
 1 

Implications of cascading effects for the EU Floods Directive  1 

 2 

Nones Michael
1

, Pescaroli Gianluca
2 

3 

1
 gerstgraser - Ingenieurbüro für Renaturierung, An der Pastoa 13, D-03042 Cottbus, Germany, phone: 4 

+493554838919, e-mail: nones@gerstgraser.de (corresponding author) 5 

2
 Institute for Risk and Disaster Reduction, University College London, Gower Street, WC1E 6BT London, United 6 

Kingdom, phone: +442076794466, e-mail: gianluca.pescaroli.14@ucl.ac.uk 7 

 8 

Abstract 9 

The adoption of the European Floods Directive (2007/60/EC) represented a crucial improvement 10 

in the management of watercourses and coastlines. However, the beginning of a new phase of 11 

implementation requires the assessment of which emerging topics may be included in the review 12 

process. The aim of our research is to understand the existence of any legislative gaps that could 13 

limit the preparedness to cascading events and critical infrastructures breakdowns. First, we provide 14 

a review of the Floods Directive, the cascading phenomena and the vulnerability of critical 15 

infrastructures in the European legislation. Secondly, we analyse some case-studies to test the 16 

present approach and to improve the work of decision makers. Our results suggest that the Floods 17 

Directive tends to focus on localized flood impacts at smaller time scale and it could be ineffective 18 

to address the cross-scale impact of cascading events. Although some of the corrective actions may 19 

not be of competence of the Directive, we argue that their inclusion could limit uncertainties in the 20 

attribution of responsibilities and the coordination among different institutional levels.  21 
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1. Introduction 27 

It is now evident that human activities contributed to the alterations of climate and precipitations, 28 

fostering a possible increase of extreme events (Ashton et al. 2003, Kay et al. 2009, Petrow and 29 

Merz 2009). This is likely to produce a raise in the total amount of damages caused by disasters in 30 

the long-term (Schwarze and Wagner 2004, EC 2015). In particular, floods represent a challenge for 31 

mitigation and resilience strategies because their impact is strictly related to the anthropic pressures 32 

on the environment, such as for growing urbanization (Slowik 2015) or misuse of floodplains 33 

(Smith and Petley 2009). In 2013, flood damages were 90% above their 2003-2012 annual averages 34 

and caused estimated losses for US$ 53.2 billion (Guha-Sapir et al. 2015). The flood occurred in 35 

Germany that year caused estimated US$ 13 billion damages on its own, and it was the third world 36 

costliest event after the ones in China (May-August 2010) and in Thailand in 2011 (Guha-Sapir et 37 

al. 2015). Only looking at the last decades, Europe suffered a series of other critical floods, 38 

including the events in Italy, France and Swiss Alps in 2000 (Gabella and Mantonvani 2001), along 39 

the Danube and the Elbe in 2002 (Ulbrich et al. 2003a, 2003b, Schwarze and Wagner 2004, 40 

Kreibich and Thieken 2009) and in the United Kingdom in 2007 (Pitt 2008, Bosher et al. 2009). 41 

These disasters caused more than 1000 fatalities, the displacement of about a million of inhabitants 42 

and at least US$ 50 billions of insured economic losses (EEA 2011, Hedelin 2015). In addition to 43 

social and economical losses, floods may have cascading effects on private and public properties 44 

and environments, for example contaminating the soils after the inundation of wastewater treatment 45 

plants and chemical industries, or threatening of biodiversity along rivers, coastlines and wetlands 46 

(Uitenboogaart et al. 2009). 47 

Despite numerous and expensive efforts to protect properties, households and communities, it was 48 

impossible to eradicate permanently the phenomenon. Consequently, the attention of European 49 

decision makers shifted from flood protection to flood risk management, with the integration of 50 

non-structural mitigation measures and the use of advanced spatial planning instruments (Klijin et 51 

al. 2008, Mostert and Junier 2009, Müller 2013). The most important action promoted by the 52 
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European Commission has been the adoption, in 2007, of the Directive on the Assessment and 53 

