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ABSTRACT
We describe a new approach for investigating the control strate-
gies of compartmental disease transmission models. The method
rests on the construction of various alternative next-generation
matrices, and makes use of the type reproduction number and
the target reproduction number. A general metapopulation SIRS
(susceptible–infected–recovered–susceptible) model is given to
illustrate the applicationof themethod. Suchmodel is useful to study
a wide variety of diseases where the population is distributed over
geographically separated regions. Considering various control mea-
sures such as vaccination, social distancing, and travel restrictions,
the procedure allows us to precisely describe in terms of the model
parameters, how control methods should be implemented in the
SIRSmodel to ensure disease elimination. In particular, we character-
ize cases where changing only the travel rates between the regions
is sufficient to prevent an outbreak.
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1. Introduction

In mathematical epidemiology, one of the most important issues is to determine whether
an infectious disease can invade a susceptible population. The basic reproduction number
(R0), defined as the expected number of secondary cases generated by a typical infected
host introduced into a susceptible population [1, 7, 17], serves as a threshold quantity for
epidemic outbreaks. The next-generation matrix (NGM), initially introduced by Diek-
mann et al. [7], provides a powerful approach to derive the basic reproduction number.
Thismatrix (often denoted byK = [kij]) gives the average number of new infections among
the susceptible individuals of type i, generated by an infected individual of type j. TheNGM
is nonnegative, andR0 is identified as its dominant eigenvalue, that is,R0 = ρ(K).

IfR0 > 1 then the disease can persist in the population. For successful disease elimina-
tion, it is necessary to decreaseR0 below 1, that may be achieved by implementing inter-
vention strategies. Vaccination targets particular or all individual groups, and decreases
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72 D. KNIPL

the fraction of the population susceptible to the disease, thereby reducing the reproduc-
tion number. Another powerful tool in endemic situations is to decrease the probability of
transmission, by reducing the interaction between particular groupswithin the population,
or by reducing the contact between infected and susceptible individuals.

When modelling the prevention and control strategies of infectious diseases, the goal is
to bringR0 below 1 by controlling various model parameters. However, in many models
the reproduction number is often obtained as a complicated expression of the parameters,
and it may be difficult to determine how the parameters should be changed to decrease
R0. Entries of the NGM usually arise by less complicated formulas than that one of the
reproduction number. Assume that by controlling model parameters, for each entry of the
NGM a proportion more than 1 − 1/R0 of the entry is reduced. Then it follows from the
definition R0 = ρ(K) (where K is the NGM) that the dominant eigenvalue of the NGM
drops below 1 and the outbreak is prevented. Not only is the basic reproduction num-
ber a threshold for epidemic outbreaks, but it also determines the critical effort needed
to eliminate infection from the population, provided that all entries of the NGM can be
controlled.

In some situations, however, there are limitations in implementing intervention strate-
gies, so there may be some entries of the NGM that are not subject to change. This was
noted by Heesterbeek and Roberts [10], Roberts and Heesterbeek [13], and Shuai et al.
[15], who developed methods to decreaseR0 by reducing only particular elements of the
NGM. The procedure of Heesterbeek and Roberts [10] and Roberts and Heesterbeek [13]
applies to entire columns or rows of the NGM, and is based on the consideration that con-
trol is often aimed at only particular disease compartments, such as specific host types
in multi-host models (e.g. vector control) or a particular group of individuals in hetero-
geneous population models. Shuai et al. [15] extend the ideas of the above works, and
address the cases where control targets the interactions between different types of indi-
viduals. The method of Shuai et al. [15] reduces individual entries of the NGM, or sets of
such entries. In both approaches mentioned above, new quantities are introduced – the
type reproduction number in [10,13] and the target reproduction number in [15] – that
measure the strength of the effort needed to prevent outbreaks. However, when applied to
specific disease transmission models, these procedures do not characterize in terms of the
model parameters, how the intervention should be executed. In fact, control strategies are
often aimed at particular model parameters rather than entries of the NGM.

In this paper, we address the gap in previous works, and present an approach
for the design of control strategies that determines how model parameters should
be changed to prevent outbreaks. Our procedure rests on various ‘alternative’ next-
generation matrices that one can define for a disease transmission model. Applying
this method, we systematically investigate the intervention strategies of a general SIRS
(susceptible–infected–recovered–susceptible) model, that is appropriate for the spread of
an infectious disease in a geographically dispersed metapopulation of individuals. While
the qualitative properties of metapopulation (patchy) epidemic models have been widely
studied in the literature, evaluating the intervention strategies in these models has received
less attention (see, for instance, [2, 3, 6, 11, 14, 18, 19] and the references therein). It is
particularly challenging to understand the dependence of movement between populations
on the reproduction number [2, 4,5]. Our procedure allows for the design of intervention
strategies that target exclusively the movement of particular groups in the metapopulation
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SIRS model. Making use of the methods proposed in [10, 13, 15], we identify control-
lable model parameters, and characterize various control strategies in terms of the targeted
parameters. The procedure of how these parameters should be changed to execute con-
trol will be precisely described. We give conditions for cases where changing movement
rates exclusively is sufficient for disease elimination, and provide recommendation for
intervention in both local (patch-wise) and global scale.

The paper is organized as follows. After describing our approach in Section 2, we
demonstrate the use of the method on a two-patch SIRS model in Section 3, where feasible
control approaches will be systematically investigated. Section 4 is devoted to the inter-
vention strategies of a more general metapopulation SIRS model in r patches. Finally, we
discuss our findings in the last section.

2. Description of themethod

First, we recall the main steps of the procedure described by Diekmann et al. [8], for the
calculation of the basic reproduction number in compartmental epidemicmodels. For this
approach, the population of infected individuals is divided into discrete categories, and one
needs to derive the average number of secondary cases per one infected individual in the
various categories, in the initial phase of the epidemic. This way, the NGM is constructed
(denoted byK), andR0 is identified as the dominant eigenvalue of the NGM, that is,R0 =
ρ(K).

To derive theNGM, one identifies the infection subsystem in the compartmentalmodel,
that is, the equations that describe the generation of new infections and changes in the
epidemiological statuses among infected individuals. The matrix of the linearization of the
infection subsystem about the disease-free equilibrium (DFE) gives the Jacobian J. Then, J
is decomposed as F − V, where F describes the production of new infections (transmission
part in the linear approximation), andV represents changes in status, as recovery or death
(transition part in the linear approximation). Under the conditions that are satisfied in
epidemic models, the inverse ofV exists andV−1 ≥ 0, and the product of F andV−1 gives
‘the NGM with Large domain’ (see [8]). In some cases (e.g. for SLIR-based models with
latent period), further steps are required to obtain K (the NGM) from F · V−1, since the
decomposition relates the expected offspring of individuals of any status (both latent and
infected statuses in the SLIR model) and not just new infections. However, these matrices
have the same spectral radii, that is, ρ(K) = ρ(F · V−1). In SIR- and SIRS-type models, it
holds that F · V−1 = K. Nevertheless, it is meaningful to define R0 as R0 = ρ(F · V−1)

[8].
The criterion saying that the disease can invade into the population ifR0 > 1whereas it

cannot ifR0 < 1, follows from the result that the dominant eigenvalue (the spectral radius)
of F · V−1 gives a threshold for the stability of the DFE [8]. This result is shown in terms of
M-matrices by van den Driessche and Watmough [17]. We say that a square matrix A has
the Z-sign pattern if all entries ofA are non-positive except possibly those in the diagonal.
If A has the Z-sign pattern and A−1 ≥ 0 holds then we say that A is a non-singular M-
matrix (several definitions exist for M-matrices, see [9, Theorem 5.1]). In the vast majority
of epidemic models – including the ones considered in this paper – these conditions are
satisfied for thematrixV. By the definition of F, it also holds that F is a nonnegativematrix.
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74 D. KNIPL

Now, we discuss how to construct ‘alternative’ next-generation matrices. Besides the
matrices F for new infections and V for transfer between classes, there may exist different
splittings of the Jacobian that satisfy the same conditions as F and V. Consider matrices Ṽ
and Ṽ such that J = F̃ − Ṽ, Ṽ is a nonnegative matrix and Ṽ is a non-singular M-matrix.
Then, the matrix K̃, defined by K̃ := F̃ · Ṽ−1, serves as an alternative NGM. Albeit the
NGM is not necessarily irreducible, here we only consider splittings such that K̃ is irre-
ducible. As Ṽ and Ṽ have the same properties as F and V, respectively, it follows that
ρ(F̃ · Ṽ−1

) and ρ(F · V−1) agree at the threshold value 1. In fact, we can say more:

Proposition 2.1: Consider a splitting F̃ − Ṽ of the Jacobian of the infected subsystem about
the DFE, where Ṽ is a nonnegative matrix and Ṽ is a non-singular M-matrix. Then for the
matrix K̃ = F̃ · Ṽ−1, it holds that R0 < 1 if and only if ρ(K̃) < 1, R0 = 1 if and only if
ρ(K̃) = 1, andR0 > 1 if and only if ρ(K̃) > 1.

