
Probabilistic Modeling in Dynamic
Information Retrieval

Marc Sloan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

December 12, 2015

2

3

I, Marc Sloan, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the work.

Abstract

Dynamic modeling is used to design systems that are adaptive to their changing

environment and is currently poorly understood in information retrieval systems.

Common elements in the information retrieval methodology, such as documents,

relevance, users and tasks, are dynamic entities that may evolve over the course of

several interactions, which is increasingly captured in search log datasets. Conven-

tional frameworks and models in information retrieval treat these elements as static,

or only consider local interactivity, without consideration for the optimisation of all

potential interactions. Further to this, advances in information retrieval interface,

contextual personalization and ad display demand models that can intelligently re-

act to users over time.

This thesis proposes a new area of information retrieval research called Dy-

namic Information Retrieval. The term dynamics is defined and what it means

within the context of information retrieval. Three examples of current areas of

research in information retrieval which can be described as dynamic are covered:

multi-page search, online learning to rank and session search. A probabilistic model

for dynamic information retrieval is introduced and analysed, and applied in practi-

cal algorithms throughout.

This framework is based on the partially observable Markov decision process

model, and solved using dynamic programming and the Bellman equation. Com-

parisons are made against well-established techniques that show improvements in

ranking quality and in particular, document diversification. The limitations of this

approach are explored and appropriate approximation techniques are investigated,

resulting in the development of an efficient multi-armed bandit based ranking algo-

6 Abstract

rithm. Finally, the extraction of dynamic behaviour from search logs is also demon-

strated as an application, showing that dynamic information retrieval modeling is

an effective and versatile tool in state of the art information retrieval research.

Acknowledgements

This thesis would not exist without the guidance, intelligence and support of my

supervisor and friend, Dr. Jun Wang. He has been an expert in knowing when to

step in to help me move in the right direction, and when to stand back and let me

make my own way. His advice and actions have shaped my life for the past 5 years,

and for that I owe him so much.

Dr. Grace Hui Yang has been a close collaborator and in all but name, a second

supervisor to me. Our numerous discussions and the work we’ve accomplished

together has massively impacted this thesis, and I look forward to the continuation

of our partnership. I also would like to thank my actual second supervisor Dr. David

Silver for his expertise on reinforcement learning and our discussions throughout

my PhD.

The MSR CLUES team, in particular Paul Bennett, Kevyn Collins-Thompson

and Milad Shokouhi, have also been hugely influential. My internship with them

was an unforgettable experience and the time that they invested in me has made me

a significantly better researcher.

My PhD would not have been possible without the financial and pastoral sup-

port given to me by Prof. Philip Treleaven and Yonita Carter at the UK PhD Centre

in Financial Computing. I am enormously grateful that they accepted me onto their

program and kick-started my academic development.

My research group have been a constant source of help, camaraderie and

friendship over the years. In particular, the old crowd of Dr. Shuai Yuan, Dr. Bowei

Chen, Dr. Tamas Jambor and Dr. Jagadeesh Gorla, and the new crowd Manisha

Gupta, Rishabh Mehrotra, Weinan Zhang and Xiaoxue Zhao, all of whom I know

8 Acknowledgements

will have great success in their lives.

My friends too have been unfailing in their support and encouragement, despite

me being the perennial student who can never afford to buy a round of drinks. So

to John Kennedy, Mark Curry, Gareth Hayman, Paul King, Andrew Crozier, Enrico

Fantoni, Kjerstin Østenseth and also the folks from the IAESTE London LC, the

next round is on me.

Finally, I would not be at this position in my life without the love from my

family. My brothers, whose ambition and success have spurred me on further than

I could have managed alone. My father, who always knew I would go on to do

something like this and would have loved to have read this thesis, I miss him. And

my mother, who had to be two parents for three young boys and never gave up. All

of my accomplishments are because of her.

And Sarah. For tolerating the late nights, the stresses, the travelling and

long-distance calls. Who proof-read this thesis, listened to my ideas and watched

me practice presentations. Who challenged me and advised me. Who loved me

throughout and put a smile on my face when I needed it most. Thank you.

I dedicate this thesis to my late father, who showed me the way to go,

and to my mother, for helping me get there.

9

Contents

Notation 23

1 Introduction 25

1.1 IR Systems . 28

1.1.1 Static IR . 28

1.1.2 Interactive IR . 30

1.1.3 Dynamic IR . 31

1.2 Multi-Page Search . 34

1.3 Online Learning to Rank . 35

1.4 Session Search . 37

1.5 Research Questions . 38

1.6 Thesis Structure . 39

2 Background 41

2.1 Information Retrieval . 41

2.1.1 Ranking and Retrieval . 41

2.1.2 Clickthroughs . 42

2.1.3 Document Diversification 45

2.1.4 Economics in IR . 45

2.2 Dynamics . 48

2.2.1 Dynamics in IR . 48

2.2.2 Relevance Feedback . 50

2.2.3 Reinforcement Learning 53

12 Contents

3 Dynamic Information Retrieval 61

3.1 Introduction . 61

3.2 Comparison of IR Frameworks . 63

3.2.1 Static IR Framework . 63

3.2.2 Interactive IR Framework 66

3.3 Dynamic IR Theory . 70

3.3.1 Dynamic IR Framework 70

3.3.2 Framework Analysis . 72

3.3.3 Links to Existing Work . 74

3.4 Application of DIR . 76

3.4.1 Multi-Page Search Problem 77

3.4.2 DIR-MPS . 80

3.4.3 Practical Limitations . 83

3.4.4 Experiment . 83

3.5 Related Work . 87

3.6 Conclusion . 89

4 Dynamic Multi-Page Search 91

4.1 Introduction . 91

4.2 Related Work . 92

4.3 Problem Formulation . 93

4.3.1 User Feedback . 95

4.3.2 Dynamic Utility Optimisation 96

4.3.3 Monte Carlo Sampling . 96

4.3.4 Dynamic Exploratory Search 97

4.4 Experiment . 97

4.4.1 The Relevance Vector and Covariance Matrix 99

4.4.2 Exploration with λ . 100

4.4.3 Comparison with Baselines 103

4.4.4 Page Threshold . 105

4.5 Conclusion . 107

Contents 13

5 Dynamic Online Learning to Rank 109

5.1 Introduction . 110

5.1.1 Related Work . 111

5.2 Dynamic Relevance Update for Online Learning to Rank 112

5.2.1 Mixed Click Model . 113

5.2.2 Expectation Maximisation 114

5.2.3 Relevance Update Function 116

5.2.4 Dynamic Utility . 118

5.2.5 Dynamic Ranking (UCB-DR) Algorithm 119

5.3 Online Diversification . 121

5.3.1 Correlation and Co-Clicks 122

5.3.2 Portfolio-armed Bandit (PAB) Algorithm 123

5.4 Experiments . 125

5.4.1 UCB-DR Simulation Analysis 125

5.4.2 UCB-DR Yandex Search Log Experiment 127

5.4.3 PAB Evaluation . 131

5.5 Conclusion . 133

6 Dynamics in Session Search Logs 135

6.1 Introduction . 135

6.2 Related Work . 139

6.3 Analytical Setup . 141

6.4 Term Retention and Removal . 143

6.5 Term Addition . 147

6.5.1 Snippet Analysis . 148

6.5.2 Term Sources . 150

6.5.3 Dwell Time . 152

6.6 Term Scenario Analysis . 153

6.6.1 Query and Added Term Scenarios 154

6.6.2 Term Actions . 156

6.6.3 Term Scenario Evaluation 157

14 Contents

6.7 Session Dynamics . 160

6.8 Conclusion . 162

7 Conclusion 163

7.1 Future Work . 165

Appendices 169

A Related Publications 169

B Glossary 171

Bibliography 181

List of Figures

1.1 The closed feedback loop of a dynamic agent in IR. The agent

senses its search environment using its feedback sensor and con-

verts this into a utility value. This value determines the action that

the agent takes, which affects the external environment, and the pro-

cess repeats. 27

1.2 The independent stages of static IR. 28

1.3 Two pages of static search results for the query jaguar, catego-

rized by subtopic. 29

1.4 Dependent stages in interactive IR. 30

1.5 Clicked webpages lead to the personalization of the second page of

results based on the subtopic clicked on page 1 of the ranking in

Fig. (1.3), but subtopic guitar is no longer represented. 31

1.6 Forward and backwards dependency in dynamic IR. 32

1.7 The first page ranking has been diversified so that the search system

is better able to learn the user’s second page preference, improving

the overall search experience for all users. 33

2.1 The Markov Decision Process influence diagram. 54

2.2 The Partially Observable Markov Decision Process influence dia-

gram, where states are no longer observable but their observations

are. 55

16 List of Figures

3.1 An example illustration of document ranking and relevance feed-

back using the vector space model for query q1 = apple.

Documents are given as points over two term frequency axes,

computer and fruit, and can belong to one of three subtopics

apple fruit, apple logo and apple computer. The

distance between q and each document is inversely proportional to

its relevance r. The documents ranked for q1 or its reformulation

q2 are contained in each circular shape~a, the area of which could

be thought of as the static utility US(~a,~r), or UD the combined area

of actions across stages 1 and 2. 67

4.1 The average metric gain of the DES algorithm over the BM25 base-

line with 95% confidence intervals. Each bar represents the av-

erage gain for each metric for a given value of λ for the WT10g

dataset. Positive values indicate gains made over the baseline algo-

rithm whereas negative values indicate losses. 101

4.2 Gain results similar to those from Fig. (4.1) for the Robust dataset. . 102

4.3 Gain results similar to those from Fig. (4.1) for the TREC8 dataset. . 102

5.1 Example demonstrating the method used to overcome the restric-

tions of the Yandex dataset. d1 → d5 are documents chosen by

UCB-DR to display at rank positions 1→ 5. Only a subset of these

documents are found in the ranking in the Yandex dataset, which is

reflected in the modified ranking. Further to this, there is a clicked

document in the Yandex dataset (d4 and shown in white), which is

also interpreted as a click in the modified ranking, although at the

original rank position of 3 in the Yandex dataset. 129

5.2 The effect that λ has on the clickthrough rate of the PAB and UCB1-

RBV algorithms. 132

List of Figures 17

5.3 The pR is decreased to measure how noise affects the performance

(the fraction of rankings which contain a relevant document) of the

PAB (where λ = 1) and UCB1-RBV algorithms over time. 133

6.1 Plots of the average number of terms in queries at different impres-

sion positions in a session, for different lengths of session. The

number of instances of each session length are labelled as n in each

subplot. 145

6.2 Average similarity of qt → qt+1 pairs for impression positions t =

1 . . .9. 146

6.3 Cosine similarity of fixed query qx with every other query qt in the

session for x = 1 . . .9. 146

6.4 Average Cosine similarity of added terms with clicked documents

at different dwell time threshold levels. 153

6.5 Proportion of query terms that are retained or removed per term

scenario. 156

6.6 NERR@10, nDCG@10 and MAP scores for user created rankings

at each impression position. 160

List of Tables

1.1 Session 87 from the TREC 2013 Session Track dataset [1], the topic

is “Suppose you’re planning a trip to the United States. You will be

there for a month and able to travel within a 150-mile radius of

your destination. With that constraint, what are the best cities to

consider as possible destinations?". 38

3.1 Elements of the DIR framework. 72

3.2 Overview of the three TREC test collections. 84

3.3 nDCG, MAP and ERR scores for pages 1 and 2 of the search re-

sults. Static, interactive and dynamic algorithms are grouped. The

results shown are those for the optimal value of λ in each collection,

found by repeating the experiment for values in the range [0,1]. The

maximum score for each metric on each page is given in boldface.

A 1 or 2 indicates that the result is significantly better than the PRP

or IIR-PRP-MPS baseline scores respectively using the Wilcoxon

signed-rank test (p < 0.05). 86

3.4 α-DCG, IA-Precision and ERR-IA scores for page 1 and 2 search

results from the diversity track data. The maximum score for each

metric on each page is given in boldface. A 2 indicates that the

result is significantly better than the IIR-PRP-MPS baseline score

using the Wilcoxon signed-rank test (p < 0.05). 87

3.5 sAP and sDCG for both pages of results. The results are grouped

identically to those in Table (3.3). 88

20 List of Tables

4.1 Recall and precision measured at M = 10 (first page) and M = 20

(first and re-ranked second page) for each algorithm and for each

dataset. A superscript number refers to a metric value significantly

above the value of the correspondingly numbered baseline in the

table (using the Wilcoxon Signed Rank Test with p = 0.05). Bold-

face metric scores are the highest for that metric across algorithms

in that dataset. 104

4.2 nDCG and MRR measurements. This table is structured identically

to Table (4.1). 105

4.3 Metrics measured at M = 5 (first page) and M = 10 (both pages) for

the DES algorithm on each dataset. The superscript numbers refer

to significantly improved values over the baselines, as described in

Table (4.1). 106

4.4 Table showing metric scores from the WT10g dataset for K = 15

for the BM25 baseline and the two threshold variants of the DES

algorithm, where T is set to 2 and 3. Maximum values are in boldface.106

5.1 Average MAP and nDCG@10 scores after T = 500 time steps for

each UCB-DR variant and for each value of the exploration param-

eter λ . Maximum values for each variant are in boldface. 127

5.2 MAP and nDCG@10 scores ± 95% confidence intervals for each

UCB-DR click model variant, for both the explorative (λ = 0.1) and

myopic cases (λ = 0), and for the 0% and 50% training variants.

These scores are the averaged scores for the ranking generated after

the final impression for each query in the dataset. Maximal UCB-

DR scores are in boldface. 130

6.1 Queries in session 40 of the TREC 2013 Session Track. 137

6.2 TREC 2011, 2012, 2013 and 2014 Session Track data overview. . . 141

List of Tables 21

6.3 Average number of terms retained, removed or added from qt →

qt+1 and the similarity between the two queries across TREC Ses-

sion Track datasets. 144

6.4 Average similarity scores between added terms addt+1 and snippets

snipt up to rank i in an impression. For example, if i = 3, then the

score is the average over snipt1,snipt2 and snipt3. Maximum values

for each similarity measure are in boldface. 149

6.5 Average similarity scores between added terms addt+1 and snippets

snipt up to and around rank LC in an impression, as well as all snip-

pets. Maximum values for each similarity measure are in boldface. . 150

6.6 Average similarity of added terms with click-based variations of

the snippet and document term sources and also the full preceding

impression (imp) and all previous impressions (hist). Bold scores

indicate a statistically significant (p < 0.01 under Welch’s t-test)

difference from non-clicked and ‘All’ variants of the term source. . . 151

6.7 Overall average clicks, non-clicks and documents per impression

and overall number of query and added term scenarios. 155

6.8 Scenario number definitions, occurrence % for query and added

term scenarios and average number of ranked documents and clicks

for each scenario. 155

6.9 Percentage of term scenarios and term actions that led to a click in

the next query. 158

6.10 Change in value for metrics nDCG, NERR and MAP from qt →

qt+1 for each term action and term scenario. Bold values indicate a

statistically significant difference in IR metric score (p< 0.05 under

the Wilcoxon signed rank test). 159

Notation

a Action.

A Action space.

b Rank position bias.

C Click variable.

d Document.

D Corpus.

f R Reward function.

g Mixture model parameter.

G Mixture model random variable.

i Rank position.

M Number of ranked documents in an

SERP.

o Observation.

O Space of observations.

q Query.

r Relevance score.

R Relevance variable.

s State.

S Set of states.

t Stage or time step.

T Time horizon.

UD Dynamic utility function.

US Static utility function.

Z Sample size.

Θ Observation probability function.

λ Exploration parameter.

Λ Index score.

σ Standard deviation.

Σ Covariance.

τ Relevance update function.

ω Path discount function.

Chapter 1

Introduction

We shall attempt to define intelligence, as have others before us, as

“goal-directed adaptive behaviour”.

Robert J Sternberg

Handbook of human intelligence (1982, pg. 3)

The Information Retrieval (IR) ecosystem is a dynamic one: users translate

their information needs into an assortment of meaningful interactions with IR sys-

tems; corpora and search logs follow behind the slowly shifting world they are

gathered from; language, interpretation and intent all change with time. Dynamic

Information Retrieval (DIR) is a framework for modeling and understanding IR

systems within this ecosystem. These dynamics are evident in many existing IR

systems and data collections, yet are not fully utilised by conventional IR methods.

In this thesis, the difference between dynamic and conventional IR is explored, the

elements that constitute a framework for general dynamic IR systems are identified

and then applied to research in current areas of academic interest in IR. Along the

way, key characteristics of DIR such as diversity and exploration are covered in

more detail.

In conventional IR, probabilistic modeling has largely been confined to what

can be defined as static problems, where a set of parameters is learned from a dataset

and fixed for use in an IR system. Examples include ad hoc ranking and retrieval

relevance scoring such as the BM25 model [2], topic modeling using latent Dirich-

let allocation [3] or learning to rank [4]. Underlying the solutions to these problems

26 Chapter 1. Introduction

are static frameworks such as the classic Probability Ranking Principle (PRP) [5]

which justifies the simplest and most powerful ranking rule in IR: ranking docu-

ments in decreasing order of their probability of relevance.

The described models are not capable of representing search tasks that operate

over multiple stages nor can they incorporate user feedback. Change is at the heart

of a modern information retrieval system. Search tasks are complex and often ex-

ploratory, with the user broadcasting signals of search intent over multiple stages of

retrieval, specializing or generalizing their information needs over time [6]. Further

to this, advances in IR interface, personalization and ad display demand models

that can react to users in real time and in an intelligent, contextual way. Examples

include query reformulation in session search [7], item ratings in collaborative fil-

tering [8] and maximising revenue generated from web advertisements [9]. The aim

of the proposed dynamic information retrieval modeling is to find IR solutions that

are responsive to a changing environment, that learn from past interactions and that

predict future utility.

The term ‘dynamics’ is taken from physics to describe systems that manipulate

the Newtonian laws of motion, for example, by altering the velocity of a pendulum

using damping forces [10]. Control theory, a related subfield, is the mathematics of

closed feedback looping systems that maintain some form of equilibrium or state,

for instance, a pendulum that continuously oscillates due to the repeated application

of some force [11]. Such systems are described as dynamic agents, comprised of

a feedback sensor that measures a utility value for the environment, which is used

by the agent to determine an action that affects the environment. A dynamic agent

for IR is depicted in Fig. (1.1).

Agents exhibit goal-directed adaptive behaviour, a phrase used by Robert J

Sternberg to describe human intelligence [12]. While he also merits memory, rea-

soning and abstraction amongst other definitive traits, nonetheless one can label a

dynamic agent an intelligent one, responsive to the dynamics of its real world set-

ting so that it can achieve its goal. Dynamic agents are resistant to adverse change or

error and are able to learn and adapt to their surroundings. Many agents maintain a

27

Search

Environment

Dynamic IR Agent

U
til

it
y

Action

Feedback

Figure 1.1: The closed feedback loop of a dynamic agent in IR. The agent senses its search
environment using its feedback sensor and converts this into a utility value.
This value determines the action that the agent takes, which affects the external
environment, and the process repeats.

model of their environment so that they can understand how it will react given some

input into it. This is encapsulated by the three characteristics common to dynamic

agents:

1. The ability of the agent to perceive its environment through feedback.

2. The ability to respond to this feedback, to adapt and change its actions ac-

cordingly.

3. A long-term goal or utility towards which the agent is driven.

In DIR, these characteristics can be attributed to user feedback, temporal depen-

dency and an overall utility value [13].

The objective of this thesis is to provide a comprehensive introduction to the

field of dynamic information retrieval. This is achieved by defining a framework for

dynamic IR as a natural progression in IR research complexity: where early research

concerned static problems such as ad hoc retrieval, which gave way to interactive

tasks such as those incorporating relevance feedback, which has lead to dynamic

systems for tasks such as session search ranking. The framework incorporates dy-

namic elements common to DIR systems, and these are explored through some its

various applications: multi-page search, online learning to rank and session search.

Practical dynamic algorithms build on the work in reinforcement learning and arti-

ficial intelligence by making use of dynamic programming and multi-armed bandit

28 Chapter 1. Introduction

theory. As a result, interesting insights are found into how to optimally explore

rankings over time, document diversification and user behaviour.

1.1 IR Systems
IR systems can be conceptualized into three categories: static, interactive and dy-

namic, each a generalization of the previous. Similar trends are observed in other

areas of IR research, for example the early term-based vector space retrieval model

gave way to more complex models like BM25 and language modeling [14]. Like-

wise, the evolution from static to interactive and then dynamic IR reflects the in-

creasing complexity of search problems and the need for responsive solutions.

1.1.1 Static IR

1 2 3

Figure 1.2: The independent stages of static IR.

Static IR encompasses problems in information retrieval that are resolved in a

single time step or interaction, or multiple independent interactions (represented in

Fig. (1.2)), not requiring consideration for how the state of the system has changed

following the interaction. Many traditional areas in IR can be described as static, for

instance, ad hoc ranking and retrieval where document relevance scores for query

terms are typically generated in advance of retrieval and fixed. These scores and the

rankings they give rise to are independent of the user’s preceding or future actions

or the state of the system. Re-calculating the scores based on some real-time user

input would be a slow and expensive operation.

A static IR system is illustrated in Fig. (1.3). Here, a retrieval system is gener-

ating two pages of search results for the query jaguar. This ambiguous query gives

results for webpages belonging to the subtopics car, animal and guitar. These

1.1. IR Systems 29

results are diversified across both pages in the static system so that the results can

cater to the widest range of users and their search intent. In this static system, the

results on page 2 are unaffected by any interaction that occurs on page 1, a different

user searching for the same query would encounter the same results.

 Jaguar

 jaguar.co.uk

 jaguarlandrover.com

 wikipedia.org/Jaguar

 bigcatrescue.org

 fender.com/jaguar

 wikipedia.org/Jaguar_car

1 2

Figure 1.3: Two pages of static search results for the query jaguar, categorized by
subtopic.

There are many different ways to perform ranking and retrieval in this envi-

ronment. A simple, traditional method is the vector space model [15], which treats

queries and documents as vectors and ranks documents in decreasing order of their

distance from the query. One could argue that a system such as this is a dynamic

agent as it senses the user’s information need via their query, it responds by gen-

erating a ranked list of documents and its goal is to satisfy the information need.

In this scenario there is only one time step whereas dynamic systems operate over

many time steps. The scenario could be extended by allowing users to search for

multiple queries consecutively in a session. Still, traditional ranking and retrieval

models would return the same results regardless of the order of the queries or the

behaviour of the user and the search engine. In this thesis, such models are not

defined as dynamic and instead they are labelled as static.

The search scenario given in the example above could be improved by using

relevance feedback to personalize the results on the second page.

30 Chapter 1. Introduction

1.1.2 Interactive IR

An interactive IR system is one that extends a static system by incorporating user

feedback. In interactive IR, each stage is dependent on the previous stage (repre-

sented in Fig. (1.4)).

1 2 3

Figure 1.4: Dependent stages in interactive IR.

Once feedback from the user has been observed, an interactive IR system can

then improve the search experience. For example, the well-known Rocchio algo-

rithm [16] uses explicit feedback to improve the user’s query. Recommender sys-

tems, ad selection and query auto completion are examples of modern systems that

incorporate feedback to improve performance.

Interactive IR is a progression from static IR in that it deals with the complexity

of user interaction by operating over multiple stages, making use of user feedback

(such as document clicks). The stages may represent multiple queries in a search

session, multiple sessions in a user’s search history, different users in a search log

and so on. An interactive system may begin by using a static method but will then

continue to adapt to the user after each stage.

When an interactive technique such as the Rocchio algorithm is applied to

the static ranking example in Fig. (1.3), the second page of search results can be

personalized based on the user’s subtopic preference from page 1. For instance, if

a user clicked on a car related webpage on page 1, then the second page of results

could be updated as shown in Fig. (1.5). Likewise, if their click preference were

instead for the subtopic animal, then the algorithm would respond appropriately

to give an alternative ranking for page 2. This is a user targeted improvement over

the static ranker’s second page which continued to display a mix of subtopics.

1.1. IR Systems 31

 Jaguar

 jaguar.co.uk

 jaguarlandrover.com

 wikipedia.org/Jaguar

 bigcatrescue.org

 topgear.com

 vintagecars.com

1 2

 bigcatrescue.org

 wildlife.org/jaguar

 natgeo.org/jaguar

2

 wikipedia.org/Jaguar_car

 fender.com/jaguar?
Figure 1.5: Clicked webpages lead to the personalization of the second page of results

based on the subtopic clicked on page 1 of the ranking in Fig. (1.3), but subtopic
guitar is no longer represented.

A problem with this interactive approach is that it does not allow for the per-

sonalization of results for those users not interested in the two subtopics found on

the first page. For instance, a guitar related webpage is contained in the second

page of the static IR example, but users interested in this subtopic are not given the

opportunity to provide the necessary feedback for the search system to learn their

preference. A dynamic IR system can help resolve this situation.

1.1.3 Dynamic IR

The stages in Dynamic IR are defined as being dependent on both past and pre-

dicted future interactions (represented in Fig. (1.6)). A DIR system responds to the

dynamics of its real world setting so that it can achieve its goal. Such systems are

resistant to adverse change or error and are able to learn and adapt.

Dynamic IR is a natural evolution of the described static and interactive mod-

32 Chapter 1. Introduction

1 2 3

Figure 1.6: Forward and backwards dependency in dynamic IR.

els. As is the case with an interactive system, a dynamic system may collect feed-

back from a static system and respond accordingly. A key difference is how the

objective of the system is optimised and defined; in interactive retrieval only im-

mediate rewards are considered, whereas in dynamic retrieval the overall reward is

prioritised. As a result, the action chosen at each time step in a dynamic system is

made in consideration of all observed past and potential future interactions.

In the interactive IR example in Fig. (1.5), the results on the first page followed

those of the static ranking and the second page was enhanced by interactively incor-

porating user clicks, but at the cost of alienating users with a preference for subtopic

guitar. This can be resolved using a dynamic approach that determines optimal

rankings for both pages of search results, such as the multi-page search algorithm

covered in more detail in Chapter 4. Fig. (1.7) shows that a first page of results can

be found that balances the learning of a user’s preference and the display of relevant

documents.

When this approach is used, it is found that a diversified first page ranking

maximises the learning potential of the system, so that improved, targeted results

can be returned for the next page. This can also be reiterated as the explore/exploit

property common in reinforcement learning, where on the first page the documents

are explored, then on the second page relevant documents are exploited. Any per-

formance losses suffered due to the first page diversification are balanced by gains

made in the second page.

In summary, the differences between the three types of IR system in this con-

ceptual model are: static systems are those that operate over a single stage or oth-

1.1. IR Systems 33

 Jaguar

 jaguar.co.uk bigcatrescue.org

 wikipedia.org/Jaguar_car

 topgear.com

1 2

 wikipedia.org/Fender

 guitar.com/Jaguar

 amazon.com/guitars

2

 jaguarlandrover.com

 bigcatrescue.org

 wildlife.org/jaguar

 natgeo.org/jaguar

2

 fender.com/jaguar

 wikipedia.org/Jaguar

Figure 1.7: The first page ranking has been diversified so that the search system is better
able to learn the user’s second page preference, improving the overall search
experience for all users.

erwise multiple stages which are independent of one another. Interactive systems

extend static systems by introducing local dependency from one stage to the next

and optimizing for individual goals per stage. A dynamic system extends an inter-

active system by focusing on a single goal that forces dependency across all stages.

A dynamic system is one which changes or adapts over time and has a range

of applications, from a ranking and retrieval algorithm, to an advert recommender

or a query suggestion model. In this thesis, dynamic IR is defined as the modeling

of adaptive, responsive, goal-oriented information retrieval systems. A general IR

framework for both static and interactive IR is defined, and this is used to motivate

a model for dynamic IR problems. This framework then underpins the remainder

of the research in this thesis.

34 Chapter 1. Introduction

1.2 Multi-Page Search

Multi-Page Search (MPS) is an application of dynamic IR explored extensively in

this thesis. The scenario concerns the ranking of documents over multiple pages of

search results, where documents are retrieved for a single query, ranked and then

segregated into pages of documents. On each page, a user may examine and click

on documents and the goal is to use this feedback to improve the rankings over all

pages of search.

This scenario is used in the examples in Fig. (1.3), Fig. (1.5) and Fig. (1.7). As

demonstrated in the examples, the multi-page search problem is familiar and easily

definable in static, interactive and dynamic frameworks and intuitively expresses

their similarities and differences. The derivation and comparison of practical appli-

cations of MPS solutions using all three frameworks is a key contribution of this

thesis.

The multi-page search scenario concerns a single query and a single set of

documents, making it a simple problem formulation for preliminary investigations

into the efficacy of the DIR framework. Further to this, existing methods from

IR research can be readily used for each of the elements in the framework for the

MPS scenario, and are also applicable in the static and interactive cases. Finally,

the TREC (Text REtrieval Conference) data collections and their corresponding

relevance judgements are openly available and ideally suited to evaluation in this

area.

In this thesis, practical applications of the static, interactive and dynamic

frameworks to the MPS scenario are directly compared. Through TREC experi-

ments it is found that the application of the DIR framework can lead to the diver-

sification of search results on the first page, as was the case in the examples in the

previous section. This is a result of the natural exploration that occurs in dynamic

systems. The MPS experiments are taken further in a thorough investigation of

a specific application of the DIR framework that demonstrates comparable perfor-

mance to established IR techniques such as the Rocchio algorithm and Maximal

Marginal Relevance [17].

1.3. Online Learning to Rank 35

1.3 Online Learning to Rank
Online learning to rank is defined as “a continuous cycle of interactions between

users and a search engine, in which the search engine’s goal is to provide the best

possible search results at all times” [18]. It is a natural DIR problem and a further

application of the dynamic IR framework in this thesis.

The field was first motivated as an extension of the learning to rank frame-

work, the application of supervised machine learning algorithms to the space of

search tasks. As with other areas of IR, the goal in learning to rank is to find an

optimal ranking of documents for an information need. In this case, document rele-

vance labels (generated by assessors or otherwise) are used to train a classifier (such

as an SVM) to identify relevant documents, or optimal rankings of documents, for

validation in a test set. A range of document, query, session and user features are

typically used to train the classifier [4]. The learning to rank classification of rele-

vance labels or regression of ranking scores fall broadly into three categories:

Pointwise The binary relevance label of individual documents are learned using a

classifier [19].

Pairwise Instead of learning a direct relevance label, the correct order of pairs of

documents is learned, as is the case with the well-known RankSVM algo-

rithm [20].

Listwise IR measures such as Normalised Discounted Cumulative Gain (nDCG)

or Mean Average Precision (MAP) are directly optimised over lists of doc-

uments, as in the widely used LambdaMART algorithm [21].

A barrier to effective learning to rank is the acquisition of relevance labels,

many of which are needed to train accurate, reliable and generalizable ranking sys-

tems. A common solution is to use explicit labels provided by users, often to their

chagrin, or else noisy, implicit labels such as clicks found in abundance in search

logs. In whatever form relevance labels are obtained, they come at some cost and

also vary in their informativeness. Active and semi-supervised learning techniques

36 Chapter 1. Introduction

can therefore be employed to minimise such costs and maximise the learning po-

tential of training sets, perhaps dynamically, over time. Once trained, a ranking

classifier can be difficult to maintain, particularly in light of shifting search intents

and new documents. Online learning to rank has been developed as a solution to

these problems.

In online learning to rank, feedback signals from the user are used as relevance

labels and used to update the ranking algorithm when received. The search rank-

ing may change over time in response to this feedback, gradually converging on an

optimal ranking that is informed by user input. Such systems can generate results

targeted to users that can adapt over time and minimise the overheads of expensive

label collecting. Examples of online learning to rank applications include rank-

ing and retrieval [22], document diversification [23], evaluation [24], news article

recommendation [25] and ad display [26].

It is clear that online learning to rank is the application of dynamic IR to the

search ranking problem. In this case, the user at each time step is dynamic, in that

online learning to rank occurs over a population of users. The overall objective is to

learn the relevance of a set of documents or learn a ranking that optimises a given

evaluation metric. The feedback signals are the user clicks, ratings, comparisons or

any other sign of relevance obtained after each search.

Reinforcement learning techniques such as the multi-armed bandit are used in

online learning to rank and introduce concepts such as exploration, where poten-

tially relevant documents are displayed to the user, and exploitation, where docu-

ments known to be relevant are displayed. The application of reinforcement learning

algorithms to DIR problems is one method of reducing issues with computational

complexity, a limitation of the DIR framework. Other approximation methods are

investigated in this thesis, such as Monte Carlo sampling and the sequential ranking

decision in both the MPS and online learning to rank scenarios.

1.4. Session Search 37

1.4 Session Search

A search session is defined as a period of time over which a user engages with a

search engine by issuing more than one query in pursuit of satisfying an informa-

tion need [27]. Often in practice, a boundary of 30 minutes is used to distinguish

different session periods [28]. Queries in session search differ from ad-hoc queries

in that they are more likely to be ambiguous due to the user being unsure how to

explicitly define their information need [29] or explorative when the user is actively

seeking a broad range of information on a subject [30].

Session search is a dynamic procedure with many user interactions. Like with

MPS, a user issues a query and the search system retrieves a ranked list of relevant

documents and the user may examine documents and click on webpages. The dif-

ference is that the next interaction occurs when the user reformulates their query, re-

trieving a new ranked list of documents. A search session consists of several query

reformulations that reflect the user’s shifting cognitive focus and understanding of

their information need, and stops when they are satisfied or become frustrated or

bored [31]. An example session search from the TREC 2013 session track dataset

is given in Table (1.1).

Understanding the dynamic user behaviour that occurs during session search

has been a topic of interest in IR research in recent years. The intentions of users

during exploratory searches [32], learning when session search personalization is

useful [33] and how the relevance of previous documents affects ranking qual-

ity [34] are all examples of current research in the area. In a search session, the

user explores the information space by inputting queries, examining retrieved doc-

uments and clicking on those that seem relevant. In this thesis, TREC session track

search logs are studied in order to extract meaningful interaction data across queries

in a session. From the DIR framework observable user actions are defined, and fol-

lowing a thorough analysis, conclusions about the dynamic behaviour of users in

session search can be inferred.

38 Chapter 1. Introduction

Table 1.1: Session 87 from the TREC 2013 Session Track dataset [1], the topic is “Suppose
you’re planning a trip to the United States. You will be there for a month and
able to travel within a 150-mile radius of your destination. With that constraint,
what are the best cities to consider as possible destinations?".

Query
1 best us destinations
2 distance new york boston
3 maps.bing.com
4 maps
5 bing maps
6 hartford tourism
7 bing maps
8 hartford visitors
9 hartford connecticut tourism

10 hartford boston travel
11 boston tourism
12 nyc tourism
13 philadelphia nyc distance
14 bing maps
15 philadelphia washington dc distance
16 bing maps
17 philadelphia tourism
18 washington dc tourism
19 philadelphia nyc travel
20 philadelphia nyc train
21 philadelphia nyc bus

1.5 Research Questions
In sum, the research questions that this thesis sets out to resolve are the following:

RQ1 What is dynamic IR and can a framework for it be defined in the context of

existing IR research?

RQ2 Can the DIR framework be used in a practical setting? What are the bene-

fits/drawbacks to its use? How does its use differ from other IR frameworks?

RQ3 In what ways can reinforcement learning methods, sampling and other ap-

proximations be used to minimise the impact of complexity in the DIR frame-

work?

RQ4 How should IR problems in the DIR framework be evaluated? What are the

1.6. Thesis Structure 39

problems encountered when evaluating DIR algorithms?

RQ5 What does the DIR framework reveal about the interactions that occur in a

dynamic system? Can search logs from a dynamic system be used to under-

stand dynamic interactions?

1.6 Thesis Structure
An overview of the background work relevant throughout this thesis is provided

in Chapter 2. It covers topics in IR such as click modeling and diversification, as

well as the use of economic ideas such as utility and portfolio theory. Following

this is a discussion of the related work on dynamics in IR and key algorithms and

technologies in reinforcement learning used in this thesis.

The central argument of this thesis is presented in Chapter 3, which explicitly

defines the static and interactive IR frameworks and uses them to motivate the dy-

namic IR framework (RQ1). After some analysis of its components, an experiment

in the multi-page search scenario is presented comparing the different frameworks

and demonstrating diversification as an effect of applying the DIR model (RQ2).

