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Abstract
It is generally observed that if a dynamical system is sufficiently complex, then as time progresses it will
share out energy and other properties amongst its component parts to eliminate any initial imbalances,
retaining onlyfluctuations. This is known as energy dissipation and it is closely associatedwith the
concept of thermodynamic irreversibility,measured by the increase in entropy according to the
second law. It is of interest to quantify such behaviour from a dynamical rather than a thermodynamic
perspective and to this end stochastic entropy production and the time-integrated dissipation function
have been introduced as analogousmeasures of irreversibility, principally for stochastic and
deterministic dynamics, respectively.We seek to compare thesemeasures. First wemodify the
dissipation function to allow it tomeasure irreversibility in situationswhere the initial probability
density function (pdf) of the system is asymmetric as well as symmetric in velocity.We propose that it
tests for failure of whatwe call the obversibility of the system, to be contrastedwith reversibility, the
failure of which is assessed by stochastic entropy production.We note that the essential difference
between stochastic entropy production and the time-integratedmodified dissipation function lies in
the sequence of procedures undertaken in the associated tests of irreversibility.We argue that an
assumed symmetry of the initial pdf with respect to velocity inversion (within a framework of
deterministic dynamics) can be incompatible with the PastHypothesis, according towhich there
should be a statistical distinction between the behaviour of certain properties of an isolated system as it
evolves into the far future and the remote past. Imposing symmetry on a velocity distribution is
acceptable formany applications of statistical physics, but can introduce difficulties when discussing
irreversible behaviour.

1. Introduction

Thermodynamic irreversibility refers to the fact thatmost physical processes that take place in theworld tend to
evolve in a preferred direction as time goes by. Common examples include the cooling of a hot object towards
the temperature of its environment, the diffusion of coloured ink into an initially clear body of water, and on a
broader scale, the aging of the body, the crumbling ofmountains and the explosive death of stars. These events
are never seen to proceed in the opposite direction. Before the development of theories of such phenomena on
themicroscopic scale, the only explanation that could be offered for such behaviourwas the second law of
thermodynamics, an empirical rule that the thermodynamic entropy of a system and its environment should
never decrease as time progresses [1, 2].

Entropy has a reputation for being difficult to pin down, but it is sufficient at this stage to regard it simply as a
physical property of objects that can bemeasured fromheat flows and temperature changes in carefully
conducted thermal experiments [3]. The entropy of theworld can be regarded as a sumof entropies of its
component parts and this sumnever decreases as thermomechanical processes take place: the production of
entropy seems to provide ameasure of the irreversibility of this behaviour, the extent towhich a process cannot
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be undone. To paraphraseOrwell, all processes are irreversible, but some aremore irreversible than others [4].
For example, a process wheremechanical work is performed rapidly on a thermostated system can be regarded
asmore irreversible than a slower process since it typically leads to the generation of a greater amount of entropy
in the system and its environment after a given final state of the system is reached. In the limit where the process
takes place over an infinite time, or quasistatically (also referred to as the thermodynamically reversible limit) the
amount of generated entropy is zero.

As is widely known, there is a deep problemof compatibility between the second law and the underlying time
reversal symmetric dynamics thatwe believe govern the evolution of theworld [5–13]. The dynamics are
consistent with scenarios where heat spontaneously flows from cold intowarmbodies, andmountains
uncrumble. That such events are not seen suggests that the initial conditions for such a history simply have never
been encountered. By implication, the associated earlier state of theworld that would give rise to such conditions
did not arise, and the argument can be continued, in principle, back to the beginning of theUniverse.
Explanations of irreversibility can involve, then, either breaking the time reversal symmetry of the dynamics or
by placing a constraint on the configurations thatmight be assumed by a system, equivalent to prescribing an
initial condition of theUniverse. The latter explanation is known as the PastHypothesis [9, 14].