Proof: By similar arguments as in the proof of Theorem 2 in [17], we claim that s(J) < 0
if and only if ρ(F̃ · Ṽ−1) < 1, s(J) = 0 if and only if ρ(F̃ · Ṽ−1) = 1, and s(J) > 0 if and
only if ρ(F̃ · Ṽ−1) > 1, where s(J) denotes the maximum real part of all eigenvalues of
J. Note that this statement holds true for any Ṽ and Ṽ that satisfy the conditions of the
proposition. The matrix for new infections F, and V for the transitions between infected
statuses, give special cases of such Ṽ and Ṽ, respectively.We remind thatR0 = ρ(F · V−1)

and K̃ = F̃ · Ṽ−1, that complete the proof. �

Next, we give a brief overview of how the methods of Heesterbeek and Roberts [10,
13], and Shuai et al. [15] (see also [16] for Erratum) work on the NGM. We follow the
terminology of the latter as it generalizes the former. For the NGMK = [kij], one identifies
the set of targeted entries S, that is, the set of entries in K that are subject to change in
control. The target matrix KS is identified as [KS]ij = kij if (i, j) ∈ S, and zero otherwise.
The target reproduction number TS is defined as TS = ρ(KS · (I − K + KS)

−1) provided
that ρ(K − KS) < 1, where I is the identity matrix. The last condition can be referred to
as the condition for controllability, since if the spectral radius is greater than 1 then the
disease cannot be eliminated by targeting only S (in such case, TS is not defined [15]).
The controlled NGM Kc is formulated by replacing the entry kij in K by kij/TS whenever
(i, j) ∈ S.

Theorem 2.1 in [15] states that if K is irreducible and the condition for controllabil-
ity holds, then TS > 1 if and only ifR0 > 1. According to Shuai et al. [15, Theorem 2.2],
the controlled next-generation matrix satisfies ρ(Kc) = 1. Similar to the basic reproduc-
tion number, the target reproduction number TS serves as a quantity to measure the effort
needed to eliminate the disease, when control is applied on the set S.

Now, we are ready to describe a procedure that will allow us to design and systematically
investigate the intervention strategies of compartmental epidemic models. Assume that
R0 > 1 and the disease can invade the population; otherwise no control is necessary. First,
we identify a set of model parameters

� = (ω1, . . . ,ωn)
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that are subject to change in the control. Then, we decompose the Jacobian of the infected
subsystem as J = F̃ − Ṽ, to construct an alternative NGM

K̃ := F̃ · Ṽ−1.

Ṽ and Ṽ in the decomposition must satisfy the conditions of Proposition 2.1, moreover we
only consider splittings such that K̃ is irreducible. Next, we select the entries of K̃ = [k̃ij]
that depend on the parameters in �, and define the target set S̃ as the set of the indices of
the entries. With

S̃ = ((i1, j1), . . . , (im, jm)),

the entry k̃ij depends on some of the parametersω1, . . . ,ωn for (i, j) = (i1, j1), . . . , (im, jm),
and otherwise k̃ij is independent of each parameter in�. Given S̃, we follow the description
above to construct the target matrix K̃S̃ as

[K̃S̃]ij :=
{
k̃ij if (i, j) ∈ S̃,
0 otherwise,

and obtain the controllability condition

ρ(K̃ − K̃S̃) < 1.

Provided that the controllability condition holds, the target reproduction number is
defined as

TS̃ := ρ(K̃S̃ · (I − K̃ + K̃S̃)
−1),

and the controlled alternative NGM K̃c is formulated as

[K̃c]ij :=

⎧⎪⎪⎨
⎪⎪⎩
k̃ij
TS̃

if (i, j) ∈ S̃,

k̃ij otherwise.

The assumption thatR0 > 1, implies by [15, Theorem 2.1] that TS̃ > 1. The goal is to
reduce the proportion 1 − 1/TS̃ of all entries in S̃, since this way K̃ is transformed into K̃c

and ρ(K̃c) = 1 implies that the disease can be eradicated (see [15, Theorem 2.2]). Thus,
our last step is to characterize how each targeted parameter ω1, . . . ,ωn should be changed
such that K̃ is transformed into K̃c. To formalize this, we think of K̃ = K̃(�) as a matrix
that is dependent of the targeted parameters, and look for �c = (ωc

1, . . . ,ω
c
n) such that

K̃(�c) = K̃c holds, where�c is the set of targeted parameters after control. To this end, the
functions φ1, . . . ,φn need to be identified that transform targeted parameters such that

φ1(ω1) = ωc
1, . . . ,φn(ωn) = ωc

n.

Different control approaches (that is, different choices of the set of targeted parameters)
may require the construction of different alternative next-generation matrices. We will see
in the analysis of the proposed models that some splittings of the Jacobian are easier to
handle than others. Each alternative NGM provides an alternative threshold quantity for
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76 D. KNIPL

disease elimination (see Proposition 2.1); this number, however, is not equal to the basic
reproduction number. Hence, the significance of this alternative threshold quantity is that
reducing it to 1 bymeans of epidemic control ensures disease elimination, but this number
is not useful for estimatingR0.

The above-described procedure readily allows us to compare control approaches, by
means of their properties as the controllability condition and the target reproduction num-
ber. We will give examples when the controllability condition (a condition of the model
parameters) holds for one control strategy but cannot be satisfied for another. By the trans-
formation of targeted parameters that ensures disease eradication, we can determine the
critical control effort needed to prevent an outbreak. Doing so for each feasible interven-
tion strategy, we become capable of evaluating the advantages of one over another. Hence,
the analysis is applicable to provide recommendation, when it comes to making decisions
about which control strategy is best to implement.

3. Control in a two-patch SIRSmodel

We consider the classical SIRS model in two patches that are connected by individuals’
travel. In patch i (i ∈ {1, 2}), we denote the total population at time t by Ni(t), whereas
Si(t), Ii(t), and Ri(t) give the numbers of susceptible, infected, and recovered individuals,
respectively, at time t. It holds for any t ≥ 0 that Si(t) + Ii(t) + Ri(t) = Ni(t). Recruitment
into the susceptible class of patch i is described by �i(Ni), and di is the constant death
rate. Disease transmission in patch i is modelled by the term βiSi(t)Ii(t)/Ni(t) (standard
incidence), where βi is the constant transmission rate. We denote by αi the recovery rate
of infected individuals, and θi is the rate of losing immunity. Note that if θi = 0 then the
model in patch i reduces to the classical SIR model, whereas with θi → ∞ it is assumed
that the period of immunity is so short that it can be ignored, and we arrive at a model
equivalent to the SISmodel. To incorporate movements between the patches, we introduce
the parameters m12 and m21 for the travel rate from patch 2 to 1, and from patch 1 to 2,
respectively. Based on the above assumptions, we give the following system of ODEs to
describe the spread of an infectious disease in and between two patches:

S′
1 = �1(N1) − β1

S1I1
N1

− d1S1 + θ1R1 − m21S1 + m12S2,

I′1 = β1
S1I1
N1

− (α1 + d1)I1 − m21I1 + m12I2,

R′
1 = α1I1 − (θ1 + d1)R1 − m21R1 + m12R2,

S′
2 = �2(N2) − β2

S2I2
N2

− d2S2 + θ2R2 − m12S2 + m21S1,

I′2 = β2
S2I2
N2

− (α2 + d2)I2 − m12I2 + m21I1,

R′
1 = α2I2 − (θ2 + d2)R2 − m12R2 + m21R1.

