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Abstract 

By the time children leave primary school there is a large socio-economic gap in their reading 

proficiency. There are a number of potential explanations for this socio-economic gap and in 

this paper we investigate the role of three particular genes and gene-environment interactions 

in determining children’s reading skills, using the Avon Longitudinal Study of Parents and 

Children (ALSPAC) dataset. We find that whilst these genes are indeed correlated with 

reading outcomes, effect sizes are small and sensitive to the choice of test used and the 

sample selected. Our results suggest that these leading candidate genes can jointly explain 

just 2% of the socio-economic gap in children’s reading test scores. We conclude that the 

influence of these three genes on children’s reading ability is limited, and their role in 

producing socio-economic gaps in reading ability is even more limited still.  
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1. Introduction  

 

By the time children leave primary school there is already a large socio-economic gap in their 

reading ability (Feinstein 2003, Jerrim and Vignoles 2013, Goodman et al 2009). This has 

been attributed to many factors, including the quality of teaching and learning in primary 

schools. However, a large socio-economic gap in measured cognitive ability is in fact evident 

even before children enter compulsory education. In the light of this, one explanation that is 

increasingly aired for socio-economically disadvantaged children’s weak reading skills is the 

potential heritability of reading ability. This view has been reinforced by some recent genetic 

evidence of the heritability of IQ (Davies et al. 2011). In this paper we analyse the possible 

role of genetics in determining children’s reading skills, particularly with regard to the gap 

between socio-economically advantaged and disadvantaged groups. We focus on reading 

skills because (i) this is known to be an important determinant of children’s educational and 

occupational achievement (Murnane et al. 1995) and (ii) behavioural geneticists have claimed 

(based upon studies of twins) that reading ability is highly heritable (e.g. Castles et al 2006). 

The findings from this paper are therefore central to our understanding of the relative 

importance of heritability as compared to other factors, such as the quality of teaching and 

schools, in explaining differences between children in their reading skills. 

Existing research suggests that family background has a pivotal role in child 

development generally (Coleman 1966, Haveman and Wolfe 1995, Todd and Wolpin 2003) 

with certain mediating factors, such as parental education and aspirations, being particularly 

important (Behrman and Rosenzweig 2002, Black et al 2005, Cunha and Heckman 2008, 

Goodman et al 2009). The mechanisms by which family background and low socio-economic 

status impact on child development are myriad, complex and involve the interaction of the 

social and the biological (see a recent review on the contribution of neuroscience to our 

understanding of socio-economic differences by Hackman et al. 2010). Yet there is much 

about the role of family background that we still do not understand (Haveman and Wolfe 

1995). There is an expectation that genetic factors, and particularly their interaction with the 

environment, will shed new light on this important issue (Pluess and Belsky 2011, Ellis and 

Boyce 2011, Mitchell et al 2011). In this paper we make a contribution to this emerging field 

by investigating the association between family background, three suspected genetic risk 

factors (DCDC2, KIAA0319 and CMIP) and children’s reading test scores. 
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To explain the possible role of genetics in determining children’s lifetime outcomes, 

we draw upon the framework suggested by Haveman and Wolfe (1995) – see Figure 1. 

Children’s achievement (reading skills in our case) is assumed to have two proximate 

determinants: home investments (parental inputs primarily of time and goods) and hereditary 

factors. The former reflect the environments in which children grow up. The latter suggests 

that at least part of the association between socio-economic background and children’s 

outcomes is due to genetic inheritance; higher IQ parents tend to hold high socio-economic 

positions and produce offspring of above average intelligence (who will thus do well in later 

achievement tests). The implication is that estimates of the association between family 

background and children’s achievement reflect both genetic and environmental factors. 

Cognitive achievement then, in turn, determines the child’s educational and occupational 

success. The hypothesis is therefore that genetics thus influences the transfer of socio-

economic status from one generation to the next via its impact upon children’s cognitive 

skills (including their reading ability). 

<<Figure 1>> 

One implication of this framework is that simple associations between family 

background and children’s outcomes tell us little about the extent to which disadvantaged 

children’s worse outcomes are attributable to the poor environments in which they have been 

raised. For instance, although there are large socio-economic gaps in children’s cognitive 

skills at an early age (Feinstein 2003, Jerrim and Vignoles 2013, Goodman et al 2009),  little 

work has considered the extent to which this is due to genetic (G) influences, or their 

interaction with the environment (G*E).  Consequently, by ignoring the possible role of 

genetics, potentially important variables are missing from most empirical models of social 

stratification research. 

Yet the role of genetics in the intergenerational transmission process has a 

controversial past in social science. In “The Bell Curve” – the infamous book written by 

Herrnstein and Murray (1994) – it was claimed that intergenerational worklessness is (to a 

large extent) genetically determined: 

 

“the tendency to be unemployed may run in the genes of a family about as certainly as bad 

teeth do now”. 

 

Others have claimed that intelligence has a genetic basis (Saunders 2010): 
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“If people entering middle class jobs tend to be more intelligent, and if they select 

more intelligent partners, then (assuming that intelligence has some genetic basis) it must be 

the case that the children they produce will tend to be relatively intelligent as well” 

and it is this that drives social mobility (Nielsen and Roos 2011): 

 

“Sons and daughters from more prestigious origins may disproportionately end up in more 

prestigious destinations simply because they are more likely than offspring from less 

prestigious origins to inherit genes that allow entry into more prestigious destinations”. 

