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Abstract 

Phylogenies are important for addressing various biological questions such as relationships among species or 
genes, the origin and spread of viral infection and the demographic changes and migration patterns of species.  
The advancement of sequencing technologies has taken phylogenetic analysis to a new height.  Phylogenies 
have permeated nearly every branch of biology, and the plethora of phylogenetic methods and software 
packages now available may seem daunting to an experimental biologist.  Here, we review the major methods 
of phylogenetic analysis, including parsimony, distance, likelihood and Bayesian methods.  We discuss their 
strengths and weaknesses and provide guidance as to their use. 

 
Before the advent of DNA sequencing technologies, phylogenetic trees were used almost exclusively 
to describe relationships among species in SYSTEMATICS and TAXONOMY.  Today, phylogenies are 
used in almost every branch of biology.  Besides representing the relationships among species on the 
tree of life, phylogenies are used to describe relationships between paralogues in a gene family1, 
histories of populations2, the evolutionary and epidemiological dynamics of pathogens3,4, the 
genealogical relationship of somatic cells during differentiation and cancer development5, and the 
evolution of language6.  More recently, molecular phylogenetics has become an indispensible tool for 
genome comparisons.  It is used to classify metagenomic sequences7; to identify genes, regulatory 
elements, and noncoding RNAs in newly sequenced genomes8-10; to interpret modern and ancient 
individual genomes11-13; and to reconstruct ancestral genomes14,15.   

In other applications, the phylogeny itself may not be of direct interest, but must nevertheless be 
accounted for in the analysis.  This ‘tree thinking’ has transformed many branches of biology.  In 
population genetics, the development of the COALESCENT theory16,17 and the widespread availability 
of gene sequences for multiple individuals from the same species have prompted the development of 
genealogy-based inference methods, which have revolutionized modern computational population 
genetics.  Here, the GENE TREES describing the genealogy of sequences in a sample are highly 
uncertain.  They are not of direct interest but nevertheless contain valuable information about 
parameters in the model.  Tree thinking has also forged a deep synthesis of population genetics and 
phylogenetics, creating the emerging field of STATISTICAL PHYLOGEOGRAPHY.  In SPECIES-TREE 

methods18,2,19, the gene trees at individual loci may not be of direct interest and may be in conflict with 
the species tree.  By averaging over the unobserved gene trees under the multi-species coalescent 
model20, those methods infer the species tree despite uncertainty in the gene trees.  In comparative 
analysis, inference of associations between traits (for example, testis size and sexual promiscuity) 
using the observed traits of modern species should consider the species phylogeny, to avoid 
misinterpreting historical contingencies as causal relationships21.  In the inference of adaptive protein 
evolution, the phylogeny is used to trace the synonymous  and nonsynonymous substitutions along 
branches to identify cases of accelerated amino acid change22, even though the phylogeny is not of 
direct interest. 

Nowadays, every biologist needs to know something about phylogenetic inference.  However, to 
an experimental biologist unfamiliar with the field, the existence of many analytical methods and 
software packages may seem daunting.  In this review, we describe the suite of current methodologies 
of phylogenetic inference using sequence data.  We also discuss various statistical criteria that are 
useful for choosing suitable methods for a particular question and data type.  Next-generation 
sequencing (NGS) technologies are generating huge datasets.  In analysis of such datasets, reducing 
SYSTEMATIC ERRORS and increasing robustness to model violations are much more important than 
reducing RANDOM SAMPLING ERRORS.  We discuss several issues in the analysis of large datasets, 
such as the impact of missing data and strategies of data partitioning.  The literature of molecular 
phylogenetics is large and complex23,24; the aim of this review is to provide a starting point for 
exploring the methods further. 

Phylogenetic tree reconstruction: basic concepts 

A phylogeny is a tree containing nodes connected by branches.  Each branch represents the 
persistence of a genetic lineage through time and each node represents a birth of a new lineage (see 
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BOX 1).  If the tree represents the relationship among a group of species  the nodes represent 
speciation events.  In other contexts the interpretation may be different. For example, in a gene tree of 
sequences sampled from a population the nodes represent birth events of individuals ancestral to the 
sample, whereas in a tree of paralogous gene families the nodes might represent gene duplication 
events. 

Phylogenetic trees are not observed directly and are instead inferred from sequence or other data.  
Phylogeny reconstruction methods are either distance-based or character-based.  In distance matrix 
(DM) methods, the distance between every pair of sequences is calculated, and the resulting distance 
matrix is used for tree reconstruction.  For instance, Neighbour Joining (NJ)25 applies a CLUSTER 

ALGORITHM to the distance matrix to arrive at a fully resolved phylogeny.  Character-based methods 
include maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods.  
They compare all sequences in the alignment simultaneously, considering one character (a site in the 
alignment) at a time to calculate a score for each tree.  The tree score is the minimum number of 
changes for MP, the log-likelihood value for ML, and the POSTERIOR PROBABILITY for BI.  In theory, 
all possible trees should be compared to identify the tree with the best score.  In practice such an 
exhaustive search is not feasible computationally except for very small datasets because of the huge 
number of possible trees.  Instead, heuristic tree-search algorithms are used.  They often generate a 
starting tree using a fast algorithm and then perform local rearrangements to attempt to improve the 
tree score.  Heuristic tree search is not guaranteed to find the best tree under the criterion, but renders 
feasible the analysis of large datasets.  To describe the data, DM, ML, and BI all make use of a 
substitution model and are therefore model-based, whereas MP does not have an explicit model and 
its assumptions are implicit.  

