follows:

Sr
j (u) =

{
(1 − 10−5)Mj if u = 0,
Mj if u < 0,

Sv
j (u) ≡

Ωk

365γj
,

Er
j (u) =

{
10−5Mj if u = 0,
0 if u < 0,

where Mj denotes the population size of region j, and Ev
j (u) = Am

j (u) = Imj (u) = Rm
j (u) ≡ 0

for u ∈ [−τ, 0], j, k ∈ {1, 2}, j �= k, m ∈ {r, v}. We determine the transmission rates βm,n
j ,

j ∈ {1, 2}, m,n ∈ {r, v}, as follows. For each origin-destination pair of our model, we denote
the local reproduction number of region j (i.e., the reproduction number of the region in
the absence of travel) by RL,j. Several recent studies (e.g., [4, 33]) have estimated the basic
reproduction number for regions which were affected by the 2009 H1N1 pandemic. For a given
RL,j, we can use the formula

RL,j = βj
Sr
j (0)

N r
j (0)

(
p

μ
I

+ (1− p)
ρ

μ
A

)

to calculate βj . Assuming homogeneous mixing in the regions, we can set βrr
j = βrv

j = βvr
j =

βvv
j = βj. For the numerical simulations we set μT

E
= μT

A
= μT

I
= 0; as pointed out in section

4, this assumption allows us to obtain the inflow terms explicitly and also to calculate the
reproduction number.

As supplemental material, three animations complement this paper to facilitate the un-
derstanding of the model. Choosing reasonable values for epidemic parameters, population
sizes, and travel rates, we display the epidemic curves of the two regions as time elapses. To

D
ow

nl
oa

de
d 

10
/1

8/
13

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EPIDEMIC SPREAD IN CONNECTED REGIONS 1745

point out the importance of distinguishing local residents from temporary visitors in the model
setup, we also present bar charts to illustrate how the cumulative number of cases imported
by residents and visitors evolves over time. At a given time t, the bar charts show the total
number of exposed, symptomatic, and asymptomatic infected individuals who have arrived
to the specific region upon completing a trip until time t. The lighter-colored parts of the
bar charts indicate those who got infected on the plane. Although the role of different travel
rates or the elevated transmission potential during travel may remain hidden by considering
only the epidemic curves, looking at the cumulative number of cases imported by travelers
clearly helps us to understand how the infection spreads to disease-free regions. From the
perspective of pandemic preparedness this issue is of particular interest. See the supplemental
notes (section 8) for detailed description of the animations.

6. Prototype origin-destination pairs. In this section, we present simulations for in-
fluenza using real demographic and air traffic data. We set up three distinct scenarios for
the origin-destination pairs: we choose Canada to represent region 1 and consider three pos-
sible geographic locations for region 2: China, Mexico, and the United Kingdom. These three
countries are popular destinations of flights originating from Canada. We would like to empha-
size that although we used real demographic and air travel data in the simulations and chose
reasonable parameter values from the ranges of Table 3, the epidemic curves depicted below
do not need to match the 2009 A(H1N1) influenza pandemic data reported, since there were
other factors which are not considered in our model setting. The purpose of choosing such
origin-destination pairs for simulations was to illustrate our model for regions parametrized
with different values of the key model parameters. Nevertheless, we also present the data fit-
ting results of the model to the Canadian and Mexican morbidity data of the first wave of the
pandemic, since in the early stage, these data were largely determined by the characteristics
of the two countries and the travel within them.

Table 4 summarizes real air traffic data and the ratios of Canadian residents traveling to
region 2 versus residents of region 2 traveling to Canada for three origin-destination pairs.

6.1. Canada–China: The case of asymmetric populations. China, including Hong Kong,
generates the third largest volume of international passenger traffic entering Canada: approx-
imately 780,000 air passengers initiate their trips from within China’s borders. In terms of
global preparedness against worldwide spreading pandemics, China is of particular interest:
its variability of poverty and wealth provides a platform for the appearance of emerging infec-
tious diseases (e.g., H5N1, SARS). The country’s high connectivity with all parts of the world
(it possesses the fifth largest international airport in the world) clearly shows its significance
in international spreading of diseases.

In the model construction we assumed that each individual of the population has equal
chances to travel. This generalization is definitely not fulfilled in a population of more than
1 billion with various social-economic backgrounds; hence here we use a somewhat smaller
population of potential travelers from China (150 million). The population size of Canada is
set to 34.461 million; we let τ = 0.5 (days), since we assume that a flight between the regions
takes approximately 12 hours. For the local reproduction numbers of Canada and China, we
pick RL,1 = 1.3 and RL,2 = 1.4. Parameters α1 and α2 were derived using travel volumes as
explained in section 5, and we choose γ1 = γ2 =

1
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(a) Peak time in Canada: day 149; peak time in
China: day 125 in the case of regions connected
by air travel, independent outbreaks.
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(b) Peak time in Canada: day 152; peak time in
China: day 125 in the case of separated regions,
independent outbreaks.
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(c) Peak time in Canada: day 190; peak time in
China: day 125 in the case of regions connected
by air travel, initial cases only in China.

