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Abstract
Inbipartite quantumsystems commutation relations between theHamiltonian of each subsystemand the
interaction impose fundamental constraints on the dynamics of eachpartition.Herewe investigatework,
heat and entropyproduction inbipartite systems characterizedbyparticular commutators between their
localHamiltonians and the interactionoperator.We consider the formalismof (Weimer et al 2008
Europhys. Lett.8330008), inwhichheat (work) is identifiedwith energy changes that (donot) alter the
local vonNeumann entropy, as observed in an effective localmeasurement basis.Wedemonstrate the
consequences of the commutation relations on thework andheatfluxes into eachpartition, and extend
the formalism toopenquantumsystemswhereone, or both, partitions are subject to aMarkovian thermal
bath.Wealsodiscuss the relationbetweenheat and entropy in bipartite quantumsystemsout of thermal
equilibrium, and reconcile the aforementioned approachwith the second lawof thermodynamics.

1. Introduction

The emergence of thermodynamic behaviourwithin quantummechanical systems has attractedmuch attention
in recent years [1, 2]. This interest ismotivated by the desire to gain a deeper understanding of thermodynamics,
as well as the need to obtain generalizations of thermodynamic concepts and constraints to quantum settings. A
conceptual understanding of work, heat and the second law in the quantumdomain has therefore been central
to research in quantum thermodynamics [3–8].Owing to advancements in quantum technologies,
experimental tests of these concepts arewithin tangible reach [9–12]. The developments in this area allow
investigation of the relevance of coherence in the efficiency of quantum engines [13] and can guide the design of
nano-mechanical devices with thermodynamic functionalities [14, 15].

The conventional definition of work and heat for a quantum system evolving under a time-dependent
Hamiltonian considers the change in the internal energyU of a systemwith associated densitymatrix ρ as
U H H˙ Tr{ ˙ } Tr{ ˙ }ρ ρ= + and identifies the first (second) term as thework (heat) flux [16]. This division assumes
that a classical, external, driving gives rise to a time-dependentHamiltonian. In contrast, we are interested in
autonomous bipartite quantum systems inwhich the inherent quantummechanical interaction between the
two partitions results in internal transfer of energy. This internal transfer can subsequently be identified as either
a heat, or awork, flux [17–19]. There are plenty of quantum settings where such is the case, but an interesting
example is a prototype biological dimerwhere the quantum interaction between electronic and intramolecular
vibrationalmotions results in non-classical behaviour and internal energy transfer [20]. A framework for
definingwork and heatfluxes in autonomous quantum systemswas presented byWeimer and colleagues in
[17]. This approach, henceforth referred to as theWeimer framework or the energyflux formalism, argues that
time-dependentHamiltonians arise from tracing out the degrees of freedomof the driver and need not have a
classical, or external, origin. By defining an effective local energy basis, heat (work) flux is identifiedwith energy
changes that (do not) alter the the local vonNeumann entropy. This framework is of considerable conceptual
interest as it aims to extend the connection between entropy and heat tofinite, out of equilibriumquantum
systems.Despite its conceptual ease and formal structure, this approach has not beenwidely used in the
investigation of work and heat in quantum systems [21]. This is arguably due to the differences between the
workflux defined in this way and the extractable (measurable) work; the latter being the focus ofmost prior
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research [5, 11]. Aswork done on a system is not a quantumobservable [5], its quantum statistical properties
and the backaction of themeasurement apparatus need to be consideredwithin any formalism. These issues
have partially been addressedwithin the energyflux formalism [19] but remain under scrutiny.

The simplicity of the energyflux formalism, however,merits the investigation of aspects scarcely explored
such as the implications of conservation laws on the nature of energy exchanges and how the framework can be
generalized to open quantum systemdynamics. Conserved quantities (defined byHermitian operators that
commutewith the totalHamiltonian) and their associated symmetries are of broad interest in physics.
Moreover, transformation of symmetry-imposed constraints in open quantum systems has gained renewed
attention in recent years [22]. In this article, we discuss work and heat exchanges within bipartite systems
characterized by particular commutation relations between the localHamiltonians and the interaction operator.
We showhow conserved quantities associated to a given partition, that arise fromparticular commutation
relations, give rise to an asymmetric structure for thework and heat fluxes of the subsystems.We furthermore
demonstrate the consistency of the approachwhen one partition acquires the character of amacroscopic bath,
and extend the formalism to situations where one, or both, partitions are subject to aMarkovian thermal bath.
The connection between heat, as defined in this framework, and entropy is explored in the last section. This
connection allows us to discuss the second law of thermodynamics within the energy flux formalism and
demonstrate the compatibility of the approachwith the second law. The present work strengthens the energy
flux formalism and provides further evidence that thermodynamic quantities such as work and heat can be
generalized to quantum systems far from thermal equilibrium.