 

Although these views may be unpopular, they have been a recurring theme within social 

science research for over 50 years (see, for instance, Jensen 1968).  

Such arguments have drawn heavily upon research comparing outcomes for identical 

(monozygotic – MZ) and non-identical (dizygotic – DZ) twins. As the former (MZ) share all 

their genes in common, while the later (DZ) share just 50%, one is able (under certain 

assumptions) to estimate the extent to which a given outcome is determined by ‘nature’ 

(heredity) or ‘nurture’ (environment). With regard to children’s reading skills, twin-studies 

have typically found heritability to be high (Scerri and Schulte-Korne 2010). Light et al 

(1998) suggested that 40% of the variance in developmental dyslexia could be accounted for 

by genetic variation. Petrill et al (2006) report a similar figure, while Gayan and Olson (2001) 

and Davies et al (2001) both suggest heritability is above 50%. Attempts have also been made 

to investigate heritability of general reading ability (as distinct from reading disorders). 

Harlarr et al (2005) report that genetic factors account for 75% of the variance in reading 

skills, while Gayan and Olson (2003) suggest it is even higher (85%). In other words, 

genetics is the dominant factor. 

However, it is important to recognize the significant limitations of twin studies (and 

others with similar designs). Firstly, genetic effects are not directly observed. Rather any 

difference in outcomes between MZ and DZ twins is only inferred to be due to genetics. This 

invokes the ‘equal environments’ assumption – that environmental factors co-vary equally for 

identical and non-identical twins. This may not hold if, for instance, MZ twins experience 

more similar environments than their DZ counterparts (e.g. parents are more likely to treat 

identical twins the same way than non-identical twins). Secondly, twin studies do not reveal 

which genes or which environments lead to the differences that we observe. As a 

consequence, academics and policymakers are left with little insight as to how to intervene. 

Indeed, various authors (Manski 2011, Goldberger 1979) have argued that the concept of 
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heritability actually has little policy relevance as a consequence of this. Thirdly, Benjamin et 

al (2012, page 11) note that estimates of heritability from twin studies assume that genes have 

a linear and additive influence on outcomes, and that there is no assortative mating amongst 

parents on genetic factors. Clearly, these are strong assumptions that seem unlikely to hold.   

Finally, perhaps the greatest scepticism surrounds the idea that nature can be 

separated from nurture. Such views are based on a deterministic view whereby, since DNA is 

largely fixed, so too must be the impact of genes on children’s outcomes. But recent advances 

in genetic research have suggested that gene expression is actually influenced by the 

environment to which it is exposed. In other words, the two interact (Jaenisch and Bird 2003, 

Hackman, Farah and Meaney 2010)1. Social scientists have started to acknowledge the 

potential importance of gene-environment interactions (Heckman 2007), and that models 

assuming genes and environment have independent effects (as in the Haveman and Wolfe 

framework – Figure 1) may be inadequate. Further, the recent addition of genetic information 

to major cohort studies (e.g. AD-HEALTH, Understanding Society, Life Study, ALSPAC) 

offers researchers the opportunity to look at gene environment interaction and overcome 

some of the problems that arise with twin studies. Hence the influence of genetics on 

outcomes need no longer be inferred, rather these effects can be directly estimated. With 

observable genetic data, one can directly examine the bio-molecular evidence for gene-by-

environment interactions, as we do in this paper.  

Our analysis proceeds as follows. Firstly, we re-examine the link between particular genes 

identified in the genetic literature and children’s reading skills. This extends the existing 

literature by considering the sensitivity of findings to (i) the use of different reading tests and 

(ii) different sample selections. Secondly, we shall examine whether the leading candidate 

genes are indeed unevenly distributed across social classes. This condition must hold if these 

genetic factors are to explain (by themselves) the socio-economic gradient in children’s 

reading skills (i.e. without interacting with the environment that surrounds them). Thirdly, we 

estimate a simple linear regression model of children’s reading ability, with and without 

controlling for these three genes. Our interest is in the extent to which the socio-economic 

achievement gap is reduced when these potential explanatory factors are included in the 

model. Finally, we explore the possibility of gene-by-environment (G*E) interactions. 

Previous work in this area has distinguished between two competing models of G*E – the 

diathesis-stress model and the bio-ecological model (Pennington et al 2009). The former 

                                                           
1
 Epigenomics refers to the study of genomic modifications that alter gene expression, loosely meaning the 

study of gene-environment interactions. See Carey (2012) for the origins of epigenomics. 
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suggests that genetic vulnerability coupled with environmental stress will lead to increased 

risk of a disorder (e.g. dyslexia). The bio-ecological model, on the other hand, suggests that it 

is only enriched environments that allow genetic differences to be realized (and hence 

heritability of a disorder will actually be higher in enriched environments)
2
. We shall consider 

which (if any) of these models holds in our application.  

Our results suggest that: 

  Despite the growing number of studies showing a genetic basis to children’s reading 

skill, the effect sizes from the leading candidate genes we examine tend to be very 

small and sensitive to the choice of test used and the sample selected.  