(M1)

For the dynamics of the total population in patch 1 and patch 2, we obtain the system

N′
1 = �1(N1) − d1N1 − m21N1 + m12N2,
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N′
2 = �2(N2) − d2N2 − m12N2 + m21N1,

for which we assume that there exists a unique equilibrium (N̄1, N̄2) (if, for instance,
�i(Ni) = diN1, or if the recruitment is constant, then this assumption is fulfilled). It is
easy to see that (N̄1, 0, 0, N̄2, 0, 0) gives the unique DFE of the system (1).

We let γi = αi + di, and define the local reproduction number in patch i (i ∈ {1, 2}) as

Ri = βi

γi
,

that gives a threshold for the stability of the DFE (N̄i, 0, 0) in the absence of travelling. In
the SIRS model (1), the infected subsystem reads

I′1 = β1
S1I1
N1

− γ1I1 − m21I1 + m12I2,

I′2 = β2
S2I2
N2

− γ2I2 − m12I2 + m21I1,

which we linearize at the DFE to give the 2 × 2 Jacobian matrix

J =
(

β1 − γ1 − m21 m12
m21 β2 − γ2 − m12

)
.

To calculate the NGM, we decompose J into F − V, with

F =
(

β1 0
0 β2

)
, V =

(
γ1 + m21 −m12

−m21 γ2 + m12

)
,

to separate new infections from transitions between disease classes in the linear approx-
imation. The matrix F is nonnegative, and V has the Z-sign pattern and a nonnegative
inverse (V is a non-singular M-matrix). We derive the NGM

K = F · V−1 =

⎛
⎜⎝

β1(γ2 + m12)

(γ1 + m21)(γ2 + m12) − m12m21

β1m12

(γ1 + m21)(γ2 + m12) − m12m21
β2m21

(γ1 + m21)(γ2 + m12) − m12m21

β2(γ1 + m21)

(γ1 + m21)(γ2 + m12) − m12m21

⎞
⎟⎠ ,

and the basic reproduction number

R0 = ρ(F · V−1)

= 1
2

(
β1(γ2 + m12) + β2(γ1 + m21)

(γ1 + m21)(γ2 + m12) − m12m21

+
√(

β1(γ2 + m12) − β2(γ1 + m21)

(γ1 + m21)(γ2 + m12) − m12m21

)2
+ 4β1m12β2m21

((γ1 + m21)(γ2 + m12) − m12m21)2

⎞
⎠ .

Assuming thatR0 > 1 implying that the disease can invade into the population, poten-
tial control strategies may target transmission rates (β1, β2), travel rates (m12, m21), or a
combination of those above. It is easy to see that decreasing both β1 and β2 will decrease
all elements of K, and henceR0 as well. However, it is difficult to tell from the formulas of
R0 and K if controlling travel rates can contribute to disease elimination. To answer the
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78 D. KNIPL

above question, it is more convenient to decompose the Jacobian in a way different from
F − V. With the splitting J = F̃ − Ṽ,

F̃ =
(

β1 m12
m21 β2

)
, Ṽ =

(
γ1 + m21 0

0 γ2 + m12

)
,

the alternative NGM K̃ arises as

K̃ := F̃ · Ṽ−1 =

⎛
⎜⎝

β1

γ1 + m21

m12

γ2 + m12
m21

γ1 + m21

β2

γ2 + m12

⎞
⎟⎠ .

It is easy to check that F̃ is nonnegative, Ṽ is a non-singularM-matrix, and K̃ is irreducible.
By Proposition 2.1 and the assumption thatR0 > 1, it follows that ρ(K̃) > 1. We identify
three possible approaches for control:

(A) control targets one or both of the transmission rates β1 and β2;
(B) control targets one or both of the travel ratesm12 andm21;
(C) a combination of the above two.

3.1. The approach (A)

We begin with investigating the approach (A), which covers intervention strategies that
decrease the probability of transmission, like social distancing. We first show conditions
when controlling a single transmission rate is sufficient for disease elimination. Assume
we want to change β1. This parameter appears in only one entry of K̃, hence the target set
is S = {(1, 1)}. The target matrix K̃S is defined as [K̃S]1,1 = β1/γ1 + m21 and [K̃S]i,j = 0
otherwise, so the controllability condition ρ(K̃ − K̃S) < 1 reads

1
2

⎛
⎝ β2

γ2 + m12
+
√(

β2

γ2 + m12

)2
+ 4m12m21

(γ2 + m12)(γ1 + m21)

⎞
⎠ < 1. (1)

If the condition (2) holds, then the definition of the target reproduction number – as the
dominant eigenvalue of K̃S · (I − K̃ + K̃S)

−1 – is meaningful; this number reads

TS = ρ(K̃S · (I − K̃ + K̃S)
−1),

that is larger than 1 because of ρ(K̃) > 1 ([see 15,]Theorem 2.1]). Control is executed as
we replace the targeted entry [K̃]1,1 by [K̃]1,1/TS in the next-generationmatrix K̃; this way,
we arrive to the controlled matrix K̃c corresponding to the target set S, and it holds that
ρ(K̃c) = 1. Such transformation on thematrix is achieved as we replace β1 by βc

1 := β1/TS
in [K̃]1,1, and leave all other parameters intact. ByTS > 1 it is clear thatβc

1 < β1, thatmeans
that the transmission rate needs to be decreased for disease elimination.
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Note that if β2/γ2 + m12 ≥ 2 then the condition (2) is never satisfied, otherwise by the
computations (equivalent to Equation (2))(

β2

γ2 + m12

)2
+ 4

m12m21

(γ2 + m12)(γ1 + m21)
<

(
2 − β2

γ2 + m12

)2

=⇒ m12m21

(γ2 + m12)(γ1 + m21)
< 1 − β2

γ2 + m12

=⇒ m12m21 < (γ1 + m21)(γ2 + m12 − β2)

=⇒ (γ1 + m21)(β2 − γ2) < m12γ1

=⇒ (R2 − 1)γ2(γ1 + m21) < m12γ1,

we obtain that ifR2 < 1 then targeting β1 alone is sufficient for control. However, ifR2 ≥
1 then controllability depends on the travel rates, and it follows that the above inequality is
satisfied ifm12 is sufficiently large, moreover it can also hold for smallm21 if (R2 − 1)γ2 <

m12. These arguments suggest that mutual control of β1 and β2 (that is, decreasingR2) is
always sufficient for disease elimination,moreover the approach (C) that involves the travel
rates might also be successful.

Indeed, let U = {(1, 1), (2, 2)} for the mutual control of β1 and β2, so we have K̃U =
diag(β1/γ1 + m21,β2/γ2 + m12) and obtain the condition for the controllability

ρ(K̃ − K̃U) < 1 ⇐⇒
√

m12m21

(γ2 + m12)(γ1 + m21)
< 1, (2)

that is satisfied for any travel rates. The target reproduction number TU is defined as

TU = ρ

⎛
⎜⎝
⎛
⎜⎝

β1

γ1 + m21
0

0
β2

γ2 + m12

⎞
⎟⎠ ·

⎛
⎜⎝ 1 − m12

γ2 + m12

− m21

γ1 + m21
1

⎞
⎟⎠

−1⎞
⎟⎠

= ρ

⎛
⎜⎝
⎛
⎜⎝

β1

γ1 + m21
0

0
β2

γ2 + m12

⎞
⎟⎠

·

⎛
⎜⎝

(γ2 + m12)(γ1 + m21)

(γ2 + m12)(γ1 + m21) − m12m21

m12(γ1 + m21)

(γ2 + m12)(γ1 + m21) − m12m21
m21(γ2 + m12)

(γ2 + m12)(γ1 + m21) − m12m21

(γ2 + m12)(γ1 + m21)

(γ2 + m12)(γ1 + m21) − m12m21

⎞
⎟⎠
⎞
⎟⎠ ,

and ρ(K̃) > 1 implies by (see [15, Theorem 2.1]) that TU > 1. The controlled matrix K̃c
corresponding to the target setU, arises as we replace [K̃]i,i by [K̃]i,i/TU , i = 1, 2. It follows
that the diagonal elements of K̃ decrease, that is achieved by reducing β1 and β2 to βc

1 :=
β1/TU and βc

2 := β2/TU , respectively.