2.Work andheat in closed bipartite quantum systems

2.1. Review of the concepts
In this sectionwe briefly review the division of the energy exchange between bipartitions of a quantum system
into heat andwork, as put forward by [17].Within the framework open quantum systems, the total system is
denoted as closedwhen it does not exchange energy ormatter with an environment and is described by the
Hamiltonian H H H H1 2 12= + + . HereH1 andH2 are the individualHamiltonians of subsystems I and II, and
H12 specifies the interaction between the two partitions. Notice that in classical thermodynamics our total
systemwould be referred as isolated. The densitymatrix of the total system can bewritten as

t t t C t( ) ( ) ( ) ( ), (1)1 2 12ρ ρ ρ= ⊗ +

where t t( ) Tr { ( )}1 2ρ ρ= , t t( ) Tr { ( )}2 1ρ ρ= and C t( )12 represents the correlations between the two partitions.
We assume an initial separable state of the form (0) (0) (0)1 2ρ ρ ρ= ⊗ , with no bipartite correlations. Starting
from the equation ofmotion for the total system, and taking the tracewith respect to system II, the Liouville–von
Neumann equation for system I can bewritten as

{ }t H H t t H C t˙ ( ) i ( ), ( ) i Tr , ( ) , (2)1 1 1
eff

1 2 12 12
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ= − + −

where the effectiveHamiltonian of system I is identified to be

{ }H t H t( ) Tr ( ) . (3)1
eff

2 12 1 2
⎡⎣ ⎤⎦ρ= ⊗

The energy changes need to be definedwith respect to a local effectivemeasurement basis (LEMBAS), which is
determined by the experimental apparatus. This formalism assumes a LEMBAS that includes both the
eigenstates of the bare systemHamiltonianH1, and the shift in the eigenenergies of system I due to the
interactionwith system II. SinceH1 and H t( )1

eff may not be compatible observables at all times, the effective
Hamiltonian is divided into two contributions

H t H t H t( ) ( ) ( ), (4)a b1
eff

1,
eff

1,
eff= +

where H t( )a1,
eff and H t( )b1,

eff are components of the effectiveHamiltonian that commute and do not commute
withH1 respectively. The commuting contribution of the interaction induces a shift in the local energy of system
I. The local basis is thus associated tomeasurements of the following operator

H t H H t( ) ( ), (5)a1 1 1,
eff′ = +

and the internal energy change of system I can be identified as

{ } { }U H t H td Tr d ( ) Tr ( )d . (6)1 1 1 1 1 1 1ρ ρ= ′ + ′

Wenowdivide the internal energyflux of system I into two contributions: the energy change that has no effect
on the local vonNeumann entropy, is labelled as thework fluxW t˙ ( )1 , whereas the contribution that alters this
entropy is identified as the heatflux Q t˙ ( )1 . This constitutes a statement of the first law of thermodynamics for
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partition I. Thefinal expressions read

{ }W t H t t H t H t t˙ ( ) Tr ˙ ( ) ( ) i ( ), ( ) ( ) , (7)a b1 1 1,
eff

1 1 1,
eff

1
⎡⎣ ⎤⎦ρ ρ= − ′

{ }Q t H t t˙ ( ) Tr ( ) [ ( )] , (8)1 1 1 1
eff ρ= ′

where { }t H C t[ ( )] i Tr [ , ( )]1
eff

2 12 12 ρ = − . Note that at this point there is no assertion thatwork should be

somethingmore useful that heat [21]. Importantly, entropy changes can arise without an associated heat flux as
is discussed in section 4.Heatflux can, alternatively, be expressed as

{ }( )Q t H t H C t˙ ( ) i Tr ( ) , ( ) , (9)1 1 2 12 12
⎡⎣ ⎤⎦= − ′ ⊗ 

where the cyclic invariance of the trace has been used. Similar expressions can bewritten for system II if
measurements are performed in the LEMBAS associatedwithH2.

Equations (7) and (9)merit two important observations. Firstly, work flux nowhas an additional
contribution due to the non-commuting part of the effectiveHamiltonian in equation (4). This is in contrast to

the conventional definition that identifieswork solely with the term { }H tTr d ( )1 1 1ρ ′ in equation (6). Secondly,

the heatflux into system I vanishes if at least one of the following is satisfied: (i) the dynamics does not induce
correlations between the two subsystems or (ii) H t( )1′ commutes with the interactionHamiltonian. Thus,
bipartite correlations are necessary, but insufficient, for the existence of a heatflux.Wewill discuss in section 4
the implications of this feature for the possible link between heat and entropy production in autonomous
systems.

From the above discussion, it is clear that commutation relations between the different energy operators
shape, in a non-trivialmanner, thework and heat exchanges between the quantumpartitions. In the following
sectionswe consider three possible commutation relations betweenH1,H2 andH12, and investigate their
consequences onwork and heatfluxes.Without loss of generality, we consider an interaction of the form
H A B12 1 2= ⊗ , whereA1 acts on system I andB2 on system II. The effectiveHamiltonian of system I is thus

given by H t A B( )1
eff

1 2= 〈 〉. All results can readily be extended to themore general interaction

H A B
i i i12 ∑= ⊗ .

2.2. Fully commuting interaction
A fully commutingHamiltonian satisfies the relation: A H B H[ , ] [ , ] 01 1 2 2= = . Since H t H[ ( ), ] 01

eff
1 = , we

identify H H t( )a1, 1
eff= , and H 0b1,

eff = .Work on system I is thus given by

{ }W t H t t A B˙ ( ) Tr ˙ ( ) ( ) ˙ 0, (10)a1 1,
eff

1 1 2ρ= = 〈 〉〈 〉 =

wherewe have used M M H˙ i [ , ]〈 〉 = − 〈 〉 for M B1 2= ⊗ . Similarly, one can show that Ẇ 02 = . From
equation (9) it can be shown that the exchanged heat also vanishes, Q t Q t˙ ( ) ˙ ( ) 01 2= = . The energy exchange is
thus zero, as expected for a commuting interaction.