Distance-matrix (DM) method 
Distance calculation.  Pairwise sequence distances are calculated assuming a MARKOV CHAIN model 
of nucleotide substitution.  Several commonly used models are illustrated in Figure 1.  The JC69 
model26 an equal rate of substitution between any two nucleotides whereas the K80 model27 assumes 
different rates for TRANSITIONS  and TRANSVERSIONS.  Both models predict equal frequencies of the 
four nucleotides.  The assumption of equal base frequencies is relaxed in the HKY85 model28 and 
general-time-reversible (GTR) model29,30.  Because of variation in local mutation rate and in selective 
constraint, different sites in a DNA or protein sequence often evolve at different rates.  In distance 
calculation, such rate variation is accommodated by assuming a gamma distribution of rates for 
sites31, leading to models such as JC69+, HKY85+, or GTR+. 
 
Distance matrix (DM) methods.  Once the distances are calculated, the sequence alignment is no 
longer used in DM methods.  Here we mention three such methods: least-squares (LS), minimum 
evolution (ME) and Neighbour Joining (NJ).  The LS method32, see also 33) minimizes a measure of 
the differences between the calculated distances (dij) in the distance matrix and the expected distances 

ˆ( )ijd  on the tree (that is, the sum of branch lengths on the tree linking the two species i and j): 

 Q = 2
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This is the same least-squares method used in statistics for fitting a straight line y = a + bx to a scatter-

plot.  Optimizing branch lengths (or ˆ
ijd ) leads to the score Q for the given tree, and the tree with the 

smallest score is the LS estimate of the true tree.   
The minimum evolution (ME) method34,35 uses the tree length (sum of branch lengths) instead of 

Q for tree selection, even though the branch lengths can still be estimated using the LS criterion.  
Under the ME criterion, shorter trees are more likely to be correct than longer trees. 

The most widely used distance method is Neighbour Joining (NJ)25.  This is a cluster algorithm 
and operates by starting with a star tree and successively choosing a pair of taxa to join (based on the 
taxon distances), until a fully-resolved tree is obtained.  Taxa are chosen for joining to minimize an 
estimate of tree length (sum of branch lengths)36.  The two joined taxa (e.g., species 1 and 2 in FIG. 2) 
are then represented by their ancestor (e.g., node y in FIG. 2), with the number of taxa connected to 
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the root (node x) reduced by 1 (FIG. 2). The distance matrix is then updated with the joined taxa 
replacing the two original taxa.  See ref.36 for a discussion of the NJ updating formula.  An efficient 
implementation of NJ is found in the program MEGA37 (Table 1). 

Strengths and weaknesses of distance methods.  One advantage of distance methods (especially 
NJ) is their computational efficiency.  The cluster algorithm is fast because it does not need to 
compare many trees under an optimality criterion (as do MP and ML).  For this reason, NJ is useful 
for analysing large datasets that have low levels of sequence divergence.  Note that it might be 
important to use a realistic substitution model to calculate the pairwise distances.  Distance methods 
can perform poorly for very divergent sequences, because large distances involve large sampling 
errors and most distance methods (such as NJ) do not account for the high variances of large distance 
estimates.  Distance methods are also sensitive to gaps in the sequence alignment38.  

Maximum parsimony 
Parsimony tree score.  The maximum parsimony (MP) method minimizes the number of changes on 
a phylogenetic tree by assigning character states to interior nodes on the tree.  The character (site) 
length is the minimum number of changes required for that site while the tree score is the sum of 
character lengths over all sites. The MP tree is the tree that minimizes the tree score. 

Some sites are not useful for tree comparison by parsimony.  The constant sites, for which the 
same nucleotide occurs in all species, have character length 0 on any tree.  Singleton sites, at which 
only one of the species has a distinct nucleotide while all others are the same, can also be ignored as 
the character length is always 1.  The parsimony-informative sites are those at which at least two 
distinct characters are observed, each at least twice.  For four species, only three site patterns are 
informative: xxyy, xyxy, and xyyx, where x and y are any two distinct nucleotides.  There are three 
possible UNROOTED TREES for four species and which of them is the MP tree depends on which of the 
three site patterns occurs most often in the alignment.   

An algorithm for finding the minimum number of changes on a binary tree (and for reconstructing 
the ancestral states to achieve the minimum) was developed by Fitch39 and Hartigan40.  PAUP41, 
MEGA37, and TNT42 are commonly used parsimony programs.   

Parsimony was originally developed for use in analysing discrete morphological characters. 
During the late 1970s it began to be applied to molecular data.  A controversy arose concerning 
whether parsimony (without explicit assumptions) or likelihood (with an explicit evolutionary model) 
was a better method for phylogenetic analysis23.  The controversy has subsided and the importance of 
model-based inference methods is broadly recognized.  The use of parsimony is still common, not 
because it is believed to be assumption-free, but because it often produces reasonable results and is 
computationally efficient. 

Strengths and weaknesses of parsimony.  A strength of parsimony is its simplicity; it is easy to 
describe and understand, and is amenable to rigorous mathematical analysis.  The simplicity also 
helps development of efficient computer algorithms.   

A major weakness of parsimony is its lack of explicit assumptions, which makes it nearly 
impossible to incorporate any knowledge of the process of sequence evolution in tree reconstruction.  
The failure of parsimony to correct for multiple substitutions at the same site makes it suffer from a 
problem known as LONG-BRANCH ATTRACTION43.  If the correct tree (T1 in FIG. 3a) has two long 
external branches separated by a short internal branch, parsimony tends to infer the incorrect tree T2 of 
FIG 3b, with the long branches grouped together.  When the branch lengths in T1 are extreme enough, 
the probability for site pattern xxyy, which supports the correct tree T1, may be smaller than that for 
xyxy, which supports the incorrect tree T2.  Thus, the more sites are in the sequence, the more probable 
it is for the pattern xxyy to be observed at fewer sites than xyxy and the more certain the incorrect tree 
T2 is chosen to be the MP tree.  Parsimony thus converges to a wrong tree and is statistically 
inconsistent.  Long-branch attraction has been demonstrated in many real and simulated datasets44 and 
is due to the failure of parsimony to correct for multiple changes at the same site or to accommodate 
parallel changes on the two long branches.  See refs. 45,24: pp. 192-6 for more discussions of the issue.  