 Even if these specific genes do influence children’s reading skills, there is little 

evidence that they are distributed unevenly across socio-economic groups.  

 We found little evidence of gene-by-environment interactions. 

  Consequently, the leading candidate genes can jointly explain just 2% of the socio-

economic gap in children’s reading skills. 

 

Of course, one cannot generalize from this to conclude that genetics factors (in general) have 

little importance in the development of reading ability and indeed many other studies have 

found that individual genes explain very little variation in specific outcomes (Davies et al. 

2011); considering the cumulative effect of a wider range of genes might lead to a different 

conclusion. However, the evidence presented in this paper suggests that a wider range of 

genes will need to be considered before we can advance the view that genetics plays a major 

role in this particular aspect of child development.  

Section 2 now introduces the ALSPAC dataset. Results are presented in section 3, 

with conclusions following in section 4.  

 

2. Data and methods 

 

2.1 Sample selection and missing data 

 

Between April 1991 and December 1992 all pregnant women in the Avon district of England 

were asked to participate in a longitudinal birth cohort, The Avon Study of Parents and 

Children (ALSPAC). 14,541 mothers were recruited into the study. They and their children 

                                                           
2
 Interestingly, Pennington et al (2009) note that most existing studies of gene-by-environment interaction have 

found that the bio-ecological model is more likely to hold in the case of cognitive skills. 
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have been re-interviewed at regular intervals (Boyd et al 2012). A large number of 

participating children were invited to special clinic sessions, where a series of diagnostic tests 

were performed (including general intelligence tests and reading skills assessments). 

Genotypic information has also been collected. We describe the sample design, issues of 

sample selection, measurement of family background, reading tests and empirical 

methodology in the sub-sections below. 

The ALSPAC dataset contains information on children within one particular district of 

England. Although it cannot be considered representative of the national population, its 

demographic composition is broadly similar to that of the country as a whole. There were 

roughly 20,000 conceptions during the study period. 14,541 mothers took part and provided 

information in at least one survey wave (Boyd et al 2012). Genetic information is available 

for 10,678 respondents. This leaves a sample of 10,269 children who form the core of our 

analysis. 

A limitation of ALSPAC is that some respondents are missing pieces of key information. 

For instance, the special clinic sessions described above were only attended by a non – 

random selection of the population (e.g. of the 10,269 children in our core sample, only 6,104 

took part in both the age 7 and age 8 clinics). Analysis (not presented for brevity) suggests 

that clinic participants came from more advantageous family backgrounds and had higher 

than average levels of school achievement. We discuss this issue further in section 3.1 when 

reviewing the existing literature on the link between reading test scores and the three 

candidate genes. 

 

2.2 Genetic data 

 

The human genome is a long sequence of around 3 billion pairs of nucleotide molecules. 

Genes are sub-sequences within the human genome which are implicated in the building of 

proteins that influence the functioning of the body’s cells. These genes are not identical 

across individuals, rather there are certain nucleotides that vary. The most common type of 

variation is a single nucleotide polymorphism (SNP – pronounced “snip”), which is where a 

single nucleotide differs across individuals. Genetic studies typically use SNP’s as their 

primary covariate of interest. This is based on the assumption that they capture the vast 

majority of genetic variation within the region under investigation.  

 It is important to understand that the chosen SNP(s) may not be the functional (causal) 

variant. In other words, one does not know whether it is variation in this specific nucleotide 

that is leading to differences in outcomes across individuals. Rather one relies upon the fact 



8 

 

that SNP’s are arranged within well-defined Linkage Disequilibrium (LD) blocks. The basic 

idea is that, although the causal variant may be unobserved, it is likely to be highly correlated 

with other SNP’s (including the functional variant) within the given block
3
. One may thus 

consider the observed SNP’s for a given gene as multiple proxies for the true (unobserved) 

causal variant. An important aside is that the length of LD blocks can vary across ethnic 

groups. It is thus common for geneticists to stratify their analysis by ethnicity. ALSPAC 

contains too few children from ethnic minority backgrounds to undertake robust sub group 

analysis. We therefore exclude ethnic minority children from the sample. 

 For most SNP’s, only two possible alleles (one from each parent) occur at a given 

SNP
4
. Alleles are labelled A, T, G or C

5
. The major (‘wildtype’) allele is the most frequent in 

the population, while the minor allele is the less frequent. So, for example, alleles A and T 

may occur at SNPi, with A the more common in the population. Then each person will be 

defined within one of the three following (mutually – exclusive) groups for SNPi: 

 AA – homozygous wildtype  

 AT – heterozygous 

 TT – homozygous rare.  

 

Here we draw on existing literature to identify the genes of interest. Scerri et al (2011) 

present evidence that two specific genes (CMIP and KIAA0319) are associated with general 

reading ability, while others (e.g. DCDC2) are implicated in reading disorders (see also Cope 

et al 2005). Whilst we do not delve into the biology of these genes, we do note that functional 

investigations have shown that “many of them have important roles in the brain, often during 

embryonic development” (Scerri and Schulte-Korne 2010 p191). For instance, Paracchini et 

al (2007) report that DCDC2 and KIAA0319 are involved in neuronal migration (a key step in 

the development of the neocortex). 