An example of such a system is provided by the spin–oscillatorHamiltonianwith a dispersive interaction:
H a a g a az z2

† †0 σ ν σ= + +ω
, where zσ is the population difference operator, 0ω is the energy gap between the

ground and excited state of the spin, a a{ , }† are the annihilation and creation operators of the oscillator, ν is the
oscillator frequency and g quantifies themagnitude of the spin–oscillator coupling.

2.3. Partially commuting interaction
Wedefine a partiality commuting interaction via the commutator properties: H A[ , ] 01 1 = and H B[ , ] 02 2 ≠ i.e.

observableA1 is conserved. Since H t H[ ( ), ] 01
eff

1 = , we identify H t H t( ) ( )a1,
eff

1
eff= , and H 0b1,

eff = .Work on

Figure 1.A schematic illustration of the bipartite quantum system investigated in this article. In section 2, we focus on the closed
bipartite system (without a heat bath). In section 3, partition I is subject to a thermal bath. In section 4, both partitions interact with a
thermal bath. In our notation the total heatflux into system I is written as Q Q Q A˙ ˙ ˙ 11 2 1 bath= + →→ where Q̇2 1→ and Q A˙ 1bath →
are the heatfluxes from system II and the bathA respectively. Theworkflux into system I is identified as Ẇ1.
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system I is thus given by

{ }W t H t t A B˙ ( ) Tr ˙ ( ) ( ) ˙ . (11)a1 1 1,
eff

1 1 2ρ= = 〈 〉〈 〉

Work done on system II can be computed in a similarmanner. The effectiveHamiltonian of system II is
given by H t A B( )2

eff
1 2= 〈 〉 . Unlike the previous case, H t( )2

eff has no commuting contributions withH2. That is,

H 0a2,
eff = , and H H t( )b1,

eff
2
eff= . Thework done on system II is thus given by

{ }
{ }

W t H A B t

H A B t t

A B

˙ ( ) i Tr , ( ) ,

i Tr , ( ) ( ) ,

˙ . (12)

2 2 2 1 2 2

1,2 1 2 1 2 1 2

1 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ρ

ρ ρ

= − 〈 〉

= − ⊗ ⊗ ⊗

= −〈 〉〈 〉



The general work flux relation holding for any partially commuting interaction is thus

W t W t˙ ( ) ˙ ( ) 0. (13)1 2+ =

The heatfluxes into systems I and II are computed from equation (9), leading to

Q t˙ ( ) 0, (14)1 =
Q t˙ ( ) 0, (15)2 ≠

since H t H[( ( ) ), ] 01 2 12′ ⊗ = while H t H[( ( )), ] 01 2 12⊗ ′ ≠ . Note that control of the systemHamiltonian
without introducing heat is reminiscent of classical driving. System II thus acts as a classical drive for system I,
while the converse is not true.Moreover, for this commutation scenario, heat flux is exclusively from system I to
system II, and the existence of correlations between the two partitions determines whether or not system II
receives heat. This observation is a direct consequence of conservation of the observableA1, and does not violate
the conservation of energy.

Under what circumstances do the correlations, and therefore Q t˙ ( )2 , vanish?Note that the commutator
H A[ , ] 01 1 = , ensures thatH1 andA1 are simultaneously diagonalizable.A1 can thus be expanded in the energy

eigenbasis ofH1. Denoting the eigenstates ofH1 by i{ }∣ 〉 ,A1 can bewritten asA a i i
i i1 ∑= ∣ 〉〈 ∣, where a{ }i are a

set of coefficients. The interactionHamiltonian is thus given by

H a i i B . (16)
i

i12 2∑= ∣ 〉〈 ∣ ⊗

From thisHamiltonian one can construct an evolution operator and determine the dynamics of the density
matrix t( )ρ for an initially separable state (0) (0) (0)1 2ρ ρ ρ= ⊗ . If the initial state of system I is an incoherent

mixture of eigenstates c i i(0)
i i1 ∑ρ = ∣ 〉〈 ∣, the dynamics are given by

( ) ( )t c i i( ) e (0)e . (17)
i

i
H a B t H a B ti

2
ii i2 2 2 2∑ρ ρ= ∣ 〉〈 ∣ ⊗ − + +

The total state only remains separable if all but one of the coefficients ci, are zero. That is, when system I starts in
an energy eigenstate ofH1.We conclude that the dynamics do not correlate the two subsystems, i.e. Q t˙ ( )2 =0, if
and only if system I is initialized in an eigenstate.