Chapter 4 continues the work on MPS by looking more explicitly at the sce-

nario and defining a practical algorithm for the DIR framework (RQ3). Experi-

ments are then conducted using TREC data and compared against other ranking

algorithms under a number of different settings, demonstrating the effectiveness of

the technique (RQ2).

The online learning to rank problem is tackled in Chapter 5, where the DIR

framework is combined with a multi-armed bandit algorithm to create a simple rank-

ing rule for learning optimal and diverse rankings over time (RQ3). Experiments

on both simulations and search log data verify the effectiveness of the approach and

also serve to highlight the difficulties in evaluating DIR algorithms (RQ4).

The subject of dynamics found in search logs is explored further in Chapter 6,

where dynamic user behaviour is extracted from session search logs. By identifying

features from the logs as components in the DIR framework, insights can be found

as to how the Search Engine Results Page (SERP) affects query reformulation in

40 Chapter 1. Introduction

session search (RQ5).

Following on from this, the thesis concludes in Chapter 7, along with a glossary

of important terms and related publications in the appendices.

Chapter 2

Background

This chapter serves to provide a cogent background for the understanding of re-

search topics relevant to all of the chapters in this thesis. The related literature to

the topic of each of the chapters is included within the chapter itself.

The background literature can be conveniently split into two sections. In the

first, the broad field of information retrieval and the subtopics relevant to this thesis

are covered. This includes general work on ranking and retrieval [35], diversifica-

tion [36], user feedback [37] and click modeling [38]. The role of economics in IR

is also touched upon, where utility theory [39] and document diversification using

portfolio theory [40] are discussed.

The background on dynamics itself and its application to IR is explored in the

second section. Starting with relevance feedback and the Rocchio algorithm [16],

specific areas of research in reinforcement learning are then covered, including the

Markov decision process [41], its partially observable variant and their solutions

using the Bellman equation and dynamic programming [42]. The chapter finishes

with an overview of the multi-armed bandit literature [43].

2.1 Information Retrieval

2.1.1 Ranking and Retrieval

The most prominent problem in information retrieval research is the retrieval of

documents that are relevant to a specific user need (or query) and the ranking of

those documents. A common way of determining if a document is relevant to an

42 Chapter 2. Background

information need is to calculate its probability of relevance, the posterior proba-

bility that, given the query issued by the user, the document is relevant [35].

Initially, IR systems labelled documents as relevant or non-relevant under the

boolean model. Relevance models of increased complexity have since been devel-

oped, such as the Robertson-Spärck Jones probabilistic models [44], BM25 weight-

ing [2], language modeling approaches [45] and the recent developments in learning

to rank [20]. Each of these methods finds a value with which to score the relevance

of a document to a query.

The scoring of document relevance can be affected by the nature of the query

itself. Queries can be classified into the following three types [46]:

Navigational A query for which a user has a specific website or domain in mind,

for example, the query bing maps in Table (1.1). Typical search log char-

acteristics of such queries are the observance of single clicks on highly ranked

documents.

Informational/Explorative A query that represents an ill-defined or broad infor-

mation need, for example, the query boston tourism in Table (1.1).

Users issuing these types of queries may search for multiple queries within

a session and click on many documents, changing their query as they learn

more about their subject of interest.

Transactional A query related to a purchase or transaction that the user wishes to

make, for example, the query philadelphia nyc bus in Table (1.1).

These queries can lead to explorative search behaviour, but with a tightly

focused objective.

2.1.2 Clickthroughs

When evaluating ranking and retrieval systems, it can be difficult to measure their

quality without direct access to the users of the system. One solution is the use

of standardised TREC data collections as a source of high quality relevance judge-

ments, corpora and text queries, though they are limited in their academic scope.

2.1. Information Retrieval 43

Another solution is to collect explicit relevance feedback from users but this is ex-

pensive and difficult to obtain.

Instead, clicked search results (or clicks/clickthroughs) are a commonly used

way to infer user satisfaction; the observation of a user clicking on a document

is a signal that the document is likely to be relevant to the query [47]. Stud-

ies have demonstrated the positive correlation between clicks and document rele-

vance [48] and labels from explicit relevance feedback [49]. Clickthroughs can be

easily recorded through the search engine server and are unobtrusive and cheap to

collect in large quantities.

Nonetheless, clicks can be unreliable in their representativeness of a user’s

search interest, being both noisy and the subject of presentation bias. In a study

where search system quality was systematically reduced, it was found that click

behaviour varied more due to different users and search topics than due to the system

quality itself [50]. Another study found that a search system performed poorly when

it re-ordered search results based solely on clickthrough data [51].

The rank position of a search result has been found to be one of the strongest

causes of bias in clicks [52], which has been verified through extensive eye-tracking

studies [53]. This bias is a consequence of the trust that a user places in the ability of

a search engine to correctly find and rank relevant documents. A user typically reads

a list of search results from top to bottom with decreasing attentiveness, making

them considerably more likely to view and click on a top ranked document, even

if lower ranked documents are actually more relevant. SERP features such as URL

length and caption readability [54], or session level features such as the impression

position and the average number of documents examined [55] have also been shown

to affect the probability that a user clicks on a document.

2.1.2.1 Click Models

When using clicks from search logs to help build and improve search systems, rank

bias can be taken into account by modeling the clicks using a number of click

models. These are probabilistic models that represent a user’s typical behaviour

with an SERP, typically modeling the likelihood that a user will examine a snippet

44 Chapter 2. Background

or click on a document. Three simple and well-known models are the examination

hypothesis, cascade [38] and dependent click models [56].

In the examination hypothesis model, the probability of a click C given a doc-

ument d ranked at position i is given by

P(C|d, i) = P(R|d)×bi (2.1)

where R is the hidden relevance of d (typically a binary label of relevant or not

relevant) and bi ∈ [0,1] is a parameter representing the bias of the ranking position.

In the cascade model,

P(C|d, i) = P(R|d)
i−1

∏
j=1

(
1−P(R|d j)

)
(2.2)

where d j is the document ranked at position j. Here, the probability of a click

depends on the relevance of documents ranked at higher positions, modeling a user

who examines documents in a list from top to bottom and leaves the search results

page after finding a relevant document. An observation of a click means that all

documents ranked above must have been skipped by the user.

In the dependent click model,

P(C|d, i) = P(R|d)
i−1

∏
j=1

(
1−P(R|d j)︸ ︷︷ ︸

Not relevant

+b j P(R|d j)︸ ︷︷ ︸
Relevant

)
(2.3)

which extends the cascade model to include the effect of rank bias on the probability

of clicks on higher ranked documents.

Click models are an active area of research, with recently developed mod-

els incorporating sequential decision making through Markov chains [57], dynamic

Bayesian networks [58] and, related to the work in this thesis, a POMDP to model

more complex user interactions [59].

2.1. Information Retrieval 45

2.1.3 Document Diversification

Queries expressed in natural language can be ambiguous, particularly when con-

taining homographic terms. For instance, the query term ‘jaguar’ (as used in the

examples in Fig. (1.3), Fig. (1.5) and Fig. (1.7)) can refer to webpages represent-

ing subtopics animal, car and guitar. A conventional ranking algorithm that

makes use of the PRP may not take this into account and only display results for

one or two of the subtopics, ignoring users interested in the third. To present rele-

vant results for all users, documents from all subtopics should be displayed, even if

they do not score highly enough to be ranked by the PRP. In this scenario, the PRP

no longer ranks documents optimally due to the dependencies that exist between

documents [60]. This is explored more explicitly in Chapter 3.

Diversification in ranking and retrieval is an active area of research. An early

technique known as Maximal Marginal Relevance (MMR) [17] diversified search

results by taking an existing ranking of documents and rearranging them so that

documents dissimilar from previously displayed documents (using a similarity met-

ric) were chosen. Chen and Karger generalised the PRP so that it could take into

account document dependency, with the intention of both diversifying results and

reducing the number that needed to be displayed [61], building on the idea that the

novelty of documents is as important as their diversity [36]. In relation to the work

in this thesis, Radlinski et al. [23] developed a multi-armed bandit based algorithm

for dynamically learning diverse rankings of documents through click observations.

Zuccon et al. [62] developed a technique taken from operations research that aimed

to find the optimal ranking of k documents so that relevance and diversity were bal-

anced. This formulation is considered a generalization of the portfolio theory of IR,

which is covered in more detail in the next section.

2.1.4 Economics in IR

Economic theories lend themselves well to IR problems, as they both involve the

interpretation of user/customer behaviour, the balance of risk and reward and the

application of statistics and machine learning. For instance, production theory from

micro-economics has been applied to interactive IR [63], where the number of is-

46 Chapter 2. Background

sued queries and documents read by a user in a search session are considered the raw

materials (the input), the technology used is the search engine, and the output is the

cumulative gain of satisfying the user’s information need. This model allowed the

researcher to find the optimal balance between queries and displayed documents for

different types of information search. Another example is the use of game theory,

which has been used to model the dynamics between the user and the search system

in session search [64] and also to set up a study for search system evaluation [65].

The concept of evaluating for retrieval utility rather than relevance was pro-

posed by Cooper in 1973 [39], where the aim was to maximise a utility function

that balanced the costs and benefits of an IR system’s actions. An example of

utility use in IR was in its combination with hedonic regression to estimate the

demand of products online based on the sentiment analysis of item reviews [66].

Azzopardi [67] extended the work on production theory by constructing a utility for

the costs of user actions such as examining snippets and reading documents, and

used it to understand the trade-offs users make when using a search system. The

use of utility functions in IR frameworks to measure user benefit are the subject of

Chapter 3.

2.1.4.1 Portfolio Theory

Portfolio theory was devised in 1957 as a means to optimally choose a portfolio

of investments based on their risk profiles [68]. This was achieved by investing

in assets that were both profitable and negatively correlated with one another, so

that a loss of value in one of the assets was balanced by an increase in value in

another. The setting of a risk parameter allowed the portfolio holder to maximise

their expected returns for a given level of acceptable risk over the whole portfolio.

The theory has been applied to IR, where instead of diversifying a portfolio

of assets, a ranking of documents is diversified instead [40]. For instance, if each

document has a probabilistic relevance value ri = P(R = 1|d, i) for a document

ranked at position i (where 1 ≤ i ≤ M), then the overall expected relevancy of a

2.1. Information Retrieval 47

ranking is given by

E[~R] =
M

∑
i=1

biri (2.4)

where bi is a weight value representing the rank bias at position i and ~R =

〈R1, . . . ,RM〉 is a vector of the relevance of each document in the overall ranking.

The objective is to maximise Eq. (2.4). The variance of the ranking, and therefore

the risk, can be calculated as

Var[~R] =
M

∑
i=1

M

∑
j=1

bib jσi, j (2.5)

=
M

∑
i=1

b2
i σi,iσi,i +2

M

∑
i=1

M

∑
j=i+1

bib jσi, j (2.6)

=
M

∑
i=1

b2
i σ

2
i +2

M

∑
i=1

M

∑
j=i+1

bib jσiσ jρi, j (2.7)

where σi, j is the covariance between the documents ranked at positions i and j, σi

the standard deviation of the document ranked at position i and ρi,k the correlation

coefficient. Using this formulation, it can be shown that a suboptimal but efficient

way of maximising the value E[~R] while minimising the risk Var[~R] in a ranked list

is to first choose the highest ranking document, then for each subsequent rank j, to

choose the document that maximises

r j−λb jσ
2
j −2λ

j−1

∑
i=1

biσiσ jρi, j (2.8)

where λ is a tunable exploration parameter.

The use of portfolio theory in IR is not restricted only to the case of diversifying

search results, but has also been used to trade off the risk of incorrectly performing

query expansion [69]. Another application of risk in IR is in the area of learning to

rank, where consideration can be given to the robustness of learned models so that

they work for tail queries, balancing the risk of generating bad search rankings for

tail queries against suboptimal rankings for all queries [70].

48 Chapter 2. Background

2.2 Dynamics
For over 200 years, dynamics has played an important role in the field of engineer-

ing, from James Clerk Maxwell’s ‘Centrifugal Governor’ [71] to the stabiliser at the

back of the Wright brothers’ plane [72]. Physical systems that maintain an equilib-

rium, such as those described, are designed as dynamic agents that use feedback to

keep control in a closed loop. The study of systems like these is known as control

theory [10] and are modeled using diagrams similar to that in Fig. (1.1).

Control theory largely applies to mechanical systems, but in recent decades

has also found use within electronics and software, for instance, to model electronic

closed loop flip-flop storage state circuits [73] or in the streaming of audio and

video files [74]. Early research in artificial intelligence and robotics used control

theoretic principles in the design of models such as the Markov decision process,

used for path-finding algorithms [75] or for stable and predictable controllers for

robotic parts [76].

This work paved the way for the most recent application of dynamics in com-

puter science, Reinforcement Learning (RL). RL algorithms describe a dynamic

process that learns from its past actions and adapts to observations of its environ-

ment following those actions over time. Over the years many models for RL have

been developed, including the partially observable Markov decision process [77]

(covered in Section 2.2.3.2), active learning [78] and the multi-armed bandit [79]

(covered in Section 2.2.3.4).

2.2.1 Dynamics in IR

Dynamics also increasingly plays an important role in the design of information

retrieval systems. An IR system can be broken down into broadly five elements, the

users, their information needs and the queries that they use to represent them, the

documents being retrieved and their underlying relevance to the queries. Each of

these elements can be considered as a dynamic agent depending on the IR problem

being addressed:

Users A single user can be considered as a dynamic agent in the case where their

context or descriptive features may change over time. For instance, during a

2.2. Dynamics 49

search session the user’s contextual search preference can be updated based

on their observed actions [80] or their physical location [81], or their search

history can be used to personalize search results and identify when they are

behaving atypically [82]. A population of users may also be considered dy-

namic, with each different user a new signal in the system. This is the case

with online learning to rank and is explored further in Chapter 5.

Information Needs An information need may dynamically evolve over the course

of an exploratory search session [83], which is identified as a corollary of the

findings in Chapter 6. A user may also have several information needs that

are satisfied over their interactions with the search system [84]. Search results

diversification is one method for addressing a dynamic or complex informa-

tion need and there has been some research into learning diverse rankings of

documents over time based on user clicks [23], a topic explored further in

Chapter 5.

Queries For a fixed information need in session search, a user will issue multiple

queries, such as in Table (1.1). Understanding the dynamics of queries in

session search is the subject of Chapter 6. The queries that users use for the

same information need may change over time depending on the evolution of

the language used to describe the need, or the definition of the need itself [85].

By observing these trends in search logs, query suggestion agents can be built

that can also take into account user attributes such as gender or age [86, 87].

Documents The content of individual documents can be considered dynamic. For

instance, the content of some webpages (such as Wikipedia1 articles) has

been found to change over time [88, 89]. In addition to this, the language

used in a document may have changed since the document’s creation, with

certain terms having a different interpretation nowadays to that originally in-

tended [90]. Collections of documents may also dynamically change over

time, for instance, adaptive filtering is used when retrieval occurs over a

1http://wikipedia.org/

http://wikipedia.org/

50 Chapter 2. Background

stream of documents [91], and the available documents in a corpus decreases

during interactive retrieval when feedback is gained on already displayed doc-

uments. This is also the case with the multi-page search scenario explored in

Chapters 3 and 4.

Relevance Dynamically changing relevance reflects the dynamics of the world. For

instance, a news event such as a natural disaster or the death of a notable

person may render documents that were previously relevant as irrelevant and

result in different or new documents becoming relevant [92, 93]. Further to

this, natural language is dynamic; new words, phrases, colloquialisms, brand

names and products change the meanings of queries and terms, resulting in a

change to the relevance of documents. For example, users searching for the

query twitter a decade ago may have been interested in birdsong, whereas

now they are more likely to be entering a navigational query to access the

popular microblogging website2 [94]. The changing of relevance over time is

a key aspect of the DIR framework discussed in this thesis in Chapters 3, 4

and 5.

The challenge of incorporating these dynamic elements into IR demand that

search systems upgrade themselves from performing simple retrieval tasks to be-

coming decision engines that can pick the best choice for information seeking dy-

namic tasks. Search systems are evolving into natural language, conversational

question answering services that need to be able to update relevance based on pre-

vious interactions and context [95]. As the world wide web ages the content of web

pages changes, queries change meaning, information needs become redefined and

user characteristics change.

2.2.2 Relevance Feedback

In order for an interactive or dynamic system to be adaptive, it must acquire rel-

evance signals from the user so that it can update its internal model of the user’s

preferences. These signals can be directly collected from the user in the form of

2http://twitter.com/

http://twitter.com/

2.2. Dynamics 51

relevance feedback, which falls broadly into three categories:

• In explicit relevance feedback, the user is directly solicited for information

regarding the relevance of information items, or else their information need

preferences. This is usually manifested through an interactive UI that lets

users input a binary label or numerical score for items representing their rel-

evance, usefulness or perhaps irrelevance. Alternative methods of collecting

feedback include asking users to answer questions regarding their interests for

adaptive filtering [96] or allowing users to select item attributes for filtering

in faceted e-commerce search [97].

What these methods have in common is that the user is interrupted during

the search process so that the search system may receive feedback. Despite

the proven benefits of incorporating explicit relevance labels into the search

process found by Salton [98] and Rocchio [16], a wealth of literature has

demonstrated the detrimental effect to users that occurs during the collection

of the labels. One study found that inexperienced search users preferred a

system using implicit relevance feedback over an explicit one, as it reduced

the burden of providing feedback [99]. Another found that in UIs incorpo-

rating relevance feedback and re-ranking strategies, users favoured those that

gave them the greatest amount of control, disliking systems that automati-

cally re-ranked results or acted unpredictably [100]. An analysis of search

log data found that typically less than 10% of users made use of an available

relevance feedback option during searches, even when results were often over

60% better as a result [101]. This reluctance of the user in the submitting of

direct input into relevance feedback systems has motivated the development

of collecting implicit signals instead.

• In implicit relevance feedback, signals observed from natural user interac-

tions with the search system are unobtrusively recorded and interpreted as

signals of relevance [102]. Research has found a correlation between rele-

vance and a range of user behaviours, including document reading time [103],

webpage dwell time in search [104] and scrolling behaviour [105]. A study by

52 Chapter 2. Background

Fox et al. found that the right combination of implicit measures could work

as effectively as explicit feedback, although many of the signals in their study

(such as the session-based features) were less effective [37]. They also found

that document clickthroughs proved one of the strongest implicit signals for

relevance feedback, a topic already covered in Section 2.1.2.

• Pseudo relevance feedback systems simulate explicit relevance feedback by

assuming that the top k ranked documents in a search ranking are relevant.

They then perform conventional relevance feedback to improve search re-

sults [106, 107]. Pseudo-relevance feedback has been an active area of re-

search in the last twenty years, usually resulting in improved search perfor-

mance for single ad hoc queries [108, 109].

Once feedback from a user has been observed, an interactive search system

can then improve the search experience. Early research in relevance feedback con-

cerned systems that were personalized to each user and dealt with the difficulty for

a user to come up with an appropriate query for a given information need. In these

systems, after an initial search, a user could explicitly select documents relevant to

their information need, resulting in an automatic reformulation of their query into

a more relevant one [110]. Modern static search systems also employ interactiv-

ity. For instance, query auto-completion [111] systems suggest new queries based

on partially typed queries and can also take into account context and past interac-

tions [87]. Query suggestion can also be considered interactive, whereby the search

system actively attempts to direct the search session the user is engaged in based on

their current query [112].

2.2.2.1 Rocchio Algorithm

The Rocchio algorithm is a well-established and important relevance feedback

mechanism for improving search results in interactive systems [16, 113]. It fol-

lows a two-stage approach utilizing explicit relevance labels collected from the

user. In the first stage, the user enters a query and reviews the set of search re-

sults returned by the system, labelling which documents they found relevant, and

2.2. Dynamics 53

which they didn’t. By representing the query and documents using the vector space

model, the search system uses the Rocchio formula to modify the query vector

so that it moves closer to the relevant documents and further away from the non-

relevant documents. The Rocchio formula is given by:

~q∗ = α~q+
β

|Dr| ∑
~d∈Dr

~d− γ

|Dnr| ∑
~d∈Dnr

~d (2.9)

where~q and~q∗ are respectively the original query vector and its modified version

under Rocchio. Dr and Dnr are the set of relevant and non-relevant documents (as

labelled by the user) and ~d is the document vector. α , β and γ weight the effect

of the original query, relevant documents and non-relevant documents on query

modification. In the second stage, ranking and retrieval occurs using the modified

query which usually leads to improved recall. This is shown explicitly in Fig. (3.1b)

and is similar to the interactive solution to the multi-page scenario in Fig. (1.5).

2.2.3 Reinforcement Learning

Reinforcement learning algorithms are designed to maximise some cumulative re-

ward by making actions in their environment and learning the outcome through a

feedback signal. Unlike supervised learning, RL algorithms can only make an ob-

servation and thus an inference on the correctness of their action after it has been

made, and it is often the case that observations cannot be made on those actions

not chosen at each time step. An RL algorithm is a dynamic agent and one that is

investigated throughout this thesis as a means for designing algorithms in DIR.

2.2.3.1 Markov Decision Processes

A Markov Decision Process (MDP) is a stochastic decision process with the

Markov Property. An MDP is composed of agents, states, actions, a reward func-

tion and a transition probability distribution [41]. An agent takes inputs from

the environment and outputs actions; the actions in turn influence the other states of

the environment according to the transition probability distribution. MDPs assign

immediate rewards for taking an action at a state. Formally, an MDP is a tuple [114]

54 Chapter 2. Background

s0

f0
R

a0

s1

f1
R

a1

s2

f2
R

a2

s3 ...

Figure 2.1: The Markov Decision Process influence diagram.

(S ,A , f R,π), made up of:

States The state s ∈S describes the status or environment that the agent is in at a

given moment in time.

Actions The action a ∈A describes the possible changes that the agent can make

at a given moment of time given the current state.

Reward The reward function f R(s,a) is the reward of taking action a when in state

s.

Transition Probability The transition probability π(s,a,s′) denotes the probabil-

ity of transition from state s to state s′ triggered by an action a.

In addition, ω ∈ [0,1] can be set as a discount factor for future rewards. The goal of

an MDP is to find an optimal policy, i.e. the best sequence of actions a0,a1, . . . that

maximises ∑
∞
t=0 ω t f R(st ,at), the long-term accumulated reward which sums up all

(discounted) rewards from the beginning to the end of the process. A typical MDP

structure is shown in Fig. (2.1).

2.2.3.2 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) is a variant MDP

that takes into account that the agent may not know which state it is currently in.

Generally speaking, it models an agent’s belief about its current state based on ob-

servations of its environment and the actions available to it. After taking an action

and receiving a reward, the agent makes a new observation and updates its belief

about its state. The POMDP formulation allows the agent to optimise which ac-

tion to take depending on its belief state. The POMDP theoretical model can be

2.2. Dynamics 55

s0

f0
R

a0

s1

f1
R

a1

s2

f2
R

a2

s3 ...

o0 o1 o2

Figure 2.2: The Partially Observable Markov Decision Process influence diagram, where
states are no longer observable but their observations are.

represented by the tuple (S ,A , f R,π,O,Θ,r,τ). The states, actions, rewards and

transition probability are defined as for an MDP, the new elements are:

Observations In the POMDP framework, agents cannot determine which state they

are currently in directly, but they can make an observation o ∈O which gives

some indication of the state they are in.

Observation Function The observation function Θ(s,a,o) = P(o|s,a) determines

the probability of making a particular observation given the hidden state of

the agent and the action taken.

Belief The belief is the probability that the agent is in a given state and is given by

the function r(s) = P(s).

Belief Update Function The agent maintains a belief about its hidden state given

by r. After making an action and receiving an observation, the belief can be

updated using the belief update function r′(s) = τ
(
r(s),a,o

)
which can be

estimated by ∑o∈O P
(
r′(s)|r(s),a,o

)
P
(
o|a,r(s)

)
.

The goal of a POMDP is to find an optimal policy of actions that maximises the

overall expected reward ∑
∞
t=0 ω t

∑s∈S r(s) f R(st ,at). A typical POMDP structure is

shown in Fig. (2.2).

2.2.3.3 Dynamic Programming

An optimal solution to an MDP can be found using dynamic programming, which

is the process of breaking down a difficult problem into sub-problems that can be

56 Chapter 2. Background

solved independently, then combining their solutions to form the overall solution

to the main problem. For an MDP, this means choosing the optimal action to take

at a particular time step in order to maximise the immediate reward. The Markov

property ensures that rewards are not dependent on previous rewards, and so an

optimal policy across many time steps can be found.

There are two well-established dynamic programming algorithms for MDPs:

value iteration is the case where the expected overall state of the dynamic system is

set and then optimization occurs backwards until an optimal sequence of decisions

is made from the starting point; likewise, in policy iteration the optimization occurs

from the starting point until the model’s reward converges [41]. In addition, there

are two well-known variants to this solution: Q-Learning [115] which shows how to

build an optimal policy function that does not require knowledge of the underlying

model; and Temporal Difference learning [116], where Monte Carlo sampling is

combined with an MDP framework to predict the next state and update the model

parameters.

In a POMDP the state is unknown, and observations of the state may be mis-

leading or not convey enough information. The solution to a POMDP is made by

mapping it onto a continuous state Markov decision process, where the continu-

ous state is the belief state. Through such a transformation, the value function of a

POMDP can be expressed in a recursive form similar to an MDP using the Bellman

equation [77]:

V
(
r(s)
)
= max

a

[
f R (r(s),a)+ω ∑

o∈O
P
(
o′|a,r(s)

)
V
(
r′
)]

(2.10)

Here, potential observations of the state are marginalised over and r′ is the belief

state in the next iteration given by the belief update function τ
(
r(s),a,o

)
. The belief

update is the most important aspect of the POMDP as it allows one to estimate the

state transitions occurring whilst not being able to directly observe them.

2.2. Dynamics 57

2.2.3.4 Multi-Armed Bandits

The Multi-Armed Bandit (MAB) [79] comes from a classic statistical resource

allocation problem usually described using the analogy of a casino with multiple

one-armed bandit slot machines. At each time step, a single machine (or arm in the

literature) is chosen and a reward drawn from its hidden probability distribution.

Meanwhile, the rewards for the other arms remain unknown. Each of the slot ma-

chines has a different probability distribution of rewards, and the objective is to find

the optimal strategy for playing them in order to maximise the overall accumulated

reward over some time horizon.

An analytical, Markovian solution was posited by Gittens in 1979 [43], defin-

ing for each one-armed bandit a scalar value known as the Gittens index. This

index value represented the expected reward for playing an arm until a termination

step, and so for each time step, the arm with the highest Gittens index value was the

arm chosen to play. The computational intractability of the calculation of the index

has lead to the development of tractable solutions that can guarantee asymptotic

regret bounds [117].

Regret is the commonly used evaluative framework for multi-armed bandit

algorithms, defined as the difference between the sum of rewards of the optimal

sequence of arms versus those chosen by the MAB algorithm. Here, the regret ρ is

given by

ρ = T
(

max
i

ri

)
−

T

∑
t=1

r̂t (2.11)

where ri is the reward of the i-th arm and r̂t is the reward of the arm chosen at time

t. In dynamic programming and other optimal control formulations, the objective is

to maximise the value function over time, whereas here the goal is to minimise the

regret, which represents the loss in potential value caused by choosing incorrectly.

The multi-armed bandit formulation can be likened to the Markov-based mod-

els described so far. Like a POMDP, one can consider the reward distribution of

each arm as its hidden state, and so the belief state is the estimated expected value

58 Chapter 2. Background

of the reward for that arm. The action in this case is which arm is chosen at each

time step, and the reward (and observation) is what is observed from the chosen

arm. A key distinction lies in the fact that the hidden distribution of each bandit

does not change over time, that is, there is no transition probability function as the

arms are independent and fixed. This simplification, as well as the adaptability of

MAB algorithms to different scenario settings, makes MABs a versatile tool that are

useful in DIR, in particular online learning to rank, where only partial information

(clicks) can be observed at each iteration.

2.2.3.5 Exploration vs. Exploitation

A key characteristic of the MAB formulation is the balance between exploration

and exploitation. In the context of multi-armed bandits, exploration refers to the

investigation of the hidden distribution of each arm by strategically playing them

to observe their reward. Conversely, once this distribution has been reliably deter-

mined then exploitation occurs, whereby the arm with the estimated highest reward

is played.

The estimated reward is typically given by the maximum likelihood estimate

r̄i =
1

Mi

Mi

∑
m=1

ri,m (2.12)

which is the average reward for arm i played Mi times (Mi ≤ T). A naïve, purely

exploitative algorithm would simply pick the arm with the highest r̄i at each time

step, but could never recover if it picked sub-optimally. The ε-greedy strategy ad-

dresses this by introducing a probability ε that at each time step a random arm is

chosen, otherwise the best arm so far is chosen with probability 1−ε . This solution

has been demonstrated to be effective in simple scenarios although it is sensitive to

the tuning of the parameter ε and the reward distributions of the arms [118].

A popular and effective alternative is the Upper Confidence Bound (UCB)

index-based approach [119, 118]. Here, at time t, the arm with the highest index

2.2. Dynamics 59

value

r̄i +

√
2ln t
Mi

(2.13)

is played. This is the upper Chernoff-Hoeffding confidence interval bound for the

estimated reward for probability 1− 1
t and the algorithm comes with a regret bound

of 8M
∆∗ ln t +5M, where ∆∗ is the difference in reward between the optimal arm and

the next best arm. As t increases, the upper confidence bound increases logarith-

mically for those arms not being played. Playing an arm (increasing Mi) causes a

linear decrease in this bound. This extra term allows for the exploration of arms

throughout the lifetime of the algorithm. Arms with a high average reward are more

likely to be played and exploited, resulting in a lower upper confidence bound, al-

lowing for inferior arms to occasionally be played.

2.2.3.6 Multi-Armed Bandit Variations

The multi-armed bandit literature is diverse and the methods described so far are

simply the well-known algorithms that work under simple, well-understood prob-

lem settings. Different settings have been proposed that are more reflective of prac-

tical situations. For example, the multi-play setting has been widely researched

for use in news recommendation [120] and signal allocation [121]. In these cases,

k arms are chosen and played at each time step rather than a single arm. Other

variations of the classic formulation include arms that are dependent on one an-

other [122], arms with non-stationary reward distributions [123], arms that have

some probability of not being active at each time step [124] or that have a limited

lifespan before being removed from the set of arms [125].

An alternative approach that is important to online learning to rank is the con-

textual bandit. Here, each arm has a feature vector associated with it which is

related to its reward distribution. Thus, a contextual MAB algorithm learns both

the reward distributions for each arm and also a relevance model for the features.

This allows for an improved learning rate, as the model can be used to estimate

the reward for uncertain or unplayed (or new) arms, playing those anticipated to be

60 Chapter 2. Background

effective based on their features. This has found application in news article and ad

recommendation [126, 120].

Relevant to pairwise learning to rank is the duelling bandit. Here, absolute

rewards from individual arms are no longer observable. Instead, pairs of arms are

chosen at each time step, and the observed ‘reward’ is the outcome of their com-

parison, i.e. which has the higher reward [127]. This formulation is useful in cases

where there is no natural way of directly measuring rewards but comparisons can be

measured. This is applicable to the online learning to rank scenario where a user’s

subjective perception of the relevance of documents is difficult to collect and in-

terpret, but through interleaved experiments comparisons between ranking systems

can be reliably made [128].

Chapter 3

Dynamic Information Retrieval

Theoretical frameworks like the PRP and its more recent Interactive Information

Retrieval variant have guided the development of ranking and retrieval algorithms

for decades, yet they are not capable of modeling problems in Dynamic Information

Retrieval which exhibit the following three properties; an observable user signal,

retrieval over multiple stages and an overall search intent. In this chapter a new

theoretical framework for retrieval in these scenarios is proposed. Here, a general

dynamic utility function for optimizing over these types of tasks is derived, that

takes into account the utility of each stage and the probability of observing user

feedback. This framework is applied in experiments over TREC data in the dynamic

multi-page search scenario as a practical demonstration of its effectiveness and to

frame the discussion of its use, its limitations and to compare it against the existing

IR frameworks.

3.1 Introduction
The theoretical frameworks that underpin research in IR are based on abstract utility

models of user benefit. For instance, the loss function defined in the classic PRP [5]

leads to justification for the simplest and most prevalent ranking rule in IR; ranking

documents in decreasing order of their probability of relevance. A recent counter-

part is the Probability Ranking Principle for Interactive IR (IIR-PRP) [129], which

relaxes the independence assumption in the PRP’s model to take into account non-

linear decision making. For example, document dependence is a key element in IR

62 Chapter 3. Dynamic Information Retrieval

diversification that is not handled by the PRP [40].

DIR is defined as exhibiting three characteristics: user feedback, temporal de-

pendency and an overall goal. In this chapter DIR is presented as a natural pro-

gression in IR research complexity; where early research concerned static problems

such as ad hoc retrieval, which gave way to interactive tasks such as those incorpo-

rating relevance feedback [16], finally leading to dynamic systems where tasks such

as ranking for session search are optimised [130].

From this progression a generalised framework that models the expected ben-

efit to a user of completing a DIR task is mathematically formulated. This benefit

is represented as a recursive utility function that is goal oriented and adaptive over

time. The components of this utility function represent the three DIR features: the

likelihood of user feedback, a probability of relevance model conditioned on this

feedback and an individual stage utility function. The optimization of this recursive

utility leads to an optimal policy of actions dependent on user interactions in the

dynamic setting.

This utility is shown to be a form of Bellman equation [42] and the frame-

work an instantiation of a POMDP [131]. The components of the utility can also

be linked to the cost-benefit parameters of the IIR-PRP and the discount-gain func-

tions found in session-based metrics such as sDCG [132]. The structure of the

utility function and its links to these areas of research give interesting insights into

the behaviour of the function in DIR problems. These insights, such as how the

quality and diversification of rankings vary over multiple stages, are supported by

experiments performed using a specific application of the DIR utility function over

TREC data. The experimental setting is the multi-page search scenario of choosing

optimal rankings to display over several search pages for a fixed query [133, 134],

a simplified DIR problem. As well as being a demonstration of the implementation

of each of the components that make up the utility, practical aspects such as the

computational complexity are also explored.

3.2. Comparison of IR Frameworks 63

3.2 Comparison of IR Frameworks
Before setting up the framework for dynamic information retrieval, DIR is consid-

ered in the context of existing static and interactive theoretical IR frameworks in

order to mathematically identify those features that distinguish it.

3.2.1 Static IR Framework

Definition: A static IR framework is one which models single user interactions, or

else multiple independent interactions of different search intents. A typical applica-

tion would be an ad hoc ranking and retrieval system.

The objective of a static system is to choose an action a (or sequence of actions

~a = 〈a1,a2, . . .〉), each of which has an associated probability of relevance r (or~r

for a sequence of actions) that maximises some static utility function US(a,r).

The action represents a choice that can be made by the system and belongs to some

action space A . For example, a may be a query suggestion to display to a user, or~a

the ranking order of a set of documents for retrieval. The utility function gives value

to the action based on its probability of relevance by modeling the benefit of the

action to the user. Utilities such as expected Discounted Cumulative Gain (DCG)

and MAP [135] are examples from document retrieval, rewarding the ranking of

relevant documents at high ranking positions.

3.2.1.1 Probability Ranking Principle

A well-established static framework for ranking documents is the Probability

Ranking Principle (PRP). In 1979, Robertson [5] stated that the effectiveness of

a retrieval system is maximised when displaying documents in decreasing order of

their estimated probability of relevance: it is most beneficial to display the docu-

ment that has the highest probability of relevance first, followed by the second high-

est and so forth. This intuitive result formalised the optimal strategy for displaying

ranked documents to users and underlies most modern IR models. Nonetheless,

this principle also makes the assumption that one is able to accurately estimate the

probability of relevance and also that document relevancies are independent of one

another, which is not always the case.