Much has beenwritten on these topics. Themain subject of this paper, however, is to consider the status of
two recently developedmeasures of irreversibility in classical dynamical systems: quantities that evolve in a
fashion that resembles thermodynamic entropywhenwhat seems to be irreversible behaviour takes place. The
quantities in question are the integrated dissipation function, introduced in the context of deterministic system
dynamics by Evans and collaborators [15–21], and stochastic entropy production, proposed for systems
described by stochastic dynamics [22–26].We discuss how they stand in relation to the breakage of time reversal
symmetry in the dynamics and the PastHypothesis, and how they comparewithmeasures of irreversibility
derived fromBoltzmann’s insights [27].We seek conceptual similarities between the twomeasures in order to
demonstratemore clearly their differences.We explore how theymatch up to the requirements of an analogue of
thermodynamic entropy, as well as how they comparewith ideas of pattern formation and dissolution. The Past
Hypothesis seems themost acceptable way to rationalise irreversible behaviour (indeed it is almost a tautology)
but it can imply certainmodifications of the fundamental postulate of statistical physics in some circumstances,
and this can have implications with regard tomeasures of irreversibility in a deterministic framework.

In the next section, we discuss the idea of ameasure of irreversibility inmore detail, and briefly review
Boltzmann’s phase space arguments as well as related issues of pattern formation and loss. In section 3we discuss
Loschmidt’s objections to Boltzmann’s work and describe the implications of the PastHypothesis using a
lighthearted illustration. Readers familiar with thismaterialmight go directly to section 4wherewe define a
modified version of the dissipation function (extending its remit to velocity asymmetric initial conditions) and
interpret its time integral as a test of whatwe call the obversibility of the dynamics. In section 5we contrast this
quantity with stochastic entropy productionwhichwe present as a test of the subtly distinct reversibility of the
dynamics. Both are assessed asmeasures of irreversibility. In section 6we review themathematical properties of
themodified dissipation function, particularly for velocity asymmetric cases (with further results given in the
appendix), and in section 7we illustrate these properties using a simple dynamical system. Incorporating
velocity asymmetry into the fundamental postulate of statistical physics, as well as the rationale for not doing so,
is discussed in section 8, and in section 9we give our conclusions.

2.Measures of irreversibility

TheUK television companyChannel 4 currently runs some very distinctive idents: short sequences that are
broadcast just before the start of a programme to identify the channel and to contribute to the branding. The
idents in question show objects, very often buildings or road signs, from the point of view of amoving observer.
The keymoment in the sequence is when the objects come together to form the shape of the number 4, before
separating once again into a relativelymeaningless pattern. They can be very imaginative [28].

A similar sequence of images showing the formation and dissolution of the letter S is shown in figure 1.
Though theymight seem to have little relevance to a discussion of thermodynamic irreversibility, the idents
demonstrate some problems that emergewhenwe consider the evolution of order and disorder in such a
context. Forwhile the two frames on the right infigure 1 seem to show the progressive emergence of disorder
with respect to the pattern apparent in themiddle frame, this is not necessarily ameasure of irreversible
behaviour. Clearly, the pattern in question is generated fleetingly in the sequence, as illustrated by the two frames
on the left. If we take the frames to be a sequence of snapshots in time, then disorder decreases from the past to
the present and then increases again; in other words there is a loss of the coherence of a pattern towards the past
as well as the future. Indeed there is nothing to suggest that the time order in the sequence runs from left to right
or right to left: a statement of the time reversal symmetry of the dynamics. Furthermore, the pattern that forms
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and dissolves depends on the perception of the observer: why should the central frame be regarded as ordered at
all? It seemsmore the case that figure 1 illustrates the passage of time rather than a directionality; atmost it shows
a loss in perceived order, with respect to an arbitrarily chosen starting configuration, that is symmetric in
evolution towards the past and the future. Similar problems are to be found inmore serious attempts to
understand irreversibility.