An example of such a quantum setting is the displaced spin–oscillatorHamiltonain:
H a a g a a( )z z2

† †0 σ ν σ= + + +ω
, where H z1 2

0 σ= ω
and H a a2

†ν= . Denoting the eigenstates of the spin by i{ }∣ 〉
where i e g{ , }∣ 〉 = ∣ 〉 ∣ 〉 , for the initial state i i(0) (0)2ρ ρ= ∣ 〉〈 ∣ ⊗ , the spin and the oscillator evolve
independently and no heat is being transferred to the oscillator.However, if the spin is initially prepared in a
mixed state of the form c g g c e e(0) (1 )1ρ = ∣ 〉〈 ∣ + − ∣ 〉〈 ∣, the dynamics correlate the two subsystems,
generating a heatflux into the oscillator. To illustrate the latter point, let us assume that the oscillator is initially
prepared in a coherent state, while the spin is prepared in amixture of eigenstates. This example was considered
in [19] and the authors conclude that there is no build up of correlations between the spin and the oscillator. In
the remaining part of this section, we demonstrate that this conclusion is incorrect; although the heat flux into
the spin is zero (Q̇ 01 = ), there isfinite heatflux into the oscillator (Q̇ 02 ≠ ) for an initialmixed state of the spin.
The state of the spin and the oscillatormay therefore become (classically) correlated. For this initial state, the
workflux into the spin can be shown to be

W t g c x t˙ ( ) (1 2 ) ˙ ( ) , (18)1 = − 〈 〉

where x a a†= + .We assume an initial coherent state denoted by 0α∣ 〉with displacement x Re[ ]0 0α≡ and
zero initialmomentum, p Im[ ] 00 0α≡ = . The evolution of the densitymatrix of the oscillator is given by

t cP t t c t t( ) ( ) ( ) (1 ) ( ) ( ) , (19)ρ α α α α= ∣ 〉〈 ∣ + − ∣ 〉〈 ∣− − + +
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where t( )α∣ 〉+ and t( )α∣ 〉− are the displaced coherent states:

{ }( )( )t a a g a a t( ) exp i . (20)† †
0α ν α∣ 〉 = − ± + ∣ 〉±

The expectation value of the position of the oscillator is given by

x t c x c x( ) (1 ) . (21)t t( ) ( )〈 〉 = 〈 〉 + − 〈 〉α α− +

The expectation value of the oscillator velocity is the quantity of interest for evaluation of thework flux and can
be shown to be

x t t x
g

˙ ( ) 2 sin( ) , (22)t( ) 0⎜ ⎟⎛
⎝

⎞
⎠ν ν

ν
〈 〉 = ±α±

where the coupling g is also assumed to be real. Thefinal expression for theworkflux into the spin thus reads

W t g c x c g t˙ ( ) 2 (1 2 ) (1 2 ) sin( ). (23)1 0
⎡⎣ ⎤⎦ν ν= − + −

The corresponding heatfluxes are found to be

Q t˙ ( ) 0, (24)1 =

Q t c c g t˙ ( ) 8 (1 ) sin( ). (25)2
2 ν= −

The heatflux into the oscillator is independent of the initial displacement of the oscillator and ismaximum for a
maximallymixed initial state of the spin (c 1 2= ). Thework flux, however, ismaximized for an initially pure
state (c = 1or c = 0). The initial state of the spin thus serves as a control parameter that will determine the nature
of energy exchange between the two subsystems.

2.4. Non-commuting interaction
This scenario is characterized by the commutators: A H[ , ] 01 1 ≠ , and B H[ , ] 02 2 ≠ . From the effective

Hamiltonian of system I, we identify H t( ) 0a1,
eff = , and H t H t( ) ( )b1,

eff
1
eff= .Work on system I is thus given by

{ }W t H H t t˙ ( ) i Tr , ( ) ( ) , (26)b1 1 1 1,
eff

1
⎡⎣ ⎤⎦ρ= −

and similarly for system II: { }W t H H t t˙ ( ) i Tr [ , ( )] ( ) .b2 2 2 2,
eff

2ρ= − Heatflux into system I is given by

{ }( )Q t H H C t˙ ( ) i Tr , ( ) . (27)1 1 2 12 12
⎡⎣ ⎤⎦= − ⊗ 

Similar expressions can be obtained for system II. The heat fluxes Q t˙ ( )1 and Q t˙ ( )2 are, in general, non-vanishing
and unequal. As the dynamics always correlate the two subsystems, regardless of the choice of the initial state,
C t( )12 cannot be zero for all t. If the condition H H H H[ , ] [ , ]1 12 2 12= − is satisfied, however, the net heat and
workfluxeswill be zero, that is Q t Q t˙ ( ) ˙ ( ) 01 2+ = andW t W t˙ ( ) ˙ ( ) 01 2+ = .

The Jaynes–Cummingsmodel with the rotatingwave approximation is an example of such an interaction:
H a a g a a( )z2

† †0 σ ν σ σ= + + +ω
+ − , where σ+ and σ− are the raising and lowering operators of the spin. The

condition H H H H[ , ] [ , ]1 12 2 12= − translates to an oscillator that is on resonancewith the spin, 0ν ω= .