3.2. The approach (C)

The approach (A) might be insufficient for disease elimination in situations when it is
not possible to control both transmission rates. If R1 is targeted through β1 but R2 ≥ 1
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cannot be controlled, then based on the arguments above, intervention strategies must be
extended to travel rates (unless m12 and m21 are already such that β2/γ2 + m12 < 2 and
(R2 − 1)γ2(γ1 + m21) < m12γ1 hold, in which case the condition (2) is satisfied).

Assume that we can control the transmission rate and the travel rate of individuals
in patch 1, that is, β1 and m21 are subject to change. Such intervention affects the two
entries [K̃]1,1 and [K̃]2,1, so the target set is defined as W = {(1, 1), (2, 1)}, and the target
matrix K̃W is defined as [K̃W]1,1 = β1/γ1 + m21, [K̃W]2,1 = m21/γ1 + m21, [K̃W]1,2 = 0,
[K̃W]2,2 = 0. We assume that the controllability condition

ρ(K̃ − K̃W) = β2

γ2 + m12
< 1 (3)

holds, and give the target reproduction number

TW = ρ

⎛
⎜⎜⎝
⎛
⎜⎝

β1

γ1 + m21
0

m21

γ1 + m21
0

⎞
⎟⎠ ·

⎛
⎜⎝1 − m12

γ2 + m12

0 1 − β2

γ2 + m12

⎞
⎟⎠

−1⎞⎟⎟⎠

= ρ

⎛
⎜⎝

β1

γ1 + m21

β1m12

(γ1 + m21)(γ2 + m12 − β2)m21

γ1 + m21

m12m21

(γ1 + m21)(γ2 + m12 − β2)

⎞
⎟⎠

= β1

γ1 + m21
+ m12m21

(γ1 + m21)(γ2 + m12 − β2)
.

Again,TW > 1 follows fromρ(K̃) > 1 and [15, Theorem2.1], that implies that the targeted
entries of K̃ need to be decreased. In the controlledmatrix K̃c corresponding toW, we have
[K̃c]i,1 = [K̃]i,1/TW , i = 1, 2.

The entry [K̃]2,1(m21) = m21/γ1 + m21 is zero atm21 = 0, and monotonically increas-
ing in m21. Thus for every m21 there exists a unique mc

21 < m21 such that [K̃c]2,1 =
m21/TW(γ1 + m21) is equal to [K̃]2,1(mc

21) = mc
21/γ1 + mc

21. Once we foundm
c
21, we need

βc
1 such that [K̃c]1,1 = β1/TW(γ1 + m21) and [K̃]1,1(βc

1,m
c
21) = βc

1/γ1 + mc
21 are equal.

From the linearity of [K̃]1,1 in β1 it is clear that there exists such βc
1, that is unique and

smaller than β1.
Summarizing, controlling the epidemic by decreasing the transmission rate of region 1

(β1) and the rate of travel outflow from region 1 (m21) is possible; in fact, the controlled
parameters are given as

mc
21 = m21γ1

TW(γ1 + m21) − m21
,

βc
1 = β1mc

21
m21

.

Our results for the control approaches (A) and (C) are illustrated in Figure 1. In the
numerical simulations, we let �i(Ni) = diNi, so the total population of the two patches
(denoted here by N∗) is constant. In the DFE it must hold that m12N̄1 = m21N̄2, that is
ensuredwithN1(0) = m12N∗/(m12 + m21),N2(0) = m21N∗/(m12 + m21).We let Ii(0) =
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(a) (b)

Figure 1. Morbidity curves of patch 1 (red) and patch 2 (blue), without control (solid curves) and with
control (dashed curves). We letR1 = 1.2 (β1 = 0.240047),R2 = 1.05,m12 = 0.015, andm21 = 0.015
for (a) and m21 = 0.1 for (b). Other parameters are as described in the text. Figure (a): When m21 =
0.015, then R0 = 1.153 > 1 (solid curves), the condition (2) is satisfied (0.981714 < 1), so we cal-
culate TS = 1.41186 and βc

1 = 0.170022. Choosing β1 = 0.1 < βc
1 (dashed curves), the reproduction

number drops below 1 (see in the bracket) and the outbreak is prevented. Figure (b): When m21 =
0.1, then R0 = 1.07455 > 1 (solid curves), the condition (4) is satisfied (0.976758 < 1), so we calcu-
lateTW = 1.80031 andβc

1 = 0.109093,mc
21 = 0.0454465. Choosingβ1 = 0.1 < βc

1 andm21 = 0.04 <

mc
21 (dashed curves), the reproduction number drops below 1 (see in the bracket) and the outbreak is

prevented.

250, Ri(0) = 0, Si(0) = Ni(0) − Ii(0) for the initial conditions, and choose parameter
values as N∗ = 2 · 105, 1/di = 70 years, 1/γi = 5 days, θi = 200di (i = 1, 2), R1 = 1.2,
R2 = 1.05, m12 = 0.015, m21 = 0.015, that makes R0 = 1.153. Figure 1(a) shows that
reducing β1 is sufficient for disease elimination if the condition (2) is satisfied. If, how-
ever, a higher outflow ratem21 = 0.1 from the patch 1 is considered, then the condition (2)
does not hold, yetR0 = 1.07455 > 1 and a different approach is necessary. As illustrated in
Figure 1(b), the condition (4) is satisfied and the approach (C) can be applied, that includes
the control ofm21 and β1.

Despite the fact that in some cases changing only β1 is sufficient for disease elimination,
it is beneficial to include further parameters in the intervention strategy because it requires
less effort. Following the terminology of Shuai et al. [15], the strategies defined by the setsW
andU are stronger than S since S ⊂ W and S ⊂ U. Then, by [15, Theorem 4.3] it holds that
TW < TS and TU < TS, provided that the target reproduction numbers are well defined
(that is, the conditions for the controllability are satisfied). For each strategy, the controlled
transmission rate βc

1 is defined as we divide β1 by the target reproduction number. Hence,
the relationship between TW , TU , and TS implies that in the strategy S that changes only β1,
the transmission rate needs to be decreased more compared to when other parameters are
also involved (β2 in the strategy U, and m21 in the strategyW). Moreover, the conditions
for controllability (3) and (4) in the strategies U and W, respectively, are less restrictive
than the condition (2) in the strategy S, that means that stronger strategies can be applied
more widely.

3.3. The approach (B)

We investigate the approach (B) for the control of the epidemic with changing the travel
rates exclusively. We first show two situations whenmovement has no effect on whether an
outbreak occurs. A standard result for nonnegative matrices (see, e.g. [12, Theorem 1.1])
says that the dominant eigenvalue of a nonnegative matrix is bounded below and above by
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82 D. KNIPL

the minimum and maximum of its column sums. Using basic calculus, we derive bounds
for the column sums of K̃ as

1 <
β1 + m21

γ1 + m21
≤ β1

γ1
= R1 if β1 − γ1 > 0,

R1 = β1

γ1
≤ β1 + m21

γ1 + m21
< 1 if β1 − γ1 < 0,

and

1 <
β2 + m12

γ2 + m12
≤ β2

γ2
= R2 if β2 − γ2 > 0,

R2 = β2

γ2
≤ β2 + m12

γ2 + m12
< 1 if β2 − γ2 < 0.

Thus, ifR1 = β1/γ1 > 1 andR2 = β2/γ2 > 1 then the dominant eigenvalue of K̃ is larger
than 1, that also impliesR0 > 1; with other words, if both local reproduction numbers are
greater than 1 then so isR0, and no travel rates can reduce it below 1. On the other hand,
when bothR1 andR2 are less than 1 then it holds for everym12,m21 that ρ(K̃) < 1 which
is equivalent toR0 < 1, so theDFE is locally asymptotically stable andmovement is unable
to destabilize the situation.