Consider, for example, the explanation of the second law based onBoltzmann’s well known representation
of entropy, namely that it is ameasure of the number of ways inwhich a systemmight be rearranged on a
microscopic scale without changing itsmacroscopic features.We imagine setting up a systemwith initial
macroscopic features that correspond to a small subset of the phase space. The system can take any one of the
configurationswithin this patch. If the dynamics are complex, it is argued that as time progresses the systemwill
leave behind the patch of phase spacewhere its evolution began, virtually never to return [10, 29–31]. This
would come about because the number of configurations to explore beyond this patch is immensely large and
the dynamics extremely rich.Macroscopic features will evolve accordingly, andwill only stop changingwhen the
system reaches a patch of phase space so vast in size that the likelihood of amove into a smaller patch is
negligible. The size of the patch corresponds to the Boltzmann entropy of the system and so a typical evolution of
a systemwill be accompanied by an increase in this quantity. This is illustrated in figure 2. The evolution of the
Boltzmann entropywith time is ameasure of progress towards the equilibrium state, and of the irreversibility of
the process, since going back to a previous patch becomesmore unlikely as the current size of patch increases.

But an obvious problem is apparent whenwe imagine the behaviour of the systembefore it started its
trajectory out of the small patch of phase space. If we use the same dynamical rules and simply run the clock
backwards, the systemwill surely wander in a similar fashion into thewider phase space. There would be an

Figure 1.The letter S forms frommoving objects and dissolves again as they continue tomigrate (the sequencemight be considered to
evolve from left to right or the otherway round). This can illustrate several problems in establishing a dynamical understanding of
thermodynamic irreversibility.

Figure 2.Boltzmann’s conception of a dynamical underpinning of the second law. Accessible phase space is represented by awhite
region and is subdivided into patches of varying size according to selected collective systemproperties. A system that takes coordinates
at t=0 somewhere inside a small patchwillmost likely evolve away from the patch and as t → ∞ is likely to be found in the largest
patch available, as shown by the solid trajectory terminated by an arrowhead.However, the argumentwould seem towork equally well
as t → −∞ (dashed trajectory).
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increase in Boltzmann entropy into both the past and the future starting from the chosen initial conditions.
Boltzmannwas aware of this ‘minimumentropy problem’. The implication is that the starting conditionwas
merely afluctuation; afleetingmanifestation of order (in some sense) preceded and succeeded by disorder.
Demonstrations of such behaviourwere obtained in some of the earliest numerical simulations of particle
dynamics [32, 33]. This is not whatwe require: wewish the backward trajectory of the system to gravitate
towards ever smaller patches of phase space. The situation is analogous to theChannel 4 idents and the sequence
infigure 1, and cannotwithout further development be a solution to the problemof irreversibility.

Indeed it was pointed out by Boltzmann’s colleague Loschmidt that if the dynamics and the statistics of the
initial state respected time reversal symmetry, then evolution into the past ought to be indistinguishable from
evolution into the future [27]. Boltzmann could offer a kineticmodel of irreversibility (the celebratedH-
theorem) that evaded Loschmidt’s objection by introducing a time asymmetry into the dynamics, albeit in a
subtle fashion. It is apparent, however, that another solutionwould be to demand asymmetry in the statistics,
which can amount to constraints placed on system configurations at remote times. In the next sectionwe
consider how such boundary conditions allow us to evade Loschmidt’s objection.

3. Evading Loschmidt through the PastHypothesis

If the dynamics are symmetric under time reversal, we can reconstruct events that took place prior to an
arbitrary starting configuration of a systemby using a configuration of the systemwith inverted velocities as the
starting point instead. This would include an inversion of any other odd parity variables aswell. As time
progresses forward, this configuration evolves through the (velocity-inverted) configurations previously
adopted by the system.

The procedure is illustrated infigure 3, in a lightheartedway, using trains on a railway network (an example
of deterministic dynamics, allegedly). The situation at the top is denoted configuration 1with train positions and
directions ofmotion as shown.We can imagine that this evolves into configuration 2 as time progresses forward.
In order to retrace the trajectory that took place prior to configuration 1, wewould invert the initial velocities
and allow time to progress forward starting from configuration 3.Wewould then see the rearwardmoving trains
adopting positions occupied prior to configuration 1. Thismuch is clear.