Note that model-based methods (distance, likelihood and Bayesian) also suffer from long-branch 
attraction if the assumed model is too simplistic and ignores among-site rate variation 46.  In 
reconstruction of deep phylogenies, long-branch attraction (as well as unequal nucleotide or amino 
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acid frequencies among species) is an important source of systematic error47,48 (FIG. 3c, d).  In such 
analyses it is advisable to use realistic substitution models and likelihood or Bayesian methodologies.  
Dense taxon sampling to break long branches and removing fast-evolving proteins or sites can also be 
helpful. 

Maximum likelihood 
Basis of ML.  Maximum likelihood (ML) was developed by R.A. Fisher in the 1920s as a statistical 
methodology for estimating unknown parameters in a model.  The likelihood function is defined as 
the probability of the data given the parameters, but viewed as a function of the parameters with the 
data observed and fixed.  It represents all information in the data about the parameters.  The maximum 
likelihood estimates (MLEs) of parameters are the parameter values that maximize the likelihood.  
Most often the MLEs are found numerically using iterative optimization algorithms.  The MLEs have 
nice asymptotic (large-sample) properties; they are unbiased, consistent (they approach the true 
values) and efficient (they have the smallest variance among unbiased estimates). 

ML tree reconstruction.  The first algorithm for ML analysis of DNA sequence data was 
developed by Felsenstein49.  The method is now widely used due both to the increased computing 
power and software implementations and to the development of increasingly realistic models of 
sequence evolution.  Note that two optimization steps are involved in ML tree estimation: 
optimization of branch lengths to calculate the tree score for each candidate tree and a search in the 
tree space for the ML tree.  From a statistical point of view, the tree (topology) is a model instead of a 
parameter, whereas branch lengths on the given tree and substitution parameters are parameters in the 
model.  ML tree inference is thus equivalent to comparing many statistical models, each having the 
same number of parameters.  The nice asymptotic properties of MLEs mentioned above apply to 
parameter estimation when the true tree is given but not to ML tree50,24.   

Calculation of the likelihood on a given tree under a variety of substitution models is explained in 
refs.23,24.  All substitution models used in distance calculation can be used here.  Indeed, joint 
comparison of many sequences by likelihood makes it feasible to accommodate much more 
sophisticated models of sequence evolution.  Most models used in molecular phylogenetics assume 
independent evolution of sites in the sequence so that the likelihood is a product of the probabilities 
for different sites.  The probability at any particular site is an average over the unobserved character 
states at the ancestral nodes.  Likelihood and parsimony analyses are similar in this respect, although 
parsimony uses only the optimal ancestral states while likelihood averages over all possible states. 

Early ML implementations include PHYLIP51, MOLPHY52 and PAUP* 4.0 41.  Modern 
implementations, such as PhyML53, RAxML54, and GARLI55, are not only much faster computationally 
but also more effective in finding trees with high likelihood scores.  The recent inclusion of ML in 
MEGA 537 has made the method more accessible to biologists who are not experienced computer 
users (Table 1). 

Strengths and weaknesses of the ML method.  One advantage of the ML method is that all its 
model assumptions are explicit, so that they can be evaluated and improved upon.  The availability of 
a rich repertoire of sophisticated evolutionary models in the likelihood (and Bayesian) methods is one 
of their major advantages over MP.  Modern inferences of deep phylogenies using conserved proteins 
rely almost exclusively on likelihood and Bayesian methods.  For such inference, it is important for 
the model to accommodate variable amino acid substitution rates among sites56 or even different 
amino acid frequencies among sites57,58.   

ML has a clear advantage over distance or parsimony methods if our aim is to understand the 
process of sequence evolution.  The LIKELIHOOD RATIO TEST can be used to examine the fit of 
evolutionary models59 and to test interesting biological hypotheses, such as the molecular clock60,49 
and Darwinian selection affecting protein evolution61-63.  See references64,65,24,22 for summaries of such 
tests in phylogenetics.   

The main drawback of ML is that the likelihood calculation and, in particular, tree search under 
the likelihood criterion is computationally demanding.  Another drawback is that the method has 
potentially poor statistical properties if the model is mis-specified.  This is also true for Bayesian 
analysis (Table 2). 
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Bayesian methods 
Basis of Bayesian inference.  Bayesian inference (BI) is a general methodology of statistical 
inference.  It differs from ML in that parameters in the model are considered random variables with 
statistical distributions whereas in ML they are (unknown) fixed constants.  Before the analysis of the 
data, parameters are assigned a PRIOR DISTRIBUTION, which is combined with the data (likelihood) to 
generate the POSTERIOR DISTRIBUTION.  All inferences concerning the parameters are then based on 
the posterior distribution.  In the past two decades Bayesian inference has gained popularity thanks to 
advances in computational methods, especially MARKOV CHAIN MONTE CARLO (MCMC) algorithms.   

Bayesian phylogenetics.  Bayesian inference was introduced to molecular phylogenetics in the 
late 1990s66-69.  The early methods assumed a molecular clock60.  Development of more efficient 
MCMC algorithms70 that eliminate the clock assumption (allowing independent branch lengths on 
unrooted trees) and the release of the program MrBayes71 made the method very popular among 
molecular systematists.  A more recent Bayesian implementation in the program BEAST72 uses the so-
called relaxed-clock models to infer rooted trees even though the model allows substitution rates to 
vary across lineages (Table 1).   