Figure 8. Epidemic curves of Canada (region 1, red) and China (region 2, blue). In the case of independent
outbreaks in Canada and China, the effect of travel on the spread of the pandemic is negligible. However, if we
assume that the pandemic originates from China and that Canada is susceptible, then due to air transportation
the infection invades the disease-free Canada, though with delayed peak time. For the simulations, we set
RL,1 = 1.3, RL,2 = 1.4, τ = 0.5, γ−1

1 = γ−1
2 = 7, βT = 15, μ−1

E
= 1.4, μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6, ρ = 0.1.

We present Figures 8 and 9 to demonstrate the role of the human transportation system
in the spread of influenza. Assuming that initial outbreaks in Canada (red curves) and China
(blue curves) occurred independently, the effect of traveling on the spread of the epidemic
seems negligible, because the epidemic curves in the case of separated regions (Figure 8(a))
are very similar to the epidemic curves in the case of connected regions (Figure 8(b)). However,
Figure 8(c) clearly shows the importance of incorporating transportation into the model: if
we assume that initial cases appear only in China and that Canada is completely susceptible,
then the disease reaches Canada, obviously due to air transportation. This scenario results in
approximately the same peak size as if we assumed initial outbreaks in both regions, although
the peak time in Canada is delayed by almost 40 days.
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Figure 9. Epidemic curves of Canada (region 1, red) and China (region 2, blue) when we ignore the
possibility of disease transmission during travel and we assume that the pandemic originates from China and
that Canada is susceptible. Peak time in Canada: day 220, peak time in China: day 125. For the simulations,
we set RL,1 = 1.3, RL,2 = 1.4, τ = 0.5, γ−1

1 = γ−1
2 = 7, βT = 15, μ−1

E
= 1.4, μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6,

ρ = 0.1.

Analyzing the public reports of health agencies confirms that large delays between peak
times of connected regions are unrealistic when one considers pandemics, those where air
transportation was proved to play a key role in disease transmission (SARS in 2002–2003
and A(H1N1)v influenza in 2009). Figure 9 shows what happens if we ignore the possibility
of on-board disease transmission in the model. Comparing this result with Figure 8(c) is of
particular interest: if one incorporates disease dynamics during travel, the model predicts the
peak time of the invaded region to be 30 days earlier. As a concluding remark, we wish to
emphasize that, following these findings, simpler models that ignore travel-related infections
can seriously overestimate the time a region has for preparation before the outbreak arrives.

6.2. Canada–United Kingdom: The symmetric case. The European Union (EU) gen-
erates almost one-fifth of all international traffic entering Canada. Although the EU may be
an unlikely source for the emergence of new or dangerous infectious disease threats, it gen-
erates over 19% of the world’s international traffic volume and consequently should receive
special consideration as an important potential location from which infectious disease threats
may enter Canada. Being the second leading international source of passenger traffic entering
Canada (6.6%), the United Kingdom is an important international traffic intersection.

Unlike the Canada–China and the Canada–Mexico origin-destination pairs, the Canada–
United Kingdom pair can be considered as a case of two symmetric regions. Their population
sizes have the same magnitude; moreover, just like Canada, the UK also possesses a highly
developed health care system and advanced intervention techniques in disease control and
prevention, and hence we can assume that the local reproduction numbers in the two countries
are similar. In the simulations we set the population size of the UK to be 62.262 million,
RL,1 = RL,2 = 1.3, γ1 = γ2 =

1
7 , and τ = 0.5.

Reducing the number of flights to and from infected areas and screening out infected indi-
viduals at their arrival to international airports are considered to be powerful tools when one’s
aim is to mitigate the severity of pandemic outbreaks. However, entry screening works ineffec-
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(a) Peak time in Canada: day 200; peak time in
the UK: day 153 when there are no reduction in
travel volumes.
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(b) Peak time in Canada: day 240; peak time in
the UK: day 153 when there is a 90% reduction
in travel volumes.

Figure 10. Reducing travel volumes by 90% between Canada (region 1, red) and the UK (region 2, orange)
results in a delay of the peak time in Canada by 40 days. We assumed the initial number of infectious cases
in Canada to be 0. For the simulations, we set RL,1 = 1.3, RL,2 = 1.3, τ = 0.5, γ−1

1 = γ−1
2 = 7, βT = 15,

μ−1
E

= 1.4, μ−1
I

= 3, μ−1
A

= 4.1, p = 0.6, ρ = 0.1.

tively on asymptomatic infected individuals, who—despite their reduced disease transmissibility—
can spread the infection after arrival. We examined the benefits of travel restrictions on the
spread of the pandemic in two symmetric regions. We found that in the case of a single
outbreak in the UK, the peak time of the outbreak in the originally disease-free Canada can
be delayed by 40 days when we consider the hypothetical case of 90% limitation in the travel
volumes between the two regions. See Figure 10: red and orange curves show the number of
symptomatic infected cases per 1,000,000 residents in Canada and the UK, respectively.