  

2.3 Family background 

 

We follow a long line of sociological research and use socio-economic class (as measured by 

parental occupation) to measure family background. Information on parental occupation was 

reported by children’s mothers, placing both mothers and fathers into one of five social class 

                                                           
3
 This is because groups of SNP’s within LD blocks are likely to be transmitted from parents to children 

together. 
4
 Also note that allele frequencies can vary across ethnic groups. This is another reason why genetic analysis is 

often stratified across ethnicity.  
5
 These stand for the DNA bases adenine (A), thymine (T), guanine (G) and cytosine (C). 
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groups (Professional, Managerial / Technical, Skilled, Semi – skilled, Unskilled). We use the 

higher of the mother’s and father’s occupation to measure family background throughout our 

analysis. This strategy is commonly used in social stratification research (Jerrim 2012, 

Jackson et al 2007). A series of robustness tests have been undertaken to assess the sensitivity 

of results to the choice of family background measure. The substantive conclusions drawn are 

robust to various alternatives
6
.  

  

2.4 Reading tests 

 

There are two broad types of reading test contained within ALSPAC – those that were part of 

the specially organized clinic sessions, and those that children sat as part of national 

examinations at ages 7 and 11
7
. Both have their strengths and limitations. The clinic reading 

tests were undertaken in a one-to-one session with a trained assessor and they may be more 

reliable than school exams (where ‘teaching to the test’, large group distractions and exam 

technique may be confounding issues). Moreover, as these clinics had an emphasis on 

medical diagnosis, the reading tests typically focused upon specific aspects of reading ability 

(e.g. single word reading, reading speed, comprehension) rather than reading as a broadly 

defined skill. A major difficulty with the clinic data is, however, the large amount of missing 

information; of the 10,269 children in our sample, 2,910 (28%) are missing information on 

age 7 clinic test scores.  

 In contrast, the reading test score information available from national exams at ages 7 

and 11 provide a broader measure of overall reading ability. Moreover, as children’s 

performance in national exams at age 7 and age 11 has been linked into ALSPAC from 

administrative records, missing data is not a significant problem for all state school pupils. 

One could also argue that these tests are actually more relevant for understanding social 

mobility, since demonstrating achievement in general reading ability at school may well be 

more important for disadvantaged children’s prospects in later life than any specific reading 

skill. Finally, school exam scores may be more accurate as (a) the amount of assessment time 

                                                           
6
 As discussed in section 2, the existing literature suggests there are a number of different aspects to the family 

environment that impact on the child’s reading, such as how often the parent reads to the child or the number of 

books in the home. Potentially, each of these more specific environmental factors might interact with 

individuals’ genes. However, as these individual factors explain much less of the variation in child reading 

scores as compared to socio-economic status, initially one would want to establish whether the relationship 

between the major predictor, i.e. socio-economic status, and reading test scores is affected by including 

information on specific SNPs and equally whether there appears to be a gene-environment interaction.  
7
 Although these national exams examined children’s ability in English generally, here we focus just upon the 

reading component.   
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is likely to have been greater than in the ASLPAC clinic (b) test results have been 

standardized across children and (c) national exams are likely to be higher stakes (i.e. 

children and their parents consider them important) so children may put in more effort to 

reveal their true ability. 

 Investigating the link between the candidate genes and a range of different reading 

test scores (and sensitivity to the resulting sample selections) is therefore an important first 

step in our analysis. Previous studies (e.g. Scerri et al 2011) were only able to test for 

associations between the genes considered in this paper and specific reading test scores (e.g. 

age 7 single WORD reading). One of the contributions of this paper is in investigating 

whether associations between genotype (SNP’s) and phenotype (reading ability) holds across 

the following range of tests: 

 Single WORD reading test at age 7 

 Key Stage 1 (national examination) reading test score at age 7 

 NEALE words per minute (speed) at age 9 

 NEALE comprehension at age 9 

 NEALE accuracy score at age 9 

 Key Stage 2 (national examination) reading test score at age 11. 

 

Throughout our analysis we standardize each measure to have a mean of 0 and standard 

deviation of 1. 

 

 

2.5 Empirical methodology 

 

Firstly, we model the link between each of the candidate genes and children’s reading ability. 

Our strategy is to estimate a simple bivariate OLS regression model, following standard 

practice in the genetics literature. This is specified: 

 

                       (1) 

Where: 

   = Reading test score of individual i 

     = The SNP under consideration for individual i. 

 

We also follow convention by entering SNP’s into the model as a continuous, linear term. The 

value assigned to an individual for a given SNP depends upon the number of suspected risk 
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alleles they have at that location (i.e. the alleles that are associated with lower test scores)
8
. 

This is known in the genetics literature as the allelic trend model, with the estimated β 

coefficient representing the change in reading test score per one allele change in genotype. 

Geneticists typically estimate a model of this form for each SNP under investigation
9
. 

Although we recognise that there may be other ways to use these data (e.g. to combine 

information from multiple SNP’s within the same LD block to proxy the unobserved 

functional genetic factor), we continue with the single SNP approach for consistency with the 

existing literature. Recall that in undertaking this preliminary analysis our concern is whether 

the relationship between the candidate genes and children’s reading ability holds across 

different reading tests and sample selections.  