Bayesian inference relies on Bayes’s theorem, which states that 
( , ) ( | , )

( , | )
( )

T D T
T D

D

   
 


, 

where P(T, ) is the prior probability for tree T and parameter , P(D|T, ) is the likelihood or 
probability of the data given the tree and parameter, and P(T, |D) is the posterior probability.  The 
denominator P(D) is a normalizing constant as its role is to ensure that P(T, |D) sums over the trees 
and integrates over the parameters to 1.  The theorem states that the posterior is proportional to the 
prior times the likelihood or the posterior information is the prior information plus the data 
information. 

In general the posterior probabilities of trees cannot be calculated directly.  In particular, the 
normalizing constant P(D) involves high-dimensional integrals (over all possible parameter values s) 
and summation over all possible trees.  Instead, Bayesian phylogenetic inference relies on MCMC to 
generate a sample from the posterior distribution.  This is illustrated in Box 2.  See Chapter 5 of ref.24 
for an introduction. 

Strengths and weaknesses of the BI method.  Both likelihood and Bayesian methods use the 
likelihood function and thus share many statistical properties such as consistency and efficiency.  
However, ML and BI represent opposing philosophies of statistical inference.  The same feature of BI 
may thus be viewed as either a strength or weakness depending on one’s philosophy.  See ref.24 for a 
brief description of the controversy.  Here we comment on two issues, of interpretability and of the 
prior.   

First, Bayesian statistics is known to answer the biological questions directly and yields results 
that are easy to interpret: the posterior probability of a tree is simply the probability that the tree is 
correct, given the data and model.  In contrast, concepts such as the confidence interval in a likelihood 
analysis have a contrived interpretation that eludes many users of statistics.  In phylogenetics, it has 
not been possible to define a confidence interval for the tree.  The widely used bootstrap method73 
(see Box 3) has been hard to interpret despite numerous efforts74-77.  However, the odds are not 
entirely against ML.  Posterior probabilities for trees and CLADES calculated from real datasets often 
appear too high66,78-80.  In many analyses, nearly all nodes had posterior probabilities of ~100%.   
Posterior tree probabilities are also sensitive to model violations, and use of simplistic models may 
lead to inflated posterior probabilities81.   

Second, the prior probability allows one to incorporate a priori information about the trees or 
parameters.  However, such information is rarely available, and specification of the prior is most often 
a burden on the user; almost all data analyses are conducted using the “default” priors in the computer 
program.  High-dimensional priors are notoriously hard to specify, and an innocent-looking prior can 
have an undue and unexpected influence on the posterior.  For example, it has recently been pointed 
out that the independent exponential prior on branch lengths used by MrBayes can induce a strongly 
informative and unreasonable prior on the tree length, producing unreasonably long trees in some 
datasets82-84.  It is therefore important to conduct Bayesian robustness analysis to assess the impact of 
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the prior on the posterior estimates. 

Statistical assessments of phylogenetic methods 
The aim of phylogenetic inference is to estimate the tree topology, and possibly also the branch 
lengths.  A number of criteria have been used to judge tree-reconstruction methods.   

Consistency.  An estimation method is said to be consistent if the estimate converges to the true 
parameter value when the amount of data approaches infinity.  A tree reconstruction method is 
consistent if the estimated tree converges to the true tree when the number of sites in the sequence 
grows.  Model-based methods (DM, ML, and BI) are consistent if the assumed model is correct.  
Parsimony may be inconsistent under some model-tree combinations; Felsenstein’s43 demonstration of 
this has spurred much heated discussion.  

Efficiency.  In statistical estimation of a parameter, an unbiased estimate with a smaller variance is 
more efficient than one with a larger variance.  In phylogenetics, efficiency may be measured by the 
probability of recovering the correct tree or subtree given the number of sites.  This can be estimated 
by computer simulation.  The complexity of tree reconstruction means that the asymptotic theory of 
MLEs does not apply.  Nevertheless, computer simulations have generally found higher efficiency of 
ML than MP or NJ in recovering the correct tree23. 

Robustness.  A method is robust if it gives correct answers even when its assumptions are 
violated.  Obviously some assumptions matter more than others.  With the rapid accumulation of 
sequence data, sampling errors in tree reconstruction are considerably reduced, so systematic errors or 
robustness of the method become more important.  

Computational speed.  The computational speed is easy to assess.  NJ uses a cluster algorithm to 
arrive at a tree and is very fast.  Methods that search for the best tree under a criterion, such as ME, 
MP, and ML, are slower.  The computational speed of the Bayesian method depends on the length of 
the chain (MCMC), which is highly data-dependent.  As calculation of the phylogenetic likelihood is 
very expensive, ML and BI are typically slower than MP.  Nevertheless, considerable advancements 
in computational algorithms53-55 have made likelihood-based methods feasible for analysis of large 
datasets.  Algorithms taking advantage of new computers with multicore processors and GRAPHICAL 

PROCESSING UNITS (GPUs)85,86 are pushing the boundary even further.  

Phylogenomic analysis of large datasets 

With the advent of new sequencing technologies and the completion of various genome projects, 
phylogenetics has entered the era of genome-scale datasets.  Here we discuss a few issues related to 
the analysis of such large datasets.   