Management of Flood Risk, 2007/60/EC (EU 2007), hereafter called Floods Directive, FD. Its 54 

principal aim is the reduction of flood risk consequences on human health, environment, cultural 55 

heritage and economic activities. Each EU Member State has to implement the FD at national and 56 

international level, including in this process a series of compulsory goals with fixed deadlines and 57 

the management of transboundary waterbodies (Müller 2013, Nones 2015). However, the possible 58 

consequences of cascading effects are only marginally described in the documentation, leaving a 59 

grey area that could limit the effective coordination of complex events.  60 

Our hypothesis is that the implementation process of the FD should include a clear agenda on 61 

cascading effects at cross-spatial and cross-temporal scales, in order to cover the gaps in legislation 62 

and support other EU Directives. The approach is tested with a review of the state-of-the-art, 63 

coupled with an in-depth analysis of a few case studies. First, we explain the relevance of cascades, 64 

their linkages with critical infrastructures (CI) and the possible influence of climate change patterns. 65 

Secondly, we describe the FD, its main goals and a list of consequences of flooding. The discussion 66 

considers both the open matters of interoperability and the overlapping competences with other EU 67 

directives, such as the INSPIRE Directive (EC 2007). The analysis of case studies explains an 68 

integrated approach based on sustainable rivers management and vulnerability reduction strategies 69 

that could be effective in flood-triggered cascades. Our conclusions suggest some consistent 70 

measures for water authorities and open fields of research for scholars, recommending not only 71 

discussion, but also the implementation of timely actions.   72 

 73 

2. Linear and non-linear paths of events in disasters 74 

Cascades effects, also known as knock-on effects, tend to be associated with events where a 75 

primary threat is followed by a dynamic sequence of secondary hazards, evolving from a first 76 

trigger into a branching tree structure (May 2007). As example, earthquakes or floods can heavily 77 

damage roads, but also compromise electric grids, underground water supply and gas pipelines. The 78 
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joint effect of natural triggers and damages to the infrastructures can generate fires, increasing the 79 

difficulties in fighting them because of lack of water supply and inaccessible roads (Little 2002). In 80 

other words, cascading events can be related to the disruption of CI, intended as those places where 81 

physical attributes and functional nodes are accumulated (Alexander 2013). Despite the idea that 82 

cascading is rare, recent studies showed that they are very common, with most triggers originating 83 

from sectors such as energy, telecommunication/internet and transportation (Luiijf et al. 2009, 84 

Bochkov et al. 2015). Together with the loss of services, the effect floods on CI is frequently 85 

associated with ‘NaTech’ disasters (Natural events triggering Technological Disasters), when 86 

vulnerable equipments such as high capacity tanks or pipelines contaminate water and pollute the 87 

environment (Shaluf 2007, Cozzani et al. 2010, Krausmann et al. 2011).   88 

 Recently, Pescaroli and Alexander (2015) argued that cascading is distinguished by the existence 89 

of unforeseen and non-linear progresses of subsidiary events, which spread towards the 90 

vulnerabilities of society and the disruption of CI. Disasters escalate as time progresses, instead of 91 

being stabilized by the full mobilization of emergency resources. In Figure 1 are reported the 92 

differences between linear cause-effects relation and cascading, where ‘the chain of interactions can 93 

amplify an impact as it progresses thorough different states’ (Pescaroli and Alexander 2015).  94 

 95 

 96 

Figure 1. (a) Linear path of events in disasters, and (b) non-linear path of cascading, including 97 
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amplification and subsidiary disasters (adapted from Pescaroli and Alexander 2015). 98 

It must be noted that this sequence tends to be more complex than in the past. The 99 

interdependency of the global system combined multi-level networks that are very sensible to 100 

changes, and even small perturbations can generate large-scale or cross-boundary damages (Helbing 101 

2013). This has been evident since the early 2000s in different episodes, where CI disruptions 102 

caused widespread social breakdowns, such as the one caused by Hurricane Katrina in 2005 (Boin 103 

and McConnell 2007). In some cases, the main impact of cascades can be associated with secondary 104 

events: for example, the impact of 2011 Tōhoku earthquake was overwhelmed by the tsunami and 105 

the Fukushima meltdown, while the 2010 eruption of Eyjafjallajökull is not known for the damages 106 

of its lava but for being the cause of the widest disruption of air transportation since the World War 107 