64 Chapter 3. Dynamic Information Retrieval

The principle is derived from a utility function for the potential loss when

retrieving a document, defined as

Loss(retrieved|non-relevant) = α1 (3.1)

Loss(not retrieved|relevant) = α2 (3.2)

for parameters α1 and α2. Thus, the expected loss if a document d at rank position

i with relevance R has been retrieved is

(
1−P(R|d, i)

)
×α1 (3.3)

and if the document was not retrieved, then the expected loss is

P(R|d, i)×α2 (3.4)

Thus, the decision of whether to retrieve document d at rank i is determined by

whether

P(R|d, i)α2 >
(
1−P(R|d, i)

)
×α1 (3.5)

=⇒ P(R|d, i)> α1

α2 +α1
(3.6)

As a result, documents whose probability of relevance P(R|d, i) falls above this

threshold utility value should be ranked in decreasing order of said probability, oth-

erwise they should not be ranked as the expected loss becomes positive.

3.2.1.2 Diversification and the PRP

The PRP defines US(a,r) as a loss minimizing function across pairs of documents

(Eq. (3.1) and Eq. (3.2)), which is optimised when ranking documents in decreas-

ing order of probability of relevance (under document independence assumptions).

Nonetheless, in instances where result diversity is important, it can be shown that

the PRP is no longer optimal [40]. This is illustrated in the example in Fig. (3.1a).

Here, a simplified vector space model is used to represent ranking and retrieval us-

3.2. Comparison of IR Frameworks 65

ing a graph over two term axes. In this case, the query is apple, an ambiguous

term that can describe three subtopic search intents. Those documents within the

ranking~aPRP for the query are retrieved (analogous to ranking under the PRP), and

as can be seen, in this case only two subtopic preferences are captured. Over a pop-

ulation of users, those seeking information on the apple logo subtopic would

be dissatisfied.

This is captured probabilistically by supposing that there are two classes

of users, user1 and user2, where user1 has twice as many members as

user2. Users in the user1 class are satisfied with the apple logo and

apple computer subtopics, but not apple fruit, while those in the user2

class are only satisfied with the apple fruit subtopic. The action space

here is the set of subtopics which is denoted A = {a1 = apple logo,a2 =

apple computer,a3 =apple fruit} and the goal is to choose the best rank-

ing of subtopics.

By setting Rak = 1 if ak is relevant, and rak = P(Rak = 1), then ra1 =
2
3 ,ra2 =

2
3

and ra3 =
1
3 . According to the PRP, the subtopics should be ranked in decreasing or-

der of the probability of relevance, giving the ranking sequence~aPRP = 〈a1,a2,a3〉.

However, intuitively this is not optimal because users belonging to user2 have to

reject two subtopics before reaching their preference [136]. This can be explained

mathematically by studying the optimization of the diversity-encouraging metric

Expected Search Length. One can also derive the same conclusion analogously us-

ing the equivalent Expected Reciprocal Rank (ERR) or k-call at n measures [61].

In this scenario, US(~a,~r) = E[L]~a which is the summation of all possible search

lengths L weighted by their respective probabilities, given as

E[L]~a = ∑
i

(
(i−1)P(R1 = 0, . . . ,Ri−1 = 0,Ri = 1)

)
(3.7)

where Ri is the relevance of the subtopic at rank position i. When assuming

subtopics are independent, i.e. P(R1 = 0, . . . ,Ri = 1) = P(R1 = 0) . . .P(Ri−1 =

66 Chapter 3. Dynamic Information Retrieval

0)P(Ri = 1) the expected search length for ranking~aPRP is

E[L]~aPRP = 0 · ra1 +1 · ra2(1− ra1)+2 · ra3(1− ra2)(1− ra1) (3.8)

= 0 · (2/3)+1 · (2/3)(1/3)+2 · (1/3)(1/3)(1/3) = 8/27 (3.9)

and for a diversified ranking~aDIV = 〈a1,a3,a2〉 the expected search length is

E[L]~aDIV = 0 · (2/3)+1 · (1/3)(1/3)+2 · (2/3)(2/3)(1/3) = 11/27 (3.10)

Thus, in this case the PRP ranked documents have a shorter expected search path

than the diversified ranking. Here, the PRP does lead to the optimal ranking under

the independence assumption, but when it is removed this is no longer the case.

To see this, expected search length for~aPRP and~aDIV is recalculated but this time

without the independence assumption:

E[L]~aPRP = 0 · ra1 +1 ·P(Ra2 = 1,Ra1 = 0)+2 ·P(Ra3 = 1,Ra2 = 0,Ra1 = 0)

(3.11)

= 0 · (2/3)+1 ·0+2 · (1/3) = 2/3 (3.12)

E[L]~aDIV = 0 · (2/3)+1 · (1/3)+2 ·0 = 1/3 (3.13)

Now it is found that the diversified ranking ~aDIV has the shorter expected search

length and is thus the optimal ranking, despite the lower probability of relevance

for a3.

3.2.2 Interactive IR Framework

Definition: An interactive IR framework extends a static framework to cover mul-

tiple stages of IR. It is responsive to feedback from a previous stage but does not

anticipate future feedback.

A stage represents an interaction with the search system that is distinct from

other interactions but belongs to the same search task, for example a sequence of

impressions in session search. Generally, an IR system will operate over 1≤ t ≤ T

3.2. Comparison of IR Frameworks 67

Figure 3.1: An example illustration of document ranking and relevance feedback using the
vector space model for query q1 = apple. Documents are given as points
over two term frequency axes, computer and fruit, and can belong to one
of three subtopics apple fruit, apple logo and apple computer.
The distance between q and each document is inversely proportional to its rel-
evance r. The documents ranked for q1 or its reformulation q2 are contained in
each circular shape~a, the area of which could be thought of as the static utility
US(~a,~r), or UD the combined area of actions across stages 1 and 2.

q1

fr
u

it

computer

r

apple fruit apple logo

apple computer

aPRP

(a) Static IR: Documents within the rank-
ing ~aPRP are shown to the user
for query q1, but do not cover all
subtopics. Optimally ranking using
the PRP results in choosing those
documents with the highest rele-
vance.

aIIR

q1

fr
u

it

computer

 q2o

o

(b) Interactive IR: After relevance feed-
back is observed (the two click ob-
servations o) on the static ranking in
Fig. (3.1a), q1 is modified to q2. Doc-
ument relevance for q2 is now defined
by τ and the new interactive ranking
given by documents in~aIIR.

q1

fr
u
it

computer

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

aPRP

a3

a1

a2

(c) Dynamic IR: Four potential rankings
~a1, ~a2, ~a3 and ~aPRP and their obser-
vation probabilities (shown as click
observations with likelihood relative
to size) for q1 are explored to find
the optimal ranking action for both
stages.

q1

fr
u
it

computer

q2

o o

aIIR

aDIR

(d) Optimal Solution: Action ~a1 is cho-
sen as the optimal stage 1 ranking
~aDIR as it diversely contains docu-
ments from all subtopics. As a result,
the ranking~aIIR for q2 is more accu-
rately modified after observing inter-
active feedback.

68 Chapter 3. Dynamic Information Retrieval

stages with T being potentially infinite.

Further to this, an interactive IR framework incorporates user feedback. Feed-

back is an observation signal o (or a sequence of observations~o) in the space O ,

that is measurable by the search system. These signals may be explicit declarations

of the relevance of search items (such as a movie rating), or implicit interpretations

of user actions (such as document clicks).

The final element of this framework is the relevance update function τ where

rt+1 = τ(at ,rt ,ot). Thus, the objective function for interactive IR at stage t +1 can

now be represented as

argmax
at+1∈A

US
(
at+1,τ(at ,rt ,ot)

)
(3.14)

The relevance update function τ introduces temporal dependency into the frame-

work, without it the objective simply devolves to optimization over the static utility

US(a,r). This is also the case when finding the optimal first stage action a1 i.e.

when there are not yet any observations. In interactive IR, the optimal action is

chosen at each stage as a reaction to the feedback observed in the previous stage

and there is no consideration for future utility.

With these features in mind, the vector space example can be extended to the

interactive scenario in Fig. (3.1b) by introducing the Rocchio relevance feedback

algorithm for interactively re-ranking documents. Here, clicked documents in the

PRP ranked first stage are used as implicit signals of relevance to modify the user’s

original query q1 to q2. Document re-retrieval occurs using q2, returning documents

using updated relevance scores given by τ , which is a function of q2 and thus the

original ranking ~aPRP, document relevancies r and observations o. Nonetheless,

even in this interactive framework, a user interested in the apple logo subtopic

would be dissatisfied with both the~aPRP and~aIIR rankings due to a lack of docu-

ments for the relevant subtopic.

3.2. Comparison of IR Frameworks 69

3.2.2.1 Probability Ranking Principle for Interactive IR

The static PRP framework has been extended to an interactive version known as

the Probability Ranking Principle for Interactive Information Retrieval (IIR-

PRP) [129]. Here, the assumption of document independence is removed by the

definition of a utility function that explicitly incorporates dependence. This utility

models a user that makes choices while browsing a ranked list of search results. For

each choice the benefit and cost to the user is quantified, as well as the probability of

the user accepting the choice and also the probability that the choice is relevant. For

instance, in ad hoc ranking the cost may be the effort required to read a document

snippet and the benefit would be the knowledge gained.

This utility can be described as the expected benefit U of document di (docu-

ment d ranked at position i) given as

E
[
U(di)

]
= ω(i)+P(Ri|d, i)

(
biαi +(1−bi)βi

)
(3.15)

where ω(i) is the effort required to reach rank i, αi is the utility gain when the

document is relevant and βi is the utility loss when the document is not relevant. The

bias value bi is the probability that the document at rank i is the correct choice i.e.

that Ri = 1. When determining the expected benefit of a ranked list of documents,

the overall utility is

E
[
U
(
〈d1, . . . ,dM〉

)]
=

M

∑
i=1

(i−1

∏
j=1

(
1−P(Ri|d, j)

))(
ω(i)+P(Ri|d, i)(biαi +(1−bi)βi)

)
(3.16)

Fuhr [129] shows that when optimizing over Eq. (3.16), the optimal ranking policy

is to rank documents in decreasing order of the utility score

ρ(di) =
(
biαi +(1−bi)βi

)
+

ω(i)
P(Ri|d, i)

(3.17)

70 Chapter 3. Dynamic Information Retrieval

3.2.2.2 Interactive Information Retrieval

For clarification, the area of research traditionally known as Interactive Informa-

tion Retrieval (IIR) has an alternative definition to the interactive IR framework

discussed in this chapter, despite the similarity in name. IIR research explores the

complex sequence of interactions a user may have with a search ranking within the

static framework [137], largely motivated by the contradictory results found from

conventional Cranfield style evaluation [138] and observational user studies [139].

For the remainder of this thesis any reference to interactive IR instead reflects the

interactive framework defined in this chapter.

3.3 Dynamic IR Theory
A dynamic system is one which is goal-directed and adaptive to its environment.

From this definition one can specify three elements that determine whether an IR

system is a dynamic one:

Feedback An observation signal from the user.

Temporal dependency Operation across multiple stages where each stage depends

on the previous stage.

Overall goal An objective across all stages.

3.3.1 Dynamic IR Framework

Definition: A dynamic IR framework extends an interactive framework by being

responsive to user feedback and optimizing for it in advance.

Systems in the interactive IR framework were previously defined as exhibit-

ing both feedback and temporal dependency features, but they are only capable of

locally optimizing for a single stage at a time. In contrast, the optimization of a

dynamic system will find the optimal sequence of actions for all future interactions.

A result of this is that the utility of an individual stage may be reduced so that gains

can be made in the utility at a future stage.

Unlike the interactive IR framework, the observation o is unknown when evalu-

ating the utility of future stages in the dynamic IR framework. Instead, the expected

3.3. Dynamic IR Theory 71

utility can be found by marginalizing the utility function over the space of obser-

vations O . When doing this the observation likelihood function P(o|a,r) must be

specified. This gives the expected utility

E
[
US(a,r)

]
= ∑

o∈O
P(o|a,r)US(a,r) (3.18)

The observation likelihood function is represented visually in Fig. (3.1c). In

dynamic IR, the expected utility of potential first stage rankings (given here as~a1,

~a2, ~a3 and the static ranking~aPRP) are calculated by estimating which documents

are likely to receive clicks and the effect this has on the utility of future stages. The

PRP ranking is simply one among many rank actions that can be considered.

The final component of the DIR framework is the path-discount function ω(t).

When optimizing over a potentially infinite number of future stages, this helps en-

sure that a solution exists and also gives greater weight to earlier stage utilities.

By bringing together all of the components described so far, the utility func-

tion for dynamic information retrieval can be defined as

UD(rt , t) = max
at∈A

[
US(at ,rt)+ω(t) ∑

o∈O
P(o|at ,rt)UD

(
τ(at ,rt ,o), t +1

)]
(3.19)

where UD(rT ,T) = maxaT∈A
[
US(aT ,rT)

]
is the static optimization of the final

stage. Thus, the objective is to find, through backwards induction, the optimal

sequence of actions~a∗ = 〈a1, . . . ,aT 〉 that maximises the dynamic utility UD given

in Eq. (3.19). To derive this utility, the dynamic utility has simply been recursively

applied to the expected utility from Eq. (3.18).

Through the maximization of the dynamic utility, in the example in Fig. (3.1d)

the optimal action for stage 1 is found, which is to diversify the initial ranking so

that it retrieves documents belonging to all three subtopics. While this may harm

the immediate retrieval utility score, overall the system improves because it can

more accurately re-rank results over the subtopic preferences for all users in the

next stage.

72 Chapter 3. Dynamic Information Retrieval

Table 3.1: Elements of the DIR framework.

Element Description Examples
a Action Query suggestion, ranking of docu-

ments
r Relevance Query or document relevance
t Stage Impression, rank position, page
o Observation Click, e-commerce transaction
τ Relevance Update Function Rocchio, multi-variate Gaussian

P(o|a,r) Probability of Observation
Function

Click model, eye-tracking distribu-
tion

US Static Utility DCG, ERR
ω Path-Discount Function Geometric, path-based

The eight elements of the DIR framework: a, r, US, t, o, τ , P(o|a,r) and

ω(t), also shown in Table (3.1), are also the elements that define a POMDP, and

the dynamic utility function is its corresponding Bellman equation. Intuitively this

makes sense, like a POMDP the dynamic IR framework finds an optimal Marko-

vian sequence of actions to maximise a reward (here the static utility) subject to

discounting (with ω). The state of the system (the underlying document relevance)

is unknown but a belief state (the probability of relevance) is updated according to

observations. The key difference from a POMDP is that for dynamic IR there is no

defined transition probability between states due to the assumption that the hidden

relevance of each document does not change throughout the search task.

3.3.2 Framework Analysis

So far the general framework for dynamic IR has been described but not the setting

of its parameters. Here, each component is analysed within the context of dynamic

information retrieval.

Relevance As with any framework in information retrieval, the overall aim is to

retrieve relevant information items and present them to the user. The intrinsic ‘rele-

vance’ of an information item is an unknown quality and the subject of most of the

research in IR. In the DIR framework any document relevance scoring method can

be used. For instance, in the application in the next section, five well established

relevance scoring techniques are used.

3.3. Dynamic IR Theory 73

The relevance update function τ is more difficult to define as it depends specif-

ically on the action and observation space of the DIR task, for instance in Fig. (3.1b)

it depends on the distance of the documents from q2, which itself depends on q1,

~aPRP and its clicked documents. This dependence allows τ to adapt to the hidden

relevance preferences of the user over the course of the search process.

It may not always be clear how to update the relevance score based on a given

observation, the most straightforward setting for τ can simply be to set ra = 0 for

actions already chosen by the IR system. Because τ enforces the temporal depen-

dency, it is the most important aspect in the dynamic utility because without it the

utility is static.

Actions The action space is what distinguishes search tasks from one another and it

is the size of this space that dictates the complexity of optimizing over the dynamic

utility function. For example, the action space in query suggestion or document

ranking is potentially infinite whereas the space of available advertisements in an

ad selection problem may be small and finite. In the previous example, the action

space is any potential grouping of the documents in the 2D term space (four such

groupings are shown in Fig. (3.1c)). Along with τ , the setting of the static utility US

is important for determining the desirable features of the optimal action sequence

~a∗, such as results diversification.

Observations The observation space is dependent on the action space, its elements

representing the user’s response to system actions. Each observation must contain

some signal of relevance or search intent, otherwise τ(a,r,o) = τ(a,r) and there

would be no temporal dependency. In some cases the value of the observation like-

lihood is simply P(o|a,r) = r, for instance in search tasks where accurate explicit

relevance feedback is guaranteed. Otherwise, in most situations the observations

will be click-related and thus the observation probability is the probability of click,

as is the case in the example in Fig. (3.1).

Stages Typically, the stages in a DIR task represent distinct interactions occurring

in a linear time order. In these cases ω(t) may take a value between 0 and 1 or be

set to a monotonically decreasing function that favorably weights the utility scores

74 Chapter 3. Dynamic Information Retrieval

of immediate stages. Setting ω(1) = 1 and ω(t) = 0 for t > 1 gives the static and

interactive scenarios.

Alternatively, a non-linear sequence of interactions (or search path) can be

modeled as Yang and Lad did with their session-based utility function [140]. For

instance in session search, a search path represents a particular sequence of doc-

uments examined by the user and the query reformulations made. For the DIR

framework, the stage t may instead represent a specific search path, and so ω(t)

could be interpreted as the likelihood of this path rather than an explicit discount,

penalizing improbable search paths and rewarding likely ones.

The time horizon T dictates the number of advance stages to optimise for. A

large time horizon will lead to explorative action strategies that benefit later stages.

In the experiments in this chapter, T is set to 2 so that only exploitative optimizations

for the immediate next stage are considered.

Dynamic Utility Through the recursive evaluation of the utility function, one can

not only learn the optimal sequence of actions to make in the dynamic system,

but also learn the optimal action for each possible observation at each stage. If

one were to store these in a lookup table ahead of deployment, then the dynamic

system would be immediately responsive to user feedback and able to cater to a

population of users. Nonetheless, the construction and storage complexity of such

a table may prove intractable. Also, the static utility US may be set as the dynamic

utility function UD of a nested subproblem in the search task. For example, the

utility of choosing an optimal ranking of documents may be embedded in the utility

for determining an optimal sequence of rankings for a user in a session, which itself

may be defined within the context of modeling a user’s topic preference from search

sessions in their search history.

3.3.3 Links to Existing Work

Building on the analysis of the DIR framework, links between its components and

other related work in interactive retrieval and session search can be identified.

3.3. Dynamic IR Theory 75

3.3.3.1 IIR-PRP

As covered in Section 3.2.2.1, the IIR-PRP is a framework designed for interactive

IR in the traditional sense. The objective function in IIR-PRP balances the costs

and benefits of choosing actions within a sequence and bears some similarities to

the dynamic utility function. Nonetheless, by lacking any form of user feedback

or temporal dependency, in this thesis the model is not described as interactive or

dynamic, instead, within the terminology used in this chapter, this means that it is

actually a static method.

By using the DIR framework notation, the IIR-PRP objective function in

Eq. (3.16) can be rewritten as

UIIR(~a,~r) =
M

∑
i=1

[i−1

∏
j=1

(1− r j)

](
ω(i)+ ri ∑

o∈~o
P(o|ai,ri)US(ai,ri)

)
(3.20)

evaluated over a sequence of M actions (usually a ranking of documents). Eq. (3.20)

is a generalization of the formula originally defined, where it is recognized that the

cost and benefit parameters αi and βi are simply utility values, that the probability

of whether a user continues searching or not is the observation likelihood, and that

the cost of reaching a specific action is the path discount.

Further to this, the IIR-PRP’s ranking rule ρ in Eq. (3.17) can similarly be

defined in this setting as

ρ(~a1...i,~r1...i,ω) =US(~a1...i,~r1...i)−
ω

rai

i−1

∏
j=1

(1− ra j) (3.21)

where the utility of adding an action ai to an existing sequence is countered by the

path discount and the probability of not finding previous actions relevant. This is

implemented in the algorithm for IIR-PRP in Algorithm 2 later in this chapter.

3.3.3.2 Session-Based Utility

There have been recent advances in the modeling of user benefit across queries in

search sessions. This is in recognition of the fact that ad hoc retrieval often occurs

over multiple queries in a session. A simple approach has been to extend discount-

76 Chapter 3. Dynamic Information Retrieval

gain metrics such as DCG and average precision, typically associated with static

retrieval, across multiple stages. Using the terminology in this chapter, a discount-

gain function for a single stage has the form ∑
M
i=1 ω(i)US(ai,ri). For example, in

the DCG metric the setting would be ω(i) = 1
log2(i+1) and US(ai,ri) = 2rai −1. For

the session-DCG (sDCG) [141] metric, a single layer of recursion is introduced,

where

sDCG =
T

∑
t=1

ω(t)U(~at ,~rt) (3.22)

and the discount and gain functions are set as ω(t) = 1
log2t(t+1) and

U(~at ,~rt) = DCG(~at ,~rt) =
M

∑
i=1

1
log2(i+1)︸ ︷︷ ︸

ω(i)

×(2rati −1︸ ︷︷ ︸
US(ati,rti)

) (3.23)

Here, the stages operate across a linear sequence of search rankings. In the

session-Average Precision (sAP) metric, the path of interaction taken by the user

is unknown and so the metric function marginalises over the space of all such paths

to find the expected sAP [132].

3.4 Application of DIR

Thus far, a theoretical framework for dynamic IR has been formulated and the dy-

namic utility function UD given in Eq. (3.19) derived. In this section, the framework

is applied to the multi-page search problem in DIR. In doing so, the functional set-

tings for the elements in Table (3.1) and their implementation in a workable algo-

rithm can be demonstrated, which gives useful insight into the practical limitations

of optimizing over UD. This algorithm is compared against PRP and IIR-PRP based

approaches in experiments using TREC data, as well as static and interactive vari-

ants of the DIR objective function. Through this, an understanding of the effect

that dynamic utility optimization has on the quality and diversity of rankings in

multi-page search can be gained.

3.4. Application of DIR 77

3.4.1 Multi-Page Search Problem

The multi-page search scenario is described in more detail in Section 1.2 and

demonstrated in Fig. (1.3), Fig. (1.5) and Fig. (1.7). It concerns the ranking of

documents over multiple pages of search results [133, 134]. MPS typically models

exploratory search queries which are more likely to lead to multi-query sessions

and multi-page searches [6] (with one study finding that 27% of such searches oc-

cur over multiple pages [142]). In this scenario documents are retrieved for a single

query, ranked and then segregated into pages of M documents. On each page, a user

may examine and click on documents. An underlying assumption is that the user

will return to the results page and move onto the next page, and so a threshold of T

pages can be defined over which the user will search. The goal in MPS is to create

rankings of relevant documents across T pages. For the pages following the first,

document clicks can be used to personalize search rankings, a situation analogous

to the example in Fig. (3.1).

In this scenario, each page of search represents a stage in the framework, with

T the threshold number of pages. Nominally, T is set to 2 although a larger number

of pages is feasible and is explored further in the next chapter. The action sequence

~at = 〈at1, . . . ,atM〉 represents the ranking of documents for ranks 1 to M on page

t. Before Eq. (3.19) can be fully implemented, each of its functional components

must be defined in the context of MPS.

3.4.1.1 Expected DCG

The static utility in multi-page search is a measure of the quality of the ranking of

documents on each page. As with ad hoc ranking and retrieval, this can be evaluated

using a metric such as DCG, MAP or ERR. In the absence of relevance judgements,

one can instead find the expected metric value which uses probabilities of relevance

instead [135]. In the application in this chapter, the static utility is set as the expected

DCG function, given by

US(~at ,~rt) =
M

∑
i=i

2rati −1+2rati−1 log2(2)Var[rati]

log(i+1)
(3.24)

78 Chapter 3. Dynamic Information Retrieval

This utility also takes into consideration the variance of the document’s probability

of relevance.

3.4.1.2 Examination Hypothesis

In multi-page search the observations are document clicks, which are regarded as

an implicit signal of the relevance of a document to the user. Thus, the clicks from

previous search pages can be utilised to update the probability of relevance model

and personalize the document rankings for future pages.

For a ranking of M documents, the observation space O in MPS for a particu-

lar page is the combination of binary click events for each document in the ranking.

This is denoted as the observation vector~o = 〈o1, . . . ,oM〉 where o ∈ {0,1}. This

could naïvely be set to the uniform distribution P(o|a,r)= 1
|O| but eye-tracking stud-

ies and click model research indicates otherwise. In this application, the simplest

model is used, the Examination Hypothesis model [38] in Eq. (2.1).

This model supports the eye tracking research by inferring that the probability

of a click on a document in a ranked list is equal to the product of its probability of

relevance and the bias of its rank position. Thus, the probability of a sequence of

clicks is given by

P(~o|~at ,~rt) =
M

∏
i=1

(birati)
oi(1−birati)

1−oi (3.25)

where bi is a rank bias parameter. In the implementation in this chaprer, Eq. (3.25)

is set as the observation likelihood function and bi =
1

log(i+1) which is the discount

value used in the expected DCG utility in Eq. (3.24).

3.4.1.3 Conditional Multivariate Gaussian Distribution

Once a sequence of click observations for a ranking of documents has been ob-

tained, the probability of relevance distribution for the remaining documents can

be updated. This is achieved by defining the distribution of all the probabilities of

relevance for all documents in the collection as a multivariate Gaussian distribution

R∼N (~r,Σ) (3.26)

3.4. Application of DIR 79

where R is their collective random variable,~r the vector of mean relevance scores

and Σ the covariance matrix over the documents.~r may be set as any relevance score

and Σ may be set using document similarity or other correlation scores (which is in-

vestigated further in the next chapter). If~r represents a probability of relevance,

then the distribution can be set as a truncated multivariate Gaussian bounded be-

tween 0 and 1. If it is not possible to define the distribution of a relevance score,

then the distribution of the mean of multiple relevance scoring techniques can be

derived, resulting in an approximately Gaussian distribution that incorporates mul-

tiple signals of relevance. It is this approach that is taken in this chapter, where~r and

Σ are set as the means and variances of the retrieval scores from five well-known

techniques, with the diagonal elements from Σ used as variance values for the utility

calculation in Eq. (3.24).

Modeling the relevance distribution in this way allows one to conditionally up-

date the probabilities of relevance~r based on click observations. For a given rank

action~at (which includes both clicked and non-clicked documents in the ranking),

the remaining non-ranked documents are denoted as \~at and the distribution param-

eters are partitioned as

~r =

~r\~at

~r~a

 Σ =

Σ\~at\~at Σ\~at~at

Σ~at\~at Σ~a~a

 (3.27)

The mean relevance scores and covariance matrix can then be updated for non

ranked documents using the formulae

~r\~at =~r\~at +Σ\~at~at Σ
−1
~a~a (~o−~r~at) (3.28)

Σ\~at\~at = Σ\~at\~at −Σ\~at~at Σ
−1
~at~at

Σ~at\~at (3.29)

and observations ~o. Thus, for given actions and observations, the functions

above can be used to define a new conditional multivariate Gaussian distribu-

tion of the probability of relevance of the remaining documents, given as Rt+1 ∼

N (~r\~at ,Σ\~at\~at |~at ,~o). For the multi-page search setting, τ(a,r,o) is defined as the

80 Chapter 3. Dynamic Information Retrieval

relevance update function in Eq. (3.28).

3.4.1.4 Geometric Discount

The final component required for the DIR application is the discount function ω(t).

In the multi-page scenario, the utility of a linear sequence of document rankings

is measured rather than the path-based behaviour of users. As such, the simple

discount used in a POMDP is adopted, setting ω = λ (which is effectively setting it

as the geometric discount ω(t) = λ t−1 due to the recursion of the dynamic utility).

Here, one can consider ω(t) as the probability of the user visiting page t. When

λ = 0, the assumption is that only the first page will be visited, and when λ = 1

all pages are equally likely and given equal weight. The optimal setting for λ will

vary depending on the type of searches being performed as well as the corpus and

quality of results.

3.4.2 DIR-MPS

After defining each of the functional components of the dynamic IR framework

for the multi-page search scenario, the DIR-MPS algorithm is presented in Algo-

rithm 1. This algorithm is a direct implementation of the recursive utility function

UD in Eq. (3.19) that determines the optimal sequence of document rankings to

display for each page. It is a value iteration algorithm that searches the space of

potential rankings at each iteration to determine the optimal one, whose value is

calculated based on all potential click observations and their subsequent optimal

future time steps.

It is worth noting that Algorithm 1 and the described settings for the DIR

framework elements are one such instantiation of the framework in the multi-page

search scenario. The motive in this chapter is not to develop a state of the art new

ranking technique but rather to demonstrate the application of the framework to a

DIR problem. A different instantiation is given in Chapter 4.

3.4.2.1 Dynamic Utility Approximation

The DIR-MPS algorithm features a number of approximation techniques that in-

crease its computational efficiency as a way to counteract the inherent complexity of

3.4. Application of DIR 81

Algorithm 1 The DIR-MPS Algorithm

function DIR-MPS(t,~r,A)
if t = T +1 then return [0,〈〉]
end if
~a∗t = 〈〉;~a

∗
t+1 = 〈〉

loop i← 1 to M . Sequential Ranking Decision
~a =~a∗t ;u∗ = 0
for all a ∈A \~a do

~at = 〈~a,a〉
ut =US(~at ,~rt) . Eq. (3.24)
for all~o ∈ O do

~rt+1 = τ(~at ,~r,o) . Eq. (3.28)
[ut+1,~at+1] = DIR-MPS(t +1,~rt+1,A \~at)
ut = ut +λ ·P(~o|~at ,~rt) ·ut+1 . Eq. (3.25)

end for
if ut > u∗ then

u∗ = ut ;~a∗t =~at ;~a∗t+1 =~at+1
end if

end for
end loop
return [u∗,〈~a∗t ,~a

∗
t+1〉]

end function

the DIR framework (discussed further in Section 3.4.3). Firstly, the action space of

potential rankings is reduced by employing a greedy sequential ranking decision

policy. That is, for each page the optimal document to rank at each position is found

one by one. For example, this is achieved by first setting M = 1, then finding the

document a∗ that maximises US(a,ra). Then after this document is fixed, M is set to

2 and the next optimal action in the sequence that maximises US(〈a∗,a〉,~r〈a∗,a〉) is

found. Continuing in this fashion allows one to find an approximately optimal rank-

ing for a single page, one document at a time, greatly reducing the computational

complexity.

A property of the probability distribution given in Eq. (3.25) also means that

the observation space can be greatly reduced. This distribution follows Zipf’s law,

where a few of the click combinations contribute towards most of the probabil-

ity mass. In fact, from early DIR-MPS evaluation experiments it was found that

typically around 15% of the combinations contributed to 95% of the aggregated

82 Chapter 3. Dynamic Information Retrieval

Algorithm 2 The IIR-PRP-MPS algorithm

function IIR-PRP-MPS(M,T,λ ,A ,~r)
~a∗ = 〈〉
loop i← 1 to M×T

a∗ = argmaxa∈A \~a∗ ρ
(
〈~a∗,a〉,~r,λ

)
. Eq. (3.21)

~a∗ = 〈~a∗,a∗〉
end loop
return~a∗

end function

probability. As such, in this chapter’s implementation of DIR-MPS the observation

space was restricted to only the most probable click combinations that cumulatively

sum to 0.95, trading off the potential 5% inaccuracy for speed.

Finally, it can be shown that when ranking over a single stage, the expected

DCG utility function is maximised when documents are ranked according to the

PRP [135]. This is exploited to increase the efficiency of the DIR-MPS algorithm by

ranking the threshold page (where there is no longer a future temporal dependency)

according to the PRP over the conditionally updated probabilities of relevance.

3.4.2.2 IIR-PRP-MPS

In the experiments, DIR-MPS is directly compared against rankings created from

the applied PRP and IIR-PRP ranking rules. With the Probability Ranking Principle

one can simply rank documents in decreasing order of the probability of relevance

across T pages. However, the IIR-PRP has no existing direct application to the MPS

scenario. Instead, the definition of the ranking function ρ given in Eq. (3.21) is used

to create the IIR-PRP-MPS algorithm shown in Algorithm 2.

Here, the sequential ranking rule is also employed to build up an optimal rank-

ing over all pages, one document at a time, by selecting the document that has the

highest ρ value for each rank. Thus, there is some dependency on previously ranked

documents, which is not possible in the PRP, but like the PRP there is no way to

take into account user feedback or update the probabilities of relevance.

3.4. Application of DIR 83

3.4.3 Practical Limitations

The general computational complexity of the optimization of UD can be shown

to be PSPACE-Complete (through its connection to POMDPs). For small T and

observation and action spaces this can be reasonable, but typically these spaces

may be impractically large.

For example, an IR task such as information filtering or music recommendation

may operate over potentially infinite time steps. In these cases the discount factor

and threshold T are important. Further, the observation space may not be as well

defined as that in the multi-page search scenario where |O|= 2M, for example, the

space of possible reformulations for a query or 2D gaze positions in eye-tracking.

Finally, the action space can be difficult to optimise over as is the case with DIR-

MPS, where the sequential ranking decision reduces the size of the action space

from O(N!/(N−T M)!) to O(T NM−T M2) for a collection of N documents. The

application in this chapter serves to demonstrate that such approximations may be

needed when working with the DIR framework, especially given that the optimiza-

tion of UD is not guaranteed to be tractable, and an optimal solution may not exist

depending on the particular problem settings.

3.4.4 Experiment

To gain insight into the application of the dynamic IR framework in the multi-page

search scenario, and to compare with the other theoretical frameworks, an exper-

iment was conducted using the WT10g, AQUAINT and ClueWeb09 datasets, the

details of which are included in Table (3.2). These test collections were chosen as

they were designed for evaluating ranking and retrieval algorithms and were easily

extended to the multi-page problem. The WT10g dataset allowed for testing the the-

oretical frameworks in the standard ad hoc ranking and retrieval environment. The

Robust data consisted of difficult to rank ad hoc queries which were hypothesized

to be more likely to require several pages of search results. The diversity track data

allowed for testing of the hypothesis that dynamic optimization leads to increased

diversification in ad hoc retrieval. A drawback to using these datasets is that they

lacked interaction data, which is not needed when optimizing for probable clicks in

84 Chapter 3. Dynamic Information Retrieval

Table 3.2: Overview of the three TREC test collections.

Name Task # Docs Topics
WT10g TREC 9 Web Track 1,692,096 451-500

AQUAINT Robust 2005 1,033,461 50 difficult Robust 2004
topics

ClueWeb09 Diversity Task 2009/10 503,903,810 1-100 (461 subtopics)

the DIR framework, but important in the interactive setting.

On each collection, the top 100 documents were retrieved for each topic scored

using each of the TF-IDF, BM25, Jelinek-Mercer, Dirichlet and Two-Stage lan-

guage model retrieval methods from the Indri1 search engine. The documents were

pooled and subsequently scored over all the techniques. This gave an average of

193 ranked documents per topic each with 5 relevance score values. After min-max

normalization, each score was averaged to give the probability of relevance vector

~r and covariance matrix Σ. The dependencies in this covariance matrix reflected the

level of agreement between the different retrieval methods rather than direct cor-

relations between the documents themselves i.e. similarly ranked documents were

positively correlated with one another. Finally, those documents that had the top

30 mean relevance scores were selected. These were then used by the experiment

algorithms to create rankings for two pages of search results with ten documents on

each.

These documents were ranked according to the baseline PRP approach and

also the already described IIR-PRP-MPS and DIR-MPS algorithms. An interac-

tive version of DIR-MPS (called IIR-MPS) was also investigated, that ranked the

first page of results according to the PRP and then optimised a ranking for the sec-

ond page of results by marginalizing over potential clicks using Eq. (3.18). In this

case, only second page optimization occurred based on the feedback from the stat-

ically ranked first page. Also, a static version of DIR-MPS (called S-MPS) was

investigated, that removed feedback from UD entirely to give the objective function

US(~a1,~r)+λUS(~a2,~r). ‘Perfect click’ variants of the dynamic (DIR-MPSC) and in-

teractive (IIR-MPSC) algorithms were also investigated, where the hidden relevance

1http://www.lemurproject.org/indri.php

http://www.lemurproject.org/indri.php

3.4. Application of DIR 85

labels were interpreted as clicks on the first page of results (i.e. pseudo-relevance),

giving the optimal observation setting and an upper bound on performance for the

second page.

To evaluate the quality of the rankings, MAP, nDCG and ERR were measured

for each page. For the DIR-MPS and IIR-MPS algorithms, an optimal 2nd page

ranking for every click combination was generated in the observation space, giv-

ing different metrics scores for each. In these cases, the reported page two metric

scores are averages over the page two scores for all click combination based rank-

ings. This highlights an open area for research; the definition of evaluation met-

rics for DIR that can take into account all of the potential rankings in a dynamic

system. The session-based metrics sDCG (defined in Eq. (3.22)) and sAP were

also measured to evaluate performance over both pages, although it is worth noting

that these metrics were designed for session search rather than multi-page search.