Supertree and supermatrix approaches.  Two approaches have been advocated for the 
phylogenetic analysis of hundreds or thousands of genes or proteins, especially when some loci are 
missing in some species..  The supertree approach analyses each gene separately and then uses 
heuristic algorithms to assemble the subtrees for individual genes into a supertree for all species87.  
The separate analysis is useful for studying the differences in the reconstructed subtrees or the 
prevalence of horizontal gene transfer.  It is inefficient for estimating a common phylogeny 
underlying all genes.  In the supermatrix approach, sequences for multiple genes are concatenated to 
generate a data supermatrix, in which missing data are replaced by question marks, and the 
supermatrix is then used for tree reconstruction88.  Most supermatrix analyses ignore the differences in 
evolutionary dynamics among the genes.  Note that a supermatrix analysis assuming different 
evolutionary models and different trees and branch lengths for the genes is equivalent to a separate or 
supertree analysis.  When a common tree underlies all genes, the ideal approach should be a combined 
(supermatrix) analysis of all genes, using the likelihood to accommodate the among-gene 
heterogeneity in the evolutionary process89-91.  Our comments below concern this combined approach. 

Impact of missing data. Many genomic datasets are highly incomplete, with most cells in the 
species  gene matrix missing.  While in theory the likelihood function (in the ML and Bayesian 
methods) can accommodate missing data properly23: pp.255-6, 24: pp. 107-8, the impact of such large-scale 
missing data and alignment gaps is not well understood.  Simulations suggest that ML and BI 
generally perform better than NJ or MP in dealing with missing data, with BI performing best92-94.  
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The poor performance of NJ may be understood if one considers extreme cases where after removal of 
alignment gaps, the different pairwise distances are calculated from different sets of genes or sites, 
some of which are fast-evolving while others are slowly-evolving.   

Importance of systematic errors. In analysis of very large datasets, virtually all bootstrap support 
values or Bayesian posterior probabilities are calculated to be 100%, even though the inferred 
phylogenies may be conflicting across genes or may depend on the method and model used47.  
Systematic biases are thus much more important than random sampling errors in such analyses, and 
methods robust to violations of model assumptions, even if they are less efficient, should be 
preferable. 

Data partitioning strategies. The rationale for data partitioning is to group genes or sites with 
similar evolutionary characteristics into the same partition, so that all sites in the same partition are 
described using the same model, while different partitions use different models89,90.  Partitioning too 
finely increases computation and may cause over-fitting, while partitioning too coarsely may lead to 
under-fitting or model violation.  However the situation is complicated as the assumed model may 
deal with random variation among sites in substitution rate 31,56,61, in amino acid frequencies 57,58,95, or 
in the pattern of substitution96.  Such mixture models use a statistical distribution to accommodate the 
among-site heterogeneity without data partitioning.  Often the choice of partition and mixture models 
is a philosophical one: they correspond to fixed-effects and random-effects models in statistics, 
respectively.  Current strategies for data partitioning include partitioning genes according to their 
relative rates97, and separating the three codon positions in coding genes into different partitions89.  
The likelihood ratio test has also been used to decide whether two genes should be in the same or 
different partitions98.  In sum, data partitioning is more art than science, and should rely on our 
knowledge of the biological system: for example, should the same phylogeny underlie all genes?   

Perspectives 

Here we discuss a few research areas that are currently the focus of much methodological 
development.  The first is multiple sequence alignment.  Many heuristic methods and programs for 
aligning sequences exist99,100, and improved algorithms continue to appear101,102.  Efforts have also 
been taken to infer alignment statistically under an explicit model of insertions and deletions103,104, and 
to infer alignment and phylogeny jointly in a Bayesian framework105,106.  An advantage of those 
model-based alignment methods is that they produce estimates of insertion and deletion rates.  For the 
present those algorithms are based on simplistic insertion-deletion models and involve heavy 
computation so that they are not competitive, in either computational efficiency or alignment quality, 
against good heuristic algorithms.  Nevertheless they are biologically appealing and improvements are 
very likely. 

The second area is molecular clock estimation of divergence dates.  Under the clock assumption, 
the distance between sequences increases linearly with the time of divergence, and if a particular 
divergence can be assigned an absolute geological age based on the fossil record, the substitution rate 
can be calculated and all divergences on the tree can be dated.  Similar ideas can be used to estimate 
divergence times of viral strains when sample dates for viral sequences are available and act as 
calibrations.  However, in practice, the molecular clock may be violated, especially for distantly-
related species, and the fossil record can never provide unambiguous times of lineage divergence.  In 
the past several years, advancements have been made in the Bayesian framework to deal with those 
issues.  Since the pioneering work of Thorne and colleagues107,108, models of evolutionary rate drift 
over time have been developed to relax the molecular clock72,109.  Soft age bounds and flexible 
probability distributions have been implemented to accommodate uncertainties in fossil 
calibrations72,110,111.  The fossil record (or the presence and absence of fossils in the rock layers) has 
also been analyzed statistically to generate calibration densities for molecular dating analysis112,113.     

The third area of exciting development, mentioned at the beginning of this review, is statistical 
phylogeography, at the interface of population genetics and phylogeography20,114-116.  The availability 
of genomic data at both the species and population levels offers unprecedented opportunities for 
addressing interesting questions in evolutionary biology.  Multi-locus sequence data can be used to 
estimate divergence times between closely-related species and the sizes of both extant and extinct 
populations117,118, to infer population demographic changes and to estimate migration patterns and 
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rates119,120.  Such data can also be used to delimit species (that is, to infer one vs. two species, 
say)121,122.  The last few years have seen the appearance of individual genomes and the rise of 
population genomics.  Currently the data are mostly from the human and close relatives, but genomes 
from other species are being sequenced as well, such as the mastodon and mammoth123 and the 
bacteria Yersinia pestis from Black Death victims124.  Genomic sequence data from the human and the 
apes are used to infer the species divergence times and to test for possible hybridization during the 
human-chimpanzee separation125-131.  Comparison of a few human individual genomes provides 
insights into the recent demographic history of our species12,13, while sequencing of the Neandertal 
genome allows estimation of the Neandertal contribution to the genome of modern humans11,132.  The 
size of the data and the complexity of the model pose great statistical and computational challenges.  
Again Bayesian MCMC, under the multi-species coalescent model118, provides the natural framework 
for inference.   
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Box 1.  TREE CONCEPTS 
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(a) Rooted tree (b) Unrooted tree  
A phylogeny is a model of genealogical history in which the lengths of the branches are unknown 

parameters.  For example, the phylogeny on the left is generated by two speciation events that 
occurred at time points 0 and 1.  The branch lengths (b0, b1, b2, b3) are typically expressed in units of 
expected number of substitutions per site and measure the amount of evolution along the branches.   