 We then consider the extent to which the three candidate genes can explain socio-

economic achievement gaps. We consider the distribution of alleles within each of the SNP’s, 

and whether this varies across social class groups.  In other words, is there an association 

between social class and these particular observable genetic factors? If we find no association 

this cannot refute the claims of some social scientists of a link between observable genetic 

factors and socio-economic status (e.g. Nielsen and Roos 2011) - but it does cast some doubt 

on such claims in the context of reading at least. This hypothesis is tested by simply 

conducting a chi – squared test for independence between each SNP and socio-economic 

status. 

 This is then followed by the estimation of two regression models: 

 

                     (2) 

                          (3) 

 

Where: 

SES = A vector of four dummy variables representing socio-economic group (Ref: 

professional occupation) 

 

SNP = A vector of all SNP’s available to us from the three candidate genes. 

 

                                                           
8
 Say, for example, an SNP is made up of the C or G alleles, where G is the risk. A person with an SNP 

comprised of CC is assigned a value of 0, CG as a value of 1 and GG as a value of 2 (and thus an assumption of 

linearity is imposed). 
9
 When a very large number of SNP’s are used, it is common for analysts to make a Bonferroni correction for 

multiple testing. 
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Estimates from the first model (  ) reveal the total association between socio-economic status 

and reading test scores – via all possible mechanisms by which such associations may occur 

(including both nature and nurture). The estimates for the SES parameters from the second 

model (  ) then reveal the extent to which socio-economic status influences reading test 

scores through all mechanisms other than via the three candidate genes. Note that in these 

models we control for all the SNP’s for each of the candidate genes together
10

. Thus our 

primary interest is in the quantity  
      

  
 , namely the proportion of the socio-economic 

achievement gap that these three genes explain. 

Lastly, we have already recognized that genes and family environment may interact. 

Thus our final model is specified: 

 

                                       (4) 

 

 

For consistency with the existing literature on gene-by-environment interactions, each SNP is 

tested one at a time. Our primary interest is in whether the diathesis stress or bio-ecological 

model of interaction holds, as described in the introduction. The former would imply that 

    such that the genetic vulnerability (more risk alleles) will have an additional negative 

impact on reading scores in home environments with more environmental stress (lower SES). 

The bio-ecological hypothesis, on the other hand, would suggest that the negative impact of 

the SNP on reading will only be observed in enriched home environments - where genetic 

factors will dominate over environment (thus    ).  

 

3. Results 

 

In this section we present summary findings for ease of interpretation. A full set of parameter 

estimates for all genes and SNP’s under investigation are available on request. 

 

3.1 Re-examining the link between the candidate genes and children’s reading 

test scores 

 

Table 1 presents some of the results from Scerri et al (2011) and our replication of their 

findings. The main focus of most quantitative genetic studies is whether the association 

between genotype (SNP’s) and phenotype (reading test scores) is statistically significant at 

                                                           
10

 An alternative would be to include one SNP from each gene in the model (rather than all SNP’s available). 

Results are largely unchanged under this alternative approach.  
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the 5% level. There is clear evidence that this holds for most of these SNP’s. However, it is 

also worth noting that effect sizes are relatively small – a one allele change on a given SNP is 

typically associated with a 0.05 to a 0.10 standard deviation change in reading test scores. As 

a rule of thumb, an effect size of 0.20 is considered to be a magnitude likely to be of policy 

importance in the education literature. Hence these are modest differences. The columns on 

the right hand side of Table 1 illustrate that we are able to closely replicate the findings of 

Scerri et al for the KIAA0319 and CMIP genes, with broadly similar results for DCDC2.  

  

<<Table 1>>  

 

 The results presented in Table 1 refer to the association between genetic markers and 

one specific reading test – single word repetition at age 7. We now determine whether there is 

a similar link between these genetic markers and other  measures of children’s reading ability. 

The analysis presented above is repeated using the series of reading test measures described 

in section 2. Figure 2 summarises findings for the KIAA0319 gene.  

 

<<Figure 2 and Appendix Table 3.1>> 

 

Figure 2 shows that the KIAA0319 SNP’s are only significantly associated with the single 

WORD reading test scores at age 7. For each of the other outcomes the estimated regression 

coefficient is essentially zero, and we are unable to reject the null hypothesis of no effect at 

any of the conventional significance thresholds (the confidence interval always crosses 

zero)
11

. On the other hand a statistically significant association between CMIP and reading 

test scores does hold across several measures (results available on request). Estimates for the 

DCDC2 SNP’s are typically small and usually statistically insignificant. Overall, there is a 

suggestion that the association between certain genes and reading ability can be sensitive to 

the test used.  

 The analysis above uses Scerri et al (2011) as a starting point. For the purposes of 

their analysis children with very poor communication skills or performance IQ below 85 have 

been excluded. Similarly, children with missing information, including all those who did not 

attend both the age 7 and age 8 clinics, have been dropped. As a robustness check, we 

                                                           
11

 One may note that sample sizes do change between the various estimates as the extent of missing data for the 

different test scores varies. However, we find no evidence that it is this which is driving the result (i.e. similar 

substantive findings still hold when restricting samples to exactly the same group of children). 
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considered how this selection affects the composition of the sample. We compared the entire 

ALSPAC state school population to this restricted sample in terms of the proportion of 

students eligible for free school meals (FSM), a proxy for low income, and the percentage of 

children who achieved an A*- C grade in their English Language GCSE exam. There is a 

notable difference between the two samples. For instance, out of the 1,173 children receiving 

FSM in the ALSPAC population, just 74 remain in our replication of the Scerri et al study 

(i.e. 95% of these very poor children have been dropped). Similarly, the GCSE English pass 

rate is around 85% in the restricted sample, compared to 60% in the ALSPAC population as a 

whole.  