Finally, α−nDCG [36], Intent-Aware Precision (IA-Precision) [143] and Intent-

Aware ERR (ERR-IA) [144] were measured for scoring the diversity of rankings in

the ClueWeb09 collection.

The results of the experiments are shown in Table (3.3). For the Web Track

and Robust collections, one can observe that the 1st page losses of the dynamic

techniques (when compared to the PRP and IIR-PRP-MPS baselines) are made up

for by gains in the second page, significantly so on the WT10g dataset. Nonethe-

less, in these ad hoc ranking scenarios it is clear that the static PRP and IIR-PRP

frameworks are still very effective.

The results are different with the diversity track data. The metric scores for this

data in Table (3.3) were calculated using relevance judgements from all subtopics.

The opposite relationship between page scores can be seen here, with DIR-MPS

having higher scores for the 1st page and losses in the second, except for ERR

which is significantly improved across both pages. There is further evidence of this

with the diversity metric scores in Table (3.4), where it is clear that diversification

is occurring in the first page and less so in the second. This backs up the intuition

(in Fig. (3.1d)) that a dynamic technique will initially diversify results to improve

86 Chapter 3. Dynamic Information Retrieval

Table 3.3: nDCG, MAP and ERR scores for pages 1 and 2 of the search results. Static,
interactive and dynamic algorithms are grouped. The results shown are those for
the optimal value of λ in each collection, found by repeating the experiment for
values in the range [0,1]. The maximum score for each metric on each page is
given in boldface. A 1 or 2 indicates that the result is significantly better than the
PRP or IIR-PRP-MPS baseline scores respectively using the Wilcoxon signed-
rank test (p < 0.05).

Page 1 Page 2
Collection Algorithm nDCG MAP ERR nDCG MAP ERR

Web Track
(WT10g)
λ = 0.5

PRP 0.338 0.167 0.169 0.133 0.025 0.053
IIR-PRP-MPS 0.330 0.162 0.162 0.166 0.041 0.078
S-MPS 0.295 0.134 0.130 0.226 0.070 0.24212

IIR-MPS
0.338 0.167 0.169

0.125 0.025 0.1031

IIR-MPSC 0.154 0.040 0.1511

DIR-MPS
0.235 0.091 0.092

0.2121 0.0541 0.28912

DIR-MPSC 0.2301 0.059 0.29712

Robust
(AQUAINT)
λ = 0.5

PRP 0.624 0.107 0.398 0.552 0.061 0.294
IIR-PRP-MPS 0.629 0.107 0.398 0.514 0.052 0.288
S-MPS 0.608 0.096 0.388 0.595 0.066 0.88712

IIR-MPS
0.624 0.107 0.398

0.519 0.050 0.73712

IIR-MPSC 0.554 0.057 0.69012

DIR-MPS
0.548 0.063 0.304

0.575 0.065 0.65612

DIR-MPSC 0.553 0.058 0.69712

Diversity
(ClueWeb09)
λ = 0.8

PRP 0.4022 0.0492 0.199 0.476 0.052 0.265
IIR-PRP-MPS 0.384 0.046 0.193 0.468 0.051 0.257
S-MPS 0.388 0.041 0.193 0.465 0.054 0.35812

IIR-MPS
0.4022 0.0492 0.199

0.431 0.042 0.35312

IIR-MPSC 0.436 0.042 0.34512

DIR-MPS
0.4512 0.047 0.2382

0.445 0.042 0.37312

DIR-MPSC 0.426 0.037 0.35612

future rankings, and also helps explain the losses in performance of the 1st page

in the other datasets (which do not have subtopic relevance judgements). The re-

duced diversity of the 2nd page indicates that it is more tightly focused on the user’s

subtopic preference.

It appears that the diversity task is more suited as an application of the dynamic

IR framework. This is evidenced by the optimal settings for λ in each collection.

For the ad hoc ranking task in the WT10g and AQUAINT collections, the setting for

3.5. Related Work 87

Table 3.4: α-DCG, IA-Precision and ERR-IA scores for page 1 and 2 search results from
the diversity track data. The maximum score for each metric on each page is
given in boldface. A 2 indicates that the result is significantly better than the
IIR-PRP-MPS baseline score using the Wilcoxon signed-rank test (p < 0.05).

Page 1 Page 2
Algorithm α-DCG IA-Prec ERR-IA α-DCG IA-Prec ERR-IA

PRP 0.360 0.083 0.239 0.420 0.085 0.294
IIR-PRP-MPS 0.345 0.077 0.230 0.404 0.086 0.269

S-MPS 0.352 0.078 0.233 0.417 0.089 0.280
IIR-MPS

0.360 0.083 0.239
0.377 0.079 0.243

IIR-MPSC 0.379 0.080 0.236
DIR-MPS

0.4032 0.082 0.270
0.400 0.079 0.264

DIR-MPSC 0.386 0.077 0.254

λ gives greater weight to the 1st page of results, rewarding immediately effective

rankings. Whereas in the diversity task, the utility of the 2nd page has a larger effect

on the overall utility, encouraging diversity.

Further to this, the interactive variant scored highly with session based met-

rics on the Robust dataset in Table (3.5), but otherwise the static techniques were

optimal, even for the diversity task. This may partly be due to the application of a

session-based metric to the multi-page scenario and also the inability of the metric

to take into account the user interaction. Finally, it can also be seen that the ‘per-

fect click’ variants generally outperform their counterparts (except over the diver-

sity data), indicating that the 2nd page ranking can be improved when high quality

clicks are observed.

In summary, by its nature the DIR approach to multi-page search places greater

emphasis on different stages of the search task. It seems that it may not be suited

to all search environments i.e. ad hoc search. In such cases the static approaches

can be more effective. Nonetheless, the dynamic IR framework has other desirable

properties such as the diversification and personalization of results over time.

3.5 Related Work
Throughout this chapter the dynamic IR theory has been presented within the con-

text of the surrounding and aforementioned literature, in this section are those areas

88 Chapter 3. Dynamic Information Retrieval

Table 3.5: sAP and sDCG for both pages of results. The results are grouped identically to
those in Table (3.3).

Both Pages
Collection Algorithm sAP sDCG

Web Track
(WT10g)
λ = 0.5

PRP 0.097 1.326
IIR-PRP-MPS 0.101 1.347
S-MPS 0.095 1.236
IIR-MPS 0.097 1.291
IIR-MPSC 0.102 1.353
DIR-MPS 0.069 1.022
DIR-MPSC 0.072 1.027

Robust
(AQUAINT)
λ = 0.5

PRP 0.085 5.735
IIR-PRP-MPS 0.083 5.680
S-MPS 0.083 5.749
IIR-MPS 0.081 5.543
IIR-MPSC 0.084 5.729
DIR-MPS 0.065 4.921
DIR-MPSC 0.062 4.909

Diversity
(ClueWeb09)
λ = 0.8

PRP 0.0512 1.8832

IIR-PRP-MPS 0.048 1.808
S-MPS 0.049 1.787
IIR-MPS 0.047 1.783
IIR-MPSC 0.047 1.787
DIR-MPS 0.046 1.859
DIR-MPSC 0.044 1.839

of the related work not already discussed.

For instance, the settings of the components in the DIR framework for multi-

page search cover a wide area of research in IR. Firstly, the examination hypothesis

model used is just one of a number of probabilistic click models that could have

been employed, including the click-chain model [57] and even a POMDP-based

model [145]. Other path-based discount functions have been explored in the lit-

erature [146] as well as other multi-stage utilities and metrics such as Time-Based

Gain [147]. Related work on using Markov chains to measure the utility of rankings

at each time step is a potential method for evaluating DIR problems [148]. Further

to this, the identification of the dynamic IR framework as a POMDP raises the pos-

3.6. Conclusion 89

sibility of using established techniques such as the Witness algorithm [149] to find

optimal action policies.

The work on defining the elements of a POMDP in session search [130] is a

close relation to this work, though focusing more on the testing of particular settings

of DIR components in the session search scenario rather than explicitly gaining an

understanding of the framework and components themselves. Nonetheless, their

work contains an evaluation of algorithms that fall under the DIR framework in-

cluding one similar to DIR-MPS.

This work differs from the literature in that: 1) this is the first work to define

the characteristics that distinguish dynamic IR from the other theoretical IR frame-

works, 2) the dynamic utility is the generalization of many existing ranking utilities

and incorporates many elements of IR research such as click models, and 3) the

effectiveness of the framework and the static frameworks in different scenarios is

confirmed in the experiments.

3.6 Conclusion
In this chapter, a theoretical framework for Dynamic Information Retrieval has been

established. By contrasting with static and interactive frameworks, the three char-

acteristics that define dynamic IR systems have been identified; user feedback, tem-

poral dependency and an overall goal. This motivated the derivation of the dynamic

utility function UD, which has its roots in the POMDP formulation. The components

of this utility can be directly implemented using elements from existing research

which are applied in the DIR-MPS algorithm, an example instantiation designed for

the multi-page search problem. The experiments confirm that in this scenario, one

of the effects of optimizing for UD is the diversification of search results. Otherwise,

they also demonstrate that for other scenarios the PRP and IIR-PRP frameworks are

still effective.

Chapter 4

Dynamic Multi-Page Search

In this chapter, the DIR framework is once again applied to the problem of multi-

page search. Here, potentially more accurate and efficient settings for the frame-

work elements are explored: for instance, utility approximation is achieved using

Monte Carlo sampling, and a single relevance scoring technique combined with

document similarities are used in the relevance model. TREC evaluations demon-

strate that the optimal ranking strategy can naturally optimise the trade-off between

exploration and exploitation and maximise the overall IR metric score over all

pages. Significant gains are made against a number of well-established ranking

baselines from the areas of diversification and relevance feedback. Once again, it

is shown that the optimal ranking policy is to choose a diverse, exploratory ranking

to display on the first page, followed by a personalised re-ranking of the remaining

pages based on the user’s feedback.

4.1 Introduction
A well-established problem in the ad hoc search scenario in IR is that a user is often

unable to precisely articulate their information need in a suitable query. In such

cases, users can be found to issue short, exploratory queries that roughly encapsu-

late their need, followed by a rigorous exploration of the retrieved documents [150].

This exploration can occur across multiple queries in a session (the focus of Chap-

ter 6), otherwise across multiple pages of search. These short queries are often

ambiguous such as with the jaguar example in Fig. (1.3) or the apple example

92 Chapter 4. Dynamic Multi-Page Search

in Fig. (3.1). Ranking for these types of queries can be made easier when given ac-

cess to context such as relevance feedback, and improved by introducing diversity.

In this chapter, the DIR framework is utilised in an algorithm for dynamic rank-

ing that uses feedback from the top-ranked documents in ad hoc retrieval to contex-

tually re-rank the remaining documents. The scenario considered is the familiar

multi-page search scenario, where the search results are split into multiple pages

that the user traverses by clicking a ‘next page’ button on the SERP. The multi-

variate Gaussian relevance model is once again used for the relevance update func-

tion, but the other components of the DIR framework are implemented using other

techniques, for instance, document covariance is determined using cosine similarity,

a better measure of document similarity than the previous chapter’s relevance score

distribution, and Monte Carlo sampling is used to reduce the framework complex-

ity. The dynamic programming approach is used to optimise the balance between

exploration (maximising the learning of the documents’ relevance) and exploitation

(choosing only the most relevant documents). The new algorithm is tested on TREC

datasets and the results show that the method significantly outperforms other strong

baselines across multiple pages.

4.2 Related Work

Shen [151] designed a system similar in scope to this whereby a re-ranking of doc-

uments occurred whenever a user clicked on a webpage and then returned to the

SERP, rather than explicitly navigating to the next page. Aside from this differ-

ence in user interface, no exploration occurred on the original ranked list and as

such, document dependence and diversity were not factored into the formulation.

This is an example of an interactive approach to this problem. A similar interactive

system displayed dynamic drop-down menus containing new document rankings

where users could click on individual search results [152], allowing the user to nav-

igate SERPs in a tree-like structure. Again, this method only took into account

feedback on one document at a time and did not incorporate diversity or document

exploration into its original ranking.

4.3. Problem Formulation 93

The work most related to this work is the SurfCanyon1 search engine [153]

which utilises user signals such as clickthroughs in order to interactively improve

search for a user across multiple pages and queries. This is achieved by using a

mixture of different user signals and the method incorporates a number of interac-

tions including user interface changes, results-branching and page re-ranking. The

approach in this thesis is a more subtle one, only affecting re-rankings that occur

later in the user’s returned results with the intention of remaining invisible in order

not to disrupt the user’s search experience. Furthermore, it uses the state of the art

dynamic IR framework presented in this thesis. Since the publication of this work,

Luo et al. [130] have re-implemented this algorithm for the related session search

problem and compared it to other state of the art techniques, with mixed results.

This work differs from the literature in that: 1) the dynamic re-ranking of docu-

ments only occurs whenever the user navigates to the next page in an SERP, making

it less disruptive than other interactive techniques, 2) active exploration occurs in

the original ranking, leading to diverse results that improve the performance of the

system over all pages, and 3) the algorithm is based on the dynamic IR framework.

4.3 Problem Formulation
The formulation in this chapter concerns the exploratory, multi-page dynamic

search problem, where a user performs an initial search which returns a set of ranked

results that take into account the covariance of the documents, allowing for diver-

sification and exploration in order to learn an optimal ranking for the next pages.

The formulation models a user who navigates the SERP in a typical way, clicking

on documents or providing explicit relevance ratings. Upon clicking the ‘next page’

button to indicate that they would like to view more results, the feedback obtained

up until that point is combined with the document covariance to re-rank the search

results on the next page.

In traditional IR ranking, documents would be ordered under a static or in-

teractive framework such as the PRP or the IIR-PRP. Here, the DIR framework is

1http://www.surfcanyon.com/

94 Chapter 4. Dynamic Multi-Page Search

used instead. In particular the probability distribution of the document relevance

is given by the multi-variate Gaussian distribution from Eq. (3.26), which is equiv-

alent to assuming that the document probability of relevance estimate is correct

subject to some Gaussian noise. As a result, the relevance belief update function

from Eq. (3.28) (as well as the covariance matrix update function in Eq. (3.29)) are

also used in this formulation to update the probabilities of relevance after observing

user feedback.

In the previous chapter,~r and Σ were calculated by averaging the scores from

five different document scoring methods. Here, only a single model is considered.

The well-known BM25 score is used for~r, although other relevance scoring meth-

ods could be used such as the vector space model, Dirichlet etc. The covariance

matrix Σ is approximated by measuring the cosine and Jaccard document similarity

metrics for all document pairs, although topic clustering techniques could also be

used [154].

For each query, the search system displays M documents for each results page.

The rank action is denoted as the action vector~a where ati is the index of the doc-

ument retrieved at rank i on the tth page i.e. ~a1 is the page 1 (initial) ranking and

~a2 is the page 2 (re-ranked based on feedback) ranking. ~ot = 〈ot1, . . . ,otK〉 is the

vector of feedback observations obtained from the user while interacting with page

t, where K is the number of documents given feedback with 0 ≤ K ≤M, and oti is

the relevance feedback for the document ranked at position i.

For each page, the static utility is a simplified version of the expected DCG

score from Eq. (3.24), denoted here as

US(~at ,~rt) = λt

M

∑
i=1

E[Rati]

log2
(
i+(t−1)M+1

) (4.1)

where E[Rati] = r̂ti is the estimated relevance of the document chosen for rank po-

sition i on result page t. The overall utility across all pages is thus ∑
T
t=1US(~at ,~rt).

This utility was chosen as it is simple and rewards finding both the most relevant

documents and also ranking them in the correct order and it does not require the

4.3. Problem Formulation 95

variance of the documents, which was not considered in the experiments in this

chapter for simplicity. The rank weight 1
i+(t−1)M+1 is used to give greater weight to

ranking the most relevant documents in higher positions and on earlier pages and is

similar to the weight used in the sDCG metric.

In this formulation, the path-discount is set using the tunable mixture model

parameter ω(t) = λt with λt ≥ 0, which is used to adjust the importance of results

pages and thus the level of exploration in the initial page. When λ1 is set close to

zero, the initial ranking is chosen so as to maximise the next page’s ranking utility

and thus the priority is primarily on exploration [155]. In the opposite extreme,

setting λt = 1 ∀t means that there is no exploration at all and the documents are

ranked according to the PRP on every page.

From the experiments in the previous chapter as well as the findings from this

chapter’s experiments, it appears that setting the page threshold T to 2 (only con-

sidering the immediate next page) gives the best results. To simplify the derivations

in this chapter, T is set as 2 although all of the results and algorithms can be easily

generalised to the case where T > 2.

4.3.1 User Feedback

Important elements of the DIR framework are the observations~o and their probabil-

ity distribution P(~o|~a,~r). In the previous chapter, clicks and non-clicks were con-

sidered as signals of relevance and the examination hypothesis model in Eq. (3.25)

was used as their distribution. In this chapter, the interpretation of the observations

is given greater flexibility by allowing for direct user ratings to be used instead. In

this case, clicks can be interpreted as binary ratings.

In lieu of a specific model for finding the probability of the feedback observa-

tions, the Gaussian distribution over the ranked documents’ relevance estimates can

be used instead,

oa v N (r̂a, σ̂a) (4.2)

The probability of observing a particular observation vector~o depends on both

96 Chapter 4. Dynamic Multi-Page Search

the probability distribution function of the Gaussian distribution in Eq. (4.2) and

also the static utility’s DCG rank bias weight 1/
(
log2(i+1)

)
, which is derived as:

P(~o|~a,~r) = 1
(2π)K/2|Σ1′|1/2 exp

{
−1

2
(~o−~r1′)

T
Σ
−1
1′ (~o−~r1′)

} M

∏
i=1

(
log2(i+1)−1

)1−εi

log2(i+1)

(4.3)

where εi = 1 if the document at rank i has received a user judgement, otherwise 0.

If εi = 1 ∀i up until rank M, then K = M. ~r1′ and Σ1′ refer to the probabilities of

relevance vector and covariance matrix of only those documents in rank action~a1

that have feedback in~o.

4.3.2 Dynamic Utility Optimisation

By finding the optimal ranking actions that maximise the static utility in Eq. (4.1)

across all pages, the dynamic utility function UD(~r, t) can be recursively derived as

UD(~r1,1) = max
〈~a1,...,~aT 〉

[T

∑
t=1

λt

M

∑
i=1

E[Rati]

log2
(
i+(t−1)M+1

)] (4.4)

= max
~a1

[
λ1~r1 ·WWW 1 +max

~a2
E
[T

∑
t=2

λt~rt ·WWW t

∣∣∣∣~o]] (4.5)

= max
~a1

[
λ1~r1 ·WWW 1 +E

[
UD(~r2,2)

∣∣∣∣~o]] (4.6)

where WWW t =
〈

1
log2(1+(t−1)M) , . . . ,

1
log2(M+(t−1)M)

〉
is the DCG weight vector. By ex-

plicitly setting T = 2 and λ as a mixture model parameter, Eq. (4.6) is simplified to

the dynamic objective function

UD(~r1,1) = max
~a1

[
λ~r1 ·WWW 1 +max

~a2

[
(1−λ)

∫
~o
~r2 ·WWW 2P(~o|~a1,~r1)d~o

]]
(4.7)

4.3.3 Monte Carlo Sampling

As already discussed in Section 3.4.3, the dynamic utility can be intractable to solve

directly. This is the case with the dynamic utility in Eq. (4.7), where the integral

cannot be directly solved for more than three documents. Instead, an approximate

solution to the integral can be found by using Monte Carlo sampling, changing the

4.4. Experiment 97

objective function to

UD(~r1,1)≈max
~a1

[
λ~r1 ·WWW 1 +max

~a2

[
(1−λ)

1
Z ∑
~o∈Ô

~r2 ·WWW 2P(~o|~a1,~r1)

]]
(4.8)

where Ô ⊆ O is a sampled subspace of the observation space of possible feedback

vectors~o and Z = |Ô| is the sample size. The summation in Eq. (4.8) can be easily

calculated and Z tuned to trade-off accuracy and efficiency.

4.3.4 Dynamic Exploratory Search

The Dynamic Exploratory Search (DES) algorithm is given in Algorithm 3. This

algorithm searches through potential page 1 and page 2 rankings to find a sequence

that optimises the dynamic utility across both. As with the DIR-MPS algorithm

in Algorithm 1, a sequential ranking decision is used to reduce the complexity of

finding an optimal ranking for page 1. Likewise, the maximum utility for the second

page is obtained when the remaining documents are ranked in decreasing order of

~r\~a i.e. the updated probabilities of relevance for the remaining documents given~o.

Unlike DIR-MPS, this algorithm creates a sample from the observation space using

function CREATESAMPLE when determining the page 2 utility, and also uses loops

rather than recursion due to the fixed number of pages. The setting of K can be

assigned a priori or set to M for ease of implementation. If K < M, then dynamic

exploration only occurs for the first K documents in page 1, then the remainder are

ranked according to the PRP.

4.4 Experiment
The DES algorithm was evaluated over a series of experiments, testing the setting

of its parameters λ , M and T and comparing it against a number of baseline algo-

rithms. The scenario tested in the experiments was a user engaging in multi-page

search, this meant generating T pages of rankings of M documents. Unless other-

wise stated, M was set to 10 as it provided reasonable and meaningful results within

the scope of the test dataset and was reflective of actual search rankings. The DES

algorithm was used to generate an optimal ranking of documents for the 1st page

98 Chapter 4. Dynamic Multi-Page Search

Algorithm 3 The DES (Dynamic Exploratory Search) algorithm

function DES(~r,Σ,K,Z,λ)
~a = ARRAY(M)
loop i← 1 to K . For each rank position

UD = ARRAY(N) . Utility score for each document
loop j← 1 to N . For each document

if d j ∈~a then continue . Ignore if document already ranked
end if
ai = d j

Ô = CREATESAMPLE(Z,~r,Σ,~a) . Create sample space
sampleAvg = 0
for all ~o ∈ Ô do . For each observation in sample

~r\~a =~r\~a +Σ\~a~aΣ
−1
~a (~o−~r~a) . Eq. (3.28)

~a2 = SORT(~r\~a,descend)[1→M]
sampleAvg +=~r~a2 ·WWW 2×P(~o|~a,~r~a) . Eq. (4.3)

end for
sampleAvg \= Z . Average sample value
UD[i] = λ~r~a ·WWW 1 +(1−λ)× sampleAvg . Eq. (4.8)

end loop
~ai = INDEX(MAX(UD)) . Sequential Ranking Decision

end loop
~aK+1→M = SORT(~r\~a,descend)[1→M−K +1]
return~a

end function

that took into account anticipated relevance feedback. Following this, the relevance

judgements of the underlying dataset were used as explicit feedback to update the

rankings for the remaining pages. This was similar to the ‘perfect click’ variants of

the DIR-MPS algorithm in the previous chapter.

The DES algorithm was compared with a number of methods representing the

different properties of ranking under the DIR framework: the baseline static BM25

ranking under the PRP, which was also used as the relevance model for the DES al-

gorithm; an interactive variant of the BM25 ranking that used the conditional model

update in Eq. (3.28) for the second page ranking, denoted BM25-U; the Rocchio

algorithm, which used the baseline BM25 ranking for the first page and used rel-

evance feedback to generate a new ranking for the second page; and the Maximal

Marginal Relevance (MMR) method [17] and its interactive variant MMR-U, which

diversified the first page using the BM25 ranking and covariance matrix, and ranked

4.4. Experiment 99

the second page according to the BM25 relevance scores or the conditional model

update scores respectively.

The experiments were performed over three TREC collections. The WT10g

collection was chosen because it contained graded relevance judgements which

could simulate the use of explicit, non-binary relevance feedback for the update

function. Similarly, the TREC8 collection was used for its binary relevance judge-

ments that could represent implicit clickthroughs. Finally, the 2004 Robust track

was used, which consisted of difficult to rank queries that may result in exploratory

search.

For each query (or topic) in the datasets, the 200 documents with the highest

BM25 scores were chosen for re-ranking using the DES and other baseline algo-

rithms. Each dataset contained 50 topics, and relevance judgements for those topics

were used to evaluate the performance of each algorithm. The judgements were

also used to simulate the feedback of users after viewing the first page, allowing

for the document relevance in the interactive techniques to be updated for ranking

in the second page. The Monte Carlo sample size Z was set to 5000 for all ex-

periments, resulting in a comprehensive sampling of the observation space and an

accurate estimate of the second page utility.

Four IR metrics were used to measure performance: precision@K, recall@K,

nDCG@K and MRR. These metrics were measured for the first page (K = M) and

also the first and second pages combined (i.e. K = 2M). Precision, recall and

nDCG are commonly used IR metrics that are used to compare the effectiveness

of different rankings. As this investigation focused on the exploratory behaviour

of the DES algorithm, sub-topic related diversity measures were not used in these

experiments. However, the MRR was used as a risk-averse measure, where a diverse

ranking should typically yield higher scores [40, 61]. Further to this, the session-

based metrics used in the previous chapter were not measured.

4.4.1 The Relevance Vector and Covariance Matrix

Unlike the experiments in the previous chapter, here only one relevance score dis-

tribution was considered. The BM25 model was used to define the prior relevance

100 Chapter 4. Dynamic Multi-Page Search

score vector~r. The normalisation function in Eq. (4.9) was used to scale the BM25

scores onto the range of the relevance judgements found in the dataset

~r =
xxx−min(xxx)

max(xxx)−min(xxx)
·α (4.9)

where xxx is the vector of BM25 scores and α is the range of score values i.e. α = 1

for binary clickthrough feedback, α > 1 for graded explicit feedback ratings.

The covariance matrix Σ represents the uncertainty and correlation associated

with the estimations of the document scores. Due to only using one relevance dis-

tribution to score documents in this experiment, there was no corresponding covari-

ance matrix readily available. Instead, it was reasonable to assume that the covari-

ance between two relevance scores could be approximated instead using document

similarities i.e. two documents with similar content are likely to be relevant to the

same queries. Two popular similarity measures were investigated, Jaccard similar-

ity and cosine similarity. The experiments showed that the latter had a much better

performance and so it was used in the remainder of the experiments. The variance

of each document’s relevance score is set to be a constant in this experiment so as

to demonstrate the effect of document dependence on search results, and owing to

the difficulty in modeling score variance.

4.4.2 Exploration with λ

In this first experiment, the recall@K, precision@K, nDCG@K and MRR metrics

were measured for K = 10 and K = 20 i.e. metric scores for the first page, and for

the first and second page combined. The parameter λ , which indicated the level

of exploration that occurred on the first page, was investigated to observe how it

affected the performance of the DES algorithm, in particular, the average gains

that could be expected over both pages. To calculate the overall average gain, the

average gain of the DES algorithm over the baseline BM25 ranking

metric@K(DES)−metric@K(BM25 baseline)
K

(4.10)

4.4. Experiment 101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01
WT10g

A
ve

ra
g

e
M

et
ri

c
G

ai
n

λ

Recall
Precision
nDCG
MRR

Figure 4.1: The average metric gain of the DES algorithm over the BM25 baseline with
95% confidence intervals. Each bar represents the average gain for each metric
for a given value of λ for the WT10g dataset. Positive values indicate gains
made over the baseline algorithm whereas negative values indicate losses.

was calculated for K = 10 and K = 20, and the two values added. This measured

the value of gains over both pages compared to just the first page.

In Fig. (4.1), Fig. (4.2) and Fig. (4.3), the variation of the average gain for

different values of λ can be seen across the different datasets. The most notable

observation is that the value of λ has a definite effect on performance; for smaller

values (λ < 0.5), where the algorithm places more emphasis on displaying an ex-

ploratory, diverse ranking on the first page, there is a marked drop in performance

across all metrics. As λ increases, performance improves until gains are made. This

highlights that too much exploration can lead to detrimental performance in the first

page which isn’t recovered by the optimised ranking in the second page, indicating

the importance of tuning the parameter correctly. On the other hand, the optimal

setting for λ is typically less than 1, indicating that some exploration is beneficial

and can lead to improved performance across all metrics.

Also, it can be seen that the different datasets display different characteristics

with regard to the effect that λ has on performance. For instance, for the difficult to

102 Chapter 4. Dynamic Multi-Page Search

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01
Robust

λ

A
ve

ra
g

e
M

et
ri

c
G

ai
n

Recall
Precision
nDCG
MRR

Figure 4.2: Gain results similar to those from Fig. (4.1) for the Robust dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
TREC8

λ

A
ve

ra
g

e
M

et
ri

c
G

ai
n

Recall
Precision
nDCG
MRR

Figure 4.3: Gain results similar to those from Fig. (4.1) for the TREC8 dataset.

4.4. Experiment 103

rank Robust dataset the optimal setting is λ = 0.8, indicating that exploration is not

very beneficial in this case, possibly due to the lack of relevant documents in the

dataset for each topic. Likewise, the setting of λ = 0.9 is optimal for the TREC8

dataset, although there is greater variation, possibly owing to the easier to rank

data. Finally, the WT10g dataset also showed variation in the optimal setting for λ ,

which could be a result of the explicit, graded feedback available during re-ranking.

For this dataset, the optimal setting was chosen as λ = 0.7. The differing datasets

represent different types of query and search behaviour, and illustrate how λ can be

tuned to improve performance over different types of search. It is worth noting that

this setting of λ is different from that found for the same dataset in Chapter 3 owing

to the different definitions of the parameter.

4.4.3 Comparison with Baselines

In the previous experiment the optimal settings for λ were found for each dataset.

Likewise, the optimal settings for λ for the MMR algorithm (which is used to bal-

ance the influence of document similarity and dissimilarity) were similarly found,

giving λ = 0.8 for the WT10g dataset, λ = 0.8 for the Robust dataset and λ = 0.9

for the TREC8 dataset. In this next experiment, the DES algorithm was directly

compared with the described baseline algorithms. The experiment was repeated as

before over two pages of results with M = 10 and the four metrics were measured

at K = 10 and K = 20. It is worth noting that the differences in MRR@10 and

MRR@20 were due to those rankings where a relevant document wasn’t located in

the first M documents. The results can be seen in Table (4.1) and Table (4.2).

From the tables it can be seen that the first page metric scores for DES are

generally lower than the other algorithms, which is to be expected when docu-

ment exploration and diversification is occurring. Nonetheless, the DES algorithm

can be seen to outperform the diversifying MMR algorithm, particularly over the

risk-averse MRR metric. Conversely, the metric scores for both pages almost al-

ways show a significant improvement over the BM25, MMR and Rocchio algo-

rithms. Aside from demonstrating the overall improvement possible against the

static BM25 and MMR methods, gains are also made against the interactive Roc-

104 Chapter 4. Dynamic Multi-Page Search

Table 4.1: Recall and precision measured at M = 10 (first page) and M = 20 (first and re-
ranked second page) for each algorithm and for each dataset. A superscript num-
ber refers to a metric value significantly above the value of the correspondingly
numbered baseline in the table (using the Wilcoxon Signed Rank Test with p =
0.05). Boldface metric scores are the highest for that metric across algorithms in
that dataset.

Recall@ Precision@
10 20 10 20

WT10g

DES 0.229 000...44455544413 0.356 000...333999444135

1 BM25 0.233 0.365 0.368 0.321
2 BM25-U 0.233 0.444 0.368 0.381
3 MMR 0.194 0.365 0.326 0.321
4 MMR-U 0.194 0.410 0.326 0.378
5 Rocchio 0.233 0.400 0.368 0.332

Robust

DES 000...222333111 000...33399900013 0.385 000...333999777123

1 BM25 0.228 0.361 0.392 0.333
2 BM25-U 0.228 0.369 0.392 0.378
3 MMR 0.218 0.361 0.377 0.333
4 MMR-U 0.218 0.379 0.377 0.388
5 Rocchio 0.228 0.358 0.392 0.364

TREC8

DES 0.180 000...333777777 0.439 000...444777000
1 BM25 0.185 0.311 0.455 0.398
2 BM25-U 0.185 0.364 0.455 0.464
3 MMR 0.181 0.311 0.439 0.398
4 MMR-U 0.181 0.364 0.439 0.457
5 Rocchio 0.185 0.360 0.455 0.404

chio technique over both pages. Non-significant gains are also shown over the

BM25-U and MMR-U variants. Considering that both methods used the multi-

variate Gaussian relevance update function from the DIR framework (in particular,

the BM25-U algorithm is simply the case where λ = 1 in the DES algorithm), this

indicates that the update function is effective across a number of techniques and

able to correctly respond to user feedback and generate a superior ranking on the

second page that is tuned to the user’s information need.

This experiment was also repeated for M = 5 documents on each page. This

was to test the hypothesis that the DES algorithm could still rank documents ef-

4.4. Experiment 105

Table 4.2: nDCG and MRR measurements. This table is structured identically to Ta-
ble (4.1).

nDCG@ MRR@
10 20 10 20

WT10g

DES 0.382 000...444777666135 0.590 0.591
1 BM25 0.394 0.417 0.603 0.605
2 BM25-U 0.394 0.472 0.603 0.603
3 MMR 0.342 0.417 0.582 0.605
4 MMR-U 0.342 0.441 0.582 0.583
5 Rocchio 0.394 0.439 0.603 0.605

Robust

DES 0.459 000...555666111135 000...666666555 000...666666777
1 BM25 0.464 0.471 0.632 0.638
2 BM25-U 0.464 0.501 0.632 0.634
3 MMR 0.443 0.471 0.625 0.638
4 MMR-U 0.443 0.501 0.625 0.626
5 Rocchio 0.464 0.473 0.632 0.638

TREC8

DES 0.464 000...555222333 000...666555333 000...666555888
1 BM25 0.473 0.462 0.640 0.645
2 BM25-U 0.473 0.517 0.640 0.646
3 MMR 0.462 0.462 0.647 0.645
4 MMR-U 0.462 0.511 0.647 0.652
5 Rocchio 0.473 0.489 0.640 0.645

fectively despite having less documents available from which to gather relevance

feedback. Table (4.3) contains a summary of the results for the DES algorithm and

the significant gains made over the algorithms from Table (4.1). The results show

that the DES algorithm is still effective over reduced page sizes, despite the decrease

in available relevance feedback.

4.4.4 Page Threshold

Throughout this chapter, the problem formulation has been simplified by setting

the threshold number of pages T to 2. In this experiment, the threshold was ex-

tended to T = 3. The experiment was repeated as before using M = 5 documents on

each page; this was so that the running time of the experiment could be decreased,

and because the results in Table (4.3) showed similar results when M was set to 5

106 Chapter 4. Dynamic Multi-Page Search

Table 4.3: Metrics measured at M = 5 (first page) and M = 10 (both pages) for the DES
algorithm on each dataset. The superscript numbers refer to significantly im-
proved values over the baselines, as described in Table (4.1).

Recall@ Precision@ nDCG@ MRR@
5 10 5 10 5 10 5 10

WT10g 0.229 0.454134 0.356 0.3941345 0.382 0.47613 0.590 0.591
Robust 0.231 0.39013 0.385 0.3970135 0.459 0.561135 0.665 0.6671345

TREC8 0.180 0.377134 0.4390 0.4701345 0.464 0.523135 0.653 0.658

Table 4.4: Table showing metric scores from the WT10g dataset for K = 15 for the BM25
baseline and the two threshold variants of the DES algorithm, where T is set to
2 and 3. Maximum values are in boldface.

Algorithm Recall@15 Prec@15 nDCG@15 MRR

DES(T = 3) 0.325 0.361 0.364 0.419
DES(T = 2) 0.358 0.391 0.447 0.637

BM25 Baseline 0.296 0.329 0.393 0.596

compared to when M = 10. When T was set to 3, the DES algorithm generated

exploratory rankings for both pages 1 and 2, with λ1 and λ2 nominally set to 0.5

and λ3 = 1. Document relevance scores were updated after receiving feedback on

page 1 and then again after page 2. This was compared against the DES algorithm

with the same settings except where T = 2 (in this case, the rankings for pages 2

and 3 were found using the PRP after observing feedback on page 1), and also the

baseline BM25 ranking across 3 pages, giving the results shown in Table (4.4).

