UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Impact of the β-Lactam Resistance Modifier (-)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus

Rosado, H; Turner, RD; Foster, SJ; Taylor, PW; (2015) Impact of the β-Lactam Resistance Modifier (-)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus. International Journal of Molecular Sciences , 16 (8) pp. 16710-16727. 10.3390/ijms160816710. Green open access

[thumbnail of Impact of the β-Lactam Resistance Modifier (-)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus.pdf]
Preview
Text
Impact of the β-Lactam Resistance Modifier (-)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus.pdf

Download (3MB) | Preview

Abstract

The polyphenol (-)-epicatechin gallate (ECg) inserts into the cytoplasmic membrane (CM) of methicillin-resistant Staphylococcus aureus (MRSA) and reversibly abrogates resistance to β-lactam antibiotics. ECg elicits an increase in MRSA cell size and induces thickened cell walls. As ECg partially delocalizes penicillin-binding protein PBP2 from the septal division site, reduces PBP2 and PBP2a complexation and induces CM remodelling, we examined the impact of ECg membrane intercalation on phospholipid distribution across the CM and determined if ECg affects the equatorial, orthogonal mode of division. The major phospholipids of the staphylococcal CM, lysylphosphatidylglycerol (LPG), phosphatidylglycerol (PG), and cardiolipin (CL), were distributed in highly asymmetric fashion; 95%-97% of LPG was associated with the inner leaflet whereas PG (~90%) and CL (~80%) were found predominantly in the outer leaflet. ECg elicited small, significant changes in LPG distribution. Atomic force microscopy established that ECg-exposed cells divided in similar fashion to control bacteria, with a thickened band of encircling peptidoglycan representing the most recent plane of cell division, less distinct ribs indicative of previous sites of orthogonal division and concentric rings and "knobbles" representing stages of peptidoglycan remodelling during the cell cycle. Preservation of staphylococcal membrane lipid asymmetry and mode of division in sequential orthogonal planes appear key features of ECg-induced stress.

Type: Article
Title: Impact of the β-Lactam Resistance Modifier (-)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus
Location: Switzerland
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/ijms160816710
Publisher version: http://dx.doi.org/10.3390/ijms160816710
Language: English
Additional information: © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Staphylococcus aureus, bacterial cell division, beta-lactam susceptibility, epicatechin gallate, membrane asymmetry, membrane phospholipids
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharmaceutics
URI: https://discovery.ucl.ac.uk/id/eprint/1472953
Downloads since deposit
54Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item