6.3. Canada–Mexico: The case of asymmetric travel. Mexico is a potential source of
threatening pandemics due to high population density, poverty, and limited health care re-
sources on one side but high volume of international traffic on the other side. The country
generates the forth largest volume of international passenger traffic entering Canada (approx-
imately 655,000 passengers, the second largest volume from any developing countries). A
significantly large part of this traffic originates from resort cities like Cancun (177,000) and
Puerto Vallarta (105,000) between January and April, as Canadians return home from winter
vacations. However, Mexico City is a steady source of inflowing air traffic throughout the year
(190,000). This asymmetric travel behavior may cause very dissimilar epidemic courses if we
consider outbreaks in different parts of the year.

In order to incorporate the phenomenon of this asymmetric travel behavior of passengers
traveling between Canada and Mexico, we divide the course of the year into two phases.
Between January and April (Phase I) the daily volume of Canadian residents traveling to
Mexico is significantly higher than during the other 8 months of the year (May–December,
Phase II). We denote the travel rates of Canadian residents toward Mexico in Phases I and
II by αI

1 and αII
1 , respectively. Parameter Ω1 was introduced in section 5 to denote the

annual volume of Canadians entering Mexico, and using the data of Table 4, we obtain that
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(a) Peak time in Canada: day 195; peak time in
Mexico: day 123 when γ1 = 1
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(b) Peak time in Canada: day 230; peak time in
Mexico: day 123 when γ1 = 1

0.2
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Figure 11. In the case of a single initial outbreak in Mexico (region 2, green), the outbreak in Canada
(region 1, red) can be delayed by 35 days if the average stay of visitors is reduced from 15 days to 5 hours. For
the simulations, we set RL,1 = 1.3, RL,2 = 1.4, τ = 0.25, βT = 15, μ−1

E
= 1.4, μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6,

ρ = 0.1.

Ω1 = 655000 15
15+2 . We define α1(t), the traveling rate of Canadian residents toward Mexico

at time t, as follows: we assume that the passenger traffic from Canada to resort cities like
Cancun and Puerto Vallarta is due to Canadian residents only, who travel to Mexico for
vacation, and all travelers to these cities arrive to Mexico during the first four months of the
year. We denote the number of all residents of region 1 (Canada) at time t by N r

1 (t). We get
that

α1(t) = αII
1 =

Ω1 − 177000 − 105000

365

1

N r
1 (t)

for t > 121, i.e., in Phase II, and

α1(t) = αI
1 = αII

1 +
177000 + 105000

121

1

N r
1 (t)

for 0 ≤ t ≤ 121, where t = 0 corresponds to December 31, 2008.
As mentioned above, a significant part of the passenger traffic between Canada and Mexico

is due to Canadian vacationers who visit holiday resorts in the first four months of the year.
Although the news about an epidemic outbreak might not make people cancel their vacation,
it might affect the length of their stay in the affected area. We considered two scenarios
for the average length of visitors’ stay to reveal the importance of this time period. Figure
11 shows that the smaller the value of parameters 1

γ1
and 1

γ2
is, the later the pandemic hits

Canada (red curve) if we assume that the first cases were identified in Mexico (green curve).
If visitors spend 15 days on average in the other region, the pandemic peaks 35 days earlier
in Canada than if we consider a 0.2 day-long (approximately 5 hours, usual waiting time of
transit passengers at airports) stay only. These results were obtained using parameter values
τ = 0.25, RL,1 = 1.3, RL,2 = 1.4, and the population size of Mexico was set to 112.323 million.
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Figure 12. Epidemic curves of Canada (region 1, red, peak time: day 160) and Mexico (region 2, green, peak
time: 117) when peak times were fitted to the real morbidity data of the first wave of the 2009 H1N1 outbreak and
day 0 corresponds to December 31, 2008. Travel rates arise from [14], and historical peak times (day 117–123
in Mexico, day 155–162 in Canada) were derived from [21, 24, 39]. We set RL,1 = 1.38, RL,2 = 1.4, τ = 0.25,
γ−1
1 = γ−1

2 = 15, βT = 20, μ−1
E

= 1.4, μ−1
I

= 2.7, μ−1
A

= 4.1, p = 0.6, ρ = 0.1.

6.4. Fitting the model to the 2009 A(H1N1) pandemic. To illustrate the applicabil-
ity of our approach, we fitted the model to the first wave of the 2009 A(H1N1)v pandemic
in Canada and Mexico. For the simulation, we chose reasonable values for epidemiological
parameters from the ranges of Table 3; moreover, we used real demographic and air traffic
data of the Canada–Mexico origin-destination pair. Travel rates were derived from [14], and
we set τ = 0.25. According to the public reports of the Mexican Social Security Institute
[21], WHO Global Influenza Virological Surveillance [39], and the Public Health Agency of
Canada [24], the epidemic peaked around week 18 in Mexico and week 23–24 in Canada. If
day 0 corresponds to December 31, 2008, then historical peak times are obtained around day
117–123 in Mexico and around day 155–162 in Canada. For the simulations we estimated the
local reproduction numbers to ensure that the peak times of the epidemic curves fit the real
morbidity data. The result can be seen in Figure 12, where RL,1 = 1.38 and RL,2 = 1.4.
These local reproduction numbers match the results of [4, 33, 35].