II.  108 

Institutional and political challenges are still open in most of the possible scenarios involving 109 

climate change. At the European level, the consequences of extreme climate change have been 110 

identified as critical adaptation challenges for the possible disruption of CI and their implied 111 

secondary effects on society (EC 2013a). When ecological changes propagate into societal crises, 112 

the response capacity can be affected by the fast spreading of secondary effects, fragmented 113 

information, communication failures, or difficulties in assigning responsibilities (Galaz et al. 2011).  114 

 115 

3. Assessment of flooding events 116 

By the end of 2015, national and regional water authorities have to produce the Flood Risk 117 

Management Plans that includes all the possible consequences of flooding events, integrating the 118 

overview of spatial and temporal scales potentially involved (EEA 2013). Next sections approach 119 

the state-of-the-art in the European legislation to understand the open problems associated with 120 

cascading. 121 

 122 
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3.1 Directive on the Assessment and Management of Flood Risk 2007/60/EC 123 

Although many European countries have their own flood prevention policies, the FD (EU 2007) 124 

provides the background  for concerted action at international level. This Directive aims to reduce 125 

risks and adverse consequences of flooding events. It has been implemented by Member States in 126 

three consecutive stages: a Preliminary Flood Risk Assessment completed in 2011, the development 127 

of Flood Hazard and Risk Maps for flood prone zones produced in 2013 and the creation of Flood 128 

Risk Management Plans concluded at the end of 2015. The law is intended to handle some key 129 

strategic issues: i) floods are natural phenomena that cannot be prevented and have the potential to 130 

cause displacements of people and fatalities, environmental and economical damages; ii) 131 

anthropogenic activities and climate change can contribute to increase likelihood and adverse 132 

consequences of floods; iii) measures to reduce flood risks within international river basins should 133 

be coordinated on a transnational level; iv) measures related to water and land use changes should 134 

be verified for their impacts on the flood risk (Müller 2013, Nones 2015). Following the EU 135 

guidance (EEA 2013), a list of possible flood consequences has been created, describing each type 136 

of event and their negative effects (Table 1). This approach has been integrated in the Flood Risk 137 

Management Plans in accordance with Articles 4, 5 and 13(1) of the FD, but many differences exist 138 

in its implementation among Member States. On the one hand, in many cases it was not feasible to 139 

report all the possible consequences of flooding. On the other hand, some countries reported on the 140 

Flood Risk Maps information that may increase the flood damage (Excimap 2007a, Nones 2015), 141 

such as storage of chemicals, vital networks and services (e.g., transportation, healthcare, water 142 

supply), impact of sediments.  143 

 144 

Table 1. List of the types of consequences (adapted from EAA 2013). 145 

Type of consequences subtype of consequences / description 

Human Health Human Health: adverse consequences to human health, either as 
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(Social) immediate or consequential impacts, such as might arise from 

pollution, interruption of services related to water supply and 

treatment, fatalities. 

Community: adverse consequences to the community, such as 

detrimental impacts on local governance and public administration, 

emergency response, education, health and social work facilities. 

Environment Waterbodies status: adverse permanent or long-term consequences 

on ecological or chemical status of surface water bodies or chemical 

status of ground waterbodies affected, as concern under the WFD 

(EU, 2000). Such consequences may arise from pollution (point and 

diffuse) or due to hydromorphological impacts of flooding. 

Protected Areas: adverse permanent or long-term consequences to 

protected areas or waterbodies such as those designated under the 

Birds and Habitats Directives (EU, 1992), bathing waters or 

drinking water abstraction points. 

Pollution Sources: sources of potential pollution during floods, 

such as IPPC and Seveso installations, or point or diffuse sources. 

Other: potential permanent or long-term adverse environmental 

impacts. 

Cultural Heritage Cultural Assets: adverse permanent or long-term consequences to 

cultural heritage. 

Landscape: adverse permanent or long-term consequences on 

cultural landscapes, which are cultural properties that represents the 

combined works of nature and man. 

Economic Property: adverse consequences to properties. 
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Infrastructure: adverse consequences to infrastructural assets. 

Rural Land Use: adverse consequences to uses of the land. 

Economic Activity: adverse consequences to sectors of economic 

activities. 