If, however, R1 < 1 but R2 > 1 then R1 ≤ ρ(K̃) ≤ R2, and epidemic control might
be necessary. In fact, with the approach (C) we are unable to apply the method of the target
reproduction number on the alternative NGM K̃. The approach (C) targets one or both of
the travel rates, so assume without loss of generality thatm12 is subject to change. For those
two entries of K̃ that depend on this parameter, we note that the monotonicity of [K̃]1,2 in
m12 is opposite of that of [K̃]2,2. This means that the procedure of reducing related entries
of K̃ cannot be successful without controlling β2 and/or γ2.

We can, however, use another alternative NGM, that has the same properties as K and
K̃. Define

F̆ =
(

β1 0
0 β2 − γ2

)
, V̆ =

(
γ1 + m21 −m12

−m21 m12

)
,

that satisfy J = F̆ − V̆, and F̆ is a nonnegative matrix by R2 = β2/γ2 > 1. If there is no
travel outflow from the patch 2 then it is clear fromR2 > 1 that the outbreak cannot be pre-
vented. Otherwise, m12 �= 0 and V̆ is a non-singular M-matrix, with nonnegative inverse.
Thus, K̆ := F̆ · V̆−1 gives an alternative NGM, which is also irreducible.

K̆ =

⎛
⎜⎝

β1

γ1

β1

γ1
(β2 − γ2)m21

γ1m12

(β2 − γ2)(γ1 + m21)

γ1m12

⎞
⎟⎠ .

Our target set is Z = {(2, 1), (2, 2)}, the target matrix K̆Z is given by [K̆Z]1,1 = 0, [K̆Z]1,2 =
0, [K̆Z]2,1 = ((β2 − γ2)m21)/γ1m12, [K̆Z]2,2 = (β2 − γ2)(γ1 + m21)/γ1m12, and the con-
trollability condition reads

ρ(K̆ − K̆Z) = β1

γ1
< 1, (4)
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that holds sinceR1 < 1. The target reproduction number is calculated as

TZ = ρ

⎛
⎝
⎛
⎝ 0 0

(β2 − γ2)m21

γ1m12

(β2 − γ2)(γ1 + m21)

γ1m12

⎞
⎠ ·

⎛
⎝1 − β1

γ1
−β1

γ1
0 1

⎞
⎠

−1⎞
⎠

= β1(β2 − γ2)m21

m12γ1(γ1 − β1)
+ (β2 − γ2)(γ1 + m21)

γ1m12
,

and by Proposition 2.1, R0 > 1 is equivalent to ρ(K̆) > 1, hence TZ > 1 (see [15, Theo-
reom 2.1]).

The controlled matrix K̆c corresponding to the strategy Z, is defined by [K̆c]2,i =
[K̆]2,i/TZ , i = 1, 2, while control does not affect the first row of K̆. To determine how this
transformation of K̆ is achieved in terms of the targeted parameters, we need to derivemc

12
andmc

21 that satisfy [K̆c]2,i = [K̆]2,i (mc
12,m

c
21), i = 1, 2. To this end, we solve the system

(β2 − γ2)m21

TZ · γ1m12
= (β2 − γ2)mc

21
γ1mc

12
,

(β2 − γ2)(γ1 + m21)

TZ · γ1m12
= (β2 − γ2)(γ1 + mc

21)

γ1mc
12

,

that reduces to

m21

TZ · m12
= mc

21
mc

12
,

γ1

TZ · m12
= γ1

mc
12
.

It follows thatmc
12 = TZ · m12 andmc

21 = m21, whichmeans that the travel inflow rate into
patch 1 withR1 < 1 (that rate is also the travel outflow rate of patch 2 withR2 > 1) needs
to be increased, and the other travel rate must remain unchanged.

We close this section with some concluding remarks. Three control approaches were
investigated for the SIRS model with individuals’ travel between two patches. Intervention
strategies that target transmissibility are powerful tools in epidemic control; as shown in
this section, preventing outbreaks by reducing the transmission rates β1 and β2, is possible
for any movement rates and for any value of the basic reproduction numberR0. We also
described cases in the approach (A)when changing (reducing) only one of the transmission
rates is sufficient, and showed that allowing the additional control of travel rates requires
less effort. In particular, if R1,R2 < 1 then R0 < 1 and no control is necessary, but if
max(R1,R2) > 1 and R0 > 1 then bringing the basic reproduction number below 1 is
possible by targeting β1 andm21 if β2/γ2 + m12 < 1 holds. Hence, the approach (C) is suc-
cessful ifR1 > 1 andR2 < 1 (sinceR2 = β2/γ2 ≥ β2/γ2 + m12), but more interestingly,
the strategymight also be feasible even whenR2 > 1, ifm12 is such that β2/γ2 + m12 < 1.
Biologically, the case whenR1 < 1,R2 > 1, and β2/γ2 + m12 < 1means that if the travel
rate from an endemic area (patch 2) is large enough, then disease control is feasible by
decreasing the transmission rate in the non-endemic patch (patch 1) and reducing the
travel inflow to the endemic area. See Figure 2(a) that illustrates this phenomenon. We let
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84 D. KNIPL

(b)(a)

Figure 2. Morbidity curves of patch 1 (red) and patch 2 (blue), without control (solid curves) and
with control (dashed curves). We let R1 = 0.95 (β1 = 0.190037), R2 = 1.05, m12 = 0.015, m21 =
0.015. Other parameters are as described in the text. These parameters makeR0 = 1.01495 > 1 (solid
curves). Figure (a): The condition (4) is satisfied (0.976758 < 1), so we calculate TW = 1.01495, and
βc
1 = 0.172752,mc

21 = 0.0136356. Choosingβ1 = 0.15 < βc
1 andm21 = 0.012 < mc

21 (dashed curves),
the reproduction number drops below 1 (see in the bracket) and the outbreak is prevented. Figure
(b): The condition (5) is satisfied (R1 < 1), so we calculate TZ = 1.66667, and mc

12 = 0.025. Choosing
m12 = 0.03 > mc

21 (dashed curves), the reproduction number drops below 1 (see in the bracket) and
the outbreak is prevented.

R1 = 0.95,R2 = 1.05,m12 = 0.015,m21 = 0.015, and other parameters are as described
for Figure 1.

Lastly, we investigated for the approach (B)whether epidemic control is possiblewithout
changing any of the transmission rates. If both local reproduction numbers are greater
than 1 then it is impossible for movement to prevent the outbreak, since R0 is greater
than 1 for any travel rates. On the other hand, we learned that R0 can be reduced to 1
by increasing the inflow rate to a patch where the local reproduction number is less than
1. Figure 2(b) illustrates such a case, where R1 = 0.95 < 1, R2 = 1.05 > 1, and R0 =
1.01495 > 1, so we increase m12 to eliminate the disease. We point out that if both local
reproduction numbers are below 1 then movement cannot destabilize the DFE, hence no
outbreak will occur.

4. A generalized SIRSmodel for r patches

In this section, control strategies are investigated in a general demographic SIRS model
with individuals’ travel between r patches, where r ≥ 2 is positive integer. Understand-
ing the dynamics of such high-dimensional models remains a challenging problem in
mathematical epidemiology. We give the system of 3r ODEs

S′
i = �i(Ni) − βi

SiIi
Ni

− diSi + θiRi −
r∑

j=1
mS

jiSi +
r∑

j=1
mS

ijSj,

I′i = βi
SiIi
Ni

− (αi + δi + di)Ii −
r∑

j=1
mI

jiIi +
r∑

j=1
mI

ijIj, i = 1, . . . , r.

R′
i = αiIi − (θi + di)Ri −

r∑
j=1

mR
jiRi +

r∑
j=1

mR
ijRj.