3.Generalization to open systems

3.1.One partition becomes aMarkovian bath
In this sectionwe demonstrate that heatflux into system I converges towards known results, in the limit that
system II acquires the character of amacroscopicMarkovian thermal bath. The exact equation ofmotion for

t( )1ρ is given by

t H t H t˙ ( ) i , ( ) i Tr , ( ) . (28)1 1 1 2 12
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ ρ= − −

Recalling that t t t C t( ) ( ) ( ) ( )1 2 12ρ ρ ρ= ⊗ + , we obtain

t H t H t t C t˙ ( ) i , ( ) i Tr , ( ) ( ) ( ) . (29)1 1 1 2 12 1 2 12
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ ρ ρ= − − ⊗ +

As system II is now a thermal bath, wemake the substitution t t( ) ( )B2ρ ρ→ and assume a general system–bath
interaction of the form H X YB B1 1= ⊗ , such that

t H X Y t H C t˙ ( ) i , ( ) i Tr , ( ) . (30)B B B B1 1 1 1 1 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ= − + 〈 〉 −

Forweak system–bath interactions, the expectation value YB〈 〉 can be approximated by its initial thermal value.
The term X YB1〈 〉 thus represents a bath-induced renormalization of the system energy. For brevity we assume
Y 0B〈 〉 = . Bath operators are often defined to have vanishing fluctuations such that the influence of the bath can

5

New J. Phys. 17 (2015) 075014 HHossein-Nejad et al



be entirely characterized through a two-time correlation function [23]. This is true for a thermal bath, provided
that H Y[ , ] 0B B ≠ . The case of constant YB〈 〉 renormalizes the systemHamiltonian and should be accounted for
in the derivations that follow. Consistency demands that the second term in equation (30) approaches a
Lindblad dissipator in theMarkov limit:

H C t ti Tr , ( ) ( ) . (31)B B B1 1
Born Markov

1 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ρ− ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

−

This indicates that, even in theMarkov limit, the existence of system–environment correlations is crucial for

transfer of heat. The heatflux then takes the expected form in this limit, i.e. { }Q t H t˙ ( ) Tr [ ( )]1 1 1 1 1 ρ= .

Equation (31) implies that system–bath correlations are not absent in theMarkov limit. Note that there is no
contradiction between this observation and the Born approximation used in the derivation ofMarkovianmaster
equation, which assumes separability of the state of the system and the bath, t( )s bρ ρ ρ≈ ⊗ . Indeed, the Born
approximation does not imply that there are no excitations in the bath caused by the system [23]. The
combination of the Born and theMarkov approximations provide a description on a coarse-grained time scale.
The assumption is that environmental excitations decay on a time scale that ismuch faster than the time scale of
the systemdynamics, and thus cannot be resolved. Over this coarse-grained time scale, the state of the bath can
be assumed to be approximately constant, and the system–bath correlations can be neglected. In actuality, build-
up of correlations between the system and the bath leads to loss of phase information from the system.Care
thereforemust be taken in applying the Born approximation outside the scope of the derivation of the
Markovianmaster equation.

3.2.One partition interacts with aMarkovian bath
The notion of a quantum system that serves as a time-dependent drive for a second quantum system, can still be
applied if either, or both, partitions interact with a bath. In this sectionwe present this generalization to open
quantum systems. Again, note here the semantic difference with classical thermodynamics where such system
would be denoted as ‘closed’ indicating that itmay exchange energy (but notmatter) with a bath. Consider an
open bipartite system,where only one partition (always I) interacts with aMarkovian bath. TheHamiltonian of
the total system, including the bath, can bewritten as

H H H H H H , (32)B B1 2 12 1= + + + +

whereHB is the bathHamiltonian and H B1 describes the interaction of the bathwith partition I. The action of the
bath is described by aMarkovian dissipator in the Lindblad form [ ]1 1 ρ , and the equations ofmotion for t( )1ρ
and t( )2ρ now read

t H H t t t˙ ( ) i ( ), ( ) [ ( )] [ ], (33)1 1 1
eff

1 1
eff

1 1
⎡⎣ ⎤⎦  ρ ρ ρ ρ= − + + +

t H H t t t˙ ( ) i ( ), ( ) [ ( )]. (34)2 2 2
eff

2 2
eff⎡⎣ ⎤⎦ ρ ρ ρ= − + +

The heatflux to system I nowhas an extra contribution due to the bath:

{ }{ }Q t H t t H t t˙ ( ) Tr ( ) [ ( )] Tr ( ) ( ) , (35)1 1 1 1
eff

1 1 1 1
⎡⎣ ⎤⎦ ρ ρ= ′ + ′

{ }Q t H t t˙ ( ) Tr ( ) [ ( )] . (36)2 2 2 2
eff ρ= ′

Weconsider the casewhere H t H[ ( ), ] 0B1 1′ ≠ , such that the bath can exchange energywith system I, and
investigate themodifications to thework and heatflux relations derived in section 2.Wewill not discuss the heat
flux from system I to the bath, but note that, unless for special cases, itsmagnitude cannot easily be deduced
from Q t˙ ( )1 .

3.2.1. A fully commuting interaction: H H[ , ] 0i 12 = , i {1, 2}= .
Unlike the corresponding closed system scenario (section 2.2), thework and heatfluxes on the subsystems are
unequal prior to equilibration and are given by

W t B t A t˙ ( ) ˙ ( ) ( ) 0, (37)1 2 1= 〈 〉〈 〉 =

{ }W t B t A t B t A t˙ ( ) ( ) ˙ ( ) ( ) Tr ( ) . (38)2 2 1 2 1 1 1 1
⎡⎣ ⎤⎦ ρ= 〈 〉〈 〉 = 〈 〉

Interestingly, the bath-induced relaxation of the operator A t( )1〈 〉 ismanifested as aworkflux on system II until
A t˙ ( ) 01〈 〉 = at thermal equilibrium. As for heat we obtain