We performed a systematic analysis to reveal the sensitivity to several key parameters.
The analysis showed the robustness of the presented fitting in parameters γ1, γ2, p, and ρ,
although it turned out that the length of latency and infectious periods, the transmission rate
during travel, and the local reproduction numbers strongly affect the peak times. We wish
to emphasize the utmost importance of incorporating disease dynamics during transportation
into our model. The discussion around Figures 8(c) and 9 in section 6 clearly shows that
ignoring the possibility of on-board disease transmission results in delayed peak times; thus
by ignoring travel-related infections while keeping every other parameter fixed, we could not
have had a fitting as presented in Figure 12. To ensure that the curve of Canada peaks
around day 155–162 in the absence of travel infections, a much higher value for the Canadian
reproduction number RL,1 would be necessary, which is unrealistic according to the above-
mentioned references.
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7. Conclusion. Recent epidemics like the 2002–2003 SARS outbreak and the 2009 pan-
demic influenza A(H1N1) demonstrated the role that the global air transportation network
played in the worldwide spread of infectious diseases. The topic of epidemic spread due to hu-
man transportation has recently been examined in several studies. The meta-population mod-
els in [2, 3, 25, 37] describe the spatial dispersal of infected individuals in connected regions,
although ignoring the fact that long-distance travel such as intercontinental flights provides
a platform for on-board transmission of the disease [12, 36]. The studies [8, 31, 18, 22, 23]
account for the fact that since the progress of the above-mentioned diseases is fast, the time
needed for transportation between regions is not negligible. They consider the possibility
of disease transmission during travel, although the standard SIS-type models used in these
studies might not be suitable for modeling influenza or SARS.

We introduced a dynamic model which describes the spread of an infectious disease within
and between two regions which are connected by transportation. In the model setup we
distinguished local residents from temporary visitors because they might have very different
contact rates, mixing patterns, and travel behavior. We used the SEAIR model as a basic
epidemic building block in the regions and also during travel, and we modeled disease dynamics
during travel by a system structured by travel time. We showed that our model is equivalent
to a system of nonlinear functional differential equations with dynamically defined delayed
feedback, and we examined the fundamental dynamic properties of the system.

We detailed the computation of the basic reproduction number, which is a threshold
quantity for epidemic outbreaks, and discussed the dependence of R0 on several key model
parameters. The analysis demonstrates the importance of incorporating the phenomenon of
disease transmission during transportation: transmission rates during travel can be much
higher than under usual circumstances, and our results show that βT may significantly alter
the value of R0. We parametrized our model for influenza and performed simulations with
real demographic and air traffic data. Three origin-destination pairs were introduced for the
regions to demonstrate the effect of changing the value of various key model parameters and
addressing possible interventions. We showed the applicability of our approach by fitting the
model to the first wave of the 2009 A(H1N1) influenza pandemic in Canada and Mexico.

Our results, in conjunction with recent studies [12, 18, 36], support that considering disease
transmission during travel is of particular interest to modeling the spread of diseases with fast
progression. We demonstrated that simpler models which ignore on-board infections can
seriously overestimate the time a region has before the epidemic wave arrives.

8. Supplemental notes. The following animations are provided online.
91412 01.mov [local/web 484KB]: Epidemic curves of region 1 (red) and region 2 (green)

as time (in days) evolves. The bar charts show the cumulative number of cases (exposed,
symptomatic, and asymptomatic infected residents/visitors) imported to the regions by means
of travel. The lighter-colored parts of the bar charts indicate those who got infected during
travel. We consider the case when the two regions are symmetric in the population sizes,
travel rates, and values of every model parameter except the local reproduction numbers.
Parameter values were chosen as RL,1 = 1.2, RL,2 = 1.4, βT = 25, τ = 0.5, μ−1

E
= 1.4,

μ−1
I

= 3, μ−1
A

= 4.1, p = 0.6, ρ = 0.1, γ−1
1 = γ−1

2 = 7, α1 = 5 · 10−5, α2 = 5 · 10−5,
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N r
1 (0) = 3.4 · 107, N r

2 (0) = 3.4 · 107.
91412 02.mov [local/web 465KB]: Epidemic curves of region 1 (red) and region 2 (blue)

as time (in days) evolves. The bar charts show the cumulative number of cases (exposed,
symptomatic, and asymptomatic infected residents/visitors) imported to the regions by means
of travel. The lighter-colored parts of the bar charts indicate those who got infected during
travel. We consider the case when the two regions are symmetric in the population sizes
and values of every model parameter, but have different local reproduction numbers, and we
assume that the travel rate of residents in region 2 is four times the travel rate of residents in
region 1. Although the effect of this asymmetry does not seem to manifest on the epidemic
curves in comparison to the previous case, the bar charts clearly show the difference in the
ratio of cases imported to region 1 by residents and visitors. Parameter values were chosen as
RL,1 = 1.2, RL,2 = 1.4, βT = 25, τ = 0.5, μ−1