 146 

Klijn et al. (2008) examined the evolution of flood risk management in England, France, 147 

Germany, Hungary, Italy and the Netherlands; while Hedelin (2015) studied the FD implementation 148 

process in Sweden. Their results suggested a gradual shift from flood control to flood management, 149 

but they also pointed out that ‘a risk based approach for both analysis and management is seldom 150 

explicitly applied’ (Klijn et al. 2008). Similarly, Evers and Nyberg (2013) argued that water 151 

management and land use planning are often distinct issues for decision makers, leading to different 152 

planning strategies and overlapping of jurisdictions. Following It is evident that a better consistency 153 

between procedure targets and long-term policies is needed, with the aim to improve the synergies 154 

between the FD and other European legislation, such as the European Water Framework Directive 155 

(WFD, EU 2000), the European Habitats Directive (HD, EC 1992) and the Infrastructure for Spatial 156 

Information in the European Community Directive (INSPIRE, EC 2007). One of the central steps in 157 

this process could be to apply in the FD a new definition of flooding consequences, which could 158 

incorporate also the vulnerability to large-scale events associated with cascading dynamics. 159 

 160 

3.2 CI as cross-cutting topic for the European Union  161 

The inclusion of the cascading concept in the FD implementation strategies should consider the 162 

overlapping competences and documentation about CI. The first European framework to analyse is 163 

the European Programme on Critical Infrastructure Protection (EPCIP), developed since 2006 (EC 164 

2006). The early documentation ascribed the priority task to tackle terrorism, and adopted an ‘all 165 

hazard approach’ that did not mentioned explicitly floods. At that time, Member States were 166 

encouraged to identify national CI according to quantitative and qualitative effects of possible 167 
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disruptions, including scopes, severities, health consequences, effects on environment and society. 168 

However, the adoption of any assessment criteria was not perceived in an immediate timeframe. 169 

Only the Directive on European Critical Infrastructures (EC 2008), in 2008, established a common 170 

procedure for identifying European Critical Infrastructures (ECI) and for improving the protection 171 

of strategic assets. At that time, the foci of the Directive were the energy and transportation sectors, 172 

but it was recommended to promote a review with the inclusion of possible impacts on sectors such 173 

as communication. In 2013 the Commission (EC 2013b) provided a practical implementation of the 174 

EPCIP, with the inclusion of cross-sectors interdependencies, but the roadmap referred just to the 175 

Directorates General of Mobility and Transport (DG MOVE), Enterprise and Industry (DG 176 

GROW), Research and Innovation (R&I), Energy (DG ENER), Humanitarian Aid and Civil 177 

Protection (DG ECHO). For the first time, floods were mentioned explicitly as disruptive natural 178 

events that could affect the European Gas Transmission Network, but their role was still marginal. 179 

The report did not mention the possibility to have any integration with the FD. 180 

Instead, the impact of floods on CI has been included in the Commission document on adaptation 181 

to climate change (EC 2013a). In this case, it is suggested to integrate the approach of the FD with 182 

changing flood patterns and intensity. It is argued that the last outcomes in climate change research 183 

and hydrological scenarios could be updated in maps and plans every six years, improving the 184 

overall accountability and reliability of information. Unfortunately, despite of a great effort in the 185 

FD implementation, official maps that indicate both potential damages and CI are still rare 186 

(Excimap 2007b). This problem can be referred to the high details of topographic data and the 187 

scarce availability of socio-economic indicators in many river basins (Tsakiris et al. 2009). 188 

Similarly, in multi-level planning, the possible role of CI remains mostly associated with  the direct 189 

effects of disruptions (e.g., loss of lifelines and services), but they can cause also indirect effects, 190 

such as the contamination generated by chemical leaks (Alexander 2013). It is recognized that, 191 

NaTech risk maps that include the loss of CI are generally unavailable, or they just overlay natural 192 

and technological hazards without contextualizing them (De Groeve et al. 2013). Even when natural 193 
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hazards and CI are approached together in metadata, as happens in the case of the INSPIRE 194 