 With these issues of sample selection in mind, we ask whether the results in Figure 2 

are specific to the particular sample selected for that analysis. In Figure 3 (KIA30019) we 

consider whether the link between these genes and single WORD reading test scores at age 7 

hold under five different sample selections: 

 Scerri et al sample 

 Selection 1: As Scerri et al but children missing all age 7 to 9 clinic data are not 

automatically excluded  

 Selection 2: As selection 1 but with children missing IQ data not automatically 

excluded 

 Selection 3: As selection 2 but children with missing ethnicity data not automatically 

excluded 

 Selection 4: Full sample with only limited restrictions (white only, IQ>85, child never 

had speech therapy). 

 

<<Figure 3 and Appendix Table 3.2 >> 

 

For most SNP’s, the parameter estimate (β) decreases when we use an alternative sample 

selection – often by between 25 to 50 percent. For instance, Figure 2 indicates that a one 

allele change in SNP rs2143340 for the KIA0319 gene is associated with a 0.10 standard 

deviation change in reading test scores when we use the Scerri et al replication sample. But 

this falls to just 0.076 and 0.061 in our final two sample selections. Although this is still 

statistically significant at the 5% level, the precision of the estimate has benefited from a 

greatly increased sample size and the association is very small. We found a similar result for 

the other genes.    

We conclude that whilst there is evidence of an association between genetic markers 
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and a reading outcome measure, this may be quite specific to the sample selected and the test 

measure used. In reference to our primary research question of interest, given the relatively 

weak associations found in general population samples, the ability of the leading candidate 

genes to explain socio-economic differences in children’s reading skills is likely to be limited.  

 

3.2 Are these genes distributed evenly between socio-economic groups? 

 

Estimates of the association between socio-economic status and the distribution of genetic 

variants are presented in Table 2. The percentage of children with two risk alleles for each 

socio-economic group can be found in the central columns. The final column provides results 

from a chi – squared test of independence (p – value). 

 

<<Table 2>>  

Evidence of an association between socio-economic status and genetic risk is very weak. 

None of the chi – square tests are statistically significant at conventional thresholds, despite 

the large sample size. Moreover, for most SNP’s, there is little evidence of a trend (i.e. 

moving down the socio-economic status scale does not consistently increase the percentage 

of children with two risk alleles). Hence, for these particular genes, this evidence is clearly at 

odds with the proposition of Neilsen and Roos (2011) who suggested that offspring from 

disadvantaged homes are less likely to inherit the ‘right’ genes.  

 Some social scientists may be surprised at this finding. But should we be? Holtzman 

(2002) reviews the biological plausibility that children from poor homes are likely to inherit 

the ‘wrong’ genes. He concludes that the complexity makes it: 

 

 “virtually impossible that the same genetic variants will be concentrated in any social class 

and transmitted more to children of that class than to the children of another class” 

 

Our findings are consistent with this view. 

 

3.3 To what extent can these genes explain the socio-economic gap in children’s 

reading skills? 

 

What do the results imply for our understanding of the socio-economic gap in children’s 

reading skills? The answer can be found in Figure 3. The white bars (‘bivariate’) presents our 

estimates of raw socio-economic status differentials in children’s reading test scores (i.e. no 
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other factors have been controlled). The grey bars (‘genes controlled’) illustrates how the 

socio-economic gap in reading test scores changes once these observable genetic differences 

have been taken into account. Note that here we use a general population sample (only ethnic 

minorities and those with missing genetic information have been excluded) with reading 

ability based upon performance in national exams at age 11
12

. However, substantive findings 

change very little if we use a different test measure or apply different sample selection rules. 

 

<< Figure 3 >> 

The coefficients on the socio-economic status variables barely change between the two model 

specifications. This is because there is not a strong correlation between socio-economic status 

of the child and their genetic risk. For instance, the difference in reading test scores between 

the highest and lowest social class groups is 1.14 standard deviations in specification 1 (the 

raw estimates). This test score gap falls only marginally to 1.11 standard deviations when all 

the SNP’s available for these three genes are controlled (specification 2). Consequently, in the 

absence of gene-by-environment interactions, we conclude that the three leading candidate 

genes can jointly explain just two to three percent of the socio-economic gap in children’s 

reading test scores. The magnitude of this effect is clearly not important in policy terms.   

 

3.4 Is there any evidence of gene-by-environment interaction? 

 

In Table 3 we model gene-by-environment interactions, as well as a main gene effect, as set 

out in equation 4. Earlier in the paper we set out two alternative views of the way in which 

gene-by-environment interactions might work, namely the diathesis-stress or the bio-

ecological models. Here we test which model holds, if any, in this setting. 