{ }Q t H t t˙ ( ) Tr ( ) ( ) , (39)1 1 1 1 1
⎡⎣ ⎤⎦ ρ= ′

Q t˙ ( ) 0. (40)2 =
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The heatflux Q t˙ ( )1 , ismaintained until system I is thermalized, at which point Q t Q t˙ ( ) ˙ ( ) 01 2= = . The
dispersive spin–oscillatorHamiltonianwith the spin exposed to a heat bath provides an example of this scenario:
H a a gaz

†
0

†ν ω σ= + + a H Hz B B1σ + + , where H b bB k k k k
†∑ ω= , and H b b( )B x k k k k1

†∑σ λ= ⊗ + . The

interaction of the spinwith the bathwill result in (i) a net transfer of heat to the spin and (ii) coherent energy
transfer from the spin to the oscillator. For instance, the oscillator can represent themechanicalmode of a
resonator, the spin a two-level atom, and the bath the background radiation. The relaxation of the atom is
subsequentlymanifested as a net work flux on the resonator.

3.2.2. A partially commuting interaction.
Given that in our analysis the bath always interacts with system I, we consider two different scenarios of a
partially commuting interaction to cover all possibilities.

Case 1. H H H H[ , ] 0, [ , ] 01 12 2 12= ≠ .Work fluxes in this case are given by

W t W t A B˙ ( ) ˙ ( ) ˙ . (41)1 2 1 2= − = 〈 〉〈 〉

The conditionW t W t( ) ( ) 01 2+ = is thus still satisfied (cf equation (13)) despite the addition of the thermal
bath. The heatfluxes aremodified as follows

{ }Q t H t t˙ ( ) Tr ( ) ( ) , (42)1 1 1 1 1
⎡⎣ ⎤⎦ ρ= ′

{ }( )Q t H t H C t˙ ( ) i Tr ( ) , ( ) . (43)2 1 2 12 12
⎡⎣ ⎤⎦= − ⊗ ′

In the corresponding closed scenarios, we observed that heatflux is solely into system II. This observation is no
longer valid for the open systemprior to thermal equilibrium.

An example of such an interaction is provided by the displaced spin–oscillatorHamiltonianwith the spin
exposed to a bosonic bath: H a a g a a H H( )z z B2

† †
1B

0 σ ν σ= + + + + +ω
, where

H b b( )B x k k k k1
†∑σ λ= ⊗ + .

Case 2. H H H H[ , ] 0, [ , ] 01 12 2 12≠ = . Thework flux takes the same form as the previous case, but the heat
flux is now exclusively into system I:

{ } { }( )Q t H t H C t H t t˙ ( ) i Tr ( ) , ( ) Tr ( ) ( ) , (44)1 1 2 12 12 1 1 1 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ρ= − ⊗ ′ + ′

Q t˙ ( ) 0. (45)2 =

An example of such a system is provided by the spin–oscillatormodel where nowonly the oscillator interacts
with a bosonic bath, that is, H a a g a a H H( )z z B B2

† †
1

0 σ ν σ= + + + + +ω
, where

H a a b b( ) ( )B k k k k1
† †∑ λ= + ⊗ + .

3.2.3. A non-commuting interaction.
For a fully non-commuting interaction, work flux associated to each subsystem is given by
W t H H t t˙ ( ) i Tr {[ , ( )] ( )}j j j j b j,

eff ρ= − . The heatfluxes take the form

{ }) { }( )Q t H H C t H t t˙ ( ) iTr , ( ) Tr ( ) ( ) , (46)1 1 2 12 12 1 1 1 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ρ= − ⊗ + ′

{ }( )Q t H H C t˙ ( ) iTr , ( ) . (47)2 1 2 12 12
⎡⎣ ⎤⎦= − ⊗

Similar to thefinite system case (section 2.4), if H H H H[ , ] [ , ]1 12 2 12= − , thenW t W t˙ ( ) ˙ ( ) 01 + = . At thermal
equilibrium,where the heatflux due to the bath vanishes, this condition also implies that Q t Q t˙ ( ) ˙ ( ) 01 + = .

The Jaynes–Cummingsmodel is an example of such an interaction:
H a a g a a H H( )z B B2

† †
1

0 σ ν σ σ= + + + + +ω
+ − . The bosonic bath can interact with either the spin [e.g.:

H b b( )B x k k k k1
†∑σ λ= ⊗ + ] or the oscillator [e.g.: H a a b b( ) ( )B k k k k1

† † †∑ λ= + ⊗ + ].

3.3. Each subsystem interacts with a bath
The present treatment can readily be extended to the case where both sub-systems interact with a thermal bath.
Wewill only consider the case of the fully-commuting interaction for brevity, but the theory can
straightforwardly be applied to all cases. Consider a bi-partite systemwhere each partition interacts with its own
Markovian bath. The totalHamiltonian is given by

H H H H H H H H , (48)B B B B1 2 12 1 21 2= + + + + + +

where HB1
and HB2

are the bathHamiltonians, whileH1B and H B2 specify the system–bath interactions. The
action of the two baths is described by theMarkovian dissipators [ ]1 1 ρ and [ ]2 2 ρ . The equations ofmotion
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for the partitions now take the form

t H H t t t˙ ( ) i ( ), ( ) [ ( )] . (49)j j j j j j j
eff eff⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ρ ρ ρ ρ= − + + +