E
= 1.4, μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6, ρ = 0.1,

γ−1
1 = γ−1

2 = 7, α1 = 2 · 10−5, α2 = 8 · 10−5, N r
1 (0) = 3.4 · 107, N r

2 (0) = 3.4 · 107.
91412 03.mov [local/web 492KB]: Epidemic curves of region 1 (red) and region 2 (or-

ange) as time (in days) evolves. The bar charts show the cumulative number of cases (exposed,
symptomatic, and asymptomatic infected residents/visitors) imported to the regions by means
of travel. The lighter-colored parts of the bar charts indicate those who got infected during
travel. We consider the case when the two regions are symmetric in the population sizes,
travel rates, and values of every model parameter except the local reproduction numbers.
For this simulation, we use a relatively high value for the transmission rate during travel to
demonstrate its effect on the number of imported cases. Parameter values were chosen as
RL,1 = 1.2, RL,2 = 1.4, βT = 50, τ = 0.5, μ−1

E
= 1.4, μ−1

I
= 3, μ−1

A
= 4.1, p = 0.6, ρ = 0.1,

γ−1
1 = γ−1

2 = 7, α1 = 5 · 10−5, α2 = 5 · 10−5, N r
1 (0) = 3.4 · 107, N r

2 (0) = 3.4 · 107.

Appendix. The NGM N for system (L̄) was introduced in section 4 by dividing all exposed
individuals into four groups according to their region and residential status. The elements
can be obtained by biological reasoning, i.e., by following a typical infected individual during
the infectious period, and using our definition of reproduction. Here we detail the calculation
of two elements of N and then show that they equal the corresponding elements of K, the
NGM of the associated system of ODEs (15). Formulas for other elements—and hence the
equalities (N )j,k = (K)j,k, j, k ∈ {1, 2, 3, 4}—can be derived similarly.

First, let us consider the element Rrr
11, namely the number of new infections in Er

1 generated
by an exposed resident of region 1 (a member of Er

1). Since in the model setup we addressed
no restrictions on the number of trips an individual can start, we distinguish two scenarios:
(A) After completing some even number of trips, the exposed individual turns infected (mem-

ber of class I or A) in region 1.
(B) After completing some odd number of trips, the exposed individual turns infected in

region 2.
We calculate the probabilities of these events. First, the probability of turning infected after
(2n) trips, n = 0, 1, 2 . . . , arises as

(
α1

α1 + μ
E
+ dr1

γ2
γ2 + μ

E
+ dv2

)n μE

α1 + μ
E
+ dr1

,
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which implies that

P (A) =

∞∑
n=0

(
α1

α1 + μ
E
+ dr1

γ2
γ2 + μ

E
+ dv2

)n μ
E

α1 + μ
E
+ dr1

=
μ

E

α1 + μE + dr1

∞∑
n=0

(
α1

α1 + μE + dr1

γ2
γ2 + μE + dv2

)n

=
μ

E

α1 + μ
E
+ dr1

· 1

1− α1
α1+μ

E
+dr1

γ2
γ2+μ

E
+dv2

=
μ

E

α1 + μ
E
+ dr1

· (α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

=
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

.

On the other hand, the probability of becoming infected after (2n+1) trips, n = 0, 1, 2 . . . , is(
α1

α1 + μ
E
+ dr1

)n+1( γ2
γ2 + μ

E
+ dv2

)n μ
E

μ
E
+ γ2 + dv2

;

hence we get the probability of case (B) by the calculations

P (B) =

∞∑
n=0

μ
E

μ
E
+ γ2 + dv2

α1

α1 + μ
E
+ dr1

·
(

α1

α1 + μ
E
+ dr1

γ2
γ2 + μ

E
+ dv2

)n

=
μ

E

μ
E
+ γ2 + dv2

· α1

α1 + μ
E
+ dr1

∞∑
n=0

(
α1

α1 + μ
E
+ dr1

γ2
γ2 + μ

E
+ dv2

)n

=
μ

E

μ
E
+ γ2 + dv2

· α1

α1 + μ
E
+ dr1

· 1

1− α1
α1+μ

E
+dr1

γ2
γ2+μ

E
+dv2

=
μ

E

μ
E
+ γ2 + dv2

· α1

α1 + μ
E
+ dr1

· (α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

=
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

.

In case (A), an infected individual can transmit the disease in two ways:
(a1) as a member of class Ir1 (Ar

1); i.e., the individual infects in region 1 after an even number
of completed travels (counted since the individual became infected), or

(a2) after an odd number of completed travels (counted since the individual became infected),
the individual is a member of class Iv2 (Av

2); the individual leaves region 2 and infects
during travel from region 2 to region 1.