If the substitution rate is constant over time or among lineages, we say that the MOLECULAR 

CLOCK60 holds.  The tree will then be rooted and ultrametric, meaning that the distances from the tips 
of the tree to the root are all equal (e.g., b0 + b1 = b0 + b2 = b3).  A rooted tree for s species can then be 
represented by the ages of the s – 1 ancestral nodes and thus involves s – 1 branch-length parameters.  
The procedure of inferring rooted trees by assuming the molecular clock is called molecular clock 
rooting.  For distantly related species, the clock hypothesis should not be assumed.  Most 
phylogenetic analyses are therefore conducted without the assumption of the clock.  If one allows 
every branch on the tree to have an independent evolutionary rate, commonly used models and 
methods are unable to identify the location of the root, so only unrooted trees are inferred.  An 
unrooted tree for s species then has 2s – 3 branch-length parameters.  A commonly used strategy to 
‘root the tree’ is to include in the analysis outgroup species, which are known to be more distantly 
related than the species we are interested in.  While the inferred tree for all species is unrooted, the 
root is believed to be located along the branch leading to the outgroup, so that the tree for the ingroup 
species is rooted.  This strategy is called outgroup rooting.  
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Box 2.  MARKOV CHAIN MONTE CARLO (MCMC)  
Markov chain Monte Carlo is a simulation algorithm in which one moves from one tree (or parameter 
value) to another and in the long run visits the trees (or parameters) in proportion to their posterior 
probabilities.  The tree-parameter set (T, ) constitutes the state of the algorithm.  Here parameters  
may include the branch lengths of the tree and parameters in the evolutionary model such as the 
transition/transversion rate ratio.  The following sketch illustrates the main features of MCMC 
algorithms.  
 1. (Initialization):  Choose at random a starting tree and starting parameters (T, ).  
 2.  (Main loop) 

 2a (Proposal to change T): Propose a new tree T* by changing the current tree T.  If T* 
has higher posterior probability than the current tree, P(T*, |D) > P(T, |D), accept the 

new tree T*.  Otherwise accept T* with probability 
* * *( , | ) ( , ) ( | , )

( , | ) ( , ) ( | , )
T D T D T
T D T D T

  
  

  
   .  If T* is 

accepted, set T = T*. 
 2b (Proposal to change parameters ): Propose new parameter values * by changing the 

current .  If P(T, *|D) > P(T, |D), accept the new *.  Otherwise accept * with 

probability 
* * *( , | ) ( , ) ( | , )

( , | ) ( , ) ( | , )
T D T D T
T D T D T
  
  

  
   .  It the new * is accepted, set  = *.  

 2c (Sample from the chain):  Print out (T, ). 
Note that first the algorithm does not need calculation of the normalizing constant P(D) as it 

cancels in the posterior ratios in proposal steps 2a and 2b.  Second, in the long run a tree-parameter set 
(T1, 1) will be visited more often by the algorithm than another set (T2, 2) if its posterior probability 
is higher: P(T1, 1|D) > P(T2, 2|D).  Indeed the expected proportion of time that the algorithm spends 
in any tree T is exactly its posterior probability: P(T|D).  Thus by counting the frequencies at which 
each tree is visited in the algorithm, we get an MCMC estimate of the posterior probabilities for the 
trees.   

The sequence (chain) of values for (T, ) generated by the algorithm has the property that given 
the current state (T, ), the probabilities by which it moves to new states do not depend on past states.  
This memory-less property is known as the Markovian property, which states that given the present, 
the future does not depend on the past.  The generated sequence is called a Markov chain.  The 
algorithm is called Markov chain Monte Carlo because the Markov chain is generated by Monte Carlo 
simulation. 
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Box 3.  SAMPLING ERROR IN THE ESTIMATED TREE AND BOOTSTRAP 
In traditional parameter estimation, we attach a confidence interval to indicate the uncertainty 
involved in the point estimate of the parameter.  This has not been possible in molecular 
phylogenetics, as concepts such as the variance and confidence interval are not meaningful when 
applied to trees.  For distance, parsimony, and likelihood methods, the most commonly used 
procedure to assess the confidence in a tree topology estimate is the bootstrap analysis73.  In this 
approach, the sites in the sequence alignment are resampled with replacement as many times as the 
sequence length, generating a bootstrap pseudo-sample that is of the same size as the original dataset.  
Typically 100 or 1,000 bootstrap samples are generated in this way, and each one is analyzed in the 
same way as the original sequence alignment.  An example using the maximum likelihood method is 
illustrated in the figure.  The inferred trees from those bootstrap samples are then tabulated to 
calculate the bootstrap support values.  For every CLADE in the estimated tree, its bootstrap support 
value is simply the proportion of bootstrap trees that include that clade133,65,24.  The commonly used 
but less satisfactory approach is to use the bootstrap trees to generate a majority-rule consensus tree, 
which shows a clade if and only if it occurs in more than half of the bootstrap trees.  
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Figure legends 

 
Figure 1.  Markov models of nucleotide substitution.   
The thickness of the lines indicates the substitution rates of the four nucleotides (T, C, A, G), and the 
sizes of the circles represent the nucleotide frequencies when the substitution process is in 
equilibrium.  Note that both JC69 and K80 predict equal proportions of the four nucleotides. 
 