For the fully commuting interaction, work fluxes are given, W B t˙ ˙ ( )1 2= 〈 〉 A t W B t( ) , ˙ ( )1 2 2〈 〉 = 〈 〉 A t˙ ( ) ,1〈 〉 while
the heatflux takes the form Q t H t˙ ( ) Tr { ( )j j j= ′ t[ ( )]}.j j ρ In the steady state, energy conservation and

vanishingworkfluxesmean that all energy fluxes are zero. For the fully non-commuting interaction, however, it
can be shown that afinite heat andwork flux can bemaintained in the steady-state. Evenwith a fully commuting
interaction,more elaborate designs consisting ofmultiple baths of different temperatures can be utilized to
engineer thermodynamic devices capable ofmaintaining a constant heatflux in the steady state. For instance,
there are prototype thermoelectric devices consisting of two interacting quantumdots coupled to three thermal
reservoirs [24]. The coupling between the quantumdots is a Coulombic repulsion and therefore a fully-
commuting interaction. It has been demonstrated both experimentally [25] and theoretically [24] that this
design aids the extraction of energy from a temperature difference while avoiding any direct connection between
the hot and cold reservoirs alongwhich heatmightflow.

4. Entropy change and the second law

In [17] it is argued that entropy and heatflux in afinite quantum system are related via the expression

S Qd *d , (50)1 1β=

where dS1 is the change in the vonNeumann entropy of system I and *β is defined to be an effective inverse
temperature. This definition is inspired by analogywith classical thermodynamics andwas used to demonstrate
agreementwith Clausius relation for systems at thermal equilibrium. There is, however, a problemwith this
identification as counterexamples to equation (50)may be foundwhere the heatflux is vanishing ( Qd 01 = ), but
the entropyflux isfinite ( Sd 01 ≠ ). To illustrate this point, consider the scenario discussed in section 2.2where
both subsystemHamiltonians commutewith the interaction. In this case, there is no heat flux into either of the
partitions, yet the local entropy of system I can still change, provided that it has an initial coherence and that
partition II does not start in an energy eigenstate. In appendixwe show that if these two conditions are satisfied,
the evolution of partition I is non-unitary, and its local entropy is oscillatory, despite the lack of a heat flux, and
in contradictionwith equation (50).

Clearly, a different line of thought ought to be followed to reconcile the energyflux formalismwith the
second law. For an initial separable state (0) (0) (0)1 2ρ ρ ρ= ⊗ , evolving under theHamiltonian
H H H H1 2 12= + + , Esposito et al [26] have demonstrated that the change in the vonNeuman entropy of
system I, between t=0 and t τ= , can be expressed as

{ }
S S S

D

( ) ( ) (0)

( ) ( ) (0) Tr ( ) (0) ln (0) , (51)

1 1 1

1 2 2 2 2
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Δ τ τ

ρ τ ρ τ ρ ρ τ ρ ρ

= −

= ∥ + −

where D [ ] Tr{ ln } Tr{ ln }1 2 1 1 1 2ρ ρ ρ ρ ρ ρ∥ = − is the relative entropy. This expression is derived from the
conservation of the total entropywith the sole assumption of the separability of the initial states. Thefirst term in
equation (51) is the irreversible contribution to the entropy change and is known as the entropy production. The
second term is the reversible contribution to the entropy change. It quantifies the exchange of heat and results
from the reduced dynamical evolution of system II. The entropy change can therefore bewritten in the standard
thermodynamic form S S S( )1 1

ir
1
reΔ τ Δ Δ= + with

S D( ) ( ) ( ) (0) , (52)1
ir

1 2
⎡⎣ ⎤⎦Δ τ ρ τ ρ τ ρ= ∥

{ }S ( ) Tr ( ) (0) ln (0) . (53)1
re

2 2 2
⎡⎣ ⎤⎦Δ τ ρ τ ρ ρ= −

Since the relative entropy is positive, equation (52) indicates the positivity of the entropy production, i.e.:
S ( ) 01

irΔ τ ⩾ , thus fulfilling the second law of thermodynamics [23, 27].
Equations (52) and (53) can also be used to investigate any possible links between heat and entropy. Clearly,

equation (53) cannot be identifiedwith a heatflux. In classical thermodynamics the association between heat
and entropy holds for reversible entropy exchanges and is defined for a thermal initial state. Equation (52) shows
that this association is not correct for the general quantum setting. The irreversible entropy is due to correlations
between the two partitions thatmay arise independently of a heat flux.We therefore conclude that the direct
association between heatflux and entropy change, as suggested by equation (50), does not hold in general.