Similarly, in case (B), the two ways of disease transmission are as follows:
(b1) as a member of class Ir1 (Ar

1); i.e., the individual infects in region 1 after an odd number
of completed travels (counted since the individual became infected), or

(b2) after an even number of completed travels (counted since the individual became infected),
the individual is a member of class Iv2 (Av

2); the individual leaves region 2 and infects
during travel from region 2 to region 1.
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In case (a1), the expected duration of infection of an individual in class Ir1 after the (2n)th
trip (n = 0, 1, . . . ) arises as

(
α1

α1 + μI + δ + dr1

γ2
γ2 + μI + δ + dv2

)n 1

α1 + μI + δ + dr1
,

and we derive the total expected infection time in region 1 as

∞∑
n=0

(
α1

α1 + μ
I
+ δ + dr1

γ2
γ2 + μ

I
+ δ + dv2

)n 1

α1 + μ
I
+ δ + dr1

=
1

α1 + μI + δ + dr1

∞∑
n=0

(
α1

α1 + μI + δ + dr1

γ2
γ2 + μI + δ + dv2

)n

=
1

α1 + μ
I
+ δ + dr1

· 1

1− α1
α1+μ

I
+δ+dr1

γ2
γ2+μ

I
+δ+dv2

=
1

α1 + μ
I
+ δ + dr1

· (α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dr1)

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

=
γ2 + μ

I
+ δ + dv2

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

.

A similar formula holds for individuals in class Ar
1, so we obtain the number of new infections

in case (a1) as

p

(
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· γ2 + μ
I
+ δ + dv2

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

βrr
1

N̂ r
1

N̂ r
1 + N̂v

1

)

+ (1− p)

(
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· γ2 + μA + dv2
(α1 + μ

A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

ρβrr
1

N̂ r
1

N̂ r
1 + N̂v

1

)
.

We derive the number of new infections in case (a2) similarly. Since the probability of
being (symptomatic) infected just before the (2n + 2)th trip (n = 0, 1, . . . ) is

α1

α1 + μ
I
+ δ + dr1

(
α1

α1 + μ
I
+ δ + dr1

γ2
γ2 + μ

I
+ δ + dv2

)n γ2
γ2 + μ

I
+ δ + dv2

and the duration of infection during the (2n+2)th trip is τ , we get the total expected infection
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time of an individual of Iv1 as

∞∑
n=0

τ

(
α1

α1 + μ
I
+ δ + dr1

γ2
γ2 + μ

I
+ δ + dv2

)n+1

= τ
α1

α1 + μ
I
+ δ + dr1

· γ2
γ2 + μ

I
+ δ + dv2

· 1

1− α1
α1+μ

I
+δ+dr1

γ2
γ2+μ

I
+δ+dv2

= τ
α1

α1 + μ
I
+ δ + dr1

· γ2
γ2 + μ

I
+ δ + dv2

· (α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

=
τα1γ2

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

.

This implies that the number of new infections in case (a2) is

p

(
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1γ2
(α1 + μ

I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

τβT γ2N̂
v
2

γ2N̂
v
2 + α2N̂

r
2

)

+ (1− p)

(
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1γ2
(α1 + μ

A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

τρβT γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)
.

Next, we go through the possible scenarios in case (B). In case (b1), the expected duration
of infection of an individual in class Iv1 after the (2n+ 1)th trip (n = 0, 1, . . . ) is

γ2
γ2 + μI + δ + dv2

(
α1

α1 + μI + δ + dr1

γ2
γ2 + μI + δ + dv2

)n 1

μI + α1 + δ + dr1
;

thus the total expected infection time arises as

γ2
γ2 + μI + δ + dv2

∞∑
n=0

(
α1

α1 + μI + δ + dr1

γ2
γ2 + μI + δ + dv2

)n 1

α1 + μI + δ + dr1

=
γ2

(α1 + μI + δ + dr1)(γ2 + μI + δ + dv2)− α1γ2
,

and the number of new infection in case (b1) is

p

(
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· γ2
(α1 + μ

I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

βrr
1

N̂ r
1

N̂ r
1 + N̂v

1

)

+ (1− p)

(
μEα1

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2

· γ2
(α1 + μ

A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

ρβrr
1

N̂ r
1

N̂ r
1 + N̂v

1

)
.
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Similarly, the probability of being (symptomatic) infected just before the (2n + 1)th trip
(n = 0, 1, . . . ) in case (b2) is(

γ2
γ2 + μ

I
+ δ + dv2

α1

α1 + μ
I
+ δ + dr1

)n γ2
γ2 + μ

I
+ δ + dv2

,

and, moreover, the duration of the infectious period during the (2n + 1)th trip is τ . Thus
it follows that the total expected infection time of a symptomatic infected individual in case
(b2) is

∞∑
n=0

τ

(
γ2

γ2 + μ
I
+ δ + dv2

α1

α1 + μ
I
+ δ + dr1

)n γ2
γ2 + μ

I
+ δ + dv2

=
τγ2(α1 + μ

I
+ δ + dr1)

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

,

and we obtain the number of new infections in case (b2) as

p

(
μ

E
α1

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2

· γ2(α1 + μ
I
+ δ + dr1)

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

τβT γ2N̂
v
2

γ2N̂
v
2 + α2N̂

r
2

)

+ (1− p)

(
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· γ2(α1 + μ
A
+ dr1)

(α1 + μ
A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

τρβT γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)
.