(M2)

D
ow

nl
oa

de
d 

by
 [

D
ia

na
 K

ni
pl

] 
at

 0
8:

15
 2

4 
N

ov
em

be
r 

20
15

 



JOURNAL OF BIOLOGICAL DYNAMICS 85

The parameter mX
ji is the travel rate in the class X, from region i to j (X ∈ {S, I,R}, i, j ∈

{1, . . . , r}, j �= i), and we definemX
ii = 0 for i = 1, . . . , r, X = S, I,R. Besides that we allow

different movement rates of the three disease classes, it is also incorporated that the disease
increases mortality by rate δi > 0. All other parameters, model variables and functions
have been introduced in Section 2. Following the arguments made for a similar model in
[6], we assume that there is a unique DFE (N̄1, 0, 0, . . . , N̄r, 0, 0) in the model (6). With
γi = αi + δi + di, we define the local reproduction number of patch i as Ri = βi

γi
. With

mij := mI
ij, the infected subsystem is obtained as

I′i = βi
SiIi
Ni

− γiIi −
r∑

j=1
mjiIi +

r∑
j=1

mijIj, i = 1, . . . , r.

We defineM as the movement matrix of infected individuals, and Mi as the total outflow
of infected individuals from region i, i ∈ {1, . . . , r}:

M = (mji)
r×r,

Mi =
r∑

j=1
j �=i

mji.

In the sequel, we will simply say ‘movement matrix’ forM and ‘total outflow from region i’
forMi, and the reference to infected individuals will be omitted. It is reasonable to assume
that M is irreducible. Otherwise, the patches are not strongly connected with respect to
the disease, so a subsets of the patches can be constructed to where the epidemic cannot
spread from other patches. Linearization of the infected subsystem about the DFE gives
the Jacobian J ∈ R

r×r, as

J = diag(β1 − γ1 − M1, . . . ,βr − γr − Mr) + M.

The basic reproduction number is defined as we follow the usual procedure of decompos-
ing the Jacobian as F − V, where

F = diag(β1, . . . ,βr), V = diag(γ1 + M1, . . . , γr + Mr) − M,

F is thematrix representing new infections andV represents transitions between and out of
infected classes. It is easy to see that F ≥ 0 andV has the Z-sign pattern. AsV is diagonally
dominant, the equivalence of the properties 3 and 11 in [9, Theorem 5.1] implies thatV−1

exists and it is nonnegative. Following van den Driessche and Watmough [17], the basic
reproduction numberR0 is defined as the dominant eigenvalue of the NGMK := F · V−1,
that is,R0 = ρ(K) = ρ(F · V−1). Note that the entries ofV−1 andK arise by complicated
expressions, and hence no closed formula is derived forR0.

An alternative way to decompose the Jacobian is J = F̃ − Ṽ, where

F̃ = diag(β1, . . . ,βr) + M, Ṽ = diag(γ1 + M1, . . . , γr + Mr).

F̃ is nonnegative and Ṽ has the Z-sign pattern, so with K̃ := F̃ · Ṽ−1 an alternative NGM
arises. By Proposition 2.1, ρ(K̃) gives another threshold quantity for the stability of the
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86 D. KNIPL

DFE; more precisely, ρ(K̃) < 1 if and only ifR0 < 1, ρ(K̃) = 1 if and only ifR0 = 1, and
ρ(K̃) > 1 if and only ifR0 > 1. The alternative NGM K̃ is obtained as

K̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

γ1 + M1

m12

γ2 + M2
· · · m1r

γr + Mr
m21

γ1 + M1

β2

γ2 + M2
· · · m2r

γr + Mr
...

...
. . .

...
mr1

γ1 + M1

mr2

γ2 + M2
· · · βr

γr + Mr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

that is irreducible sinceM is irreducible.
Assume that the disease can invade into the population andR0 > 1, that is equivalent

to ρ(K̃) > 1 (see Proposition 2.1). Intervention strategies can potentially target:

(A) various transmission rates;
(B) various movement rates;
(C) the combination of the above, in frames of local control.

For the model (1) in Section 3 for two patches, the control approaches (A), (B), and (C)
have been thoroughly investigated. We derived precise conditions for controllability and
described in details the procedures that lead to the decrease ofR0 to 1 (that is, we gave the
formulas for the targeted parameters in the various strategies). In this section, we present
theorems that generalize to r regions our results obtained for the 2-patch SIRS model (1).
We also derive novel conclusions.

Proposition 4.1: IfR0 > 1 then there is at least one patch with local reproduction number
greater than 1. If the local reproduction number is greater than 1 in all patches then it holds
that ρ(K̃) > 1, that is equivalent toR0 > 1.

Proof: Indeed, we look at the column sums of K̃ to give upper and lower bounds on the
dominant eigenvalue. As the column sum in column j is (βj + Mj)/(γj + Mj), we derive
by the result of Minc [12, Theorem 1.1] that

min
1≤j≤r

βj + Mj

γj + Mj
≤ ρ(K̃) ≤ max

1≤j≤r

βj + Mj

γj + Mj
.

The expression (βj + x)/(γj + x) is increasing in x if βj < γj, and it is bounded above by 1,
hence ifRj = βj/γj < 1 for every j ∈ {1, . . . , r} then ρ(K̃) ≤ 1 follows. The last inequality
is equivalent toR0 ≤ 1 that contradicts our assumption thatR0 > 1, hence there must be
an i such thatRi > 1.

On the other hand, (βj + x)/(γj + x) decreases in x if βj > γj, and it is bounded below
by 1. Summarizing, we have

1 <
βj + Mj

γj + Mj
≤ βj

γj
= Rj if βj − γj > 0,

Rj = βj

γj
≤ βj + Mj

γj + Mj
< 1 if βj − γj < 0,
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thus 1 gives the lower bound of ρ(K̃) if all local reproduction numbers are greater than 1.
The last statement implies that if Rj > 1 in all patches then R0 is greater than 1 for any
travel rates. This completes the proof. �

Theorem 4.2 (For the approach (A)): The epidemic can be controlled by decreasing the
transmission rate in some regions, if the local reproduction number is less than 1 in all
other patches. This implies that decreasing the transmission rate in all regions with local
reproduction numbers greater than 1, can be sufficient for epidemic control. In particular,
the intervention strategy where all transmission rates are subject to change, leads to disease
elimination.

Proof: Since R0 > 1 by assumption, there is an i ∈ {1, . . . , r} such that Ri > 1. With-
out loss of generality, we can assume that Ri = βi/γi > 1 for i = 1, . . . , p whereas Rj =
βj/γj < 1 for j = p + 1, . . . , r (1 ≤ p < r).

First, consider that β1, . . . ,βp are targeted and βp+1, . . . ,βr are not subject to change.
The target set is S = {(1, 1), . . . , (p, p)}, the target matrix is K̃S = diag(β1/(γ + M1),
. . . ,βp/(γp + Mp), 0, . . . , 0), and the controllability condition reads

ρ(K̃ − K̃S) < 1. (5)

Column sums of the matrix K̃ − K̃S are calculated as

M1

γ1 + M1
, . . .

Mp

γp + Mp
,

βp+1 + Mp+1

γp+1 + Mp+1
, . . .

βr + Mr

γr + Mr
.

Obviously,Mi/(γi + Mi) < 1 for i = 1, . . . , p, and it is easy to check that βj/γj ≤ (βj
+ Mj)/(γj + Mj) < 1 ifRj = βj/γj < 1, that implies that (βj + Mj)/(γj + Mj) < 1 for j =
p + 1, . . . , r. It is known that the dominant eigenvalue of a nonnegative matrix is bounded
above by themaximum of the column sums (see [12, Theorem 1.1]), so applying this result
to K̃ − K̃S we obtain that the condition (7) for controllability holds.

The target reproduction number for the strategy S is given by

TS = ρ(K̃S · (I − K̃ + K̃S)
−1),

and we define the controlled transmission rates as βc
i := βi/TS, i = 1, . . . , p. For i =

1, . . . , p, we replace βi by βc
i in K̃ and arrive to the controlled matrix K̃c, that satisfies

ρ(K̃c) = 1 (see [15, Theorem2.2]). The assumption thatR0 > 1 implies by Proposition 2.1
and [15, Theorem 2.1] that TS > 1, hence targeted transmission rates need to be reduced
for successful control.