Directive (EU 2007), their qualitative assessment remains vague and almost undefined. According 195 

to Hickford et al. (2015), the use of fixed assumptions in planning failed to include cross-sectors 196 

interdependencies and long-term socio-economic challenges, mainly due to methodological 197 

limitations that did not include the co-evolution of socio-economic and technical systems. Thus, if 198 

cascading concept is applied in terms of non-linear escalation process, the need for horizontal 199 

actions becomes a priority. 200 

 201 

4. Case studies analysis 202 

Over the last years, several projects were promoted across Europe to assess the effects of flooding 203 

events at different temporal and spatial scales, setting a new range of mitigation measures. Growing 204 

attention was attributed to financing the analysis of emerging hazards and proposing new 205 

preparedness scenarios. This paper is the result of an interdisciplinary dialogue between researchers 206 

of two different projects financed by the European Commission, namely the HYTECH project on 207 

the WFD-FD analysis (http://hytech.dii.unipd.it), and the FORTRESS project on the cascading 208 

events (http://fortress-project.eu). We present a few case studies on the cascading effects of 209 

flooding events to understand and assess the non-linear consequences on economy, society and 210 

environment. The selection process was oriented by the emerging nature of the cascading topic, 211 

which implied a scarce availability of data. We had to refer mostly to case studies analysed in our 212 

projects, individual researches or evidences approached during some collateral scenarios building. 213 

In other words, more than providing an exhaustive comparison with well-structures evidences, our 214 

goal is to provide a basis for new studies. In line with the methodological approach suggested by 215 

King et al. (1994), we adopted ex-ante some criteria to allow homogeneity of selection and future 216 

replicability:  217 
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- cases had to be distinguished by cascading patterns, in line with the definition given by Pescaroli 218 

and Alexander (2015). In particular, the presence of non-linear escalation dynamics had to be 219 

evident in socio-ecological systems; 220 

- cases had to provide a comprehensive view on natural and built environments, and social 221 

vulnerabilities. They had to show the presence of anthropic vulnerabilities, which are only partially 222 

addressed by the current form of the FD; 223 

- cases had to be related to surface water environments, in particular rivers, which is the application 224 

field of the FD analysed in the present paper. 225 

 226 

4.1 Venice Lagoon and Spree River: environment, ecology and hydromorphology 227 

Floods can be considered as a mass transfer of freshwater, sediments and contaminants along 228 

rivers. For this reason, the discharge increase is generally associated with a raise in the 229 

concentration of suspended matter, such as sediments and pollutants mobilized from the river bed or 230 

floodplains.  231 

In Venice Lagoon (Italy), the main source of contaminants is represented by small tributaries 232 

flowing from the nearest farmlands. Therefore, control and reduce the related load is an essential 233 

task for the safeguarding of the lagoon and its fragile environment (Zonta et al. 2005). Flooding 234 

events in the inland streams can increase the concentration of heavy metals and anthropogenic 235 

nutrients along the marshes, threatening the lagoon as a whole. In other words, the shift in the 236 

balance produced by contaminants can generate effects on all the adaptation process, modifying 237 

social, economical and political behaviours and producing dynamic feedbacks loops on ecosystems 238 

(Holling 2001). Even if these delayed effects of floods are not considered in the Flood Risk 239 

Management Plans, they are central carriers of complex crisis. According to Galaz et al. (2011), 240 

non-liner biophysical changes can recombine potential ecological crisis with socio-economic and 241 

political drivers to trigger cross-boundary and cross-sector cascades.  242 
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During the FD implementation it is necessary to consider ecological, hydromorphological and 243 

chemico-physical quality elements, in order to address the synergic effects with the WFD. Indeed, 244 

an increase of water discharge causes a mobilization of sediments, changing the morphology and 245 

altering the local habitat. The variation produced by local floods can alter rivers, derailing 246 

restoration projects with environmental and economical losses at watershed scale, as observed in a 247 

small restored reach of the Spree River in Germany (Nones and Gerstgraser 2016). In general, it 248 

must be noted that river restoration projects were built according to models that did not consider 249 

major floods with long return time periods (100-200 years), and did not take into account the slow 250 

morphological response to flow changes. In most cases no indications about the delayed impact of 251 

flooding events are reported in the Flood Risk Management Plans that cover restored reaches.  252 