Loschmidt’s argument can nowbe framed as follows. Boltzmann’s phase spacemethod involves
determining the likely behaviour of a system given that the initial configuration is amember of a certain
collective or patch of phase space (amacrostate). Various statistical weightsmight be assigned to eachmember
of this collective, overwhich an average is to be taken in order to deducewhat is likely to happen. But if both
configurations 1 and 3 are possible initial configurations (with the sameweight), thenwhatever expectationwe
might gather from the evolution of onewould be cancelled out by the evolution of the other.

Applying such logic would challenge the picture infigure 2: for each point in the initial patch of phase space
that is on the verge of entering a larger one therewould be another leaving the larger one to enter the smaller.
Only an expectation of static behaviourwould emerge from such a collective of configurations.

The key assumption, of course, is that both configuration 1 and 3 are equally weightedmembers of the initial
collective, and herewe see howLoschmidt’s objection can be evaded. Perhaps velocity-inverted configurations
should not both be included in the set of possible starting configurations? Less drastically, perhaps
configurations 1 and 3might be accorded unequal weights. Both amount to breaking the symmetry of the initial
statistics under velocity inversion.

In fact, there could be very good physical reasons for configuration 3 to be discarded as a possible starting
arrangement if configuration 1 is allowed, and vice versa. Suppose, for example, that the trains were setmoving
at the some point in the remote past with the rule that they should thereafter only be allowed tomove forward?
Then at arbitrary times in the evolution, the collective of possible configurations will only contain trains that are
moving in that direction. Configuration 3would not be amember of this collective. This would be a version of
the PastHypothesis. The rule that trains are only allowed tomove forwardwould apply to the systemwhatever
moment in time is of interest, and it would be a reflection of a condition imposed on the dynamics at the very
earliest time under consideration. Therewould be parts of phase space that would forever be inaccessible.

The phase space explanation of irreversibility shown infigure 2 can then bemade towork. If the patch of
phase space fromwhich the trajectory emanates does not contain equally weighted velocity-inverted pairs of
configurations, then the likely evolution into the past will not resemble an evolution into the future and it is
possible that the systemmight on average gravitate back in time towards ever smaller regions of phase space.

Might collectives of configurations of particles be constrained in this way? Shouldwe include velocity-
inverted pairs of configurations or does the inclusion of one exclude the other? This depends verymuch on how
the system is prepared, andwhich properties we are interested in, which is to be discussed in section 8. Giving
both configurations equal weight when judging future behaviourwouldmake it difficult to explain irreversible
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phenomena such as relaxation.We shall bear this inmind in the next section, wherewe discuss an irreversibility
measure for systems that evolve under deterministic dynamics.

4.Measuring irreversibility in deterministic dynamics

Readers well-versed in the argumentsmade by Boltzmann and Loschmidt, and familiar with the Past
Hypothesis, will have been able to skip quickly through the previous two sections. Themain purpose of this
paper is to comparemeasures of irreversibility that have been developed for the classical dynamical frameworks
of deterministic and stochastic equations ofmotion.We beginwith deterministic rules.

We should start by carefully considering what ismeant by reversibility. If we evolve a system along a trajectory
for a period of time starting from an arbitrary initial configuration, and then invert velocities and evolve for the
same period under a reverse sequence of external forces, reversibility is assessed by determiningwhether the
previous sequence of configurations is retraced (with inverted velocities); that is whether the system then follows
an antitrajectory. But sincewe are assuming that the dynamics respect time reversal symmetry, this procedure
will produce the antitrajectory every time. As an example, consider how configuration 1 infigure 3 evolves into
configuration 2, whichmight then be converted into configuration 4 infigure 4 by an inversion of velocities, and
how as time progresses further still, the trainswill return to their original positions, albeit with direction of

Figure 3.Weconsider the dynamics of three trains, A, B and C, with initial positions and directions ofmotion on a track shown in
configuration 1. After time has progressed, the trains assume configuration 2. In order to determine the configurations taken prior to
configuration 1, wewould invert velocities to form configuration 3, and progress forward in time from there.
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motion to their rear, in other words configuration 3. This will not provide ameasure of irreversibility since such
an outcome is inevitable.