Figure 2.  The neighbour joining (NJ) algorithm. 
The NJ algorithm is a divisive cluster algorithm.  It starts from a star tree and joins two species or 
nodes, reducing the number of nodes at the root (node x) by one.  The process is repeated until a 
fullyresolved tree is generated. 
 
Figure 3.  Long-branch attraction in theory and in practice.   
Panels (a)  and (b) show the 4-species case analyzed by Felsenstein43.  If the correct tree (T1 in a) has 
two long branches separated by a short internal branch, parsimony (as well as model-based methods 
such as likelihood and Bayesian methods under simplistic models) tends to recover a wrong tree (T2 in 
b), in which the two long branches are grouped together.  Panels (c)  and (d) show a similar 
phenomenon in a real dataset, concerning the phylogeny of seed plants134.  The Gnetales is a 
morphologically and ecologically diverse group of Gymnosperms including three genera (Ephedra, 
Gnetum, and Welwitschia), but its phylogenetic position has been controversial.  Maximum likelihood 
analysis of 56 chloroplast proteins produced the GneCup tree (d), in which the Gnetales are grouped 
with Cupressophyta, apparently due to a long-branch attraction artefact.  However, the Gnepine tree 
(c), in which the Gnetales joins the Pinaceae, was inferred by excluding the fastest-evolving 18 
proteins as well as three proteins (psbC, rpl2 and rps7) that had experienced many parallel 
substitutions between the Cryptomeria branch and the branch ancestral to the Gnetales.  The Gnepine 
tree (c) is also supported by two proteins from the nuclear genome and appears to be the correct tree.  
Branch lengths and bootstrap proportions are all calculated using RAxML.  See ref. 134 for details. 
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Table 1.  Functionalities of a few commonly-used phylogenetic programs 

Name Brief description Link 

Bayesian Evolutionary 
Analysis Sampling Trees 
(BEAST) 135 

A Bayesian MCMC program for inferring rooted trees under the clock or relaxed-
clock models.  It can be used to analyze nucleotide and amino acid sequences, as well 
as morphological data.  A suite of programs, such as Tracer and FigTree, are also 
provided to diagnose, summarize and visualize results. 

http://beast.bio.ed.ac.uk/ 

Genetic Algorithm for 
Rapid Likelihood 
Inference (GARLI) 55 

A program that uses genetic algorithms to search for ML trees.  It includes the 
GTR+ model and special cases, and can analyze nucleotide, amino acid and codon 
sequences.  A parallel version is also available.   

http://code.google.com/p/garli/ 

Hypothesis testing using 
phylogenies  (HYPHY)136 

A ML program for fitting models of molecular evolution.  It implements a high-level 
language that the user can use to specify models and set up likelihood ratio tests. 

http://www.hyphy.org 

Molecular Evolutionary 
Genetic Analysis 
(MEGA) 37 

A Windows-based program with a full graphical user interface that can be run under 
Mac OS X or Linux using Windows emulators.  It includes distance, parsimony and 
likelihood methods of phylogeny reconstruction, although its strength lies in the 
distance methods.  It incorporates the alignment program ClustalW, and can retrieve 
data from GenBank.   

http://www.megasoftware.net 

MRBAYES 71 A Bayesian MCMC program for phylogenetic inference.  It includes all the models of 
nucleotide, amino acid and codon substitution developed for likelihood analysis.   

http://mrbayes.net 

Phylogenetic Analysis by 
Maximum Likelihood 
(PAML) 137 

A collection of programs for estimating parameters and testing hypotheses using 
likelihood.  It is mostly used for tests of positive selection, ancestral reconstruction, 
and molecular clock dating.  It is not appropriate for tree searches.   

http://abacus.gene.ucl.ac.uk/software/ 

Phylogenetic Analysis 
Using Parsimony *and 
other methods (PAUP* 
4.0) 

PAUP* 4.0 is still in beta version.  It implements parsimony, distance and likelihood 
methods of phylogeny reconstruction.   

http://www.sinauer.com/detail.php?id=8060 

PHYLIP A package of programs for phylogenetic inference by distance, parsimony, and 
likelihood methods.   

http://evolution.gs.washington.edu/phylip.html 
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PHYML 53 A fast program for searching for the ML trees using nucleotide or protein sequence 
data.  

http://www.atgc-montpellier.fr/phyml/binaries.php 

RAXML 54 A fast program for searching for the ML trees under the GTR model using nucleotide 
or amino acid sequences.  The parallel versions are particularly powerful. 

http://wwwkramer.in.tum.de/exelixis/software.html 

Tree analysis using New 
Technology (TNT)42 

A fast parsimony program intended for very large data sets.  http://www.zmuc.dk/public/phylogeny/TNT 

Note: Essentially all programs can run on Windows, Mac OSX and Unix/Linux platforms.  Except for PAUP*, which charges a nominal fee, all packages 
are free for download.  See J. Felsenstein’s comprehensive list of programs at http://evolution.genetics.washington.edu/phylip/software.html. 
MCMC, Markov chain Monte Carlo; ML, Maximum likelihood; GTR (General Time Reversible) model. 
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Table 2.  A summary of strengths and weaknesses of different tree-reconstruction methods 
Strengths Weaknesses 

Parsimony methods  
1. Simplicity and intuitive appeal  
2. The only framework appropriate for some 

data (SINES, LINES, etc.) 
 