<< Table 3 >> 

The table first shows the coefficients on the socio-economic status variables, and 

below that the main gene effect i.e. the relationship between an additional risk allele and the 

reading test score. Then at the bottom of the table we explore interactions between the 

number of risk alleles and the socio-economic status of the family. The interaction terms are 

all statistically insignificant (with one exception) and reasonably small in magnitude. We find 

similar results using a different phenotype, namely the age 7 WORD measure. Hence in the 

                                                           
12

 We focus on national exam scores here (rather than the clinic data) due to its relative completeness and hence 

greater sample sizes.  
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context of these particular genotypes and phenotypes, we conclude there is little robust 

evidence of any gene-environment interaction. 

4. Discussion and Conclusions 

 

The role of education in transferring social advantage across generations is a topic of great 

academic and political concern. It is certainly the case that children from affluent 

backgrounds accumulate more skills, leading to marked differences in reading and language 

achievement across socio-economic groups from a very early age. Social scientists have long 

recognised that both genetics (through heredity endowments) and family background (via 

parental time / goods investment) potentially contribute to these socio-economic gaps. Yet 

attempts to assess the relative importance of each factor, and their possible interaction, have 

been severely limited as children’s genetic information could not be observed. With advances 

in modern science, this is beginning to change. This paper is one of the first to use bio-

molecular data encoded from the human genome to explain differences across socio-

economic groups in one particular cognitive skill, namely children’s reading ability. As such 

the findings are likely to be of interest to all those charged with designing and delivering 

reading education to children. 

 Our results suggest that the link between genetic risk, as measured by our three 

candidate genes, and children’s reading skills is weak - effect sizes tend to be small and 

sensitive to the specific test measure used and sample selected. As importantly, there is also 

little evidence that any apparent genetic risk is unevenly spread across socio-economic 

groups. Consequently, we find that these genetic factors can account for just 2 - 3% of the 

socio-economic achievement gap. We hypothesized that perhaps genetic risk was realized to a 

greater extent in some socio-economic environments than others. However, using standard 

quantitative genetic methods of analysis, we find little evidence of gene-by-environment 

interactions.  

 These findings may seem puzzling, given the high rates of heritability that have been 

found in previous work (based largely upon the study of twins). Yet our results are far from 

unique. The problem of ‘missing heritability’ has been well documented in the genetics 

literature and is a topic of hot debate (Purcell et al 2009, Davies et al 2011). This controversy 

arises from the fact that many researchers are finding that the variance of an outcome 

explained by known and observable genetic variants is a lot lower than heritability estimates 

of twin studies imply. For instance, Benjamin et al (2012) note that twin studies suggest that 
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80% of the variability in height is due to genetic factors, yet the total predictive power from a 

large number of genomes (and 180 SNP’s) is only 10% (Lango-Allen et al 2010). It is clearly 

important for researchers to understand the reasons for this. Possible explanations include a 

lack of statistical power to identify all the small and cumulative effects that may be coming 

from several genes. Further, we currently have limited prior knowledge of which genes 

should be included in the analysis. Yet another plausible explanation is that the assumptions 

made in twin studies may not hold, and that perhaps heritability of certain traits is not as high 

as many previously thought.  

 Given these methodological issues, our findings do not imply that one can dismiss the 

role of genetics in the development of children’s reading skills and, more generally, socio-

economic differences in later lifetime outcomes. Here we have only investigated the impact 

of a small set of quite specific genes. As the literature on missing heritability suggests, many 

more genes may be implicated in the reading process - possibly hundreds, each with small, 

independent effects. What social scientists, and specifically those working in education, need 

to understand is that this field is very much in its infancy – sequencing of the entire human 

genome is barely ten years old and is only now becoming affordable on a large scale. Thus 

geneticists are still trying to work out the function of different genes and how one can 

incorporate their many different independent influences into statistical analyses. Genetic data 

is observational and thus establishing causality for any one particular gene is likely to be 

difficult, particularly given additional problems (e.g. very small effect sizes). The implication 

for educational research, and studies into social stratification, is that the availability of 

genotypic data is unlikely to have a significant impact on our understanding of the major 

factors influencing socio-economic differences in children’s outcomes in the short term. 

Thus, for all the interest that social scientists have shown in this field (Cunha et al 2006, 

Heckman 2007, Lundborg and Stenberg 2009), the reality is that the evidence base remains 

very limited.  

 In summary, in this study we are unable to provide evidence of a major role for genes 

in determining children’s reading ability. More work is needed before academics and 

policymakers can accept the conventional wisdom that genes are of major importance to key 

educational and other social science outcomes, in this case reading. 
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Table 1. Estimates of the association between genetic markers and age 7 (clinic) reading 

test scores 

 

    Scerri et al Replication 

Gene SNP N Beta SE P N Beta SE P 

 KIAA0319 rs9461045 3126 -0.08 0.03 0.024 3157 -0.07 0.03 0.044 

 KIAA0319 rs2143340 3042 -0.11 0.04 0.001 3056 -0.10 0.04 0.004 

CMIP rs12927866 3055 -0.07 0.03 0.005 3019 -0.07 0.03 0.005 

CMIP rs6564903 3157 -0.08 0.02 0.002 3200 -0.08 0.02 0.001 

CMIP rs16955705 3050 -0.06 0.03 0.029 3015 -0.06 0.03 0.028 

DCDC2 rs793862 3117 -0.08 0.03 0.006 2421 -0.06 0.03 0.04 

DCDC2 rs807701 3193 -0.05 0.03 0.033 3207 0.01 0.03 0.67 

DCDC2 rs807724 3085 -0.07 0.03 0.015 3102 -0.04 0.03 0.17 

Notes: 