Similarly, floods in mountain regions involve a series of cross-scale consequences and effects, 253 

which must be included in the Flood Risk Management Plans together with the possible paths that 254 

generate them. For example, they can trigger landslides and debris flows (consequence on the 255 

environment), which can cause fatalities and displacement of inhabitants (social consequences), as 256 

well as damages on infrastructures, properties, agriculture and industries (economic impact). 257 

However, the evidence can be also counter-intuitive. Gill and Malamud (2014) recorded the 258 

interactions-relationships between over twenty natural hazards, drawn from six risk groups: 259 

geophysical, hydrological, shallow earth, atmospheric, biophysical and space hazards. They 260 

suggested that floods are very likely to be generated by primary triggers such as adverse 261 

meteorological conditions or earthquakes, more than be just the cause of cascading. This approach 262 

can be integrated with climate change scenarios to understand the long-term sensibility of areas to 263 

combined risk, but also with better vulnerability assessments strategies that could address the roots 264 

of secondary events, when they lie in anthropic causes (Pescaroli and Alexander 2015).  265 

The following case studies will explain better this approach, focusing on social and economical 266 

systems.  267 

 268 
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4.2 Dresden: long-term economic and social impact 269 

In summer 2002, heavy rainfalls led to extreme floods in the Elbe and Danube basins (Ulbrich et 270 

al. 2003a, DKKV 2004, EEA 2010). More than twenty people were killed and substantial parts of 271 

infrastructures were destroyed in Germany, with huge costs for public administration and private 272 

citizens (Kreibich and Thieken 2009). The return period of this event was estimated to be around 273 

150 years, with a peak discharge of 4580 m
3
/s (Kreibich and Thieken 2009). 274 

At that time, Dresden was the most affected area with significant losses of residential buildings, 275 

industries, cultural and historic sites.  The city is located on the Elbe River (Fig. 2) and has one of 276 

the highest Social Vulnerability Index of Germany (Fekete 2009). 277 

 278 
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 279 

Figure 2. Map of Germany: location of Dresden and the Elbe basin. 280 

 281 

 Although Dresden has a long flood history, the risk awareness of the community faded after the 282 

last strong events occurred in 1940s. Following the German reunification, the lack of space and the 283 

low home ownership rate induced the local authorities to establish new settlement areas within the 284 

Elbe floodplain (Fig. 3a). Strong complains were made without significant results by numerous 285 

environmental agencies (Kreibich and Thieken 2009). Consequently, more than 50 % of the 2002 286 

flooded area was occupied by settlements, as visible from Figure 3b, and this caused several 287 

consequences on citizens and economic activities (EEA 2010).  288 
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 289 

 290 

Figure 3. a) Central areas of Dresden flooded in 2002. b) Comparison between total and settlement 291 

areas flooded in Dresden during three events (source European Environment Agency 2010). 292 

 293 

Together with environmental and social problems, this event had an important economic impact, 294 

which was not forecasted in the flooding plans. In the short-term, it caused the collapse of local 295 

industries and facilities, or, at least, forced them to stop their operations. In the medium term, the 296 

reconstruction supported the regional growth, new employment and the increase of the consumers 297 

spending tendency, but problems were observed at long-term. For example, a real growth of around 298 

1% was measured for eastern Germany since 2003, as a short-term result of the flood-related 299 

recovery programmes (Schwarze and Wagner 2004). On the one hand, this positive effect of 300 

rebuilding was associated with an overestimation of the immediate effects, but also to a projected 301 

increase in spending trend in the flooded regions, which was largely offset by losses in turnover and 302 

demand outside the affected areas. On the other hand, because of the limited regional growth effect, 303 

the overall long-term impact of floods in Germany became negative, causing a decrease of the 304 

consumer confidence and spending as a reaction to the governmental fiscal policies. The diminished 305 

credibility of these new economic policies can be considered another cascading consequence of a 306 

flooding event. 307 
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 308 

4.3 United Kingdom and Parma: vulnerability of Critical Infrastructure 309 

In the summer of 2007, the United Kingdom was affected by various episodes of flooding. The 310 

official report of these events, developed by Sir Michael Pitt (2008), described what happened as 311 

‘the biggest civil emergency in British history’. More than 55000 properties were inundated and 312 

around 7000 citizens were rescued by emergency services, and floods were associated with the 313 

‘largest loss of essential services since World War II’ (Pitt 2008). Three key episodes in 314 