We arrive at the formula for Rrr
11 by summing the number of new infections in the different

cases:

Rrr
11 = p

(
μ

E

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· (γ2 + μ
E
+ dv2)(γ2 + μ

I
+ δ + dv2) + α1γ2

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

βrr
1

N̂ r
1

N̂ r
1 + N̂v

1

+
μ

E
α1γ2

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· γ2 + μ
E
+ dv2 + α1 + μ

I
+ δ + dr1

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

τβT γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)

+(1− p)

(
μ

E

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· (γ2 + μE + dv2)(γ2 + μA + dv2) + α1γ2
(α1 + μA + dr1)(γ2 + μA + dv2)− α1γ2

ρβrr
1

N̂ r
1

N̂ r
1 + N̂v

1

+
μEα1γ2

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2

· γ2 + μ
E
+ dv2 + α1 + μ

A
+ dr1

(α1 + μ
A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

τρβT γ2N̂
v
2

γ2N̂v
2 + α2N̂ r

2

)
.
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We detail the calculation of another element Rrv
12, which is the number of new infections

in Ev
2 originating from Er

1 . We may define the two scenarios for the exposed-to-infected
transition as before, and thus the above calculated probabilities for events (A) and (B) still
hold:

P (A) =
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

,

P (B) =
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

.

Again, in each case different ways of disease transmission arise. In case (A), an infected
individual can transmit the disease as follows:
(a1) after an even number of completed travels (counted since the individual became infected),

the individual is a member of class Ir1 (Ar
1); the individual leaves region 1 and infects

during travel from region 1 to region 2, or
(a2) as a member of class Iv2 (Av

2), i.e., the individual infects in region 2 after an odd number
of completed travels (counted since the individual became infected).

Similarly, in case (B), the individual can transmit the disease in one of the following ways:
(b1) after an odd number of completed travels (counted since the individual became infected),

the individual is a member of class Ir1 (Ar
1); the individual leaves region 1 and infects

during travel from region 1 to region 2, or
(b2) as a member of class Iv2 (Av

2); i.e., the individual infects in region 2 after an even number
of completed travels (counted since the individual became infected).

The total infection time in cases (a1), (a2), (b1), and (b2) arises with very similar calculations
as for element Rrr

11: that is, since the time of infection during travel is τ , the total infection
times of a symptomatic infected individual in cases (a1) and (b1) is

∞∑
n=0

τ

(
α1

α1 + μ
I
+ δ + dr1

γ2
γ2 + μ

I
+ δ + dv2

)n α1

α1 + μ
I
+ δ + dr1

=
τα1(γ2 + μ

I
+ δ + dv2)

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

and

∞∑
n=0

τ
γ2

γ2 + μ
I
+ δ + dv2

(
γ2

γ2 + μ
I
+ δ + dv2

α1

α1 + μ
I
+ δ + dr1

)n α1

α1 + μ
I
+ δ + dr1

=
τα1γ2

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

,

and the durations of infection in cases (a2) and (b2) is

∞∑
n=0

(
α1

α1 + μI + δ + dr1

γ2
γ2 + μI + δ + dv2

)n α1

α1 + μI + δ + dr1
· 1

γ2 + μI + δ + dv2

=
α1

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2D
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and

∞∑
n=0

(
γ2

γ2 + μI + δ + dv2

α1

α1 + μI + δ + dr1

)n 1

γ2 + μI + δ + dv2

=
α1 + μI + δ + dr1

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

.

Thus, the number of new infections from cases (a1) and (b1) is determined by the formulas

p

(
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1(γ2 + μ
I
+ δ + dv2)

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

τβT α1N̂
r
1

α1N̂
r
1 + γ1N̂

v
1

)

+ (1− p)

(
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1(γ2 + μA + dv2)

(α1 + μ
A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

τρβT α1N̂
r
1

α1N̂ r
1 + γ1N̂v

1

)

and

p

(
μEα1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1γ2
(α1 + μI + δ + dr1)(γ2 + μI + δ + dv2)− α1γ2

τβT α1N̂
r
1

γ1N̂v
1 + α1N̂ r

1

)

+ (1− p)

(
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1γ2
(α1 + μ

A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

τρβT α1N̂
r
1

γ1N̂
v
1 + α1N̂

r
1

)
.

We derive the number of new infections in cases (a2) and (b2) as

p

(
μ

E
(γ2 + μ

E
+ dv2)

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

βvv
2

N̂v
2

N̂ r
2 + N̂v

2

)

+ (1− p)

(
μE(γ2 + μE + dv2)

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2

· α1

(α1 + μ
A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

ρβvv
2

N̂v
2

N̂ r
2 + N̂v

2

)
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and

p

(
μEα1

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2

· α1 + μ
I
+ δ + dr1

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

βvv
2

N̂v
2

N̂ r
2 + N̂v

2

)

+ (1− p)

(
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· α1 + μ
A
+ dr1

(α1 + μ
A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

ρβvv
2

N̂v
2

N̂ r
2 + N̂v

2

)
.