But there is another approach, developed by Evans and collaborators [15, 16].We represent uncertainty in
initial configuration using a probability density function (pdf). For a given trajectory and protocol of external
forces, we use the pdf to gauge the likelihood that amongst all the possible initial configurations of a system there
might be one thatwould produce the associated antitrajectory. The systemwould be indifferent to the
directionality of time if the likelihoods of following a trajectory and corresponding antitrajectory were equal, and
a difference between these probabilitiesmight form the basis of ameasure of irreversibility. Itmust be possible to
find the initial configuration of the antitrajectory amongst the possible initial configurations of the system, a
condition known as ergodic consistency, and also the protocol should either be time independent or time
symmetric over the period in question.

For example in our trains analogy, we compare the probabilities that the system should initially take
configuration 1 or configuration 4. A disparity between these probabilities will lead to an expectation that
movement should take place oneway rather than the other, and a directionality of evolutionmight emerge.

However, there is a problemwith this approach. If we consider this comparison in the limit of a process of
zero duration, wefind that the probabilities in question are those initially attached to configurations 1 and 3.We
do not expect tomeasure any irreversibility for a process of zero duration, so these probabilities had better be
equal. The problem is that we argued in the last section that this is potentially incompatible with a Past
Hypothesis. An extreme formof this difficulty is where configurations 4 and 3 simply are unavailable as starting
configurations as a consequence of a rule on the allowed directionality of trainmotion. This would then reduce
to the breakage of the ergodic consistency requirement. An asymmetry in probabilities of velocity-inverted
configurations is different, but it represents a similar problem.

Sowe shouldmodify our assessment procedure. Let us instead compare the probability of a trajectory with
the probability of following an antitrajectory after selecting an initial condition and then inverting velocities
before proceeding forward in time.Wemight furthermore imagine that the subsequent evolution takes place
under a time reversed protocol of forces, if applicable. The starting configuration for the antitrajectory would be
configuration 2: converting it to configuration 4would be part of the test procedure. Considering a process of
zero duration does not nowpresent a problem, since the probabilities for the two events would tend to the same
value, namely the initial probability of configuration 1.We do not require the initial pdf to be symmetric in
velocity.Wewould not seek an initial configurationwith rearwardmoving trains only tofind that nonewere
available. By considering the difference in the probabilities of generating trajectories and antitrajectories in this
way, we could establish ameasure of the irreversibility. This is a small but importantmodification of the
procedure introduced by Evans and collaborators, where velocity inversion is not carried out after the selection
of a configuration. The standard andmodified procedures are illustrated infigure 5.

Itmight be best to describe such an assessment of irreversibility using new terminology to reflect the nature
of this antitrajectory generation procedure.We are not assessing howwemight reverse a trajectory. That idea is
naturally associatedwith the procedure of inverting velocities at the end of a trajectory.We are instead assessing
the production of both trajectory and antitrajectory according to the initial configurational statistics of the
system.

This key point is worth repeating. Thewords reversing or reversibility refer to comparing the behaviour of a
systemover a period of timewith its behaviour over a subsequent period of time, when a procedure is followed to

Figure 4. In order to generate a sequence of events corresponding to the reverse of the trajectory taking configuration 1 into
configuration 2 in figure 3, we need to start with configuration 4, corresponding to configuration 2with inverted velocities, and then
proceed forward in time until the system reaches configuration 3.Note that configuration 4would not be amember of the collective of
possible initial configurations if the collective were subject to the rule that trains could onlymove forward, in adherence to a form of
the PastHypothesis.

6

New J. Phys. 17 (2015) 075017 I J Ford



try to undo the change and bring theworld back towhere it started. The antitrajectory is to be generated after a
certain forward process has been completed.We assess reversibility through the statistics of producing the
antitrajectory by velocity inversion and applying a reversed protocol at a point in the future. If the probability of
producing an antitrajectory is equal to that of producing the associated trajectory in the preceding interval of
time, then the dynamics would be said to be reversible for this trajectory. Complete reversibilitymeans the
equality holds for an arbitrary trajectory. The terminology ties inwithwhat ismeant by time reversal symmetry
or reversibility in deterministic dynamics. So the extent towhich the system can generate trajectories and
subsequent antitrajectories with equal likelihood is its reversibility. The failure of complete reversibility is a
measure of irreversibility.