Gloucestershire pointed out the vulnerability of society to the disruption of CI: first, the loss of 315 

Mythe water treatment works left 350000 people without water supply for up to 17 days. Secondly, 316 

a major electricity substation in Castle Meads had to be turned off and left further 42000 citizens 317 

without electricity for one day. Finally, transport network failed and around 10000 commuters were 318 

trapped on the motorway. In other words, the challenges posed by these flooding events cannot be 319 

viewed in isolation as they are shared across the entire system and its organizational structure (Pitt 320 

2008). Only the cooperation between military and civil emergency services prevented the water 321 

from reaching another electricity substation that served half a million residents. Field crops were 322 

lost with damages estimated of around £220 million, while further costs were incurred in damages 323 

to roads and complementary infrastructures for a total of £5 billion (Smith and Petley 2009). ). In 324 

other words, the 2007 floods challenged the entire system and its organizational structure (Pitt 325 

2008). The UK Cabinet Office (2011) used this event to explain how a single localized event could 326 

generate ‘far reaching implications’. According to this document, cascading effects have been 327 

associated with the unexpected path of emergency, which escalated with the progressive 328 

involvement of CI and their disruption. Physical dependencies and interdependencies resulted from 329 

functional connection among sites as, for example, water treatment plants that needed electricity to 330 

work, while geographical dependencies were associated with the collocation in the same area of 331 

critical nodes of service (Figure 4). 332 

 333 
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 334 

Figure 4. Geographical dependencies in 2007 summer floods (source: UK Cabinet Office 2011). 335 

 336 

The experience of 2007 floods, together with the 2010 eruption of Eyjafjallajökull and other 337 

extreme events, lead the UK Government to improve the guidelines for infrastructure resilience 338 

(UK Cabinet Office 2010). Similarly, the Pitt Review (2008) originated the Flood Water 339 

Management Act of 2010, which interacts with the Flood Risk Regulations of 2009, transposing the 340 

FD into the UK system. Their synergies are used to understand risks and impacts of natural hazards, 341 

but also to point out the vulnerability of CI and the challenges represented by a possible loss of 342 

services (UK Cabinet Office 2010, 2011).  343 

A coherent approach to this topic seems to be rare among the members of the European Union, 344 

together with a lack of shared procedures on the assessment of the social consequences of floods as 345 

required by the FD (Tsakiris et al. 2009). The integration of cascading concept in the FD should 346 

lead to produce more homogeneous data where hubs and nodes of vital services are located, how 347 

many citizens could be affected by their total or partial disruption, and in which terms this would 348 

happen. This may lead to produce joint contingency plans and share better information between 349 

private and public actors at local, regional and national level that could produce better information 350 

for citizens. Instead, until now most attention has been concentrated on those CI that represent 351 

unequivocal technological hazards (e.g. chemicals plants), or have a well-known strategic value 352 

(e.g. airports).  353 
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The flooding event happened in Parma (Italy) in October 2014 is a clear and recent example of 354 

how the FD has some consistent gaps on cascading. The city is a well-known centre of food 355 

excellence in Northern Italy and is located in a region that, for many years, has been considered a 356 

model for participatory democracy (Putnam et al. 1994). All the area presents a strong process of 357 

urbanization and soil consumption that is likely to increase its vulnerability in the long-term. 358 

However, the FD was effectively integrated in the national legislation and both Hazard and Risk 359 

Maps were implemented at all levels (Regione Emilia-Romagna 2014). In 2014, between October 360 

10 and October 13, a concentration of adverse meteorological conditions caused heavy rainfalls and 361 

landslides in the mountain district. Parma, which is located in the valley on the confluence between 362 

the Parma River and the Baganza Stream, had three districts partially flooded, with substantial 363 

economic damages but no life losses. According to the official data by the regional Civil Protection 364 

(2015), evacuation was needed for 14 citizens and a total of 96 patients of a hospital and a nursing 365 

home located near the river. However, ‘the severity of impact was increased by the total 366 

interruption of both telephone and mobile coverage supplied by the provider Telecom in the 367 

districts of Piacenza, Parma, Reggio Emilia and Modena for the flooding of the Telecom hub 368 

located in the Po street. This disruption caused a series of communication problems to the whole 369 

community’ (Civil Protection Emilia-Romagna 2015). In other words, even if the geographical 370 

space that was flooded was somehow limited, the involvement of a single building disrupted the 371 

communications for the western portion of the Emilia-Romagna Region for days. Immediately after 372 

this event, the authorities improved the Risk Maps and proposed a series of new mitigation 373 

measures, with updated versions available in just two months (Autorità di Bacino del Fiume Po 374 