We obtain the new infections in Ev
2 generated by individuals in Er

1 by the formula

Rrv
12 = p

(
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· (γ2 + μ
E
+ dv2)(γ2 + μ

I
+ δ + dv2) + α1γ2

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

τβT α1N̂
r
1

γ1N̂
v
1 + α1N̂

r
1

+
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· γ2 + μ
E
+ dv2 + α1 + μ

I
+ δ + dr1

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

βvv
2

N̂v
2

N̂ r
2 + N̂v

2

)

+ (1− p)

(
μ

E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· (γ2 + μ
E
+ dv2)(γ2 + μ

A
+ dv2) + α1γ2

(α1 + μA + dr1)(γ2 + μA + dv2)− α1γ2
τρβT α1N̂

r
1

α1N̂ r
1 + γ1N̂v

1

+
μEα1

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2

· γ2 + μ
E
+ dv2 + α1 + μ

A
+ dr1

(α1 + μ
A
+ dr1)(γ2 + μ

A
+ dv2)− α1γ2

ρβvv
2

N̂v
2

N̂ r
2 + N̂v

2

)
.

The element R11
rv can be obtained very similarly as R11

rr (change Sr
1 to Sv

1 , change γ2S
v
2 to

α2S
r
2 , change βrr

1 to βrv
1 ). R12

rr arises as one writes Sr
2 instead of Sv

2 , γ1S
v
1 instead of α1S

r
1 ,

and βvr
2 instead of βvv

2 in the formula of R12
rv. The elements of the second column can be

derived by using the elements of the first column and changing the first upper index of the
transmission rates from r to v (i.e., βvr

1 instead of βrr
1 , etc.). For an element Rm,n

j,k of the third

or fourth column one may consider Rm,n
k,j , the corresponding element which is in the first or

second column, and change index 1 to 2 and index 2 to 1.
Now we show that K = N . The first element of the first row of K arises as the scalar

product of the first row of F and the first column of V−1. From section 4 we obtain

(F)1,· =

(
0, ρβrr

1

N̂ r
1

N̂ r
1 + N̂v

1

, βrr
1

N̂ r
1

N̂ r
1 + N̂v

1

, 0, ρβvr
1

N̂ r
1

N̂ r
1 + N̂v

1

, βvr
1

N̂ r
1

N̂ r
1 + N̂v

1

, 0,

τβTρα2γ2N̂
v
2

α2N̂
r
2 + γ2N̂

v
2

,
τβTα2γ2N̂

v
2

α2N̂
r
2 + γ2N̂

v
2

, 0,
τβT ργ22N̂

v
2

α2N̂
r
2 + γ2N̂

v
2

,
τβTγ22N̂

v
2

α2N̂
r
2 + γ2N̂

v
2

)
,
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(V−1
)
·,1 =

(
γ2 + μE + d2v

(α1 + μE + d1r)(γ2 + μE + d2v)− α1γ2
,

(1− p)μE

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2
· (γ2 + μE + dv2)(γ2 + μA + dv2) + α1γ2
(α1 + μA + dr1)(γ2 + μA + dv2)− α1γ2

,

pμ
E

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· (γ2 + μ
E
+ dv2)(γ2 + μ

I
+ δ + dv2) + α1γ2

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

,

0, 0, 0, 0, 0, 0,
α1

(α1 + μ
E
+ d1r)(γ2 + μ

E
+ d2v)− α1γ2

,

(1− p)μEα1

(α1 + μE + dr1)(γ2 + μE + dv2)− α1γ2
· γ2 + μE + dv2 + α1 + μA + dr1
(α1 + μA + dr1)(γ2 + μA + dv2)− α1γ2

,

pμ
E
α1

(α1 + μ
E
+ dr1)(γ2 + μ

E
+ dv2)− α1γ2

· γ2 + μ
E
+ dv2 + α1 + μ

I
+ δ + dr1

(α1 + μ
I
+ δ + dr1)(γ2 + μ

I
+ δ + dv2)− α1γ2

)T

,

and the product indeed equals Rrr
11. In order to obtain the first element of the fourth row of

K, one needs to multiply the tenth row of F with the first column of V−1. The tenth row of
F arises as

(F)10,· =

(
0,

τβT ρα2
1N̂

r
1

α1N̂ r
1 + γ1N̂v

1

,
τβTα2

1N̂
r
1

α1N̂ r
1 + γ1N̂v

1

, 0,
τβTρα1γ1N̂

r
1

α1N̂ r
1 + γ1N̂v

1

,
τβTα1γ1N̂

r
1

α1N̂ r
1 + γ1N̂v

1

,

0, ρβrv
2

N̂v
2

N̂ r
2 + N̂v

2

, βrv
2

N̂v
2

N̂ r
2 + N̂v

2

, 0, ρβvv
2

N̂v
2

N̂ r
2 + N̂v

2

, βvv
2

N̂v
2

N̂ r
2 + N̂v

2

)
;

the product indeed gives Rrv
12. The equalities of the other 14 elements of K and N arise

similarly.
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