As an example, equations (52) and (53) can be used to analyze the entropy flux for the commuting
interactions (section 2.2). From equation (52), we conclude that S ( ) 01

reΔ τ = , provided that system II is initially
in a statisticalmixture of its energy eigenstates. The heat flux is also zero for commuting interactions. Yet, if
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system I possesses some initial coherence, the dynamics would correlate the two partitions and the entropy
production S ( )1

irΔ τ would exhibit oscillations.
To explore further possible relations between S ( )1

reΔ τ and Q ( )1Δ τ , we consider the non-commuting case
where a two-level system interacts with a single harmonicmode. This spin-boson typeHamiltonian is given by
H V( )z x2

0 σ σ= +ω
a a g a a( )z

† †ν σ+ + + , with bias 0ω , tunnelling amplitudeV, mode frequency ν and

system–mode coupling strength g. The spin is initially assumed to be in the excited state while the oscillator is
initially in a thermal state at a temperatureT. For these initial conditions the reversible entropy change quantifies
the energy change of system II and becomes S ( )1

re
2Δ τ β= − H H( )2 2 0〈 〉 − 〈 〉τ with T12β = . Notice that this

energy change for system II is not trivially related to the heat flux into system I. Figure 2(a) displays the heat and
work contributions to energy changes of the spin (parameters provided in the caption offigure 2), indicating
there is predominantly a negative heat flux into the spin i.e. the system is ‘cooled’. The reversible and irreversible
contributions to entropy change of the spin are displayed infigure 2(b). S ( )1

reΔ τ is negative indicating that as the
spin and oscillator become correlated, the latter evolves towards a non-thermal state with an average energy
larger than its initial energy. Although S ( )1

reΔ τ resembles some features of Q ( )1Δ τ , such as its negativity and the
position of some of the extrema, a proportionality relation of the formof equation (8) in [26] does not follow
straightforwardly.We conclude this section by noting that although entropy production is positive its derivative
can be negative. This is a direct consequence of the non-Markovian nature of the reduced dynamics of system I,
and positivity of the rate is recovered in theMarkov limit [26].

In the section, we have demonstrated that the energy flux formalism satisfies the second law of
thermodynamics. By partitioning entropy changes as proposed in [26], the positivity of entropy production
within the heatflux formalism is demonstrated. The direct relation between heat and entropy suggested in [17]
is incorrect in general.

5. Conclusions

In this article we have considered internal exchange of energy in bipartite quantum systems and have
investigated the consequences of the partitioning introduced in [17] for different commutations of the
interaction and the bareHamiltonians. A generalization of the formalism toMarkovian open quantum systems
was also presented and the consistency of the formalismwith the second law of thermodynamics was discussed.

From a classical standpoint exchange of heat andwork have distinct physical origins; work is exchanged due
to the action of an external drive. Heat, on the other hand, is exchangedwith a thermal bath. The present
formalism connects these two scenarios and states how each situation arises in a particular limit of the general
bipartite system.

Optomechanical implementations provide the ideal platform for the investigation of energy transfer
between quantummechanical systems [28] and the prototype spin–oscillatormodels can readily be
implemented in such a setting. Nano-scale thermoelectric devices comprised of quantumdots interactingwith
thermal reservoirs are alternative systems inwhich the interplay of quantummechanical and thermodynamic
principles can be investigated [24, 25]. There are, however, still issues associatedwith themeasurement of the
aforementioned fluxes and the practical applicability of the energy partitioning on the entropy fluxes requires
further investigation.

Figure 2. (a)Heat andwork contributions to the total energy change U ( )1Δ τ of a two level system as it interacts with a single harmonic
mode. (b) Reversible and irreversible contributions to the change in the vonNeumann entropy of the two level system. Parameters are
T=300 K, 150 cm0

1ω = − , V 50 cm 1= − , 180 cm 1ν = − , and g 50 cm 1= − .
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Appendix

In this appendixwe demonstrate that the reduced dynamics under a fully commuting interaction can be non-
unitary.We consider theHamiltonian H H H H1 2 12= + + , where H H H H[ , ] [ , ] 01 12 2 12= = . The interaction
Hamiltonian can bewritten as H A B1 2= ⊗ , whereA1 acts on partition I andB2 on partition II.H1 andA1 can
be expanded in the energy eigenbasis of system I. That is

H , (54)
i

i i i1 ∑ϵ ϵ ϵ= ∣ 〉〈 ∣

A a , (55)
i

i i i1 ∑ ϵ ϵ= ∣ 〉〈 ∣

where { }iϵ∣ 〉 are the eigenstates of system Iwith eigenenergies { }iϵ , and a{ }i are a set of coefficients. Similarly, we
expandH2 andB2 in the eigenbasis ofH2

H E E E , (56)
i

k k k2 ∑= ∣ 〉〈 ∣

B b E E , (57)
k

k k k2 ∑= ∣ 〉〈 ∣

where E{ }k∣ 〉 are the eigenstates of system IIwith eigenenergies E{ }k and b{ }k are a set of coefficients. The
reduced dynamics of partition I is given by t Ht Ht( ) Tr {exp( i ) (0)exp(i )}1 2ρ ρ= − .We expand the
Hamiltonians and arrive at the followingfinal expression

t E E( ) e e (0) (0) . (58)
ijk

t a a b t
i i j j k k1

i( ) i( )
1 2

i j i j k∑ρ ϵ ϵ ρ ϵ ϵ ρ= ∣ 〉〈 ∣ ∣ 〉〈 ∣ ⊗ 〈 ∣ ∣ 〉ϵ ϵ− − − −

Unless partition II starts in an energy eigenstate, the dynamics of coherences t( )i j1ϵ ρ ϵ〈 ∣ ∣ 〉 are non-unitary.We
therefore conclude that t( )1ρ exhibits non-unitary dynamics provided that system II is not in an energy
eigenstate at t=0, and system I possesses some initial coherence. Non-unitary dynamics give rise to a time-
dependent vonNeumann entropy for system I.
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