Theorem 4.3 in [15] says that extending the control strategy to a wider set of entries of
K̃ requires less effort for disease elimination. If, in addition to β1, . . . ,βp, we also control
the transmission rates βp+1, . . . ,βp+q (q ≥ 1), then some regions with local reproduction
numbers less than 1 are also targeted. However, it remains true thatRj < 1 for all j > p +
q, that is, for all j such that βj is not subject to change. The target set isU = {(1, 1), . . . , (p +
q, p + q)}, and the control strategy U is stronger than S because of S ⊂ U. Since K̃S ≤
K̃U, it holds that K̃ − K̃U ≤ K̃ − K̃S, and by a basic result on nonnegative matrices (see,
for instance, [9, Lemma 4.6]) we obtain ρ(K̃ − K̃U) < ρ(K̃ − K̃S), that implies that the
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88 D. KNIPL

strategyU is also feasible for control. Theorem 4.3 in [15] says 1 < TU ≤ TS, thus, stronger
control strategies require less effort. Note that these conclusions are valid for the case when
p + q = r, that is, when all transmission rates are targeted. �

Theorem 4.3 (For the approach (C)): Local control in some regions, that involves the
control of transmission rates and travel outflow of those regions, can be sufficient
if (βj + Mj)/(γj + Mj) < 1 in all other regions. This implies that if all patches with
(βi + Mi)/(γi + Mi) > 1 are under control then the outbreak can be prevented. In particular,
the intervention strategy where all transmission rates and travel rates are subject to change,
leads to disease elimination.

Proof: We have seen that for R0 > 1 it is necessary that Ri > 1 for some i. As 1 <

(βi + Mi)/γi + Mi ≤ Ri holds for any Mi ≥ 0 if Ri > 1, we can assume without loss of
generality that there is a p ≥ 1 such that (βi + Mi)/(γi + Mi) > 1 for i = 1, . . . , p, and
(βj + Mj)/(γj + Mj) < 1 for j = p + 1, . . . , r.

If the patches 1, . . . , p are under local control, then the parameters βi and mji are sub-
ject to change, where i ∈ {1, . . . , p}, j ∈ {1, . . . , r}, j �= i, so we introduce � = ∪p

i=1 ∪r
j=1

{βi,mji} for the set of targeted parameters. The target set (of entries in the NGM K̃) isW =
{(j, 1), . . . , (j, p)} with j ∈ {1, . . . , r}, the target matrix K̃W is defined as [K̃W]j,i = [K̃]j,i if
i ∈ {1, . . . , p} and 0 otherwise, and the controllability condition reads

ρ(K̃ − K̃W) < 1. (6)

The matrix K̃ − K̃W is lower triangular with a zero-block in the diagonal and another
diagonal block of size (r − p) × (r − p), that we denote by B:

K̃ − K̃W =
(
0 ∗
0 B

)
, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βp+1

γp+1 + Mp+1

mp+1,p+2

γp+2 + Mp+2
· · · mp+1,r

γr + Mr
mp+2,p+1

γp+1 + Mp+1

βp+2

γp+2 + Mp+2
· · · mp+2,r

γr + Mr
...

...
. . .

...
mr,p+1

γp+1 + Mp+1

mr,p+2

γp+2 + Mp+2
· · · βr

γr + Mr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Due to the special structure of K̃ − K̃W, the dominant eigenvalue arises as the dominant
eigenvalue of the square matrix B. Again, by [12, Theorem 1.1] and the assumption that
(βj + Mj)/(γj + Mj) < 1 for j = p + 1, . . . , r, we obtain that

ρ(K̃ − K̃W) = ρ(B) ≤ max
p+1≤j≤r

(
βj +

∑r
i=p+1mij

γj + Mj

)

≤ max
p+1≤j≤r

(
βj + Mj

γj + Mj

)

< 1,

D
ow

nl
oa

de
d 

by
 [

D
ia

na
 K

ni
pl

] 
at

 0
8:

15
 2

4 
N

ov
em

be
r 

20
15

 



JOURNAL OF BIOLOGICAL DYNAMICS 89

that implies that the controllability condition (8) holds. We can thus define the target
reproduction number

TW = ρ(K̃W · (I − K̃ + K̃W)−1)

for the strategyW, that is greater than 1 because of ρ(K̃) > 1. For successful control, each
parameter in the set � = ∪p

i=1 ∪r
j=1 {βi,mji} needs to be changed such that [K̃(�c)]j,i =

[K̃(�)]j,i/TW for (j, i) ∈ W, where �c is the set of targeted parameters after the control.
This way, K̃(�c) is equal to the controlled next-generation matrix K̃c, and K̃(�c) = 1
follows from ρ(K̃c) = 1 (see [15, Theorem 2.2]).

Controlled parameters need to satisfy the systems

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βc
1

γ1 + Mc
1

= β1

(γ1 + M1)TW
,

mc
21

γ1 + Mc
1

= m21

(γ1 + M1)TW
,

...
mc

r1
γ1 + Mc

1
= mr1

(γ1 + M1)TW
,

. . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βc
p

γp + Mc
p

= βp

(γp + Mp)TW
,

mc
1p

γp + Mc
p

= m1p

(γp + Mp)TW
,

...
mc

rp

γp + Mc
p

= mrp

(γp + Mp)TW
,

that are pairwise independent so it is sufficient to solve one of them (e.g. the first one),
and then generalize. To find the controlled parameters βc

1,m
c
21, . . . ,m

c
r1, we first solve the

system

mc
21

γ1 + Mc
1

= m21

(γ1 + M1)TW
,

...

mc
r1

γ1 + Mc
1

= mr1

(γ1 + M1)TW
,

where Mc
1 = ∑r

j=2m
c
j1. We obtain that mc

j1/mj1 = mc
k1/mk1 whenever mj1 �= 0, mk1 �=

0, thus there is a c1 such that mc
j1 = mj1/c1 for every j such that mj1 �= 0. If mj1 = 0

for some j then define mc
j1 = 0. It follows that Mc

1 = M1/c1, and mj1/c1/γ1 + M1/c1 =
mj1/(γ1 + M1)TW has to be satisfied, so c1 is given by c1 = ((γ1 + M1)TS − M1)/γ1. It
is easy to see that c1 > 1, which means that travel outflow rates from patch 1 need to be
decreased for disease elimination. However, the transmission rate of patch 1 needs to be
changed such that

βc
1

γ1 + Mc
1

= β1

(γ1 + M1)TW
is satisfied. Using mj1/c1/(γ1 + Mc

1) = mj1/((γ1 + M1)TW) we derive the controlled
transmission rate βc

1 = β1/c1, that is smaller than β1 since c1 > 1. The constant c1 gives
the general reduction parameter for patch 1, and one can similarly define c2, . . . , cp for the
rest of the patches that undergo local control.
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90 D. KNIPL

Similarly as for Theorem 4.2, one can show that less effort is needed for local control
if more patches contribute to the intervention (including when all transmission rates and
movement rates are subject to change). �

Note that the conditions of Theorem 4.3 allow successful disease prevention whenRj >

1 in some regions that are not part of the intervention strategy. This is in contrast to the
findings of Theorem 4.2, that say that all patches with local reproduction number greater
than 1 must be targeted. There are, although, further conditions in Theorem 4.3 that need
to hold true, but they are weaker than those in Theorem 4.2, meaning that the results of
Theorem 4.3 can be appliedmore widely than the results of Theorem 4.2. In the same time,
S ⊂ W holds for the sets of targeted entries in Theorems 4.2 and 4.3, that again explains
why the controllability condition is weaker and the target reproduction number is smaller
in the latter than in the former one.

Theorem 4.4 (For the approach (B)): Assume that there are some patches i = 1, . . . , p
whereRi > 1 (1 ≤ p < r), andRj < 1 holds for the patches j = p + 1, . . . , r. Assume that
from each patch i ∈ {1, . . . , p} there is a single outflow link. Then, the outbreak can be
prevented by increasing the travel outflow of the patches 1, . . . , p.

Proof: From the assumption thatRi > 1 for i = 1, . . . , p, it follows that βi > γi. Define

F̆ = diag(β1 − γ1, . . . ,βp − γp,βp+1, . . . ,βr) + M,

V̆ = diag(M1, . . . ,Mp, γp+1 + Mp+1, . . . , γr + Mr).