1. Assumptions are implicit and poorly understood. 
2. Lack of a model makes it nearly impossible to 

incorporate our knowledge of sequence evolution. 
2. Branch lengths are substantially underestimated when 

substitution rates are high. 
3. Maximum parsimony (MP) may suffer from long-branch 

attraction 

Distance methods  
1. Fast computational speed 
2. Can be applied to any type of data as long 

as a genetic distance can be defined. 
3. Models for distance calculation can be 

chosen to fit data 

1. Most distance methods such as neighbour joining (NJ) do 
not consider variances of distance estimates.  

2. Distance calculation is problematic when sequences are 
divergent and involve many alignment gaps 

3. Negative branch lengths are not meaningful. 

Likelihood methods  
1. Can use complex substitution models to 

approach biological reality 
2. Powerful framework for estimating 

parameters and testing hypotheses 

1. Maximum likelihood (ML) iteration involves heavy 
computation. 

2. The topology is not a parameter so that it is difficult to 
apply ML theory for its estimation.  Bootstrap 
proportions are hard to interpret. 

Bayesian methods  
1. Can use realistic substitution models, as in 

ML 
2. Prior probability allows the incorporation 

of information or expert knowledge 
3. Posterior probabilities for trees and clades 

have easy interpretations 

1. Markov chain Monte Carlo (MCMC) involves heavy 
computation. 

2. In large datasets, MCMC convergence and mixing 
problems can be hard to identify or rectify. 

3. Uninformative prior probabilities may be difficult to 
specify.  Multidimensional priors may have undue 
influence on the posterior without the investigator’s 
knowledge. 

4. Posterior probabilities often appear too high. 
5. Model selection involves challenging computation 138,139.  
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Glossary terms 

SYSTEMATICS.  The inference of phylogenetic relationships among species and the use of such 
information to classify species.  

TAXONOMY.  The description, classification and naming of species. 
COALESCENT.  The process of joining ancestral lineages when the genealogical relationships of a 

random sample of sequences from a modern population are traced back. 
GENE TREE.  The phylogenetic or genealogical tree of sequences at a gene locus or genomic region. 
STATISTICAL PHYLOGEOGRAPHY.  The statistical analysis of population data from closely-related 

species to infer population parameters and processes such as population sizes, demography, 
migration patterns and rates. 

SPECIES TREE.  A phylogenetic tree for a set of species which underlies the gene trees at individual 
loci. 

SYSTEMATIC ERROR.  Error that is due to an incorrect model assumption. It is exacerbated when the 
data size increases. 

RANDOM SAMPLING ERROR.  Error or uncertainty in parameter estimates due to limited data. 
CLUSTER ALGORITHM.  An algorithm of assigning a set of individuals to groups (clusters) so that 

objects of the same cluster are more similar to each other than those from different clusters.  
Hierarchical cluster analysis can be agglomerative (starting with single elements and successively 
joining them into clusters) or divisive (starting with all objects and successively dividing them 
into partitions).  

POSTERIOR PROBABILITY: See posterior distribution. 
MARKOV CHAIN. A stochastic sequence (chain) of states having the property that given the current 

state, the probabilities for the next state do not depend on the past states. 
TRANSITION.  Substitution between the two pyrimidines (T  C) or between the two purines (A  

G).   
TRANSVERSION.  Substitution between a pyrimidine and a purine (T, C  A, G). 
UNROOTED TREE.  A phylogenetic tree for which the location of the root is unspecified. 
LONG-BRANCH ATTRACTION.  The phenomenon of inferring an incorrect tree with long branches 

grouped together by parsimony or by model-based methods under simplistic models. 
MOLECULAR CLOCK.  The hypothesis or observation that the evolutionary rate is constant over time or 

across lineages. 
LIKELIHOOD RATIO TEST.  A general hypothesis-testing method that uses the likelihood to compare 

two nested hypotheses, often using the 2 distribution to assess significance. 
PRIOR DISTRIBUTION.  The distribution assigned to parameters before the analysis of the data. 
POSTERIOR DISTRIBUTION. The distribution of the parameters (or models) conditional on the data.  It 

combines the information in the prior and in the data (likelihood).  
MARKOV CHAIN MONTE CARLO (MCMC) ALGORITHM.  A Monte Carlo simulation is a computer 

simulation of a biological process using random numbers. An MCMC algorithm is a Monte Carlo 
simulation algorithm that generates a sample from a target distribution (often a Bayesian posterior 
distribution).  

GRAPHICAL PROCESSING UNITS (GPU).  Specialized units traditionally used to manipulate output on a 
video display and recently explored for use in parallel computation. 

CLADE: A group of species descended from a common ancestor. 
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Online summary 

 The rapid accumulation of genome sequence data has made phylogenetics an indispensable 
tool to various branches of biology. However, it has also posed considerable statistical and 
computational challenges to data analysis. 

 Distance, parsimony, likelihood, and Bayesian methods of phylogenetic analysis have 
different strengths and weaknesses. Although distance methods are good for large datasets of 
highly similar sequences, likelihood and Bayesian methods often have more power and are 
more robust, especially for inferring deep phylogenies. 

 Assessing phylogenetic uncertainty remains a difficult statistical problem. 
 Data partitioning may have an important influence on the phylogenetic analysis of genome-

scale datesets.   
 Systematic biases, such as long-branch attraction, may be more important than random 

sampling errors in the analysis of genomic-scale datasets. 
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Nature Reviews Genetics article series on Study Designs: 
http://www.nature.com/nrg/series/studydesigns/index.html 
A comprehensive list of phylogenetic programs maintained by Joe Felsenstein: 
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