The results show that while the T = 3 threshold variant still offers some im-

proved results over the baseline across all 3 pages, it performs worse than the case

where T = 2. This is an example where too much exploration can negatively af-

fect the overall results. When T is set to 3, the DES algorithm creates exploratory

rankings in both the first and second pages, before it settles on an optimal ranking

for the user on the third page. Except for on particular queries, a user engaging in

exploratory search should be able to provide sufficient feedback on the first page in

order to optimise the remaining pages, and so setting T = 2 is ideal in this situation.

4.5. Conclusion 107

4.5 Conclusion
In this chapter, an algorithm for optimally ranking documents in the multi-page

search scenario using the DIR framework has been presented. This solution differs

from interactive ranking research and also the DIR-MPS algorithm in the previous

chapter, by modeling document similarity as a form of document dependence when

optimally choosing rankings. By doing this, more effective, exploratory rankings

can be chosen for the first results page that explore dissimilar documents, maxi-

mizing what can be learned using relevance feedback. This feedback can then be

exploited to provide a much improved second page ranking, in a way that is unob-

trusive and intuitive to the user. This has been demonstrated to work in a ranking

algorithm that utilises Monte-Carlo sampling to make its computation tractable.

Using appropriate text collections, demonstrable improvements over a number of

similar baselines have been made. Unlike the previous chapter, the baselines in

this chapter are practical ranking algorithms rather than framework instantiations.

Across three TREC datasets, it was found that some exploration on the first page led

to optimal rankings across both pages, and that the DES algorithm out-performed

the baselines significantly. Improvements are also demonstrated when using dif-

ferent problem settings such as the number of ranked documents and the number

of pages, thus demonstrating the effectiveness of dynamic ranking in multi-page

search in a number of different scenarios.

Chapter 5

Dynamic Online Learning to Rank

In this chapter, the DIR framework is applied to problems in the area of online learn-

ing to rank. Where dynamic multi-page search concerned a user navigating over

several pages of dynamically updating search results, in dynamic online learning

to rank, an optimal ranking of documents for a single query is found by observ-

ing feedback from a population of users over time. The DIR framework is used to

motivate the derivation of a relevance update function that calculates the posterior

probability of a document’s relevance as it evolves over time by way of observing

user clicks. To this end, a novel click model is proposed that takes into account the

rank bias of the clicks and provides a plug-in framework that can incorporate other

well-known click models.

Based on the multi-armed bandit theory, the complexity limitations of the DIR

framework are circumvented by making use of a simple index-based algorithm for

implementing the dynamic online learning to rank solution. This algorithm uses

a dynamic ranking rule which takes rank bias and the exploration of documents

into account. Furthermore, a variant algorithm that uses the portfolio theory of IR

to learn an optimally diverse ranking over time is also defined. Experiments using

TREC data and simulations investigate the algorithms and the effect that exploration

and noise has on their performance. An evaluation is also undertaken using Yandex

search log data with mixed results, leading to a discussion on the difficulties of

evaluation in DIR.

110 Chapter 5. Dynamic Online Learning to Rank

5.1 Introduction

In online learning to rank, an optimal ranking of documents is learned over time

by displaying documents to users and learning their preferences through feedback.

It is a natural dynamic IR problem, where the dynamic agent is the search system,

the population of users is the environment and their clicks the feedback, and the

document ranking is the action taken at each stage. Dynamic online learning to rank

can also be applied in situations where document content is unclear or incomplete

for prior analysis (for instance in collaborative filtering); where new documents

are routinely added (such as information filtering); or simply as a complement to

existing techniques (such as offline ranking and retrieval).

In this chapter, a dynamic ranking solution for pointwise online learning to

rank is proposed. The relevance of individual documents is found by including them

in document rankings displayed to a user for a given query. The users’ clickthroughs

are treated as relevance feedback and used to update the relevance score of each

ranked document. The formulation is built upon the DIR framework, although the

focus here is on the derivation of a suitable relevance update function rather than

a dynamic utility. The resulting function takes into account rank position when

interpreting clicks for updating document relevance and can flexibly integrate many

click models, such as the examination hypothesis and dependent click models [38,

56].

Document independence is a key assumption in this dynamic ranking formu-

lation, but as with the PRP, this does not allow for properties such as diversification

to be taken into account. To address this, an alternative formulation is proposed that

introduces document dependency and diversity using the portfolio theory of IR [40].

Furthermore, the problems of computational complexity encountered for multi-page

search are addressed by implementing both formulations as an index-based multi-

armed bandit algorithm [118]. This leads to a simple and efficient ranking rule for

either exploratively learning an optimal ranking of documents, or else learning a

diverse ranking of documents over time.

To evaluate the dynamic online learning to rank algorithms, two types of ex-

5.1. Introduction 111

periment were conducted. In the first case, users were simulated based on TREC

relevance judgement data to verify the effectiveness of the approaches in this chap-

ter and provide some preliminary analysis on the effect of exploration on the per-

formance of various click models. This was followed by an evaluation using the

Yandex Relevance Prediction Challenge1 dataset to test the algorithm in a realistic,

practical setting using search log data, to demonstrate its capability and flexibility

in learning relevance rankings. The results from this experiment were encouraging

but mixed, and indicative of open problems in the area of DIR evaluation.

5.1.1 Related Work

Online learning to rank is a currently active area of research in IR. Work that is

particularly similar to this include the approach by Xue et al. [156] who used

clickthroughs in search logs to infer the similarity between pairs of queries and

pairs of documents, and more recently, the work by Shivaswamy, Joachims and

Yue [157, 128] who similarly made use of user feedback to improve online learning

to rank. Elsewhere, there has been a focus on the application of multi-armed bandits

in online learning to rank, particularly in the case where ranked lists are interleaved

and clicks are used to learn which is preferential to the user [22], or where search

logs were used to improve the learning speed in online learning to rank [158]. A

key difference between these approaches and that presented in this chapter is the

focus on preference learning (pairwise comparison) or listwise learning as opposed

to the pointwise approach taken here, which allows for the inclusion of rank bias,

and thus existing click modeling research, when interpreting clicks.

The UCB formulations in this chapter are an extension of the multi-play UCB

based MAB [121]. Other multi-play MABs have been developed [120, 159], al-

though the focus has been on theoretical developments (such as improving regret

bounds or performance in the adversarial setting) rather than its application to prob-

lems in IR.

Related to this chapter’s work on diversification over time is the work by

Radlinski et al. [23], where a multi-armed bandit algorithm was assigned to each

1http://imat-relpred.yandex.ru/en/

http://imat-relpred.yandex.ru/en/

112 Chapter 5. Dynamic Online Learning to Rank

ranking position and trained to learn the optimal document to rank for it, resulting

in diverse rankings. This algorithm is directly compared with the portfolio based

approach in this chapter and improvements are demonstrated.

This work differs from the literature in that: 1) a flexible and general click

model is demonstrated to accurately interpret the clicks observed on a ranking as

feedback, 2) the solution learns pointwise document relevancies rather than listwise

or pairwise preferences, and 3) two solutions are derived using the same framework

that either rank for document relevance or document diversity.

5.2 Dynamic Relevance Update for Online Learning

to Rank

In this problem formulation, the objective is to find an optimal ranking of M docu-

ments for a fixed query. For each individual search of the query over a population

of users (regarded here as the stage or time step t), a ranking action vector is chosen

~at = 〈dt1, . . . ,dtM〉 (5.1)

where dti is the document retrieved at rank i and at time t (where dti 6= dt j ∀ i 6= j).

The static utility of a particular time step can be set as US(~at ,~rt) = ∑
M
i=1 Rti,

where Rti is the hidden, binary relevance of document dti. This simple utility func-

tion is maximised when all of the documents in the ranking~at are relevant. Given

that R cannot be directly observed, instead an assumption is made that the observ-

able clickthroughs for each ranking are explicit, binary relevance labels, and so the

static utility can be redefined as

US(~at ,~rt) =
M

∑
i=1

oti (5.2)

where oti is the click observation of document dti.

Thus, the goal in dynamic online learning to rank is to find the optimal rank ac-

tion~a∗ that maximises the users’ static utility over time, i.e. their expected number

5.2. Dynamic Relevance Update for Online Learning to Rank 113

of clicks, given by

~a∗ = 〈~a∗1, . . . ,~a
∗
T 〉= argmax

〈~a1,...,~aT 〉

T

∑
t=1

E
[
US(~at ,~rt)

]
(5.3)

5.2.1 Mixed Click Model

According to Eq. (3.18) in the DIR framework, the observation vector~o for a rank-

ing can be marginalised over in the expected utility of the objective function in

Eq. (5.3), allowing it to be expressed as

T

∑
t=1

E
[
US(~at ,~rt)

]
=

T

∑
t=1

∑
~o∈O

P(~ot =~o|~at ,~rt)US(~at ,~rt) (5.4)

=
T

∑
t=1

∑
~o∈O

P(~ot =~o|~at ,~rt)
M

∑
i=1

oti (5.5)

=
T

∑
t=1

M

∑
i=1

∑
o∈{0,1}

P(oti = o|dti,rti)oti (5.6)

=
T

∑
t=1

M

∑
i=1

P(oti = 1|dti,rti) (5.7)

Here, Eq. (5.6) is a result of assuming that the clickthroughs are independently and

identically distributed across users for each time step. A related assumption is that

the relevance of documents is also independent of other documents, similar to the

PRP. For this formulation, the first assumption is reasonable as clickthroughs are

observed over a population of unrelated users who can be assumed to be indepen-

dent of one another. Ranking under the assumption of document independence has

already been discussed in this thesis in Section 3.2.1.2 and is further addressed in

the alternative problem formulation in Section 5.3. It is worth noting that click ob-

servations may still be dependent on other observed clicks in the same document

ranking.

The observation likelihood function given by the probability distribution in

Eq. (5.7) can be calculated using a click model, as was the case with the examination

hypothesis click model in Eq. (3.25) in Chapter 3. In this chapter, a novel click

model is proposed instead. Here, an assumption is made that the probability of a

114 Chapter 5. Dynamic Online Learning to Rank

click observation can be modeled using a mixture of two binomial distributions, one

for rank bias and one for relevance. A hidden binary variable G is used to represent

the membership, i.e. Gi = 0 if a click occurs due to the rank bias at rank i, and Gi = 1

if it occurs due to the document relevance. This results in the following conditional

probability of the click (the time step variable t is implied when omitted):

P(oi|di,ri) = P(oi|di,ri,Gi = 1)P(Gi = 1)+P(oi|Gi = 0)P(Gi = 0) (5.8)

= P(oi|di,ri)P(Gi = 1)+P(oi|Gi = 0)P(Gi = 0) (5.9)

= r̂oi
i (1− r̂i)

1−oigi +boi
i (1−bi)

1−oi(1−gi) (5.10)

Here, three parameters have been defined:

r̂i ≡ P(oi = 1|di,ri) (5.11)

bi ≡ P(oi = 1|Gi = 0) (5.12)

gi ≡ P(Gi = 1) (5.13)

where r̂i is the estimated probability of relevance for document di, bi is the rank bias

at position i and gi is the probability that a user will click due to the document’s

relevance rather than due to the rank i.e. it could be considered as a measure of

the trust that the user has in the search system. It is worth noting that the mixed

click model here is a generalisation of the mixture model evaluated by Craswell et

al. [38]. Likewise, the heuristic background click model by Agichtein et al. [160]

is in fact the case where gi = 1 and bi is considered as the background click rate.

It is shown later in this chapter that other click models such as the examination

hypothesis [38] and dependent click model [56] are also special cases which can be

plugged into this model by the setting of the parameters in Eq. (5.11), Eq. (5.12)

and Eq. (5.13).

5.2.2 Expectation Maximisation

The mixed click model described in Eq. (5.10) is made up of three parameters, r̂i,

bi and a hidden parameter gi (for a given rank position i). Estimates can be made

5.2. Dynamic Relevance Update for Online Learning to Rank 115

for the optimal settings for each parameter based on the click observations by using

the Expectation Maximization (EM) algorithm [161]. In the Expectation (E) step,

an appropriate setting for the hidden random variable GT i at time step T is found

based on the observation at that time step oT i, given as:

E Step:

P(GT i|oT i) =
P(oT i|GT i)P(GT i)

P(oT i|GT i = 1)P(GT i = 1)+P(oT i|GT i = 0)P(GT i = 0)
(5.14)

which is derived by applying Bayes Rule.

The Maximisation (M) step involves finding the best parameter settings for r̂i,

bi and gi that maximise the likelihood of all of the observations at a particular rank

~oi = 〈o1i, . . . ,oT i〉 up until step T . This likelihood function is given by:

M Step:

L(r̂i,bi,gi|~oi) =
T

∏
t=1

P(oti, |di,ri) (5.15)

=
T

∏
t=1

∑
Gi∈{0,1}

P(oti,Gi|di,ri) (5.16)

∝

T

∑
t=1

log

[
∑

Gi∈{0,1}
P(oti,Gi|di,ri)

]
(5.17)

=
T

∑
t=1

log

[
∑

Gi∈{0,1}
P(Gti|oti)

P(oti,Gi|di,ri)

P(Gti|oti)

]
(5.18)

≥
T

∑
t=1

∑
Gi∈{0,1}

P(Gti|oti) log
[

P(oti,Gi|di,ri)

P(Gti|oti)

]
(5.19)

where the lower bound in Eq. (5.19) follows from Jensen’s inequality [161]. The

probability distribution P(oti,Gi|di,ri) is simply the probability of a click due to

either the relevance or bias setting of the mixed click model in Eq. (5.10), and can

be simplified to:

P(oti,Gi = 1|di,ri) = r̂oi
i (1− r̂i)

1−oigi (5.20)

P(oti,Gi = 0|di,ri) = boi
i (1−bi)

1−oi(1−gi) (5.21)

116 Chapter 5. Dynamic Online Learning to Rank

giving the log-likelihood lower bound function in Eq. (5.19) as

l(r̂i,bi,gi|~oi) =
T

∑
t=1

P(Gti = 1|oti) log
[

r̂oi
i (1− r̂i)

1−oigi

P(Gti = 1|oti)

]
+P(Gti = 0|oti) log

[
boi

i (1−bi)
1−oi(1−gi)

P(Gti = 0|oti)

]
(5.22)

To derive the M step for each parameter, derivatives of Eq. (5.22) can be taken in

order to find the maximum value of each parameter, giving the update function

∂ l
∂gi

=
T

∑
t=1

P(Gti = 1|oti)

gi
+

P(Gti = 0|oti)

gi−1
= 0 (5.23)

=⇒ gi =
T

∑
t=1

P(Gti = 1|oti)

P(Gti = 1|oti)+P(Gti = 0|oti)
(5.24)

=⇒ gi =
1
T

T

∑
t=1

P(Gti = 1|oti) (5.25)

for the mixed model parameter, likewise the update function for the document rele-

vance estimate is

∂ l
∂ r̂i

=
T

∑
t=1

P(Gti = 1|oti)(r̂i−oti)

(r̂i−1)r̂i
= 0 (5.26)

=⇒ r̂i =
∑

T
t=1 oti×P(Gti = 1|oti)

∑
T
t=1 P(Gti = 1|oti)

(5.27)

and through a similar derivation, the update function for the bias parameter is

bi =
∑

T
t=1 oti×P(Gti = 0|oti)

∑
T
t=1 P(Gti = 0|oti)

(5.28)

5.2.3 Relevance Update Function

The parameter update functions in Eq. (5.25), Eq. (5.27) and Eq. (5.28) can be

solved at every time step, although in this formulation, the settings for gi and bi

are fixed. Not only does this simplify the approach, but it allows for different click

models to be set in advance. Following this, the relevance update function can be

5.2. Dynamic Relevance Update for Online Learning to Rank 117

simplified by defining

αti ≡P(Gti = 1|oti = 1) (5.29)

=
P(oti = 1|Gti = 1)P(Gti = 1)

P(oti = 1|Gti = 1)P(Gti = 1)+P(oti = 1|Gti = 0)P(Gti = 0)
(5.30)

=
r̂tigi

r̂tigi +bi(1−gi)
(5.31)

and

βti ≡P(Gti = 1|oti = 0) (5.32)

=
P(oti = 0|Gti = 1)P(Gti = 1)

P(oti = 0|Gti = 1)P(Gti = 1)+P(oti = 0|Gti = 0)P(Gti = 0)
(5.33)

=
(1− r̂ti)gi

(1− r̂ti)gi +(1−bi)(1−gi)
(5.34)

where r̂ti is the probability of relevance estimated from all past click observations

using Eq. (5.27). With αti and βti, the probability of relevance update function

calculated at time T can be simplified to:

r̂T i =

T
∑

t=1
otiα

oti
ti β

1−oti
ti

T
∑

t=1
α

oti
ti β

1−oti
ti

(5.35)

This can be updated recursively over time to give the DIR relevance update function

τ , which in this scenario is

r̂T i =r̂T−1,i
γT−1,i

γT i
+oT i

(
1−

γT−1,i

γT i

)
(5.36)

where

γti ≡
t

∑
k=1

α
oki
ki β

1−oki
ki (5.37)

can be interpreted as the “effective” number of impressions, a utility representing

the number of times a document is likely to have been examined by a user based on

118 Chapter 5. Dynamic Online Learning to Rank

its rank bias and probability of relevance.

5.2.3.1 Analysis of α and β

αti and βti can be considered as the “effective” number of observations of clicks

and non-clicks respectively, which is based on the rank position of the observation.

For instance, the value of αti increases with rank position i; it is larger if a click is

observed on a document ranked at the bottom of an SERP, which is unlikely to have

been clicked purely due to rank bias, thus the observation is a very strong signal of

relevance. In contrast, if a click is observed on a top ranking document, then the

corresponding α count is small as the click is more likely to be due to rank bias.

Conversely, βti decreases with respect to i i.e. if a top ranked document has not

been clicked then the value for β is large, otherwise its value is small for non-clicks

observed on lower ranking documents. In effect, this penalises documents at high

ranking positions that do not receive clicks, a strong signal that the document is

incorrectly ranked. Likewise, a non-click occurring on a low-ranked document is

expected due to the rank bias, and so penalised less.

In summary, a lack of click observations on high-ranking documents or clicks

occurring on low-ranked documents are both important observation signals that

carry more weight than the converse, and so have a larger effect on the overall “ef-

fective” number of impressions γ which is used to updated the estimated probability

of relevance.

5.2.4 Dynamic Utility

Based on the derivations so far, the objective function in Eq. (5.3) can be restated

as the dynamic utility function

UD(~r,T) =
T

∑
t=1

M

∑
i=1

P(oti = 1|dti,rti) (5.38)

=
T

∑
t=1

M

∑
i=1

[
r̂tigi +bi(1−gi)

]
(5.39)

where the objective is to find the optimal sequence of rank actions ~a∗ =

argmax〈~a1,...,~aT 〉UD, subject to the relevance update in Eq. (5.36).

5.2. Dynamic Relevance Update for Online Learning to Rank 119

As mentioned, the setting of the fixed parameters gi and bi can allow different

click models to be incorporated into the dynamic online learning to rank solution.

For instance, this is demonstrated in the experiments in Section 5.4, where the ex-

amination hypothesis and dependent click models are plugged into the algorithm

and evaluated alongside the mixed click model. The general parameter settings for

each click model are:

Mixed Clicks gi, bi

Examination Hypothesis gi, bi ≡ 0, where the mixed click parameter g can be

considered the rank bias

Dependent Click Model gi ≡∏
i−1
j=1(1− r̂ j +b j r̂ j), bi ≡ 0, where the mixed click

parameter at rank i is weighted by the relevance of previously ranked docu-

ments.

5.2.5 Dynamic Ranking (UCB-DR) Algorithm

In this dynamic online learning to rank formulation, the dynamic utility is con-

strained by the relevance update function in Eq. (5.36), which updates the probabil-

ity of relevance estimate for each document after it has been displayed to the user

and a subsequent click observation made. In previous chapters, the dynamic util-

ity has been directly solved in order to determine the optimal ranking action, albeit

with suitable approximations in order to make the calculation tractable.

In the Upper Confidence Bound - Dynamic Ranking (UCB-DR) algorithm

in Algorithm 4, the UCB multi-armed bandit algorithm is used as the basis for a

simple, index-based ranking scheme. Here, an index score Λd is assigned to each

document that is based on its estimated probability of relevance. If a document is in-

cluded in the rank action at time t, a click observation on that document can be made

and its probability of relevance updated accordingly using Eq. (5.36). Through this,

the relevance of documents can be learned and those with the highest probability of

relevance are exploited by being displayed in the top ranking positions.

On the other hand, the exploration of documents is achieved by supplement-

ing the probability of relevance with an upper confidence bound value in Λ. This

120 Chapter 5. Dynamic Online Learning to Rank

Algorithm 4 The UCB-DR Algorithm

function UCB-DR(~̂r,~b,~g,λ)
γd = 1 ∀d ∈ D . Initialize effective impressions
loop t← 1 to T

for all d ∈ D do
Λd = r̂d +λ ×

√
2ln t
γd

. Index score
end for
~a1→M = SORT(Λ,descend)[1→M]
Display~a to user
Retrieve observation vector of clicks~o
loop i← 1 to M . For each rank

d = di . The document ranked at position i
αi =

r̂dgi
r̂dgi+bi(1−gi)

. Eq. (5.31)

βi =
(1−r̂d)gi

(1−r̂d)gi+(1−bi)(1−gi)
. Eq. (5.34)

γ̂d = γd +α
oi
i β

1−oi
i . Eq. (5.37)

r̂d = r̂d
γd
γ̂d
+oi

(
1− γd

γ̂d

)
. Eq. (5.36)

γd = γ̂d
end loop

end loop
end function

bound grows larger with each time step t, causing the Λ value to sufficiently increase

enough to trigger the exploration of those documents with a lower probability of rel-

evance, if they have not been shown to the user for some time. Conversely, when a

document is displayed to the user, then the “effective” number of impressions γ in-

creases depending on the click observation. Large increases in γ indicate that more

information has been learned about the document relevance, and so the upper con-

fidence bound decreases accordingly. As a result, documents that are displayed at

the bottom of the SERP are not unjustly penalised for not being clicked on, and can

be promoted to a higher rank where there is a greater chance of observing a click.

The exploration parameter λ can be tuned to optimise the amount of explo-

ration that occurs when generating a document ranking. When set to 0, the UCB-

DR algorithm acts myopically and greedily ranks documents in a strictly decreasing

order of relevance according to the PRP.

5.3. Online Diversification 121

5.3 Online Diversification

In the previous section, an optimal ranking of documents was found over time by

displaying different rankings of documents to users. An assumption made early in

the formulation was the independence of documents. In this section, the focus is

changed to finding an optimally diverse ranking of documents subject to the as-

sumption that documents are dependent on one another.

Once again the static utility US(~at ,~r) is set as the number of clicks given

in Eq. (5.2). In order to introduce dependence, the exponential utility Ue(x) =

1− exp(−λx), one of the commonly used risk averse utilities, is applied to the

static utility. Here, λ is a predefined utility parameter that is used to adjust the risk

preference. By also making the assumption that the clicks have normally distributed

noise (a similar assumption is made with the setting of the multi-variate Gaussian

distribution in the previous chapters), the overall dynamic utility becomes

UD(~r,T) =
T

∑
t=1

E
[
Ue
(
US(~at ,~r)

)]
(5.40)

=
T

∑
t=1

E
[
1− exp

(
−λUS(~at ,~r)

)]
(5.41)

=
T

∑
t=1

(
1− exp

(
−λE

[
US(~at ,~r)

]
+

λ 2

2
Var
[
US(~at ,~r)

]))
(5.42)

where Eq. (5.42) follows from the Gaussian noise assumption. Thus, the ob-

jective is to find the optimal ranking sequence

~a∗ = argmax
〈~a1,...,~aT 〉

T

∑
t=1

E
[
Ue
(
US(~at ,~r)

)]
(5.43)

= argmax
〈~a1,...,~aT 〉

T

∑
t=1

(
1− exp

(
−λE

[
US(~at ,~r)

]
+

λ 2

2
Var
[
US(~at ,~r)

]))
(5.44)

= argmax
〈~a1,...,~aT 〉

T

∑
t=1

(
1− exp(−λθ)

)
(5.45)

where θ = E
[
US(~at ,~r)

]
− λ

2 Var
[
US(~at ,~r)

]
. Thus, the maximisation of

Eq. (5.45) over ~a∗ is equivalent to maximising θ , giving the overall objective

122 Chapter 5. Dynamic Online Learning to Rank

function

~a∗ = argmax
〈~a1,...,~aT 〉

T

∑
t=1

(
E
[
US(~at ,~r)

]
− λ

2
Var
[
US(~at ,~r)

])
(5.46)

Here, the objective has been decomposed into two parts; the exploitative ex-

pected number of clicks that is maximised when relevant documents are chosen for

~a, and the explorative variance which is shown in the next section to encourage

document diversity. As with the UCB-DR algorithm, the parameter λ trades off

exploration and exploitation, in this case, how much diversification occurs in the

search results.

5.3.1 Correlation and Co-Clicks

The variance in Eq. (5.46) can be decomposed into

Var
[
US(~at ,~r)

]
= Var

[
M

∑
i=1

oti

]
(5.47)

=
M

∑
i=1

Var[oti]+
M

∑
i 6= j

Cov[oti,ot j] (5.48)

=
M

∑
i=1

Var[oti]+2
M

∑
i=1

M

∑
j=i+1

Cov[oti,ot j] (5.49)

=
M

∑
i=1

Var[oti]+2
M

∑
i=1

M

∑
j=i+1

σtiσt jρ(oti,ot j) (5.50)

where σi is the standard deviation of the observation of the document ranked at po-

sition i. ρ(oi,o j) is the correlation coefficient between the clicks for the documents

ranked at positions i and j, where ρ ∈ [−1,1].

The correlation coefficient is a measure of the type of dependency between

two documents. When ρ = 1, the two documents are positively correlated with

one another, meaning that a click on one of the documents is likely to coincide

with a click on the other. Conversely, when ρ = −1, the documents are negatively

correlated, and so a click on one document is likely to coincide with a non-click on

the other. When ρ = 0, the documents are independent.

5.3. Online Diversification 123

An estimation of the correlation coefficient between pairs of documents can

be made by measuring the ratio of co-clicks to co-shows. The number of co-clicks

X(i, j) between documents di and d j is increased by 1 whenever a click occurs

on both documents in the same ranking, otherwise it is decreased by 1 whenever

a click only occurs on one of the documents. If no clicks are observed on either,

or the two documents do not appear in the same ranking, then the value remains

the same. Likewise, the number of co-shows Y (i, j) increases by 1 whenever the

two documents are displayed in the same ranking together, otherwise it does not

change. X(i, i) = X(i) and Y (i, i) = Y (i) record respectively the number of clicks

and displays for a single document.

Thus, the estimated correlation is ρ̂(i, j) = X(i, j)
Y (i, j) . It is worth noting that when

documents are independent, there is the risk of introducing systematic error into

the correlation estimate. For example, two independent documents with a probabil-

ity of relevance ri = r j = 0.5 will have a correlation of −1
3 rather than 0. In this

formulation, all documents are assumed to have some dependence on one another.

5.3.2 Portfolio-armed Bandit (PAB) Algorithm

The variance of the static utility is decomposed into two components in Eq. (5.50),

the variance of the clicks on each document, and also the correlation coefficient. The

variance can be likened to the upper-confidence bound in the UCB algorithm, repre-

senting the uncertainty of the probability of relevance estimate. Also, the positive or

negative correlation can be considered as a measure of whether documents belong

to the same subtopic, which is made explicit in the simulation in Section 5.4.3.

The dynamic utility can now be redefined as

UD(~r,T) =
T

∑
t=1

(
E
[
US(~at ,~r)

]
− λ

2

M

∑
i=1

Var[oti]−λ

M

∑
i=1

M

∑
j=i+1

ρ(oti,ot j)

)
(5.51)

In this online diversification formulation, the relevance of a document depends on

whether it belongs to the user’s subtopic preference. Furthermore, rank bias is as-

sumed not to affect the probability of a click, which is a simplifying assumption

that means that the mixed click model is not needed. As a result, the expected

124 Chapter 5. Dynamic Online Learning to Rank

Algorithm 5 The PAB Algorithm

function PAB(λ)
X = 1,Y = 1 . Initialize all co-clicks and co-shows to 1
loop t← 1 to T

for all d ∈ D do
Λd = X(d)

Y (d) +
√

2ln t
Y (d) . Index score

end for
~a = ARRAY(M)
a1 = argmaxd Λd
loop i← 2 to M . Sequential ranking decision

ai = argmaxd /∈~a

{
Λd−λ ∑

i−1
j=1

X(d,d j)
Y (d,d j)

}
. Portfolio theory of IR

end loop
Display~a to user
Retrieve observation vector of clicks~o
loop i← 1 to M

loop j← 1 to M
X(i, j) = X(i, j)+oio j− (oi−o j)

2 . Update co-clicks
Y (i, j) = Y (i, j)+oi +o j−oio j . Update co-shows

end loop
end loop

end loop
end function

static utility can simply be set to E
[
US(~at ,~r)

]
= ∑

M
i=1 r̂ti, and r̂ti approximated by

the maximum likelihood estimate X(dti)
Y (dti)

.

Eq. (5.51) has the same structure as the objective function in Eq. (2.8) for the

portfolio theory of IR [40]. In portfolio theory ranking, the variance in the objective

function is minimised by choosing a diverse ranking i.e. documents that are nega-

tively correlated with one another. This is incorporated into the Portfolio-Armed

Bandit (PAB) algorithm in Algorithm 5, which is designed to learn document cor-

relations and create a diverse ranking of documents over time.

The PAB algorithm is a variation of the UCB-DR algorithm and features sim-

ilar features, such as a UCB index value Λ which is used to choose relevant doc-

uments to rank and balances exploration and exploitation through the upper confi-

dence bound. Here, the variance value in Eq. (5.51) is added rather than subtracted

so that exploration can occur. On the other hand, the portfolio theory of IR sub-

tracts the document correlations with already ranked results by way of a sequential

5.4. Experiments 125

ranking decision, through which the diversification of the results occurs. The ex-

ploration parameter λ is used to balance the effect of the explorative probability of

relevance given by Λ and the diversification caused by the portfolio theory of IR.

5.4 Experiments
In this chapter, two online learning to rank algorithms have been proposed, the

UCB-DR algorithm which learns an optimal ranking of documents over time and

includes a click model for interpreting click observations at different rank positions,

and the PAB algorithm that learns document correlations and a diverse ranking of

documents over time. The ideal evaluation of an online learning algorithm would

be to present the dynamically generated rankings to users of an operational search

engine and to observe their interaction behaviour. Having no access to such a sys-

tem, instead each of the algorithms is evaluated separately using a combination of

simulations and search logs.

5.4.1 UCB-DR Simulation Analysis

In this experiment, the UCB-DR algorithm was evaluated using user simulations

based on a TREC dataset to 1) show that the algorithm does converge to an optimal

ranking that can maximise evaluation metrics such as MAP and nDCG over time,

and 2) determine the benefit of exploration by contrasting UCB-DR with a myopic

variant, and subsequently find an ideal value for λ .

Three click model based variants of the UCB-DR algorithm were evaluated:

the Mixed Click (denoted as UCB-DR-MC), Examination Hypothesis (UCB-DR-

EH) and Dependent Click (UCB-DR-DC) models. These models were chosen as

they are well-regarded in the academic community, they have been thoroughly stud-

ied and their effectiveness verified using search log data [38], and they were easily

plugged into the mixed click model introduced in this chapter.

5.4.1.1 TREC-Based Simulation

To simulate a realistic collection of documents and their associated relevance values,

relevance judgements from the TREC10 Web Ad Hoc Retrieval Track were used.

The UCB-DR variant algorithms were run over 50 different topics (representing

126 Chapter 5. Dynamic Online Learning to Rank

50 queries), each of which contained an average of 1408 relevance judgements with

41.53 documents judged as relevant. Judgements were graded either 0, 1 or 2, which

were normalised to give probability of relevance values 0, 1
2 and 1.

At each time step, a ranking of M = 10 documents was generated by each of

the UCB-DR variants. A simulated user then examined and ‘clicked’ on each of

the documents. This observation vector of clicks and non-clicks was determined

stochastically using the click model of the specific UCB-DR variant i.e. clicks

were generated according to the examination hypothesis model when the UCB-

DR-EH algorithm was being tested. With no data from which to learn the click

model parameters, the following settings were used (the value of 0.8 was picked as

it delivered consistent performance across all click models and topics):

Mixed Click Model gi ≡ 0.8 bi ≡ 0.8i−1

Examination Hypothesis gi ≡ 0.8i−1 bi ≡ 0

Dependent Click Model gi ≡∏
i−1
j=1(1− r̂ j +0.8r̂ j) bi ≡ 0 (updated at each time

step)

The underlying TREC relevance judgements were used to evaluate the MAP

and nDCG@10 metrics for the ranking generated at the end of the learning threshold

T , which was set to 500 for each topic. The evaluation was repeated 100 times to

find the average performance over the simulated users. Different settings for the

exploration parameter λ were used, and the results averaged over all test topics are

given in Table (5.1).

From the table it can be seen that the exploration parameter λ is essential for

tuning the model as the performance for λ = 1 is consistently poor. Conversely,

it can also be seen that in the myopic case (where λ = 0) the performance is very

good, indicating that even without exploration, the UCB-DR algorithm is able to ac-

curately learn document relevance over time and generate rankings that give good

MAP and nDCG@10 scores across all click models. As λ varies from 1 to 0, an

improvement in metric scores is observed which can sometimes be better than the

myopic case. This suggests that for larger values of λ , the model suffers from

5.4. Experiments 127

Table 5.1: Average MAP and nDCG@10 scores after T = 500 time steps for each UCB-
DR variant and for each value of the exploration parameter λ . Maximum values
for each variant are in boldface.

MAP
λ 0 0.001 0.01 0.05 0.1 0.2 0.5 1

MC 0.833 0.834 0.839 0.843 0.859 0.885 0.489 0.111
EH 0.798 0.802 0.808 0.839 0.863 0.861 0.188 0.093

DCM 0.811 0.802 0.812 0.844 0.860 0.858 0.827 0.671
nDCG@10

MC 0.998 0.998 0.998 0.997 0.991 0.977 0.614 0.236
EH 0.994 0.997 0.994 0.993 0.979 0.933 0.339 0.207

DCM 0.999 0.999 0.999 0.999 0.999 0.987 0.946 0.806

too much exploration and doesn’t generate exploitative rankings, whereas there ex-

ists an optimal, small amount of exploration that produces better rankings than the

purely myopic case. This result mirrors the findings from Chapter 4, where some

exploration was also found to be beneficial in the multi-page setting.

The nDCG@10 scores proved less discriminatory as the algorithm was often

able to converge on the optimal ranking action after T steps, whereas the MAP score

also reflected the number of relevant documents not ranked. As such, this metric

helped choose the parameter setting λ = 0.1 used in the search log based evaluation

in the next section.

5.4.2 UCB-DR Yandex Search Log Experiment

Following the encouraging simulation results, in the next experiment a search log

dataset was used to demonstrate 1) that search logs could be used to estimate docu-

ment relevancies in advance of online learning to rank, 2) the realistic setting of

click model parameters, and 3) how the log could be used to evaluate the per-

formance of the UCB-DR algorithms and to provide an upper bound to compare

against.

Here, the Yandex Relevance Prediction Challenge2 dataset was used, an

anonymised search log containing 43,977,859 search impressions, each containing

2http://imat-relpred.yandex.ru/en/

http://imat-relpred.yandex.ru/en/

128 Chapter 5. Dynamic Online Learning to Rank

a query, the documents displayed at ranks 1 to 10 and any clicks on those docu-

ments. No additional document feature or content information was included, mak-

ing it well suited to this chapter’s DIR formulation that learns through user feedback

alone. In addition, the log contained 71,930 relevance judgements for training pur-

poses. In this experiment, the 30,717,251 unique queries were narrowed down to

1,327 queries that were searched for in over 1000 impressions and contained at least

10 relevance judgements.

A similar evaluation to the previous TREC simulation was performed, where

different click model variants of the UCB-DR algorithm generated rankings of M =

10 documents. The analysis was restricted to the two settings λ = 0 and λ = 0.1,

so that the effect of exploration could be compared against the myopic ranking.