It is easy to see that F̆ is a nonnegative matrix and V̆ is a non-singular M-matrix,
moreover F̆ − V̆ yields a splitting of the Jacobian. Hence F̆ · V̆−1 gives another alternative
NGM K̆,

K̆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 − γ1

M1
· · · m1p

Mp

m1,p+1

γp+1 + Mp+1
· · · m1r

γr + Mr
...

. . .
...

...
. . .

...
mp1

M1
· · · βp − γp

Mp

mp,p+1

γp+1 + Mp+1
· · · mpr

γr + Mr
mp+1,1

M1
· · · mp+1,p

Mp

βp+1

γp+1 + Mp+1
· · · mp+1,r

γr + Mr
...

. . .
...

...
. . .

...
mr1

M1
· · · mrp

Mp

mr,p+1

γp+1 + Mp+1
· · · βr

γr + Mr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that is irreducible because M is assumed irreducible. It follows by the properties of F̆ and
V̆ that ρ(K̆) andR0 agree at 1, andR0 > 1 implies ρ(K̆) > 1 (see Proposition 2.1).

By assumption, for every i ∈ {1, . . . , p} there is a ki �= i such that mki,i > 0 while all
other travel rates from patch i are zero. This is equivalent to [K̆]ki,i = 1 while all other
non-diagonal elements in the column are 0. Moreover, by the irreducibility assumption on
M, there is an i ∈ {1, . . . , p} such that ji > p.Withwords, for each patch i ∈ {1, . . . , p} there
only is a single way out, and at least one of these patches connects to a patch with index
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{p + 1, . . . , r}. The last assumption guarantees that the block (K̆)
1,...,p
p+1,...,r is not identically

zero (otherwise K̆ would be reducible).
When M1, . . . ,Mp are targeted then only the entries [K̆]1,1, . . . , [K̆]p,p are sub-

ject to change. Indeed, all non-diagonal elements in the columns 1, . . . , p are either
1 or 0, thus constants. Similarly as in Theorem 4.2 for the alternative NGM K̃,
we choose Z = {(1, 1), . . . , (p, p)} for the target set, hence the target matrix is K̃Z =
diag((β1 − γ1)/M1, . . . , (βp − γp)/Mp, 0, . . . , 0), and the controllability condition reads

ρ(K̆ − K̆Z) < 1. (7)

Similarly as inTheorem4.2,we argue that the dominant eigenvalue of (K̆ − K̆Z) is bounded
above by themaximumof the column sums. Note that the column sum equals 1 in columns
1, . . . , p, and is less than 1 in columns p + 1, . . . , r, asRj < 1 for j ∈ {p + 1, . . . , r}. Thus,
the dominant eigenvalue of (K̆ − K̆Z) is less than or equal to 1, and now we show that 1 is
not an eigenvalue of K̆ − K̆Z; then, these statements yield that the condition (9) holds.

Assume that 1 is an eigenvalue of K̆ − K̆Z. Then, there is a positive left eigenvector v =
(v1, . . . , vr) associated to 1, and the equality

(v1, . . . , vp, vp+1, . . . , vr) · (K̆ − K̆Z) = (v1, . . . , vp, vp+1, . . . , vr) (8)

is satisfied. Again, the column sums of K̆ − K̆Z are less than 1 in the columns p + 1, . . . , r,
so we derive

r∑
k=1

(vk · [K̆ − K̆Z]k,j) = vj,

r∑
k=1

((
max
1≤n≤r

vn

)
· [K̆ − K̆Z]k,j

)
≥ vj,

(
max
1≤n≤r

vn

)
·

r∑
k=1

([K̆ − K̆Z]k,j) ≥ vj,

max
1≤n≤r

vn > vj

for j ∈ {p + 1, . . . , r}, hence it follows that
max
1≤i≤p

vi = max
1≤n≤r

vn,

max
1≤i≤p

vi > vj, j ∈ {p + 1, . . . , r}.
(9)

For each patch i ∈ {1, . . . , p}, there is a unique outflow link i → ki. By the irreducibility
assumption, there is no closed loop of links within {1, . . . , p}, so every patch i is linked
(possibly via other patches) to a patch outside of {1, . . . , p}. Without loss of generality, we
can assume that the structure of the movement network is

1 → · · · → p1 → j1, s2 → · · · → p2 → j2, . . . , sm → · · · → pm → jm,

where p1, . . . , pm, s2, . . . , sm ∈ {1, . . . , p} and j1, . . . , jm ∈ {p + 1, . . . , r}, m ≥ 1. The sets
{1, . . . , p1}, {s2, . . . , p2}, . . . , {sm, . . . , pm} are disjoint and the union gives {1, . . . , p}. Recall
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92 D. KNIPL

that for each i ∈ {1, . . . , p} the column i of K̆ − K̆Z contains a single non-zero element,
[K̆ − K̆Z]ki,i = 1. Hence, using Equation (10), we derive that vki = vi for i ∈ {1, . . . , p},
and with the movement network given above, we obtain the following equalities:

v1 = · · · = vp1 = vj1 ,

vs2 = · · · = vp2 = vj2 ,

...

vsm = · · · = vpk = vjm .

From the above equations, we derive that for every i ∈ {1, . . . , p} there is a ji ∈ {p +
1, . . . , r} such that vi = vji . However, this contradicts (11). Summarizing, we showed that
the condition (9) for controllability holds.

The target reproduction number can be defined in the usual way

TZ = ρ(K̆Z · (I − K̆ + K̆Z)−1),

and the strategy to decrease the targeted entries of the NGM K̆ is executed as one replaces
Mi by Mc

i := Mi · TZ in K̆, for i = 1, . . . , p (note that M1, . . . ,Mp appear in the denom-
inators of the targeted entries). Each Mi that is subject to change, is a single travel rate
m·,i. The procedure yields the controlled matrix K̆c that satisfies ρ(K̆c) = 1 (see [15,
Theorem 2.2]). �

Theorem 4.4 describes a way to apply the intervention approach (B) (changing move-
ments rates only) on a special movement network. The question, whether the approach of
controlling movement rates exclusively, is possible on more complex movement networks
(that is, when the restriction on the travel outflows is lifted), remains open. However, the
results of Theorem 4.4 enable us to give recommendation for designing intervention strate-
gies. We have seen that, with changing movements only, the outbreak cannot be prevented
if all local reproduction numbers are greater than 1; however, if there are patches with
Rj < 1 then the regions with Ri > 1 can potentially reallocate their travel outflow vol-
umes in a way such that the conditions of Theorem 4.4 hold. In this case, the procedure
described in the proof of Theorem 4.4 provides instructions for control such that the repro-
duction numberR0 is decreased to 1. Note that the approaches (B) and (C) that include the
control of movement, only aim at the travel rates of infected individuals, and such inter-
ventions do not require any restriction on the movement of non-infecteds. Increasing the
travel outflow of an infected class is equivalent to shortening the period of stay in that class;
such control measure is applied upon entry screening at airports, when infected individu-
als are denied entrance and after spending only a few hours at the airport, they fly back to
their original location.

Summarizing, Theorems 4.2–4.4 provide various strategies for successful intervention.
Control of transmission rates and movement rates (potential cancellation of some travel
routes) are powerful tools in epidemic prevention and intervention.
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5. Discussion

We illustrated with a demographic metapopulation SIRS model, how our method
described in Section 2 can be used to design intervention strategies for disease transmission
models. Considering public healthmeasures like social distancing (reducing the likelihood
of transmission) and travel restrictions between distant locations, we determined the crit-
ical efforts required for disease elimination, and compared these intervention approaches
to provide recommendation for more effective control strategies. In particular, we demon-
strated that controlling only the movement of infected individuals may be sufficient for
preventing an outbreak.

The SIRS model in Section 4 is applicable to an array of communicable diseases that
spread in spatially heterogeneous populations. However, the methodology described in
Section 2 can be readily used to investigate the control strategies of compartmental mod-
els more general than the SIRS model. Based on the dynamical properties of the infection
classes in the initial phase of an epidemic, the procedure in Section 2 allows for the con-
struction of alternative next-generation matrices, each designed for a particular control
strategy. This way, we are better able to understand the dependence of the dynamics on
targeted model parameters, even in high-dimensional models in which these relations
are rather complex. Such knowledge greatly contributes to the design of more successful
intervention strategies.
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