2015). However, in line with the FD, they still included just CI representing technological hazards, 375 

such as chemicals industries and wastewater treatments plants. The approach adopted was limited to 376 

overlap different layers, more than understanding the vulnerabilities of space, in line with the cases 377 

analysed by De Groeve et al. (2013). The other dimension of interdependencies and cross-scale 378 
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interactions proposed in the EPCIP were still missing, suggesting the need for a direct integration of 379 

this topic in the FD.  380 

 381 

5. Conclusions 382 

The review of the state-of-the-art and the analysis of the case studies verified our hypothesis: 383 

despite significative efforts to improve the FD, open challenges remain associated with cascading 384 

events. The joint assessment of flooding events and CI vulnerability seems far to be included 385 

together in a homogeneous process. Our review suggests the existence of three priority areas to 386 

address: i) scientific limitations can generate high uncertainty or non-availability of data on the 387 

long-term impact of events, in particular when social damages are involved; ii) spatial scales can be 388 

difficult to determine if the trigger hazard causes the disruption of highly interconnected 389 

infrastructures, such as communication hubs, transportation nodes or strategic lines of energy 390 

supply; iii) cascading requires the acceptance of possible reasonable worst case scenarios, which 391 

probability sometimes is simply underestimated by policy makers or public and private managers. 392 

In first instance, the FD should include a higher balance between hazard and vulnerability 393 

management to provide some better advice to water managers. This problem was already reflected 394 

in a scarce tendency to implement non structural mitigation measures (Klijn et al. 2008), but the 395 

adoption of a perspective on cascading events suggests further attention on the matter. If cascades 396 

are distinguished by the non-linear escalation process in anthropogenic systems (Pescaroli and 397 

Alexander 2015) and, in the case of ecological crisis, they can recombine with human stressors 398 

(Galaz et al. 2011), a focus on ‘risk’ and ‘impact’ may be not enough. Instead, Flood Risk 399 

Management Plans could integrate the impact of flooding events at larger spatial and temporal 400 

scales. In other words, it must be considered that disasters are generated inside the society and 401 

sometimes their causes have quite remote roots in the social, economical and political process 402 

(Wisner et. al. 2003). This approach points out the need of a better integration of common standards 403 

for vulnerability assessment process in the FD implementation, as well as an in-depth analysis of 404 
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existing synergies with other EU Directives. Firstly, a priority should be attributed to support maps 405 

and rankings that include CI interdependencies. Secondly, Risk Management Plans should codify 406 

and consider the incidence of the sensible population (e.g. disabled or aged citizens) and community 407 

based stressors that could amplify the impact of the crisis. Finally, there should be highlighted the 408 

existence of main economic drivers and environmental features that could generate long-term chain 409 

effects in case of interruption.   410 

Clearly, the paper represents only a first attempt to apply the concept of cascading effects to the 411 

current European legislation and do not pretend to be exhaustive. Some limitations of our work 412 

exist and are explained along the text, but they seem not to invalidate the proposed approach. 413 

Instead, they may be used to suggest open fields of research. First, we recognize that we have been 414 

limited by the lack of structured databases that could allow the comparison of our case studies with 415 

other evidences. This gap could represent an opportunity for scholars that are interested in more 416 

systematic analyses of the topic, testing or improving the small evidences we provided. The criteria 417 

we adopted allow more in–depth analyses, leaving open possibilities for improving the sistematicity 418 

of our results. Moreover, further research is needed to define how and in which form a better 419 

understanding of social vulnerabilities can help to improve the long-term implementation of 420 

mitigation measures and preparedness practices. This point suggests to work for a better translation 421 

of cascading in terms of economic and functional impacts, in particular under worst climate change 422 

scenarios. Reforms to the management of river basins and floodplains are just one part of the 423 

possible steps required in that direction.  424 
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