Relevance judgements were used to evaluate MAP and nDCG@10 for the ranking

at the threshold time step T i.e. the last occurrence of the query in the dataset.

In order to evaluate the ability of the algorithm to learn from existing search log

data, a training phase was also introduced, where the first 50% of the occurrences of

the query in the search log were used purely to calculate the probability of relevance

estimates for the documents, and the remaining 50% were tested over.

5.4.2.1 Interpreting Clickthroughs for Evaluation

A problem inherent to evaluation in the DIR framework is the need to observe feed-

back so that the relevance model can be updated and improved over time. In this

thesis, this has been avoided by considering short time thresholds, using relevance

judgements as feedback and simulating user clicks. In this experiment, the clicks

from the search log were used.

The benefit of this approach was that the clicks represented actual observations

of user behaviour when they were interacting with the original search results. The

drawback was that these observations only exist for the documents that were orig-

inally displayed to the user. In the course of running the UCB-DR algorithm over

the queries in the Yandex dataset, documents were chosen to be ranked by UCB-DR

that were not shown in the original ranking. In such cases, feedback could not be

observed for that document and as a result it would subsequently be penalised by

5.4. Experiments 129

Modified

Ranking

d3

d4

d5

Yandex

d3

d5

d4

UCB-DR

d1

d2

d3

d4

d5

M

+ =

Figure 5.1: Example demonstrating the method used to overcome the restrictions of the
Yandex dataset. d1→ d5 are documents chosen by UCB-DR to display at rank
positions 1→ 5. Only a subset of these documents are found in the ranking
in the Yandex dataset, which is reflected in the modified ranking. Further to
this, there is a clicked document in the Yandex dataset (d4 and shown in white),
which is also interpreted as a click in the modified ranking, although at the
original rank position of 3 in the Yandex dataset.

the ranking algorithm.

To counter this, in this evaluation the UCB-DR algorithm was limited to only

being able to choose documents that were already ranked for the t’th impression,

instead re-ranking them according to its estimate of the probability of relevance.

In this way, the limitation of not being able to observe feedback for a ranked doc-

ument was removed. In addition, when updating the probability of relevance, the

clickthroughs and rank positions used in the update function were those found in

the search logs, not from the ranking generated by UCB-DR. This is illustrated in

Fig. (5.1), where the third column represents the ‘modified’ re-ranking that would

be generated based on the ranking in the search log and that generated by UCB-DR.

Despite these changes, the following limitations still existed: 1) the UCB-

DR algorithm could only perform as well the ranking in the search log. This was

because the algorithm could not discover new relevant documents and receive user

feedback on them, stifling exploration. Thus, the performance of the ranking in

the dataset itself is considered as an upper bound, and 2) using the click positions

from the dataset meant that the observations are used in an unbiased way, but also

130 Chapter 5. Dynamic Online Learning to Rank

Table 5.2: MAP and nDCG@10 scores± 95% confidence intervals for each UCB-DR click
model variant, for both the explorative (λ = 0.1) and myopic cases (λ = 0), and
for the 0% and 50% training variants. These scores are the averaged scores for
the ranking generated after the final impression for each query in the dataset.
Maximal UCB-DR scores are in boldface.

MAP (0% training phase)
λ Yandex MC EH DC

0.1
0.701 ± .056

0.566 ± .061 0.537 ± .062 0.632 ± .061
0 0.600 ± .063 0.571 ± .064 0.637 ± .061

nDCG@10 (0% training phase)
0.1

0.833 ± .046
0.725 ± .058 0.691 ± .057 0.778 ± .056

0 0.747 ± .057 0.721 ± .056 0.783 ± .056
MAP (50% training phase)

0.1
0.701 ± .056

0.636 ± .044 0.618 ± .046 0.658 ± .046
0 0.652 ± .045 0.635 ± .046 0.661 ± .047

nDCG@10 (50% training phase)
0.1

0.833 ± .046
0.725 ± .058 0.691 ± .057 0.776 ± .056

0 0.747 ± .057 0.721 ± .056 0.780 ± .056

resulted in a slow learning rate for the UCB-DR algorithm

5.4.2.2 Experiment and Analysis

Before running each experiment, the search log data and relevance judgements were

used to estimate ideal parameter settings for each of the click models. The values

for gi and bi were calculated at each rank and for each query using maximum like-

lihood estimators i.e. the number of occurrences of clicks at each rank i for relevant

documents etc. In this way, there were no prior assumptions on the click model

and the query specific parameters were able to capture the different characteristics

of each query, for example, the clicking behaviour for navigational queries is dif-

ferent to that of informational queries [47], although this simple technique does run

the risk of overfitting. A more sophisticated and accurate method such as probit

Bayesian inference could be used to find optimal parameter settings [162], although

for the purpose of this experiment this was not necessary.

The results of the experiments are summarised in Table (5.2). The Yandex col-

umn in the table refers to the ranking found in the search log itself. Despite the

limitations already discussed, some notable observations can be made: 1) there are

5.4. Experiments 131

significant differences between the click models, and in particular, the more com-

plex dependent click model performed consistently well, 2) the training period sig-

nificantly improved performance, demonstrating that the algorithm could be used to

learn from existing search log data before being deployed in a practical setting, and

3) as expected, the myopic setting gave better results than the explorative setting

owing to the limitations of the dataset. Ultimately, this experiment showed promis-

ing but inconclusive results, but serves to demonstrate the difficulty in evaluating an

online algorithm that is responsive to user behaviour, which is discussed further in

Chapter 7.

5.4.3 PAB Evaluation

A different approach was taken in the evaluation of the PAB algorithm. Again,

a simulation was used, although in this case to test whether a diverse ranking of

documents could be learned over time. The PAB approach was directly compared

against the state of the art UCB1-Ranked Bandits Variant (UCB1-RBV) [23], which

also used a mulit-armed bandit algorithm to learn diverse rankings of documents.

As in Section 5.4.1.1, M documents were chosen by the PAB algorithm over

T stages, with a stochastic user ‘clicking’ on relevant documents at each time step

t. Following the evaluation procedure defined for the UCB1-RBV algorithm, 20

simulated users were randomly assigned a subtopic preference in advance of eval-

uation. These were chosen using a Chinese restaurant process [163] (with γ = 3),

resulting in an average of 6.5 unique subtopics for each query. Then, 50 documents

were assigned to the subtopics in the same proportion that users were assigned to

the subtopics.

At each iteration, M = 5 documents were selected by each algorithm and

shown to a randomly chosen user. If the simulated user examined a document that

had been assigned to their subtopic preference, a click was observed with proba-

bility pR, otherwise with probability pNR. These values were evaluated at each

time step t up until a threshold of T = 100,000 and the results plotted in Fig. (5.2)

and Fig. (5.3). In these plots, the performance is bounded above by the theoretical

limit OPT, representing the optimal ranking, and below by (1− 1
e)OPT , which is

132 Chapter 5. Dynamic Online Learning to Rank

0 2 4 6 8 10

x 10
4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T

C
lic

kt
hr

ou
gh

 R
at

e
The Effect of λ in Optimising the PAB

λ = 0

λ = 0.1

λ = 0.2

λ = 0.5

λ = 1
UCB1−RBV(1 − 1/e)OPT

OPT

Figure 5.2: The effect that λ has on the clickthrough rate of the PAB and UCB1-RBV
algorithms.

the worst case theoretical bound for the UCB1-RBV algorithm.

In Fig. (5.2), the impact of the diversification parameter λ was examined. Here,

the clickthrough rate was measured, which was the proportion of rankings where at

least one document was clicked. It can be seen that when λ = 0 the performance

is very poor, performing worse than even the theoretical lower bound of the UCB1-

RBV algorithm. This finding is the opposite of that found for UCB-DR, where

performance was strong in the myopic, non-explorative case. Here, this indicates

that the diversification of the results is responsible for the performance of the algo-

rithm. Indeed, as the algorithm incorporates more diversification, its performance

improves. This is because increased diversification increases the opportunity for

user feedback on relevant subtopics, allowing the algorithm to learn an optimal

ranking quicker. The PAB algorithm can also be seen to outperform the UCB1-

RBV algorithm for all non-zero settings of λ .

In Fig. (5.3), the algorithm was tested to determine if it was resistant to ran-

dom click noise. Because the PAB and UCB1-RBV algorithms do not incorporate

click models like the UCB-DR algorithm does, this test was performed to ensure

5.5. Conclusion 133

0 2 4 6 8 10

x 10
4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T

F
ra

ct
io

n
of

 R
an

ki
ng

s
W

ith
 a

 R
el

ev
an

t D
oc

um
en

t

The Effect of Noise on the PAB and UCB1−RBV

PAB
UCB1−RBV

(1 − 1/e)OPT

OPT

p
R
 = 0.75 p

NR
 = 0.25

p
R
 = 1 p

NR
 = 0

p
R
 = 1 p

NR
 = 0

p
R
 = 0.75 p

NR
 = 0.25

Figure 5.3: The pR is decreased to measure how noise affects the performance (the fraction
of rankings which contain a relevant document) of the PAB (where λ = 1) and
UCB1-RBV algorithms over time.

that its rankings were still resistant to rank and other biases in click observations.

Here, the values for pR and pNR were systematically adjusted to allow clicks to

occur on non-relevant subtopics. Because the clickthrough rate was no longer a

reliable measure of performance, the fraction of rankings with a relevant document

was measured instead, which is equal to the clickthrough rate when pR = 1. The

results in Fig. (5.3) show that as the click observations become less reliable, the

performance of the PAB and UCB1-RBV algorithms degrades gracefully, and that

the PAB approach still remains the more effective algorithm.

5.5 Conclusion
In this chapter, a model for dynamic online learning to rank has been presented,

where the relevance of documents is learned over a period of time through the inter-

action with users, by considering clicks as observations of relevance. Through the

theoretical derivation and analysis based on the DIR framework, it is shown that the

relevance of documents can be updated over time using the rank-biased user clicks.

134 Chapter 5. Dynamic Online Learning to Rank

From this, the UCB-DR algorithm is defined based on the multi-armed bandit ma-

chine theory, and three click model based variants evaluated in simulations and over

search log data. Aside from demonstrating the effectiveness of the algorithms under

different problem settings, the experiments also highlighted the difficulty in evalu-

ating DIR solutions and the steps that can be taken to combat these limitations.

An alternative formulation is also presented, which instead diversifies rankings

of documents over time based on the portfolio theory of IR. In a different simula-

tion, the resultant PAB algorithm was shown to outperform a similar state of the

art approach, including when click noise was taken into account. This was a re-

sult of using only a single multi-armed bandit coupled with a proven diversification

procedure, rather than inefficiently training multiple bandits simultaneously.

Chapter 6

Dynamics in Session Search Logs

Key to any research involving session search is the understanding of how a user’s

queries dynamically evolve throughout the session. When a user creates a query

reformulation, they are consciously retaining terms from their original query, re-

moving others and adding new terms. By measuring the similarity between queries,

inferences can be made about the user’s information need and how successful their

new query is likely to be. By identifying the origins of added terms, the user’s

motivations can be inferred and an understanding gained of their interactions.

In this chapter, the DIR framework is used to define a novel term-based

methodology for understanding and interpreting query reformulation actions.

TREC Session Track data is used to demonstrate how the technique is able to learn

from query logs and click data to test user interaction behaviour when reformulating

queries. A range of term-based query reformulation dynamics are identified and

evaluated that provide valuable insight into understanding query reformulation in

session search.

6.1 Introduction
Session search is a dynamic information retrieval task that occurs when a user issues

multiple queries consecutively to a search engine in the pursuit of satisfying one or

more information needs. A session is typically defined as a period of continuous

interaction with a search engine and can be demarcated in a number of ways, for

example, by 30 minutes of inactivity [164]. Sessions containing more than one

136 Chapter 6. Dynamics in Session Search Logs

query make up a significant proportion of search activity, with one study finding

32% of sessions contained 3 or more queries [27]. Understanding the underlying

interactions in session search can lead to improved search interfaces, better search

rankings and user satisfaction.

Sessions are driven by query reformulations, the user controlled act of modi-

fying an existing query in order to pursue new search results. Query reformulations

are usually closely related to the user’s previous query and reflect the shifting cog-

nition of the user throughout the session search. For instance, a user may have an

unclear information need at the start of a session which becomes more refined as

snippets are read and documents are clicked. Such queries can be ambiguous when

the user is unsure how to explicitly define their information need [29] or explorative

when the user is actively seeking a broad range of information on a subject [30].

In both cases, the information need can change throughout the session, whether

through specialization or generalization, which leads to variations in the queries

that are used.

Sessions are typified by queries consisting of core terms related to the un-

derlying information need and additional terms that reflect the user’s cognitive

changes [165]. Over the course of the session, the core terms may change as well.

At any point in a session, three possible dynamic term actions are available to a

user:

Term Retention - Keeping terms from one query to the next, the core terms for the

current information need.

Term Removal - Removing a term from a query.

Term Addition - Adding a new term not present in the preceding query to the

query reformulation.

To illustrate a particular instance of query reformulation within session search

and the described term actions, Table (6.1) contains the queries in a typical search

session found in the 2013 Session Track dataset [1]. This session represents an

6.1. Introduction 137

Table 6.1: Queries in session 40 of the TREC 2013 Session Track.

Impression Position Query
1 gun control opinions
2 gun control us government
3 gun control current affairs
4 gun control current affairs
5 gun violence us
6 law center to prevent gun violence

explorative information need regarding public and political opinion on US gun con-

trol laws. The terms ‘gun control’ are retained through the first four queries,

with the user adding and removing terms ‘opinions’, ‘US government’ and

‘current affairs’ in order to learn more about the topic. The focus shifts

in query 5 with ‘gun control’ changing to ‘gun violence’, indicating a

change in information need, which is expanded upon in the final query, which is

more specialized.

Without knowing the underlying information need driving the queries, the ex-

ample demonstrates that it is possible to infer persistent subtopics and the terms

that are likely to be retained or removed from query to query (in this case ‘gun

control’ and ‘gun violence’). A certain degree of overlap is typical be-

tween queries but how much? What factors influence whether a term is likely to be

kept or removed in the next query? Can one determine a source for the new terms

that are introduced into a query? Measuring the similarity between queries and

other sources of text can help to resolve some of these questions and to allow for

the building of descriptive and evaluative models of dynamic user behaviour during

a session search.

For instance, in the example session it can be observed that the snippets of

all the results for the first query contain the terms ‘gun control’, and out of

all ranked documents only the clicked document (ClueWeb ID clueweb12-0100wb-

86-17546) contains the terms ‘US government’ (in the phrase “US Government

Info Guide”), which were then used in the next query. One inference that could be

drawn here is that the user observed the terms ‘US government’ in the clicked

138 Chapter 6. Dynamics in Session Search Logs

document, and this influenced their reformulation decision making process.

In this chapter, an understanding of the query reformulation process is gained

and helps to resolve the following research questions:

1. What is the relationship between terms found in adjacent queries in search

sessions? How often are terms from a query retained or removed in a query

reformulation?

2. Where are query reformulation terms not present in the original query sourced

from, and can term addition be modeled?

3. Can dynamic user-behaviour scenarios defined on terms that are retained,

removed or added be informative of the quality of query reformulations?

These questions are resolved by introducing a novel methodology for interpreting

query reformulations using terms. The technique is used to explore term reten-

tion and removal by analyzing adjacent and non-adjacent queries in sessions. With

term addition, experimental observations indicate that a significant number of added

terms in a reformulation can be sourced from the terms that the user was exposed

to in the previous impression. An impression consists of a query, its snippets and

its documents, all of which contain terms that the user may have encountered dur-

ing session search. By also incorporating click information, three sources for such

terms can be defined and evaluated: clicked and non-clicked snippets and clicked

documents.

The next stage in this analysis involved measuring the value of the three term

sources in determining whether query terms were retained, removed or added, lead-

ing to eight possible scenarios of user behaviour. To evaluate the effectiveness of

scenario-based term prediction, and also the user’s observed query reformulations,

the experiments confirm whether the term actions ultimately lead to increased user

satisfaction or improved search rankings. This is measured using implicit click in-

formation and a number of IR metrics.

The analysis was conducted on the TREC Session Track data from 2011 to

2014 [166, 167, 1], a set of standardized query logs comprising queries grouped by

6.2. Related Work 139

sessions across a number of predefined topics, the ranked documents, their snippets

and clickthroughs (including order and dwell time) and relevance judgements. The

documents belong to the ClueWeb091 and ClueWeb122 corpora. This dataset was

chosen as it is widely available, well regarded in the IR community and whilst small

when compared to commercial query logs, it is rich with potential sources for term

discovery (snippets and documents), interaction data (clicks and dwell time) and

relevance judgements (for evaluation).

Unlike the earlier chapters in this thesis, this chapter deals with applying the

DIR framework to a search log so that the inherent dynamic behaviour of the user

within the dataset can be discovered. The dynamics in this case are those of the

user rather than the search system, and so must be inferred rather than modeled.

Here, no algorithm is defined and evaluated on test sets. Instead, the components

of the dynamic framework are used as a motivation for defining the methodology in

this chapter, for instance, the three term actions represent explicit dynamic actions

available to the user during the act of query reformulation.

6.2 Related Work
This is not the first query log analysis of query reformulation behaviour. Jansen et

al. [168] defined different query reformulation states and the transition patterns that

occurred during a session and evaluated them over a large query log. Their research

idea is similar to the scenario-based approach in this chapter, although in their study

the states operate on a query level by looking at the degree of overlap between

queries, rather than the term based approach used here, but some of the findings

are similar. Lie et al. [169] explored a similar state-based analysis but this time on

a user study that allowed them to determine different types of behaviour based on

the type of task being performed by the user. Kinley et al. [165] also performed

a user study with the intention of observing different query modifying behaviour

(such as replacing, adding terms etc.) and linking it to a user’s ‘cognitive style’

of query reformulation. A similar work to this is Huang and Efthimiadis’ [170]

1http://www.lemurproject.org/clueweb09/index.php
2http://www.lemurproject.org/clueweb12.php/

http://www.lemurproject.org/clueweb09/index.php
http://www.lemurproject.org/clueweb12.php/

140 Chapter 6. Dynamics in Session Search Logs

classification of different types of reformulation behaviour which utilised clicks

from query logs and used term differences as well. Nonetheless, this is the first

such study using a purely term-based approach that also incorporates clicks in a

user interaction model. The sniptLC definition and experiments in Section 6.5.1 are

based on the examination hypothesis model [38] which is based on eye-tracking

research. Another recent eye tracking study [171] found that when browsing search

results, users will glance at snippets but not fully read them, returning to them at a

later point if at all.

The work by Guan et al. [34] on session search re-ranking based on query and

impression term matching is a similar approach to this, although here a more com-

plex model is built that captures the dynamic user interactions, and also document

re-ranking is not the objective. Another similar work is by Jiang et al. [55] who

conducted a comprehensive user and eye tracking study to understand how users

behave over the course of a session. Their work included statistics on reformulation

behaviour and ranking metrics across queries in sessions and many of their results

mirror those in this chapter. Both of the described pieces of research can be seen as

a specialization of the methodology in this chapter (for instance focusing on a par-

ticular type of term source) that concerns a specific IR problem, whereas the work in

this chapter is a more general study on trying to understand dynamic reformulation

behaviour.

The work most similar to this is by Liu et al. [172] who used terms from clicked

snippets to aid in query recommendation. They also recognized that information

needs persist through adjacent queries in search sessions but are difficult to define

based purely on previous queries, and so use snippets as an additional term source.

Unlike the methodology in this chapter, they only use clicked snippets whereas

here terms from non-clicked snippets and documents are also incorporated, as well

as those from the previous query. Where the work mainly diverges is that their

objective is to locate terms that are useful for query recommendation, whereas the

objective here is to identify useful term sources for query reformulation (of which

clicked snippets is one) under a number of conditions including clicks, rank and

6.3. Analytical Setup 141

Table 6.2: TREC 2011, 2012, 2013 and 2014 Session Track data overview.

TREC Session Track
2011 2012 2013 2014

Number of topics 62 48 49 51
Number of sessions 76 98 116 1075

Number of impressions 280 297 471 3784
Number of qt → qt+1 pairs 204 199 355 2709

Average number of terms in query 3.34 3.40 3.51 3.21

impression position.

The work in this chapter differs from the literature in that: 1) the methodology

is term-based rather than query or task-based, 2) the methodology is derived from

data rather than a user or eye-tracking study, and 3) the model is based on the DIR

framework, incorporates clicks and differentiates term sources such as snippets and

documents as sources of reformulation terms.

6.3 Analytical Setup
Experiments were conducted using the TREC 2011, 2012, 2013 and 2014 Session

Track data [167, 1], which contained search logs collected by the TREC organizers

and grouped by session. While particpants were given predefined topics to search

over, the organizers recorded all of the displayed URLs, titles and snippets and

also user interactions including clicks and document dwell time . The corpora used

were the ClueWeb091 and ClueWeb122 datasets. Relevance judgements were also

collected for documents related to each of the topics. See Table (6.2) for more

detailed information about the datasets.

In comparison to commercial search logs, the TREC dataset is small. More-

over, the artificial setting in which the participants were recorded conducting ses-

sion search makes analysis on its data difficult to apply to commercially used search

systems. For the purpose of this study, the dataset is ideal in that it was the only

publicly available search log that contained the rich impression data needed for this

analysis, that is, clicks, dwell times and all ranked snippets and documents (not just

clicked). While the statistics in this chapter may not exactly reflect those found

in commercial logs, the theoretical insights are still transferable, can be readily

142 Chapter 6. Dynamics in Session Search Logs

reproduced, and the methodology is applicable to any similarly rich dataset. Fur-

thermore, the dataset proved large enough to give statistically significant values in

the experiments.

Sessions in the dataset are made up of a list of queries, each of which contains

a ranking of M documents (typically M = 10), the snippets and titles of each docu-

ment and a list of the documents that were clicked, including their order and dwell

time. In a session containing T queries, the t’th query is referred to as qt and its

query reformulation (if t < T) as qt+1. In this chapter, the boldface variable~qt de-

notes the term vector representation of the query (with term frequency as the term

weights) and the capitalised Qt as the set of its terms dt . This chapter’s analysis

and experiments concern the changes between queries in a session, so each pair of

queries qt → qt+1 is extracted for t = 1, . . . ,T −1.

An impression refers to all of the search data related to a query such as the

ranked list of documents and the clickthroughs. Elements of an impression include

snippets (and their titles), clicks, dwell time and documents. In this dataset each

session ends with a ‘test’ query intentionally containing no ranking, the original

purpose being for researchers to create rankings for this query by utilizing the in-

formation in the session. In these cases the query is not considered to have an

impression but it is still made use of in the query reformulation pairs unless stated

otherwise.

The Natural Language Toolkit (NLTK)3 was used to remove punctuation and

stop words and tokenize all textual content, and then the terms were stemmed us-

ing the Porter Stemmer [173]. Consideration was given to the choice to remove

stop words, as it did render some query reformulations as identical to the pre-

vious query, even if they originally weren’t. For instance, in session 95 of the

2012 dataset, q1 =‘connecticut fire academy’ and q2 =‘what is the

connecticut fire academy’, yet after stop word removal q1 = q2. In this

case, the reformulation is a more focused query than its predecessor but it nonethe-

less addresses the same information need with the same core terms. The Beautiful

3http://www.nltk.org/

http://www.nltk.org/

6.4. Term Retention and Removal 143

Soup HTML Parser4 was used to extract textual content from the ClueWeb HTML

documents.

Each term source (such as a query or snippet) was treated as a bag of

words (BoW), even though using n-grams could make the methodology more dis-

cernible. For example, in session 285 of the 2014 dataset, q1 =‘depression’

and q2 =‘help someone with depression’. With BoW, the terms ‘help’

and ‘someone’ are treated separately, and there are indeed examples of the term

‘help’ in the snippets for q1, although erroneously in the context of the web-page

(‘...Help FAQ Advertising...’ at rank 3) rather than that implied by the

query. Here, a bigram would distinguish ‘help someone’ in the correct context.

Nonetheless, all of the similarity measures used operate on a BoW model, and given

that typically only 1 or 2 terms are observed being added or removed from adjacent

queries in a session, a unigram model is sufficient in this case.

This methodology concerns the analysis of text similarities. The similarities of

queries are measured using the following formulae:

Jaccard(Q1,Q2) =
|Q1∩Q2|
|Q1∪Q2|

(6.1)

Cosine(~q1, ~q2) =
~q1 · ~q2

‖~q1‖ · ‖~q2‖
(6.2)

where q1 and q2 are queries (or any other term source). Jaccard similarity is com-

monly used in measuring set similarity, in this case sets of terms, and Cosine simi-

larity is widely used in the vector space model in IR.

6.4 Term Retention and Removal
In this first analysis, the term actions retention and removal are investigated. These

two actions are only applied to terms dt found in the user’s query Qt , where retention

means that dt ∈ Qt+1 and removal is when dt /∈ Qt+1.

The average number of terms retained, removed or added were measured as

was the average Jaccard and Cosine similarity between adjacent queries found in

4http://www.crummy.com/software/BeautifulSoup/

http://www.crummy.com/software/BeautifulSoup/

144 Chapter 6. Dynamics in Session Search Logs

Table 6.3: Average number of terms retained, removed or added from qt → qt+1 and the
similarity between the two queries across TREC Session Track datasets.

TREC Session Track
2011 2012 2013 2014 Combined

Jaccard(~qt ,~qt+1) 0.49 0.52 0.50 0.51 0.50
Cosine(Qt ,Qt+1) 0.60 0.65 0.62 0.63 0.63

terms retained from qt → qt+1 2.12 2.29 2.28 2.10 2.13
terms removed from qt → qt+1 1.20 1.05 1.20 1.11 1.12

terms added from qt → qt+1 1.33 1.35 1.33 1.21 1.24

sessions in the TREC datasets, the results are in Table (6.3). It can be seen that

adjacent queries are similar to one another, with high similarity scores and term

retention. The measures are generally consistent across the individual datasets and

their combination, and so the remainder of these analyses will be conducted on the

combined dataset. Across all datasets, an average of 63% of the terms in qt+1 can

be found in qt , where 66% of its terms are retained (2.13 terms), 34% of terms are

removed (1.12 terms) and 1.24 terms are added. 33% of the time the reformulation

contains all of the terms found in the original query. Retained terms clearly make

up a large proportion of a reformulation and are indicative of the core terms defining

the user’s information need.

An important observation is that on average the length of queries increases

from 3.25 terms to 3.37 terms, meaning that it cannot always be possible to source

qt+1 terms from qt . To determine if this relationship holds throughout a session, the

average query length at each impression position was found for a number of differ-

ent session lengths (see Fig. (6.1)). The results show that for shorter sessions (2 -

4 impressions) query size does appear to marginally increase, for medium session

lengths (5 - 7 impressions) the query size initially increases to a point and can start to

decrease, and for longer sessions (8 - 10 impressions) the query length varies unpre-

dictably, presumably due to the small population sizes. Medium and longer sessions

are likely to contain shifts in information need (for example, between queries 4 and

5 in Table (6.1)), which may explain the variability of query length with increased

impression position. It is clear from these results that reformulations can gain or

6.4. Term Retention and Removal 145

0

1

2

3

4

5

n=309 n=256

Sessions of length 2-4

n=205

0

1

2

3

4

5

n=136 n=99

Sessions of length 5-7

n=52

0 2 4 6 8 10
0

1

2

3

4

5

n=32

0 2 4 6 8 10

n=21

Sessions of length 8-10

0 2 4 6 8 10

n=5

Query Length Per Session Length

Impression Position

N
u
m

b
e
r
o
f
Te

rm
s

Figure 6.1: Plots of the average number of terms in queries at different impression positions
in a session, for different lengths of session. The number of instances of each
session length are labelled as n in each subplot.

lose terms depending on their position in a session.

In Fig. (6.2), the similarity between query reformulations and their preceding

query was measured at each impression position. In the previous analysis it was

found that impression position affected query length (subject to session length),

so here it is investigated whether this also holds for query similarity. The main

conclusion that can be drawn is that the results are too variable to discern a pattern,

with no clear trend for increasing or decreasing similarity. What this indicates is that

throughout a session, queries are generally similar to their reformulations regardless

of their position in the session.

Nonetheless, one would expect information needs to change throughout a ses-

sion and when that happens the similarity between adjacent queries should change.

For instance, in Table (6.1) the average similarity scores between all adjacent

queries are Jaccard = 0.44 and Cosine = 0.57, but between queries 4 and 5, the

146 Chapter 6. Dynamics in Session Search Logs

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
Jaccard

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
Cosine

Similarity of Adjacent Queries by Impression Position

Impression Position

Figure 6.2: Average similarity of qt → qt+1 pairs for impression positions t = 1 . . .9.

0.0

0.2

0.4

0.6

0.8

1.0
x = 1 x = 2 x = 3

0.0

0.2

0.4

0.6

0.8

1.0
x = 4 x = 5 x = 6

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
x = 7

0 2 4 6 8 10

x = 8

0 2 4 6 8 10

x = 9

Cosine Similar i ty of q t with q x

t

C
o
si

n
e(

q
t
,
q

x
)

Figure 6.3: Cosine similarity of fixed query qx with every other query qt in the session for
x = 1 . . .9.

shift in query intent is captured in the change in similarity scores, calculated as

Jaccard = 0.17 and Cosine = 0.29, a noticeable departure from the average.

In Fig. (6.3) it can be seen that the core query terms do not remain constant

throughout a session, indicating that the terms used in queries are always progres-

6.5. Term Addition 147

sively changing. In this instance, the cosine similarity measure was measured al-

though the same trend can be observed for Jaccard similarity. It can be seen that

queries occurring on either side of the ‘fixed’ query qx are the most similar but

queries further away in the session become more dissimilar. This behaviour holds

regardless of the position of qx in the session. Together with the previous result,

this demonstrates one of the key motivations of this methodology, that there does

not exist a set of ‘core’ terms that represent the user’s information need throughout

the session, instead, the query and its core terms dynamically evolve as the user’s

information need changes. Queries at the start of a session can be very different

from those at the end, and as such, term retention and removal are useful locally

with adjacent queries but less so across the whole session.

6.5 Term Addition

So far it has been shown that on average 63% of the terms in query reformulations

can be explained by the retained or removed term actions, leaving 37% of terms

unaccounted for. In this section the addition term action is investigated, which is

applicable to added terms addt+1 which are terms added from qt to qt+1 i.e. the set

of terms ADDt+1 = Qt+1\Qt . Whereas before the analysis concerned the similarity

of the query reformulation against query terms dt , in this section the similarity is

measured against terms from each of the term sources found in the impression.

When different term sources are compared with addt+1 there are some prob-

lems caused by term source length. For instance, the Jaccard similarity is sensitive

to the size of the sets it compares; comparing with a larger set leads to lower simi-

larity, making comparisons between different term sources biased. Additionally, in

the studies so far, the comparisons have been over the small number of terms found

in queries, where every term can be considered important. On the other hand, the

term sources can contain hundreds of terms, only a few of which may match the

added terms.

These problems are counteracted in two ways: first, the TFIDF scores [44] are

used instead of term frequencies in the Cosine similarity measure, which helps to

148 Chapter 6. Dynamics in Session Search Logs

match on those added terms that are important to the term source. Thus, from this

point on any term vectors~qt refer instead to the TFIDF vector. Secondly, the BM25

score [2] (with typical parameter settings k1 = 1.2 and b = 0.75) is measured. This

score was designed to find the similarity of queries consisting of a few terms against

documents with many terms, and so is robust to variable document lengths. For both

of these measures, the IDF must be calculated over the document collection, as well

as the average document length for BM25. In this methodology, the collection of

all instances of a term source are treated as the document collection when analysing

terms in that term source. For example, when analysing the snippet term source, the

collection of all of the snippets in the dataset are considered as the data collection

for calculating IDF and the average document length.

6.5.1 Snippet Analysis

The analysis here starts by considering the snippets found in an impression. A query

qt may have up to M ranked snippets snipti where snip is the snippet and i is its rank

position 1≤ i≤M. In the datasets the snippet title is joined onto the snippet under

the assumption that anyone reading the snippet has also read its title.

In the first study the similarity of snippets snipt against added terms addt+1 are

investigated at different rank positions. A natural hypothesis based on eye tracking

studies [174] is the concept of rank bias, that search results ranked at the top have a

higher chance of being observed, thus, they should be more similar to terms added

to the next query than lower ranked, potentially unobserved snippets.

In Table (6.4) the similarity scores for each snippet snipti from rank 1 to rank

i in the impression are averaged. Under the assumption given by the Examination

Hypothesis model that users examine all snippets in order from the top of the search

results to the bottom, all snippets up until rank i are averaged over, not just the

snippet at that rank. The results show that across metrics the similarity peaks at rank

positions 2 and 3 before dropping with each rank. The similar lengths of snippets

at each rank means that a term source length bias can be ruled out. Curiously,

the highest ranked snippet on its own does not have the highest similarity to added

terms. The implication here is that terms used in query reformulations have a higher

6.5. Term Addition 149

Table 6.4: Average similarity scores between added terms addt+1 and snippets snipt up to
rank i in an impression. For example, if i = 3, then the score is the average
over snipt1,snipt2 and snipt3. Maximum values for each similarity measure are
in boldface.

i
1 2 3 4 5

Jaccard(ADDt+1,SNIPti) 0.00531 0.00536 0.00529 0.00507 0.00494
Cosine(

−−−−→
addt+1,

−−−→
snipti) 0.0184 0.0197 0.0195 0.0187 0.0185

BM25(addt+1,snipti) 0.704 0.756 0.758 0.737 0.728
terms in snipti 48.3 48.8 49.9 50.2 50.3

chance of being found in the top 2 or 3 ranked snippets and that users do not just

consider the top ranked snippet on its own. This examination of the top 2 or 3 search

results is consistent with eye tracking observations.

From click model research, the assumption can also be made that if a click

is observed in an impression, then the user has examined all snippets up until the

rank position of that click. Let LC be denoted as the rank of the Last Click in an

impression (that is, the lowest ranked clicked document). In this next study, the aim

was to observe whether similarity change occurs at rank LC and for the snippets

ranked above and below it, akin to the ‘Click > No-Click Next’ strategy and its

variants outlined by Joachims et al. [53]. If an impression didn’t contain a click,

then all snippets in the impression are included, the results are in Table (6.5).

It was expected that a decrease in similarity following the rank LC would be

observed, owing to the hypothesis that a user does not examine documents ranked

lower than the last click. In this experiment it can be seen that this is not the case, a

higher similarity score is observed when considering all snippets in an impression

rather than just up until the last clicked. A difference between this session search

setting and that typically modeled with click models is that in this case, even after

a document has been clicked, it is known that the user returned to the set of search

results in order to issue a reformulation. Conventional click models do not take into

account multiple queries in a search session. As such, in this case it is likely that the

user continued to examine snippets after the last click, before abandoning the query

and issuing a reformulation, leading to the observed results. Also, by comparing

150 Chapter 6. Dynamics in Session Search Logs

Table 6.5: Average similarity scores between added terms addt+1 and snippets snipt up to
and around rank LC in an impression, as well as all snippets. Maximum values
for each similarity measure are in boldface.

i
LC−1 LC LC+1 LC+2 M

Jaccard(ADDt+1,SNIPti) 0.00440 0.00446 0.00450 0.00458 0.00465
Cosine(

−−−−→
addt+1,

−−−→
snipti) 0.0167 0.0171 0.0172 0.0174 0.0175

BM25(addt+1,snipti) 0.656 0.671 0.676 0.682 0.688
terms in snipti 51.0 51.0 51.0 50.9 50.4

these results with those in Table (6.4) it can be seen that the top ranked 2-3 snippets

are still more likely to contain added terms.

These inferences can be observed in the example session in Table (6.1).

For queries q5 =‘gun violence us’ and q6 =‘law center to prevent

gun violence’, where q6 has already been noted for its shift in query intent,

the impression for query q5 has the added term ‘center’ in the snippet at rank 3,

which is the last (and only) clickthrough. This is in line with the findings on top

ranked snippets in Table (6.4) and corroborates the last click hypothesis above. Yet,

at ranks 7 and 8 there are instances of the added term ‘prevent’, suggesting that

in this case the user examined snippets beyond the one that was clicked.