Figures in the left hand panel refer to the results presented in Scerri et al (2011). Figures in 

the right hand panel refer to our attempted replication. All estimates based upon an ‘allelic 

trend’ model with the age 7 single word reading test scores (clinic data) as the response. Thus 

the ‘Beta’ column illustrates the association between one additional risk allele located and the 

standard deviations change in children’s reading test scores. The ‘SE’ and ‘P’ columns stand 

for ‘standard error’ and ‘p-value’. 
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Table 2. The association between the candidate genes and children’s social class 

 

Gene SNP Risk Allele Professional Managerial Skilled Semi - skilled Unskilled  Chi - Squared 

DCDC2 

rs793862 A 7.0 7.7 7.7 8.0 10.2 0.611 

rs807701 G 11.7 12.8 12.1 13.2 12.4 0.530 

rs807724 C 4.8 5.2 5.2 4.6 5.8 0.560 

 KIAA0319 
rs9461045 T 3.2 3.5 3.4 4.2 2.1 0.423 

rs2143340 G 2.7 2.5 2.3 2.7 1.0 0.686 

CMIP 

rs12927866 T 15.8 17.7 15.3 17.9 18.4 0.264 

rs6564903 T 21.1 23.2 20.8 23.6 24.6 0.149 

rs16955705 C 21.2 22.6 21 23.5 22.3 0.614 

 

Notes: Figures refer to the percentage of children within each social class group who have two risk alleles on the given SNP. The final column 

provides a chi-squared test of whether there is an association between the SNP and the child’s social class. 
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Table 3.  Gene-by-environment interaction OLS regression results 

  

 
1.  KIAA0319 2. CMIP 3. DCDC2 

  Beta SE Beta SE Beta SE 

Social class (Reference : Professional) 

      Managerial / Technical -0.459* 0.101 -0.501* 0.104 -0.496* 0.169 

Skilled -0.681* 0.107 -0.711* 0.111 -0.752* 0.179 

Semi – skilled -1.094* 0.126 -1.246* 0.130 -1.115* 0.205 

Unskilled -1.101* 0.183 -1.145* 0.190 -0.808* 0.281 

Gene 

      One allele change -0.069 0.062 -0.070 0.045 -0.014 0.058 

Class * Gene 

      Managerial * Gene 0.048 0.071 0.054 0.051 0.034 0.066 

Skilled * Gene 0.047 0.076 0.044 0.054 0.040 0.070 

Semi - skilled * Gene 0.116 0.089 0.150* 0.063 0.053 0.080 

Unskilled * Gene 0.005 0.133 -0.003 0.091 -0.163 0.109 

N 6,324 6,675 5,094 

Notes: 

Beta refers to the estimated change in reading test scores and SE the associated standard error. The model 

specification is described in section 3.5 (equation 4). Results are presented when using the following SNP’s: 

rs2143340 ( KIAA0319), rs6564903 (CMIP) and rs793862 (DCDC2). * Indicates statistical significance at 

the 5% level. 

 

 

Figure 1. Haveman and Wolfe framework of children’s achievement 

 
Notes 

 

1 Source: Adapted from Haveman and Wolfe (1995, Figure 1). 
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Figure 2. The association between the KIAA0319 candidate gene and various reading outcome 

measures 

 

 
Notes: 

Graph illustrates the standard deviation change in reading test scores associated with a one allele increase in 

genetic ‘risk’ for two SNP’s within the KIAA0319 gene. The SNP’s considered are rs9461045 (grey bars) 

and rs2143340 (white bars). Six different reading test scores are considered (see Appendix 2 for further 

details). The thin black line running through the centre of the bars represent the 95 percent confidence 

intervals. A full set of parameter estimates for all genes and SNP’s under investigation can be found in 

Appendix Table 3.1. 
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Figure 3. The association between KIAA0319 and single word reading test scores using different 

sample selections 

 
Notes: 

Graph illustrates the standard deviation change in reading test scores associated with a one allele increase in 

genetic ‘risk’ for two SNP’s within the KIAA0319 gene. The SNP’s considered are rs9461045 (grey bars) 

and rs2143340 (white bars). Five different sample selections have been used (see section 3.1 for definitions 

and further details). The thin black line running through the centre of the bars represent the 95 percent 

confidence intervals. A full set of parameter estimates for all genes and SNP’s under investigation can be 

found in Appendix Table 3.2. 
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Figure 4. The socio-economic gradient in children’s reading skills – with and without controlling for 

the three leading candidate genes 

 
 

Notes: Graph illustrates the standard deviation difference in reading test scores between children from 

different social class backgrounds. The white bar illustrates the simple bivariate association between social 

class and reading test scores. The grey bar illustrates the same association, but with the three leading 

candidate genes controlled. The thin black line running through the centre of the bars represent the 95 

percent confidence intervals. A full set of parameter estimates can be found in Appendix Table 3.3. 
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