6.5.2 Term Sources

So far the effect of impression and rank position on similarity has been introduced

and in the last experiment clicks were introduced. Here, clicks are directly used to

further distinguish between the two distinct sources of added terms in an impres-

sion: snippets and documents. This means that an impression can be split into three

term sources:

Non-Clicked Snippets (ncs) Snippets without a clickthrough.

Clicked Snippets (cs) Snippets with a clickthrough.

Clicked Documents (cd) Documents with a clickthrough

Note that the combination of nc and cs gives all snippets in the impression i.e.

(
⋃

CS)∪ (
⋃

NCS) = SNIPM. From this, impression terms can now be considered

6.5. Term Addition 151

Table 6.6: Average similarity of added terms with click-based variations of the snippet and
document term sources and also the full preceding impression (imp) and all pre-
vious impressions (hist). Bold scores indicate a statistically significant (p< 0.01
under Welch’s t-test) difference from non-clicked and ‘All’ variants of the term
source.

Term Source # terms Jaccard Cosine BM25
All Snippets (snipM) 50.4 0.00465 0.0175 0.688
Clicked Snippets (cs) 50.1 0.00752 0.0289 1.100

Non-Clicked Snippets (ncs) 50.5 0.00445 0.0167 0.660
All Documents (ad) 808.8 0.00131 0.0251 5.612

Clicked Documents (cd) 974.2 0.00171 0.0398 8.207
Non-Clicked Documents (ncd) 796.4 0.00128 0.0240 5.417

Impression (imp) 8127.2 0.00067 0.0381 3.535
Historical (hist) 19802.9 0.00052 0.0568 4.370

as belonging to one or more of the described term sources and so an evaluation was

conducted on how effective they are at providing added terms for query reformula-

tions. The reasoning for incorporating clicks into the term source definitions is that

implicit user feedback is an indicator of the relevance of the terms contained in the

source and the user’s behaviour at that point in the session.

Table (6.6) contains the results of the similarity analysis over different term

sources and their variations with added terms. Clicked snippets and documents

(cs and cd) were compared with their non-clicked counterparts (ncs and ncd) and

also against both combined (snipM and ad). In both cases, statistically significant

increases in similarity are observed when considering clicks, a clear indicator that

clicked snippets and documents are a source of terms used in query reformula-

tions. Clicked documents score higher than other term sources for the length nor-

malised metrics Cosine and BM25 (the score is lower for the length biased Jaccard

measure), indicating the importance of clicked documents. The similarity of non-

clicked documents was measured in order to provide comparison with clicked docu-

ments, but ultimately in this chapter they’re not considered as a term source. This is

because it cannot be known if the user has been exposed to them during the session,

although it is feasible that the user has encountered the document before, or was

satisfied by the non-clicked snippet itself.

152 Chapter 6. Dynamics in Session Search Logs

The similarity with all of the terms found in the impression was also mea-

sured, where IMP = SNIPM ∪CD (not including the query). It can be seen that

differentiating an impression into click-based term sources does lead to improved

similarity scores than combining them all together into one impression-based term

source. Taking this further, historical impressions were also measured, i.e. all im-

pression terms that occurred earlier in the session up to and including impression t,

given as HISTt =
⋃t

k=1 IMPk, to test the assumption that users obtain terms not just

from the preceding impression but also those encountered earlier. For instance, in

the example in Table (6.1), the term ‘current’ from q3 is not found in the pre-

ceding impression for q2, whereas it occurs 3 times in the snippet at rank 3 of q1.

There is an increase in similarity scores over the historical impression terms and

values that is comparable with the other term sources, suggesting that terms can be

sourced from earlier in the session. In this chapter, the term sources are defined

based only on the preceding impression, but using earlier impressions could prove

an interesting extension.

6.5.3 Dwell Time

From Table (6.6) it can be seen that clicked documents have substantially more

terms than snippets. A central argument of this methodology is that users choose

reformulation terms that they have been exposed to from term sources, hence, in

order to come across terms in a long document, time must be spent reading it. The

dataset records the dwell time of each clicked document, which is an indicator of

reading time.

The average dwell time is 35.3 seconds before users return to the set of search

results. This is similar to the 30 second threshold used in other IR research as a

marker for a satisfactorily (SAT) clicked document [164]. SAT clicks are often

used as a replacement for relevance judgements in the absence of human assessors,

usually on large query logs. With this dataset a dwell time threshold of 30 seconds

differentiates 40% of the clicked documents.

To test whether dwell time should be considered a feature in this methodology,

the similarity of clicked documents against added terms was measured at a range of

6.6. Term Scenario Analysis 153

0 10 20 30 40 50 60 70 80 90 100
Dwell Time Threshold

−0.10

−0.05

0.00

0.05

0.10

0.15

C
o
si

n
e
 S

im
ila

ri
ty

Similarity of Added Terms to Clicked Documents with Dwell Time

Figure 6.4: Average Cosine similarity of added terms with clicked documents at different
dwell time threshold levels.

different dwell time thresholds. Fig. (6.4) displays the results for Cosine similarity,

the other measures reported similar findings. Whilst one can observe a slight in-

crease in similarity with dwell time threshold, the results are too variable to be able

to draw any conclusions. In particular, the SAT click threshold does not appear to

offer any clear indicator of improvement. These findings are supported by recent

research that argues that this single value cannot capture the complexities of read-

ing behaviour and user satisfaction [104]. As such, in this chapter dwell time is not

considered as a feature in the methodology and instead all clicked documents are

used as a term source collectively.

6.6 Term Scenario Analysis
The term-based methodology in this chapter has given insight into the circum-

stances where terms are retained, removed or added to query reformulations. Use

of the similarity measures has helped to define the three term sources, based on

user interactions, that influence the terms added to the next query in a session. In

this section, the methodology is extended to measure how effective query refor-

mulations are under different circumstances. This is achieved by defining 8 user

154 Chapter 6. Dynamics in Session Search Logs

behaviour scenarios based on the combination of term sources, which can help to

interpret the analysis results and to understand user dynamics.

6.6.1 Query and Added Term Scenarios

The first focus in this section is on the query terms dt and whether the term actions

retention or removal are usually applied to them by the user. To expand on the

limited information available on the terms in the query, one can look for occurrences

of the term in the impression. More specifically, the three term sources ncs, cs and

cd. A query term dt can belong to any combination of term sources, including all

or none, giving 8 query term scenarios. Each combination of term source defines

a scenario and a full index of scenario number definitions is given in Table (6.8).

In the previous analysis, inferences were made on terms based on which term

source they originated from. With the expansion of 3 term sources to 8 scenarios,

more interesting observations can be made. For instance, in the first query in the

example in Table (6.1), the terms ‘gun’ and ‘control’ both belong to scenario 8

(they appear in non-clicked and clicked snippets and also clicked documents) and

they are retained in the query reformulation. Conversely, the term ‘opinions’ is

only found in non-clicked snippets (scenario 5) and is subsequently removed. An

inference that can be made here is that finding query terms in clicked snippets and

documents is a strong indicator that the term will be kept, whereas query terms that

only appear in non-clicked snippets are more likely to be removed.

Added terms are also assigned to the same scenarios in Table (6.8). Given that

the purpose of this methodology is to understand when terms from the previous

impression (including its query) will be used in the reformulation, it is appreciated

that a real search system would not have access to added terms in order to assign

them to scenarios. Nonetheless, by analyzing these terms in the same way as query

terms, one can gain insight into which circumstances a user is likely to add terms

from the impression.

All query reformulation pairs were extracted from the dataset as before but

this time did not include test queries (the final query in each session). Test queries

did not contain rankings or relevance judgements, and thus were unsuitable for the

6.6. Term Scenario Analysis 155

Table 6.7: Overall average clicks, non-clicks and documents per impression and overall
number of query and added term scenarios.

ranked documents 10.5
clicks 0.626

non-clicks 9.87
query term scenarios 7621
added term scenarios 2981

Table 6.8: Scenario number definitions, occurrence % for query and added term scenarios
and average number of ranked documents and clicks for each scenario.

Scenario
d ∈ Query term scenarios Added term scenarios

ncs cs cd % # Docs # Clicks % # Docs # Clicks
1 False False False 9.95 8.64 0.27 57.0 10.2 0.38
2 False False True 0.35 11.1 1.89 7.85 10.4 1.86
3 False True False 0.05 3.50 1.25 0.20 7.00 1.00
4 False True True 0.68 10.2 2.27 2.01 11.0 2.17
5 True False False 60.2 10.5 0.06 24.2 10.8 0.15
6 True False True 2.27 10.6 1.41 4.43 10.4 1.46
7 True True False 0.42 11.7 0.94 0.07 10.0 0.50
8 True True True 26.1 10.9 1.70 4.26 11.7 1.91

evaluations in the next subsections. Terms from qt and addt+1 were assigned to each

scenario and an overview of the results are in Tables (6.7) and (6.8).

In Table (6.8) it can be seen that both sets of term scenarios are variably dis-

tributed. Scenario 5, which refers to the case where terms only appear in non-

clicked snippets, is the most common scenario for query terms, comprising 60.2%

of the data. For this scenario the average number of clicks is 0.06, well below the

overall average in Table (6.7). Thus, scenario 5 appears to be capturing the common

case where users do not click on any results, hence no other term source matching

occurs. Scenario 8 makes up a further 26.1% of cases and represents the situation

where terms appear in all term sources. One would expect query terms to appear in

snippets (either ncs or cs) and it can be seen that this is the case 90% of the time.

Interestingly, 9.95% of query terms do not appear in the impression at all.

A different distribution of scenarios for added terms is observed, the most

prominent being scenario 1 at 57%. This is the case where added terms cannot be

found in the previous impression and mirrors the findings in Table (6.3). Scenario

156 Chapter 6. Dynamics in Session Search Logs

1 2 4 5 6 8
Scenario

20

40

60

80

100

120
%

 o
f

q
u
e
ry

 t
e
rm

s

Query Term Retention Per Scenario

Retained
Removed

Figure 6.5: Proportion of query terms that are retained or removed per term scenario.

5 is also common for added terms. The four scenarios where terms are found in

clicked documents (2, 4, 6 and 8) make up 18.6% of the scenarios, further evidence

of clicked documents being a valuable source of added terms. There is a noticeable

difference in occurrences between query and added terms in scenarios 2 and 4. Sce-

narios 3 and 7 rarely appear for both query and added terms; this can be explained

by the fact that these are the cases where terms appear in clicked snippets but not

clicked documents. Given that the snippet is derived from the document itself, this

makes it unlikely for these scenarios to occur, and they are ignored in subsequent

analyses.

6.6.2 Term Actions

Query term scenarios fall into two term action categories, retained or removed.

Fig. (6.5) shows the proportion of query terms that are retained or removed from

query reformulations for each scenario. The first observation here is that the two

most common scenarios (5 and 8) lead to high term retention rates which are around

the overall average term retention of 66%. This coincides with the earlier finding

that users generally retain terms between adjacent queries, thus, the core terms are

falling into these scenario numbers. For example, in Table (6.1) the query terms

6.6. Term Scenario Analysis 157

‘gun control’ both belong to scenario 8 for the first 2 queries and are retained.

For queries 3 and 4 (which are identical), they change to scenario 5 and are then

subsequently removed in the next query.

Scenarios 2, 4 and 6, which capture instances of query terms appearing in

clicked documents, occur infrequently for query terms and here seem to lead to the

removal of terms. One inference is that terms appearing in clicked documents may

be removed in lieu of the user satisfying that particular search intent. Low retention

for query terms that are not found in the impression at all can also be observed,

potentially an indication that the term was not useful in helping the user’s search.

6.6.3 Term Scenario Evaluation

So far, some understanding of the term actions retention, removal and addition has

been made without explicitly evaluating whether or not they are beneficial to the

user. Simply understanding the dynamics of terms from queries and term sources,

based on user behaviour in search logs, does not necessarily mean that they will im-

prove the search experience. These evaluations demonstrate that this methodology

is able to differentiate scenarios which may lead to future clicks or improvements

in IR metric scores.

6.6.3.1 Click Based Evaluation

The first evaluation method involved observing whether the next impression in the

session contained a click observation, an implicit measure of success and one tied

to the user whose session was being analysed. In this experiment, for each term

scenario the proportion of times each of the three term actions (retaining, removing

or adding) led to a click in the next impression was measured and the results are in

Table (6.9). Firstly, it can be seen that all term actions in scenarios 1 and 5 (where

terms are not found in clicked snippets or documents) are less likely to lead to a

click. When clicked documents are taken into account (scenarios 2, 4, 6 and 8) the

likelihood of a click in the next query is much higher. In particular, for scenarios

2 and 4 clicks were more likely after removing query terms then retaining them, a

result mirroring what was found in Fig. (6.5). Terms added from clicked documents

158 Chapter 6. Dynamics in Session Search Logs

Table 6.9: Percentage of term scenarios and term actions that led to a click in the next query.

Scenario
% (Term action→ Click)

Retained Removed Added
1 22.5 29.1 26.3
2 25.0 53.3 54.3
4 59.3 68.0 63.3
5 24.5 22.1 27.5
6 41.4 52.3 59.1
8 52.3 49.1 64.6

and snippets were also highly likely to result in a click.

6.6.3.2 IR Metric Based Evaluation

While clicks are important implicit signals of relevance, one can also make use

of the TREC Session Track relevance judgements to evaluate the effectiveness of

term actions. The majority of sessions in the dataset are linked to topics, for which

documents have been assessed for relevance by human assessors on a scale from 0

to 4. For each impression in the dataset the Normalised Expected Reciprocal Rank

(NERR) at rank position 10, nDCG at position 10 and the MAP were calculated.

These metrics are widely used and well regarded in the IR community and the cutoff

point at rank 10 was chosen in order to evaluate the quality of results in a typical

impression. NERR is a metric that rewards displaying a highly relevant document at

a high rank, nDCG measures the quality of the retrieved documents and their order

and MAP balances precision and recall.

The difference in scores for each of the metrics calculated for the rankings of

qt and qt+1 were measured across each scenario and term action and the results

are in Table (6.10). It can be seen that when scenario 1 query terms are retained

there is a significant improvement across all IR metrics, but otherwise for the other

scenarios the scores decrease, significantly so for scenario 8. A similar pattern

across all scenarios can also be seen when terms are removed. Finally, for added

terms the IR metrics decrease across all scenarios, significantly so for scenarios 1

and 2. These results indicate the existence of a general trend of decreasing IR score

for adjacent queries, and it was found that a plot of the scores across impression

6.6. Term Scenario Analysis 159

Table 6.10: Change in value for metrics nDCG, NERR and MAP from qt → qt+1 for each
term action and term scenario. Bold values indicate a statistically significant
difference in IR metric score (p < 0.05 under the Wilcoxon signed rank test).

Scenario
1 2 4 5 6 8

Retained
nDCG 0.078N −0.205H -0.120H −0.009H −0.019H -0.058H
NERR 0.080N −0.216H -0.146H −0.004H −0.024H -0.064H
MAP 0.004N -0.011H 0.010N 0.001N −0.003H -0.009H

Removed
nDCG 0.058N 0.000 −0.069H 0.006N 0.006N -0.148H
NERR 0.037N −0.024H −0.063H −0.015H 0.017N -0.140H
MAP 0.005N −0.004H 0.000 -0.003H 0.001N -0.010H

Added
nDCG −0.025H -0.127H −0.051H −0.023H −0.046H −0.091H
NERR -0.019H -0.123H −0.082H −0.020H −0.052H -0.073H
MAP -0.007H -0.007H 0.002N 0.000 −0.006H −0.006H

positions (Fig. (6.6)) confirms this negative trend. This is likely due to the nature of

relevance judgment collection for the TREC Session Track data, where judgments

are found for only the top ranked documents for the original subtopic. Based on

the findings in this chapter, the specific subtopic of the query will change with

every query, resulting in new documents being retrieved that were not evaluated by

the TREC judges and so by default are considered non-relevant, thus reducing the

metric scores.

What can be taken from these results is that when one comes across an impres-

sion which doesn’t contain query terms, the next query is likely to be an improve-

ment (regardless of whether the query term is retained or removed). Furthermore, in

the converse scenario where query terms appear in all term sources, the next search

ranking is likely to be worse.

The experiments conclude on an interesting final result, where it can be seen

that when a term is added from a clicked document only (scenario 2), it leads to

rankings with poorer IR scores. This is in spite of many of the findings that indicate

that clicked documents are a rich source of added terms, that scenario 2 commonly

occurs and that such reformulations lead to clicks 54.3% of the time. For example,

the terms ‘us government’ in Table (6.1) fall into scenario 2 for q1 and are then

added to q2, the ranking of which leads to a click and an improvement in NERR

160 Chapter 6. Dynamics in Session Search Logs

0 2 4 6 8
Impression Position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
IR

 M
e
tr

ic
 S

co
re

IR metrics at impression position

NDCG
NERR
MAP

Figure 6.6: NERR@10, nDCG@10 and MAP scores for user created rankings at each im-
pression position.

and nDCG, but not MAP, and then they are removed. Here, these terms represented

a subtopic in the user’s overall information need that was satisfied by their results

before moving on. This result supports the argument that simply following the

query reformulation behaviour of users does not necessarily lead to improved search

systems, but through understanding the dynamic interactions with this methodology

one can make more informed inferences.

6.7 Session Dynamics
This novel methodology and term-based approach to understanding query reformu-

lation leads to some interesting, as well as expected, results. The results confirm

that a user’s query reformulation is largely made up of terms retained from their

preceding query, with the remainder made up of a mix of terms discovered in the

impression and externally sourced terms, although this can fluctuate throughout a

session. However, one cannot expect to find all terms in addt+1 based on what is

available in a query log, because users introduce terms based on their own cognitive

processes, memory, external context or when changing their information need. For

instance, in the example in Table (6.1), the final query contains the term ‘law’ that

6.7. Session Dynamics 161

is not found in any of the term sources in the previous impression; it is clear from

the table that this query is a departure from the topic and pattern of the previous

queries. In such cases, techniques such as behavioural modeling, ontologies, con-

textual retrieval and topic modeling could be used to predict new terms to add, but

this is beyond the scope of the work in this chapter.

While the terminology from the DIR framework is used throughout the chap-

ter, here the links are made more explicit. In previous chapters the focus was on

modeling the dynamics of a system responding to a user in an algorithm to improve

retrieval over time, whether that be in a multi-page search or online learning to rank

scenario. Inspired partly by the inferences that needed to be made in the UCB-DR

evaluation in Chapter 5 to interpret the data in a session log, and the potential future

goal of creating a session-based DIR ranking algorithm, in this chapter the goal has

been to understand the user dynamics in a session search log.

In this case, each stage in the DIR framework represents an impression in a

search session, and the actions available to the user are the term actions defined

in this chapter, namely term retention, removal and addition. Additionally, the 8

term scenarios in Table (6.8) are merely an extension of this action space. The goal

in this chapter has been to understand the unknown relevancies of the terms d and

how they evolve over impressions, The findings suggest that terms belonging to

different term sources and scenarios can have different relevancies to the user i.e.

they are more or less likely to be used in the query reformulation. Aside from the

observations of reformulation behaviour that can be gleaned from the search logs,

the commonly used click observation is also used as a basis for evaluation and the

effect of rank bias is also investigated. Following the work in this chapter, the next

step would be to define a suitable static utility function that rewarded successful

query reformulations, perhaps by using the statistics from Table (6.10), so that a

dynamic utility could be defined and a query suggestion agent created.

162 Chapter 6. Dynamics in Session Search Logs

6.8 Conclusion
In this chapter, a methodology for interpreting query reformulation behaviour based

around the three term actions retention, removal and addition has been introduced.

This technique was directly applied in an empirical analysis over TREC Session

Track Data where the origin of terms used in query reformulations were analysed.

From the results, the preceding query was identified as the main source but it was

also shown that terms located in the impression itself were an additional source. It

was found that adjacent queries in a session tended to be very similar but that there

often was not a set of core teams that were used throughout, instead the core teams

changed in the session as the information need changed.

The methodology was tested on well-understood findings in click model re-

search and evidence was found of rank bias affecting reformulation behaviour. Fol-

lowing this, three user interaction based sources of terms were identified (and an-

other based on dwell time was discarded) that were found in each impression and

an experiment was conducted that tested from which sources users were able to lo-

cate terms to add to query reformulations. By matching query and impression terms

in the term sources a number of possible user behaviour scenarios were defined to

which a term could belong.

The difference in ranking quality of the term actions per scenario was measured

to evaluate how good they were at not just predicting query reformulations, but

effective ones. By interpreting the behaviour of the user for given scenarios and their

corresponding effective actions, insight was gained that improved the understanding

of a user’s motivations for retaining, removing or adding terms.

Chapter 7

Conclusion

The work in this thesis addresses each of the five research questions posed in Sec-

tion 1.5:

RQ1: What is dynamic IR and can a framework for it be defined in the context

of existing IR research?

The background on dynamics itself and the motivation for its use in IR are

covered in Chapters 1 and 2, including its three characteristics: temporal depen-

dency, user observation and an overall goal. Further to this, a probabilistic model

for solving problems in DIR is introduced in Chapter 3, where eight functional com-

ponents are formally derived and presented in Table (3.1). These components were

motivated by identifying features shared by static and interactive IR frameworks,

in particular, by investigating the well-established PRP and IIR-PRP models. The

DIR framework and its constituent elements are used throughout the remainder of

this thesis for solving dynamic problems in IR.

RQ2: Can the DIR framework be used in a practical setting? What are the

benefits/drawbacks to its use? How does its use differ from other IR frameworks?

The application of the DIR framework to practical ranking problems is demon-

strated in Chapters 3, 4 and 5. Firstly, two DIR framework based algorithms are

defined for document ranking in the multi-page search scenario. Settings for the

framework components are carefully considered and discussed, resulting in practi-

cal algorithms for solving the MPS problem. The algorithm in Chapter 3 is com-

pared against similarly derived algorithms based on the static and interactive frame-

164 Chapter 7. Conclusion

works, while a different algorithm in Chapter 4 is evaluated against existing ranking

and retrieval techniques such as the Rocchio and MMR algorithms.

These evaluations lead to interesting results regarding the effectiveness of rank-

ing with the DIR framework, in particular they demonstrate that static or interactive

rankings may be more beneficial in some cases, but in others (for instance when

diversification is needed), dynamic ranking is preferable. Drawbacks to the frame-

work are also discovered and discussed with regard to RQ4. These issues are fur-

ther addressed in Chapter 5, where two algorithms for the online learning to rank

problem are presented. In one of the algorithms, dynamic modeling leads to the

exploration of documents, whereas in the other diversification occurs. A common

finding throughout this thesis has been that it is important to find the right amount

of exploration (or diversification) to pursue in DIR, if there is too much then the

search performance suffers.

RQ3: In what ways can reinforcement learning methods, sampling and other

approximations be used to minimise the impact of complexity in the DIR frame-

work?

In Chapter 3, the framework is likened to the POMDP formulation, result-

ing in the use of the Bellman equation to define the dynamic utility function. A

consequence of this type of model is the computational complexity of solving the

Bellman equation when a large number of states and actions is considered, which is

often the case in DIR. As such, methods including the sequential ranking decision

and Monte-Carlo sampling are used throughout the algorithms in Chapters 3, 4 and

5. In Chapter 5 this is extended further by making use of a multi-armed bandit,

index-based formulation, derived from the application of expectation maximisation

to document relevance. This simplifies the DIR formulation into two efficient rank-

ing algorithms.

RQ4: How should IR problems in the DIR framework be evaluated? What are

the problems encountered when evaluating DIR algorithms?

A recurring problem throughout this thesis has been the evaluation of the de-

scribed algorithms. Conventional IR metrics are used throughout; for instance,

7.1. Future Work 165

while in Chapter 3 metrics are measured over individual pages of results, in Chap-

ter 4 they are measured over a combination of results pages. Session based metrics

were also explored in Chapter 3, but with poor results. In Chapter 5, the lack of

an appropriate live user testing system resulted in the algorithms being evaluated

through simulations and over search log data, with mixed results. DIR algorithms

are by their nature responsive and adaptive to users, and so without actual users to

interact with a DIR system it can be difficult to conduct a proper and unbiased eval-

uation. Further, few publicly available search logs contain interaction data such as

clicks. These problems led to the work conducted in Chapter 6, where the dynamics

in a search log were directly extracted and investigated. Nonetheless, the different

evaluation methodologies and metrics used throughout this thesis are indicative of

what is an open problem in dynamic information retrieval research.

RQ5: What does the DIR framework reveal about the interactions that occur

in a dynamic system? Can search logs from a dynamic system be used to understand

dynamic interactions?

From the experiment using Yandex data in Chapter 5 and the full TREC Ses-

sion Track search log analysis conducted in Chapter 6, interesting insights are ob-

tained about the dynamic search behaviour of users. For instance, it was found that

the core terms of a query tend to change throughout the course of a session, sig-

nifying the shifting of query intent. Further to this, the terms from highly ranked

snippets are more likely to feature in the user’s next query, rather than the terms

from snippets near to clicked documents. These results demonstrate that the DIR

framework can be used to extract interesting user insights from search log datasets.

7.1 Future Work

In this thesis, only a few of the potential settings of the DIR framework compo-

nents have been explored. Different problem settings in dynamic IR result in dif-

ferent definitions for the relevance, actions, observations and so on. For instance,

in Chapters 5 and 6 the focus is on the user as the agent, rather than the search

system, requiring a different understanding of the framework to the previous two

166 Chapter 7. Conclusion

chapters. Even within the well-understood problem of ranking and retrieval, there

exists a wide range of IR research that can be utilised in the framework settings.

For instance, different click models can be incorporated into the probability of ob-

servation distribution, other utility models could be used for the static utility, and

the relevance and its covariance could be modeled using a distribution other than a

Gaussian.

There is room for improvement in the multi-page search algorithms in Chap-

ters 3 and 4. One improvement would be to build a classifier that could learn for

which queries results diversification is beneficial, otherwise the first page is ranked

according to the PRP [80]. With some modifications the algorithms could also be

tested in the session search scenario, as was demonstrated by Luo et al. [130]. The

multi-armed bandit based formulation from Chapter 5 could also be applied to the

multi-page search scenario and evaluated against the direct DIR framework imple-

mentations in this thesis. Further to this, other reinforcement learning techniques

could be utilised in dynamic online learning to rank, as well as other multi-armed

bandit algorithm variants such as the duelling bandit [128] or the interleaving tech-

niques used in online learning to rank [158].

The work in Chapter 6 could be extended by further breaking down an im-

pression into new term sources, such as snippet and document title or document

components such as headers and paragraph text. Features such as rank and im-

pression position or click order could be used to separate the current term sources

and increase the number of scenarios. An n-gram model would require different

similarity measures but would allow for more accurate phrase matching and new

term actions (such as phrase rearrangement, splitting etc.). Term sources from non-

adjacent impressions could also help to improve the overall model, and other im-

plicit user measures (such as mouse tracking or reading level) could prove a good

differentiator of term source similarity. This work could then be extended to define

a query suggestion agent for session search that uses a dynamic model built up from

the occurrence of terms in the preceding impressions and queries. Likewise, an ac-

curate model of the user dynamics could aid in improving user behaviour models

7.1. Future Work 167

and allow for the use of session search logs in the evaluation of dynamic techniques.

In addition, the recall-oriented nature of dynamic IR, an important factor in

research on explorative and diversified search, is insufficiently investigated in this

thesis. As reported in the experiment findings, the metric scores of individual pages

may suffer in dynamic IR so that the overall scores can be optimised. This can be

described by the familiar balance between precision and recall, where increased re-

call is a result of diversified rankings. Subsequently, recall oriented datasets, such

as in patent and legal search, may have been useful for the evaluation in this thesis.

Further to this, new technologies such as mobile search, which by its nature ben-

efits from streamed search results and a reduced number of user interactions, are

potential practical applications of dynamic IR that are not explored in this thesis.

Ultimately, a key challenge facing the design of algorithms under the DIR

framework is in their evaluation. While industrial practitioners in IR may have

access to a live search system and users on which to perform A/B tests, these re-

sources are not typically available to academics on a scale larger than expensive

user studies. The inherent interactivity of DIR systems means that evaluating over

offline test collections will always result in compromises, which has been the case

in this thesis. In recent years, some headway has been made in the use of offline

datasets for the evaluation of online learning techniques [175, 176], in particular the

work on causal inference which offers promising advances [177]. In addition, the

recent Living Labs for IR1 project allows academics to create document rankings

for live users, a useful research tool for evaluating dynamic techniques.

Finally, while the proposed definition of dynamic information retrieval and the

probabilistic framework defined in this thesis is useful for helping to design dynamic

algorithms and understand the benefits and limitations of DIR, it does not directly

identify solutions for solving such problems. Typically when using a Markovian

solution such as an MDP, a stationary solution can be found by taking the limit of

the dynamic utility. This solution is usually easier to solve than by searching over

the action and state space as is the case in the algorithms in this thesis. Here, a

1http://living-labs.net/

http://living-labs.net/

168 Chapter 7. Conclusion

stationary solution is not pursued, instead the framework and its applications are

thoroughly explored. The ultimate, long-term objective in the area of dynamic in-

formation retrieval is to find a stationery solution to the dynamic utility function and

to understand how to apply it to problems in IR.

Appendix A

Related Publications

The following publications form the main part of this thesis:

1. Hui Yang, Marc Sloan, and Jun Wang. Dynamic Information Retrieval Mod-

eling. Morgan & Claypool, 2015

2. Hui Yang, Marc Sloan, and Jun Wang. Dynamic information retrieval mod-

eling (tutorial). SIGIR ’14, page 1290. ACM, 2014

3. Hui Yang, Marc Sloan, and Jun Wang. Dynamic information retrieval mod-

eling (tutorial). In WSDM ’15, pages 409–410. ACM Press, 2015

4. Marc Sloan and Jun Wang. Dynamic information retrieval: Theoretical frame-

work and application. ICTIR’15. ACM, 2015

5. Xiaoran Jin, Marc Sloan, and Jun Wang. Interactive exploratory search for

multi page search results. In WWW ’13, pages 655–666, 2013

6. Marc Sloan and Jun Wang. Iterative expectation for multi period information

retrieval. In WSDM Workshop on Web Search Click Data. WSCD, 2013

7. Marc Sloan and Jun Wang. Dynamical information retrieval modelling: a

portfolio-armed bandit machine approach (poster). WWW ’12, pages 603–

604. ACM, 2012

8. Marc Sloan, Hui Yang, and Jun Wang. A term-based methodology for query

reformulation understanding. Information Retrieval Journal, 18(2):145–165,

170 Appendix A. Related Publications

2015

In addition, there were a number of publications completed during the for-

mation of this thesis that concern related topics such as contextual, session-based

retrieval and computational advertising:

1. Milad Shokouhi, Marc Sloan, Paul N. Bennett, Kevyn Collins-Thompson, and

Siranush Sarkizova. Query suggestion and data fusion in contextual disam-

biguation. WWW ’15, pages 971–980, 2015

2. Shuai Yuan, Ahmad Zainal Az Abidin, Marc Sloan, and Jun Wang. Internet

advertising: An interplay among advertisers, online publishers, ad exchanges

and web users. CoRR, abs/1206.1:1–44, 2012

Appendix B

Glossary

Action

An action is taken by a dynamic agent to affect their environment. In dynamic

information retrieval, an action is typically a ranking of documents.

Agent

The agent (or dynamic agent) operates in an environment by making actions

and observing feedback signals (see Fig. (1.1)).

Bellman equation

The Bellman equation is a recursive utility function used in the dynamic pro-

gramming solution to an MDP [41].

BM25

BM25 is a well-established method for scoring document relevance using

term frequencies [2].

Click

A click (or clickthrough) is an observation of a user clicking on a link, usually

in a list of search results. Clicks are often recorded in search log datasets.

Click model

A click model is a probabilistic model that represent a user’s typical behaviour

on a search page.

172 Glossary

Co-click

A co-click occurs when two documents in the same ranked list are clicked.

Co-show

A co-show occurs when two documents are displayed together in the same

ranked list.

Control theory

Control theory is the mathematics of closed feedback looping systems that

maintain some form of equilibrium or state [10].

Cosine similarity

The cosine similarity is a measure of the angle between two term vectors in

the vector space model.

DCG

The Discounted Cumulative Gain (DCG) is a measure of the quality of a

ranking of documents [184].

DES

The Dynamic Exploratory Search (DES) algorithm from Chapter 4, which is a

specific implementation of the dynamic IR framework for multi-page search.

DIR

A Dynamic Information Retrieval (DIR) system is one which changes or

adapts over time. In this thesis, dynamic IR is defined as the modeling of

adaptive, responsive, goal-oriented information retrieval systems. The DIR

framework is is a probabilistic model for solving problems in dynamic IR.

DIR-MPS

The Dynamic IR - Multi-Page Search algorithm from Chapter 3, which

demonstrates how the dynamic IR framework can be applied to the problem

of multi-page search.

Glossary 173

Document

A document is a unit of information contained in a corpus, for instance, a

webpage in web search.

Dynamic programming

Dynamic programming is the process of breaking down a difficult problem

into sub-problems that can be solved independently, then their solutions com-

bined to solve the main problem.

Dynamic utility

The dynamic utility is the recursive utility function in the dynamic IR frame-

work that can be used to solve DIR problems.

ERR

The Expected Reciprocal Rank (ERR) is the inverse of the expected rank po-

sition of the first relevant document in a ranked list.

Explicit relevance feedback

In explicit relevance feedback, the user is directly solicited for information

regarding the relevance of information items, or else their information need

preferences.

Feedback

Feedback is a contextual relevance signal received by a user. It can be explicit

(such as a rating) or implicit (such as a click).

Gittens index

The Gittens index value represents the expected reward for playing an arm in

a multi-armed bandit until a termination step, and so for each time step, the

arm with the highest Gittens index value is the arm chosen to play [43].

174 Glossary

Interactive Information Retrieval

Interactive information retrieval research explores the complex sequence of

interactions a user may have with a search ranking [137], largely motivated

by the contradictory results found from conventional Cranfield style evalua-

tion [138] and observational user studies [139].

IIR-PRP

The Probability Ranking Principle for Interactive Information Retrieval (IIR-

PRP) is a framework for ranking in static IR, whereby documents are ranked

according to user effort and benefit and are dependent on previously ranked

documents [129].

Implicit relevance feedback

In implicit relevance feedback, signals observed from natural user interactions

with the search system are unobtrusively recorded and interpreted as signals

of relevance [102].

Impression

An impression is a single instance of a search in a search log. It consists of a

query, it’s ranked list of results, and may also include clicks, documents and

snippets.

Information need

An information need defines information that a user is seeking using an IR

system, which can be interpreted as a task or topic.

IR

Information Retrieval (IR) is the study of obtaining information resources

relevant to an information need.

Jaccard similarity

The Jaccard similarity is a measure of the overlap between two sets.

Glossary 175

Learning to rank

Learning to rank is the application of supervised machine learning algorithms

to the space of search tasks.

MAB

A Multi-Armed Bandit (MAB) is a reinforcement learning algorithm that ex-

plores potential actions and exploits actions known to give high rewards.

MAP

The Mean Average Precision (MAP) is a measure of the average precision

(the number of relevant documents) across queries in a dataset.

MDP

A Markov Decision Process (MDP) is a mathematical framework for making

optimal decisions. It typically consists of a set of states, actions, a transition

probability distribution and a reward function.

MMR

The Maximal Marginal Relevance (MMR) algorithm is a diversification tech-

nique where documents are re-ranked to take into account dis-similarity [17].

MPS

The Multi-Page Search (MPS) scenario is a search problem in DIR where

rankings must be generated for multiple pages of search results for an indi-

vidual query.

NDCG

The normalised Discounted Cumulative Gain (nDCG) is the normalised DCG

score.

Observation

An observation is a feedback signal from a dynamic agent’s environment.

176 Glossary

Observation likelihood function

In a POMDP framework, agents cannot determine which state they are cur-

rently in directly, but they can make an observation which gives some indica-

tion of the state they are in, given by the observation likelihood function.

Online learning to rank

Online learning to rank is described as “a continuous cycle of interactions

between users and a search engine, in which the search engine’s goal is to

provide the best possible search results at all times” [18].

Path-discount

The path-discount function gives a weight to the future stages in a dynamic

system.

PAB

The Portfolio-Armed Bandit (PAB) algorithm from Chapter 5 combines port-

folio theory with a multi-armed bandit algorithm so that diverse rankings of

documents can be learned over time.

POMDP

A Partially Observable Markov Decision Process (POMDP) is an MDP

where the agent in unsure of which state it is in. As well as the set of states, ac-

tions, the transition probability distribution and reward function, it also com-

prises a set of observations and an observation likelihood function.

Probability of relevance

The probability of relevance is a value between 0 and 1 representing the prob-

ability that a document is relevant.

PRP

The Probability Ranking Principle (PRP) is a framework for ranking in static

IR, whereby documents are ranked in decreasing order of their probability of

relevance [5].

Glossary 177

Pseudo relevance feedback

Pseudo relevance feedback systems simulate explicit relevance feedback by

assuming that the top k ranked documents in a search ranking are relevant,

then conventional relevance feedback is performed to improve search re-

sults [106, 107].

Query

A query is a collection of terms used by a user to represent an information

need during information retrieval.

Query reformulation

A query reformulation occurs when a user searches for a new query during

session search.

Regret

Regret is the commonly used evaluative framework for multi-armed bandit al-

gorithms, defined as the difference between the sum of rewards of the optimal

sequence of arms versus those chosen by the multi-armed bandit algorithm.

RL

A Reinforcement Learning (RL) algorithm is a machine learning algorithm

that can learn an optimal sequence of actions by making observations on its

environment and determining rewards and penalties.

Relevance

The relevance of a document is a hidden measure of whether it satisfies a

given information need.

Relevance update function

The relevance update function τ updates the relevance score based on a dy-

namic agent’s action and an observation. Related to the transition probability

distribution in an MDP.

178 Glossary

Reward

In an MDP, the reward function defines the reward that is given to the agent

given their current state, their previous state and the action that is taken be-

tween them.

Rocchio

The Rocchio algorithm is a relevance feedback technique that uses the vector

space model to alter a user’s query based on documents they have judged to

be relevant and non-relevant [16].

SAP

The Session-Average Precision (sAP) metric, where the average precision is

calculated over all possible paths of interactions in a search session [132].

SDCG

The Session-DCG (sDCG) metric calculates the DCG score across all ranked

documents in a session [141].

Search log

A search log (or query log) is a dataset consisting of recorded search impres-

sions, including their queries, displayed URLs, clicks, dwell time etc.

Sequential ranking decision

The sequential ranking decision is an approximation technique, where in-

stead of searching the space of all document rankings for an optimal one, the

optimal document for each ranking position is found rank by rank instead.

SERP

The Search Engine Results Page (SERP) is a webpage that displays search

results to a user.

Glossary 179

Session

A search session is a period of time in which a user issues multiple queries

consecutively, usually in pursuit of an individual information need.

Stage

A stage represents an interaction with the search system that is distinct from

other interactions but belongs to the same search task, for example a sequence

of impressions in session search.

State

In an MDP framework, the state describes the status that the agent is in at a

given moment in time.

Static IR

A static IR framework is one which models single user interactions, or else

multiple independent interactions of different search intents. A typical appli-

cation would be an ad hoc ranking and retrieval system.

Static utility

The static utility function gives value to an action based on its probability of

relevance by modeling the benefit of the action to the user.

Temporal dependency

Temporal dependency is introduced into a dynamic system when the relevance

score at a particular stage depends on the previous stage.

Transition probability distribution

In an MDP framework, the transition probability distribution describes the

probability of transitioning to a new state given the current state and the ac-

tion.

180 Glossary

TREC

The annual Text REtrieval Conference (TREC) series, known for publishing

open competitions in areas of research in IR with accompanying datasets.

UCB

The Upper Confidence Bound (UCB) algorithm is a well-known index based

multi-armed bandit algorithm that balances the exploration and exploitation

of playing arms [118].

UCB-DR

The Upper Confidence Bound - Dynamic Ranking (UCB-DR) algorithm from

Chapter 5 is a dynamic online learning to rank algorithm that is based on the

UCB algorithm and assigns an index score for each document based on its

estimated probability of relevance and an exploration element.

User

A user is an agent that uses a search system, issuing queries and examining

and clicking on documents.

Utility

A utility function measures the value of an action by an agent.

Bibliography

[1] Evangelos Kanoulas, Ben Carterette, Mark Hall, Paul Clough, and Mark

Sanderson. Overview of the TREC 2013 session track. In TREC’13.

[2] Robertson Stephen and Zaragoza Hugo. The probabilistic relevance frame-

work: BM25 and beyond. Foundations and Trends in Information Retrieval,

3(4), 2009.

[3] Xing Wei and W Bruce Croft. LDA-based document models for ad-hoc re-

trieval. SIGIR ’06, pages 178–185.

[4] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and

Trends in Information Retrieval, 3(3):225–331, March 2009.

[5] Stephen Robertson. The probability ranking principle in IR. Journal of Doc-

umentation, 33(4):294–304, 1977.

[6] Ryen W. White and Resa A. Roth. Exploratory Search: Beyond the Query-

Response Paradigm. Synthesis Lectures on Information Concepts, Retrieval,

and Services Series. Morgan & Claypool, 2009.

[7] Marc Sloan, Hui Yang, and Jun Wang. A term-based methodology for query

reformulation understanding. Information Retrieval Journal, 18(2):145–165,

2015.

[8] Tamas Jambor, Jun Wang, and Neal Lathia. Using control theory for stable

and efficient recommender systems. WWW ’12, pages 11–20. ACM, 2012.

182 Bibliography

[9] Shuai Yuan and Jun Wang. Sequential selection of correlated ads by

POMDPs. CIKM ’12, pages 515–524. ACM, 2012.

[10] Oliver M. O’Reilly. Engineering Dynamics: A Primer. Springer, 2001.

[11] Joseph J. Distefano, Allen R. Stubberud, and Ivan J. Williams. Schaum’s

Interactive Feedback and Control Systems. McGraw-Hill, 1994.

[12] Robert J. Sternberg. Handbook of Intelligence. Cambridge University Press,

2000.

[13] Hui Yang, Marc Sloan, and Jun Wang. Dynamic information retrieval mod-

eling (tutorial). SIGIR ’14, page 1290. ACM, 2014.

[14] Jay M Ponte and W. Bruce Croft. A language modeling approach to infor-

mation retrieval. In SIGIR ’98.

[15] Gerard Salton, Andrew Wong, and Chungshu S. Yang. A vector space model

for automatic indexing. Communications of the ACM, 18(11):613–620, 1975.

[16] J. J. Rocchio. Relevance feedback in information retrieval. In The SMART

Retrieval System, pages 313–323. Prentice-Hall, 1971.

[17] Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based

reranking for reordering documents and producing summaries. SIGIR ’98,

pages 335–336. ACM, 1998.

[18] Katja Hofmann. Fast and Reliable Online Learning to Rank for Information

Retrieval. PhD thesis, University of Amsterdam, 2013.

[19] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning

to rank: From pairwise approach to listwise approach. ICML ’07, pages

129–136. ACM, 2007.

[20] Thorsten Joachims. Optimizing search engines using clickthrough data.

KDD ’02, pages 133–142. ACM, 2002.

Bibliography 183

[21] Christopher J. C. Burges, Robert Ragno, and Quoc V. Le. Learning to rank

with non-smooth cost functions. In Advances in Neural Information Process-

ing Systems 19, pages 193–200. MIT Press, 2007.

[22] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. Balancing explo-

ration and exploitation in learning to rank online. ECIR’11, pages 251–263,

2011.

[23] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse

rankings with multi-armed bandits. ICML ’08, pages 784–791. ACM, 2008.

[24] Filip Radlinski and Nick Craswell. Optimized interleaving for online re-

trieval evaluation. In WSDM ’13, pages 245–254.

[25] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-

bandit approach to personalized news article recommendation. In WWW ’10,

pages 661–670.

[26] Massimiliano Ciaramita, Vanessa Murdock, and Vassilis Plachouras. Online

learning from click data for sponsored search. WWW ’08, 2008.

[27] Bernard J. Jansen, Amanda Spink, and Jan Pedersen. A temporal compari-

son of AltaVista web searching: Research articles. Journal of the American

Society for Information Science and Technology, 56(6):559–570, 2005.

[28] Filip Radlinski and Thorsten Joachims. Query chains: Learning to rank from

implicit feedback. KDD ’05, pages 239–248. ACM, 2005.

[29] Ruihua Song, Zhenxiao Luo, Jian-Yun Nie, Yong Yu, and Hsiao-Wuen Hon.

Identification of ambiguous queries in web search. Information Processing

& Management, 45(2):216–229, 2009.

[30] Gary Marchionini. Exploratory search: From finding to understanding. Com-

munications of the ACM, 49(4):41–46, 2006.

184 Bibliography

[31] Lydia B Chilton and Jaime Teevan. Addressing people’s information needs

directly in a web search result page. WWW ’11, pages 27–36, 2011.

[32] Marc-Allen Cartright, Ryen W. White, and Eric Horvitz. Intentions and at-

tention in exploratory health search. In SIGIR ’11, pages 65–74, 2011.

[33] Jaime Teevan, Susan T. Dumais, and Daniel J. Liebling. To personalize or

not to personalize: Modeling queries with variation in user intent. In SIGIR

’08, pages 163–170, 2008.

[34] Dongyi Guan, Sicong Zhang, and Hui Yang. Utilizing query change for

session search. SIGIR ’13, pages 453–462. ACM, 2013.

[35] Stephen Robertson, Melvin E. Maron, and William S. Cooper. Probability

of relevance: A unification of two competing models for document retrieval.

Information Technology: Research and Development, 1(1):1–21, 1982.

[36] Charles L. A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechto-

mova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and di-

versity in information retrieval evaluation. SIGIR ’08, pages 659–666. ACM,

2008.

[37] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan Dumais, and Thomas

White. Evaluating implicit measures to improve web search. ACM Transac-

tions on Information Systems, 23(2):147–168, 2005.

[38] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experi-

mental comparison of click position-bias models. WSDM ’08, pages 87–94.

ACM, 2008.

[39] William S. Cooper. On selecting a measure of retrieval effectiveness. Journal

of the American Society for Information Science, 24(2):87–100, 1973.

[40] Jun Wang and Jianhan Zhu. Portfolio theory of information retrieval. SIGIR’

09, pages 115–122. ACM, 2009.

Bibliography 185

[41] Richard Bellman. A Markovian decision process. Indiana University Math-

ematics Journal, 6(4):679–684, 1957.

[42] Richard Bellman. Dynamic Programming. Dover Books on Mathematics.

Princeton University Press, 2003.

[43] John C. Gittins. Bandit processes and dynamic allocation indices. Journal

of the Royal Statistical Society Series B (Methodological), 41(2):148–177,

1979.

[44] Stephen E. Robertson and Karen Spärck Jones. Document retrieval systems.

chapter Relevance Weighting of Search Terms, pages 143–160. Taylor Gra-

ham Publishing, 1988.

[45] ChengXiang Zhai. Statistical language models for information retrieval a

critical review. Foundations and Trends in Information Retrieval, 2(3):137–

213, 2008.

[46] Azin Ashkan, Charles L. Clarke, Eugene Agichtein, and Qi Guo. Classifying

and characterizing query intent. ECIR ’09, pages 578–586. Springer-Verlag,

2009.

[47] Uichin Lee, Zhenyu Liu, and Junghoo Cho. Automatic identification of user

goals in Web search. WWW ’05, pages 391–400. ACM, 2005.

[48] Ben Carterette and Rosie Jones. Evaluating search engines by modeling the

relationship between relevance and clicks. In Advances in Neural Informa-

tion Processing Systems 20, pages 217–224. 2008.

[49] Jaap Kamps, Marijn Koolen, and Andrew Trotman. Comparative analysis

of clicks and judgments for ir evaluation. WSCD ’09, pages 80–87. ACM,

2009.

[50] Falk Scholer, Milad Shokouhi, Bodo Billerbeck, and Andrew Turpin. Using

clicks as implicit judgments: Expectations versus observations. ECIR’08,

chapter 6, pages 28–39. Springer-Verlag, 2008.

186 Bibliography

[51] Milad Shokouhi, Falk Scholer, and Andrew Turpin. Investigating the ef-

fectiveness of clickthrough data for document reordering. ECIR’08, pages

591–595. Springer-Verlag, 2008.

[52] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip

Radlinski, and Geri Gay. Evaluating the accuracy of implicit feedback from

clicks and query reformulations in web search. ACM Transactions on Infor-

mation Systems, 25(2), 2007.

[53] Thorsten Joachims, Laura Granka, Bing Pang, Helene Hembrooke, and Geri

Gay. Accurately interpreting clickthrough data as implicit feedback. SIGIR

’05, pages 154–161, 2005.

[54] Charles L. A. Clarke, Eugene Agichtein, Susan Dumais, and Ryen W. White.

The influence of caption features on clickthrough patterns in web search.

SIGIR ’07, pages 135–142. ACM, 2007.

[55] Jiepu Jiang, Daqing He, and James Allan. Searching, browsing, and clicking

in a search session: Changes in user behavior by task and over time. SIGIR

’14, pages 607–616. ACM, 2014.

[56] Fan Guo, Chao Liu, and Yi Min Wang. Efficient multiple-click models in

web search. WSDM ’09, pages 124–131. ACM, 2009.

[57] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael Taylor, Yi-Min

Wang, and Christos Faloutsos. Click chain model in web search. WWW ’09,

pages 11–20. ACM, 2009.

[58] Olivier Chapelle and Ya Zhang. A dynamic bayesian network click model

for web search ranking. WWW ’09, pages 1–10. ACM, 2009.

[59] Yin He and Kuansan Wang. Inferring search behaviors using partially ob-

servable markov model with duration (POMD). WSDM ’11, pages 415–424.

ACM, 2011.

Bibliography 187

[60] Guido Zuccon, Leif A. Azzopardi, and Keith van Rijsbergen. The quantum

probability ranking principle for information retrieval. In Advances in In-

formation Retrieval Theory, volume 5766, pages 232–240. Springer Berlin

Heidelberg, 2009.

[61] Harr Chen and David R Karger. Less is more: Probabilistic models for re-

trieving fewer relevant documents. SIGIR ’06, pages 429–436. ACM, 2006.

[62] Guido Zuccon, Leif Azzopardi, Dell Zhang, and Jun Wang. Top-k retrieval

using facility location analysis. ECIR’12, pages 305–316. Springer-Verlag,

2012.

[63] Leif Azzopardi. The economics in interactive information retrieval. SIGIR

’11, pages 15–24. ACM, 2011.

[64] Jiyun Luo, Sicong Zhang, and Hui Yang. Win-win search: Dual-agent

stochastic game in session search. SIGIR ’14, 2014.

[65] Mikhail Ageev, Qi Guo, Dmitry Lagun, and Eugene Agichtein. Find it if

you can: A game for modeling different types of web search success using

interaction data. SIGIR ’11. ACM, 2011.

[66] Nikolay Archak, Anindya Ghose, and Panagiotis G. Ipeirotis. Show me the

money!: Deriving the pricing power of product features by mining consumer

reviews. KDD ’07, pages 56–65. ACM, 2007.

[67] Leif Azzopardi. Modelling interaction with economic models of search. SI-

GIR ’14, pages 3–12. ACM, 2014.

[68] Harry Markowitz. A simplex method for the portfolio selection problem.

Cowles Foundation Discussion Papers 27, Cowles Foundation for Research

in Economics, Yale University, 1957.

[69] Kevyn Collins-Thompson. Robust Model Estimation Methods for Informa-

tion Retrieval. PhD thesis, Carnegie Mellon University, December 2008.

188 Bibliography

[70] Lidan Wang, Paul N. Bennett, and Kevyn Collins-Thompson. Robust ranking

models via risk-sensitive optimization. SIGIR ’12, pages 761–770. ACM,

2012.

[71] James C. Maxwell and William D. Niven. The Scientific Papers of James

Clerk Maxwell. Dover Publications, 2003.

[72] Seth B. Anderson. A look at handling qualities of Canard configurations.

NASA technical memorandum. 1986.

[73] Volnei A. Pedroni. Digital Electronics and Design with VHDL. Elsevier

Science, 2008.

[74] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feed-

back control of computing systems. John Wiley & Sons, 2004.

[75] Olivier Sigaud and Olivier Buffet. Markov decision processes in artificial

intelligence : MDPs, beyond MDPs and applications. ISTE Hoboken, NJ,

2010.

[76] Michael I. Jordan. Computational aspects of motor control and motor learn-

ing. In Handbook of Perception and Action: Motor Skills. Academic Press,

1993.

[77] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-

ning and acting in partially observable stochastic domains. Artificial intelli-

gence, 101(1):99–134, 1998.

[78] Burr Settles. Active learning literature survey. Computer sciences technical

report, 2009.

[79] Herbert Robbins. Some aspects of the sequential design of experiments. Bul-

letin of the American Mathematical Society, 58(5):527–535, 1952.

[80] Milad Shokouhi, Marc Sloan, Paul N. Bennett, Kevyn Collins-Thompson,

and Siranush Sarkizova. Query suggestion and data fusion in contextual dis-

ambiguation. WWW ’15, pages 971–980, 2015.

Bibliography 189

[81] Jiannong Cao, Kwok Ming Chan, Geofffrey Yu-Kai Shea, and Minyi Guo.

Location-aware information retrieval for mobile computing. In Embedded

and Ubiquitous Computing, volume 3207, pages 450–459. Springer Berlin

Heidelberg, 2004.

[82] Carsten Eickhoff, Kevyn Collins-Thompson, Paul N. Bennett, and Susan Du-

mais. Personalizing atypical web search sessions. In WSDM ’13, pages 285–

294, 2013.

[83] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang.

Click shaping to optimize multiple objectives. KDD ’11, pages 132–140.

ACM, 2011.

[84] Amanda Spink, Minsoo Park, Bernard J. Jansen, and Jan Pedersen. Multi-

tasking during web search sessions. Information Processing & Management,

42(1):264–275, 2006.

[85] Anagha Kulkarni, Jaime Teevan, Krysta M. Svore, and Susan T. Dumais. Un-

derstanding temporal query dynamics. WSDM ’11, pages 167–176. ACM,

2011.

[86] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and

Hang Li. Context-aware query suggestion by mining click-through and ses-

sion data. KDD ’08, pages 875–883. ACM, 2008.

[87] Milad Shokouhi. Learning to personalize query auto-completion. SIGIR ’13,

pages 103–112. ACM, 2013.

[88] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener. A large-

scale study of the evolution of web pages. WWW ’03, pages 669–678. ACM,

2003.

[89] Eytan Adar, Jaime Teevan, Susan T. Dumais, and Jonathan L. Elsas. The web

changes everything: Understanding the dynamics of web content. WSDM

’09, pages 282–291. ACM, 2009.

190 Bibliography

[90] Taesun Moon and Jason Baldridge. Part-of-speech tagging for middle En-

glish through alignment and projection of parallel diachronic texts. EMNLP-

CoNLL, pages 390–399. Association for Computational Linguistics, 2007.

[91] Uri Hanani, Bracha Shapira, and Peretz Shoval. Information filtering:

Overview of issues, research and systems. User Modeling and User-Adapted

Interaction, 11(3):203–259, 2001.

[92] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the

dynamics of the news cycle. KDD ’09, pages 497–506. ACM, 2009.

[93] Jaewon Yang and Jure Leskovec. Patterns of temporal variation in online

media. WSDM ’11, pages 177–186. ACM, 2011.

[94] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang

Zhang, Karolina Buchner, Ciya Liao, and Fernando Diaz. Towards recency

ranking in web search. WSDM ’10, pages 11–20. ACM, 2010.

[95] Larry Heck. The conversational web. IEEE Workshop on Spoken Language

Technology, 2012.

[96] Peter W. Foltz and Susan T. Dumais. Personalized information delivery:

An analysis of information filtering methods. Communications of the ACM,

35(12):51–60, 1992.

[97] Lanbo Zhang and Yi Zhang. Interactive retrieval based on faceted feedback.

SIGIR ’10, pages 363–370. ACM, 2010.

[98] Gerard Salton and Chris Buckley. Improving retrieval performance by rel-

evance feedback. Journal of the American Society for Information Science,

41:288–297, 1990.

[99] Ryen W. White, Ian Ruthven, and Joemon M. Jose. A study of factors af-

fecting the utility of implicit relevance feedback. SIGIR ’05, pages 35–42.

ACM, 2005.

Bibliography 191

[100] Ryen W. White and Ian Ruthven. A study of interface support mechanisms

for interactive information retrieval. Journal of the American Society for

Information Science and Technology, 57(7):933–948, 2006.

[101] Amanda Spink, Bernard J. Jansen, and Cenk H. Ozmultu. Use of query

reformulation and relevance feedback by Excite users. Internet Research:

Electronic Networking Applications and Policy, 10(4):317–328, 2000.

[102] Diane Kelly and Jaime Teevan. Implicit feedback for inferring user prefer-

ence: A bibliography. SIGIR Forum, 37(2):18–28, 2003.

[103] Masahiro Morita and Yoichi Shinoda. Information filtering based on user

behavior analysis and best match text retrieval. SIGIR ’94, pages 272–281.

Springer-Verlag New York, Inc., 1994.

[104] Youngho Kim, Ahmed Hassan, Ryen W. White, and Imed Zitouni. Modeling

dwell time to predict click-level satisfaction. WSDM ’14, pages 193–202.

ACM, 2014.

[105] Jeremy Goecks and Jude Shavlik. Learning users’ interests by unobtrusively

observing their normal behavior. IUI ’00, pages 129–132. ACM, 2000.

[106] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. Selecting

good expansion terms for pseudo-relevance feedback. In SIGIR ’08, pages

243–250. ACM.

[107] Jinxi Xu and W. Bruce Croft. Query expansion using local and global docu-

ment analysis. SIGIR ’96, pages 4–11, 1996.

[108] Chris Buckley. Automatic query expansion using SMART : TREC 3. TREC-

3, pages 69–80.

[109] Van Dang and W. Bruce Croft. Query reformulation using anchor text.

WSDM ’10, pages 41–50. ACM, 2010.

192 Bibliography

[110] Ian Ruthven and Mounia Lalmas. A survey on the use of relevance feedback

for information access systems. Knowl. Eng. Rev., 18(2):95–145, June 2003.

[111] Holger Bast and Ingmar Weber. Type less, find more: Fast autocompletion

search with a succinct index. SIGIR ’06, pages 364–371. ACM, 2006.

[112] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Query recom-

mendation using query logs in search engines. EDBT’04, pages 588–596.

Springer-Verlag, 2004.

[113] Thorsten Joachims. A probabilistic analysis of the Rocchio algorithm with

TFIDF for text categorization. ICML ’97, pages 143–151, 1997.

[114] Robert M. Blumenthal and Ronald K. Getoor. Markov Processes and Poten-

tial Theory. Academic Press, 1968.

[115] Christopher John Cornish Hellaby Watkins. Learning from Delayed Re-

wards. PhD thesis, King’s College, Cambridge University, 1989.

[116] Richard S. Sutton. Learning to predict by the methods of temporal differ-

ences. Machine Learning, 3(1):9–44, 1988.

[117] Tze L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation

rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

[118] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of

the multiarmed bandit problem. Mach. Learn., 47(2-3):235–256, 2002.

[119] Rajeev Agrawal. Sample mean based index policies with O(log n) regret for

the multi-armed bandit problem. Advances in Applied Probability, 27(4):pp.

1054–1078, 1995.

[120] Satyen Kale, Lev Reyzin, and Robert Schapire. Non-stochastic bandit slate

problems. In Advances in Neural Information Processing Systems 23, pages

1045–1053. 2010.

Bibliography 193

[121] Lifeng Lai, H. El Gamal, Hai Jiang, and H.V. Poor. Cognitive medium ac-

cess: Exploration, exploitation, and competition. Mobile Computing, IEEE

Transactions on, 10(2):239–253, 2011.

[122] Sandeep Pandey, Deepayan Chakrabarti, and Deepak Agarwal. Multi-armed

bandit problems with dependent arms. ICML ’07, pages 721–728. ACM,

2007.

[123] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit

problem with non-stationary rewards. In Advances in Neural Information

Processing Systems 27, pages 199–207. 2014.

[124] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Re-

gret bounds for sleeping experts and bandits. Machine Learning, 80(2-

3):245–272, 2010.

[125] Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal

multi-armed bandits. In Neural Information Processing Systems, pages 273–

280, 2008.

[126] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-

armed bandits with side information. In Advances in Neural Information

Processing Systems 20, pages 817–824. 2008.

[127] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The K-

armed dueling bandits problem. Journal of Computer and System Sciences,

78(5):1538–1556, 2012.

[128] Yisong Yue and Thorsten Joachims. Interactively optimizing information

retrieval systems as a dueling bandits problem. ICML ’09, pages 1201–1208,

2009.

[129] Norbert Fuhr. A probability ranking principle for interactive information

retrieval. Information Retrieval, 11(3):251–265, 2008.

194 Bibliography

[130] Jiyun Luo, Sicong Zhang, Xuchu Dong, and Hui Yang. Designing states, ac-

tions, and rewards for using POMDP in session search. In Advances in Infor-

mation Retrieval, pages 526–537. Springer International Publishing, 2015.

[131] Edward J. Sondik. The optimal control of partially observable Markov pro-

cesses over the infinite horizon: Discounted cost. Operations Research,

26(2):282–304, 1978.

[132] Evangelos Kanoulas, Ben Carterette, Paul D. Clough, and Mark Sanderson.

Evaluating multi-query sessions. SIGIR ’11, pages 1053–1062. ACM, 2011.

[133] Jin Young Kim, Mark Cramer, Jaime Teevan, and Dmitry Lagun. Under-

standing how people interact with web search results that change in real-time

using implicit feedback. CIKM ’13, pages 2321–2326. ACM, 2013.

[134] Xiaoran Jin, Marc Sloan, and Jun Wang. Interactive exploratory search for

multi page search results. In WWW ’13, pages 655–666, 2013.

[135] Jun Wang and Jianhan Zhu. On statistical analysis and optimization of infor-

mation retrieval effectiveness metrics. SIGIR ’10, pages 226–233, 2010.

[136] William S. Cooper. The inadequacy of probability of usefulness as a ranking

criterion for retrieval system output. University of California, Berkeley, 1971.

[137] Ian Ruthven. Interactive information retrieval. ARIST, 42(1):43–91, 2008.

[138] Cyril Cleverdon and Michael Kean. Factors determining the performance of

indexing systems. Aslib Cranfield Research Project, 1968.

[139] William Hersh, Andrew Turpin, Susan Price, Benjamin Chan, Dale Kramer,

Lynetta Sacherek, and Daniel Olson. Do batch and user evaluations give the

same results? SIGIR ’00, pages 17–24. ACM, 2000.

[140] Yiming Yang and Abhimanyu Lad. Modeling expected utility of multi-

session information distillation. In Advances in Information Retrieval The-

ory, pages 164–175. Springer Berlin Heidelberg, 2009.

Bibliography 195

[141] Kalervo Järvelin, Susan L. Price, Lois M. L. Delcambre, and Marianne Lykke

Nielsen. Discounted cumulated gain based evaluation of multiple-query IR

sessions. ECIR’08, pages 4–15. Springer-Verlag, 2008.

[142] Bernard J. Jansen and Amanda Spink. How are we searching the world wide

web?: A comparison of nine search engine transaction logs. Information

Processing & Management, 42(1):248–263, 2006.

[143] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong.

Diversifying search results. WSDM ’09, pages 5–14. ACM, 2009.

[144] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected

reciprocal rank for graded relevance. CIKM ’09, pages 621–630. ACM,

2009.

[145] Kuansan Wang, Nikolas Gloy, and Xiaolong Li. Inferring search behaviors

using partially observable Markov (POM) model. WSDM ’10, pages 211–

220. ACM, 2010.

[146] Ryen W. White, Ian Ruthven, Joemon M. Jose, and C. J. Van Rijsbergen.

Evaluating implicit feedback models using searcher simulations. ACM Trans-

actions on Information Systems, 23(3):325–361, 2005.

[147] Mark D Smucker and Charles L. A. Clarke. Time-based calibration of effec-

tiveness measures. SIGIR ’12, pages 95–104. ACM, 2012.

[148] Marco Ferrante, Nicola Ferro, and Maria Maistro. Injecting user models and

time into precision via Markov chains. SIGIR ’14, pages 597–606. ACM,

2014.

[149] Michael L. Littman. The Witness algorithm: Solving partially observable

Markov decision processes. Technical report, 1994.

[150] Bill Kules and Robert Capra. Visualizing stages during an exploratory search

session. HCIR ’11, 2011.

196 Bibliography

[151] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling for

personalized search. CIKM ’05, pages 824–831. ACM, 2005.

[152] Christina Brandt, Thorsten Joachims, Yisong Yue, and Jacob Bank. Dynamic

ranked retrieval. WSDM ’11, pages 247–256. ACM, 2011.

[153] Mark Cramer, Mike Wertheim, and David Hardtke. Demonstration of im-

proved search result relevancy using real-time implicit relevance feedback.

In Understanding the user - workshop in conjuction with SIGIR’09.

[154] Ellen M Voorhees. The cluster hypothesis revisited. SIGIR ’85, pages 188–

196, 1985.

[155] Zuobing Xu and Ram Akella. Active relevance feedback for difficult queries.

CIKM ’08, pages 459–468. ACM, 2008.

[156] Gui-Rong Xue, Hua-Jun Zeng, Zheng Chen, Yong Yu, Wei-Ying Ma, WenSi

Xi, and WeiGuo Fan. Optimizing web search using web click-through data.

CIKM ’04, pages 118–126. ACM, 2004.

[157] Pannagadatta K Shivaswamy and Thorsten Joachims. Online learning with

preference feedback. CoRR, 2011.

[158] Katja Hofmann, Anne Schuth, Shimon Whiteson, and Maarten de Rijke.

Reusing historical interaction data for faster online learning to rank for IR.

WSDM ’13, pages 183–192. ACM, 2013.

[159] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.

Gambling in a rigged casino: The adversarial multi-armed bandit problem.

FOCS ’95, pages 322–331, 1995.

[160] Eugene Agichtein, Eric Brill, Susan Dumais, and Robert Ragno. Learning

user interaction models for predicting web search result preferences. SIGIR

’06, pages 3–10. ACM, 2006.

Bibliography 197

[161] Jeff A. Bilmes. A gentle tutorial of the EM algorithm and its application to

parameter estimation for gaussian mixture and hidden markov models. In

International Conference on Systems Integration, 1997.

[162] Yuchen Zhang, Dong Wang, Gang Wang, Weizhu Chen, Zhihua Zhang, Bo-

tao Hu, and Li Zhang. Learning click models via probit Bayesian inference.

CIKM ’10, pages 439–448. ACM, 2010.

[163] David J. Aldous. Exchangeability and related topics. École d’Été de Proba-

bilités de Saint-Flour XIII, pages 1–198, 1983.

[164] Ryen W. White and Steven M. Drucker. Investigating behavioral variability

in web search. WWW ’07, pages 21–30, 2007.

[165] Khamsum Kinley, Dian Tjondronegoro, Helen Partridge, and Sylvia Ed-

wards. Human-computer interaction: The impact of users’ cognitive styles

on query reformulation behaviour during web searching. OzCHI ’12, pages

299–307. ACM, 2012.

[166] Evangelos Kanoulas, Ben Carterette, Mark Hall, Paul Clough, and Mark

Sanderson. Overview of the TREC 2011 session track. In TREC’11.

[167] Evangelos Kanoulas, Ben Carterette, Mark Hall, Paul Clough, and Mark

Sanderson. Overview of the TREC 2012 session track. In TREC’12.

[168] Bernard J. Jansen, Danielle L. Booth, and Amanda Spink. Patterns of query

reformulation during web searching. Journal of the American Society for

Information Science and Technology, 60(7):1358–1371, 2009.

[169] Chang Liu, Jacek Gwizdka, Jingjing Liu, Tao Xu, and Nicholas J. Belkin.

Analysis and evaluation of query reformulations in different task types. In

ASIST ’10.

[170] Jeff Huang. Analyzing and evaluating query reformulation strategies in web

search logs. In CIKM ’09.

198 Bibliography

[171] Yiqun Liu, Chao Wang, Ke Zhou, Jianyun Nie, Min Zhang, and Shaoping

Ma. From skimming to reading: A two-stage examination model for web

search. CIKM ’14, pages 849–858. ACM, 2014.

[172] Yiqun Liu, Junwei Miao, Min Zhang, Shaoping Ma, and Liyun Ru. How

do users describe their information need: Query recommendation based on

snippet click model. Expert Systems with Applications, 38(11):13847–13856,

2011.

[173] Martin F. Porter. An algorithm for suffix stripping. Program, pages 313–316.

1980.

[174] Laura A. Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis

of user behavior in WWW search. SIGIR ’04, pages 478–479. ACM, 2004.

[175] Lihong Li, Wei Chu, and John Langford. An unbiased, data-driven, offline

evaluation method of contextual bandit algorithms. CoRR, abs/1003.5, 2010.

[176] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased of-

fline evaluation of contextual-bandit-based news article recommendation al-

gorithms. WSDM ’11, pages 297–306. ACM, 2011.

[177] Judea Pearl. Causal inference in statistics: An overview, 2009.

[178] Hui Yang, Marc Sloan, and Jun Wang. Dynamic Information Retrieval Mod-

eling. Morgan & Claypool, 2015.

[179] Hui Yang, Marc Sloan, and Jun Wang. Dynamic information retrieval mod-

eling (tutorial). In WSDM ’15, pages 409–410. ACM Press, 2015.

[180] Marc Sloan and Jun Wang. Dynamic information retrieval: Theoretical

framework and application. ICTIR’15. ACM, 2015.

[181] Marc Sloan and Jun Wang. Iterative expectation for multi period information

retrieval. In WSDM Workshop on Web Search Click Data. WSCD, 2013.

Bibliography 199

[182] Marc Sloan and Jun Wang. Dynamical information retrieval modelling: a

portfolio-armed bandit machine approach (poster). WWW ’12, pages 603–

604. ACM, 2012.

[183] Shuai Yuan, Ahmad Zainal Az Abidin, Marc Sloan, and Jun Wang. Internet

advertising: An interplay among advertisers, online publishers, ad exchanges

and web users. CoRR, abs/1206.1:1–44, 2012.

[184] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of

ir techniques. ACM Transactions on Information Systems, 20(4):422–446,

October 2002.

	Notation
	Introduction
	IR Systems
	Static IR
	Interactive IR
	Dynamic IR

	Multi-Page Search
	Online Learning to Rank
	Session Search
	Research Questions
	Thesis Structure

	Background
	Information Retrieval
	Ranking and Retrieval
	Clickthroughs
	Document Diversification
	Economics in IR

	Dynamics
	Dynamics in IR
	Relevance Feedback
	Reinforcement Learning

	Dynamic Information Retrieval
	Introduction
	Comparison of IR Frameworks
	Static IR Framework
	Interactive IR Framework

	Dynamic IR Theory
	Dynamic IR Framework
	Framework Analysis
	Links to Existing Work

	Application of DIR
	Multi-Page Search Problem
	DIR-MPS
	Practical Limitations
	Experiment

	Related Work
	Conclusion

	Dynamic Multi-Page Search
	Introduction
	Related Work
	Problem Formulation
	User Feedback
	Dynamic Utility Optimisation
	Monte Carlo Sampling
	Dynamic Exploratory Search

	Experiment
	The Relevance Vector and Covariance Matrix
	Exploration with explore
	Comparison with Baselines
	Page Threshold

	Conclusion

	Dynamic Online Learning to Rank
	Introduction
	Related Work

	Dynamic Relevance Update for Online Learning to Rank
	Mixed Click Model
	Expectation Maximisation
	Relevance Update Function
	Dynamic Utility
	Dynamic Ranking (UCB-DR) Algorithm

	Online Diversification
	Correlation and Co-Clicks
	Portfolio-armed Bandit (PAB) Algorithm

	Experiments
	UCB-DR Simulation Analysis
	UCB-DR Yandex Search Log Experiment
	PAB Evaluation

	Conclusion

	Dynamics in Session Search Logs
	Introduction
	Related Work
	Analytical Setup
	Term Retention and Removal
	Term Addition
	Snippet Analysis
	Term Sources
	Dwell Time

	Term Scenario Analysis
	Query and Added Term Scenarios
	Term Actions
	Term Scenario Evaluation

	Session Dynamics
	Conclusion

	Conclusion
	Future Work

	Appendices
	Related Publications
	Glossary
	Bibliography