In contrast, whenwe assess howwemight produce a trajectory or its antitrajectory using the statistics of
initial configurations, we are testing for something else, and aword that comes tomind is ‘obversibility’. An
obverse of an object or idea is in some sense the object ‘turned round’. The dynamics and initial pdf of the system
would be completely ‘obversible’ if an arbitrary trajectory and its associated antitrajectory (obtained after
velocity inversion and evolving under a time reversed protocol) can be produced from the start of the period in
questionwith equal probabilities. The extent towhich the system can achieve this could be referred to as its
obversibility andwould depend on the difference in probabilities of generating trajectories and antitrajectories.
The failure of complete obversibility is ameasure of irreversibility quite distinct from the failure of complete
reversibility.

For a stationary situation, where the pdf describing the coordinates of a system is time independent, the pdf
offinal configurations of the system is the same as that for initial configurations and the outcomes of the tests of

Figure 5. Illustration of procedures used tomeasure irreversibility in deterministic dynamics. The initial configuration adopted by a
system is uncertain (represented by a cloud). In (a), we followEvans and collaborators and compare the probabilities that the initial
configurationmight beΓ or M ST

t Γ , where St represents evolution through a time tunder a certain protocol andMT is a velocity
inversion. ConfigurationsΓ and M ST

t Γ lie at the start of a trajectory and corresponding antitrajectory, respectively, the latter
evolution taking place under a reverse protocol and represented by St

*. Note that if the protocol is symmetric about themid-point of
the periodwewould have S St t

*= . The probabilities are given as a product of a pdf f and an increment in phase space. In (b), we
compare instead the probabilities that the initial configurationmight beΓ or St Γ : the latter is the configuration that, after a velocity
inversion, would produce the antitrajectory.We call (b) a test of obversibility. Selection is denoted by black arrows, time evolution by
blue, and velocity inversion by red. For stochastic dynamics the procedures would be similar except that the time evolutionwould not
be a uniquemapping of initial tofinal configuration.
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reversibility and obversibilitymust coincide. Away from stationarity, the twomeasures of irreversibility differ
fromone another in general.

In systems that evolve deterministically under dynamics that respect time reversal symmetry, reversibility is
automatic, andwe recognised earlier that such an assessment cannot provide ameasure of irreversibility. So for
deterministic dynamics wemust employ an obversibility test to seek ameasure of irreversibility. Up to a point, a
suitable quantitative procedure exists already.

Evans and collaborators introduced the concept of the dissipation function in order to assess irreversibility.
The time integral of the dissipation function is defined as the logarithmof the ratio of the probabilities of
producing a trajectory and an antitrajectory for a given interval starting from the samemoment in time. For
illustration, let us imagine that a trajectory runs fromphase space coordinates x v( , )1 1 at time t1 to x v( , )2 2 at
time t t2 1⩾ , and an antitrajectory runs from x v( , )2 2− to x v( , )1 1− over the same period. In terms of our trains
analogy, this would correspond to the trajectory running from configuration 1 to 2, and the antitrajectory
running from configuration 4 to 3. The time-integrated dissipation function is defined in terms of a ratio of the
initial probability densities at phase space coordinates x v( , )1 1 and x v( , )2 2− , togetherwith a phase space
expansion/contraction factor that compares the size of a patch of phase space surrounding x v( , )1 1 at time t1 to
the size of a patch around x v( , )2 2 at time t2 that represents the time evolved initial patch. Detailsmay be found in
the literature [15, 16].

With reference tofigure 5(a) the dissipation functionΩ and its time integral tΩ are defined as

( )
( )

( )
S s

f

f M S S
( ) d ln

( , 0)d

, 0 d
, (1)t

t

s
T

t t0

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∫Ω Γ Ω Γ

Γ Γ

Γ Γ
= =

where f t( , )Γ is the pdf of coordinatesΓ at time t and Ss is an operator that evolves coordinates through time s
according to the dynamics.MT is a velocity inversion operator that changes the sign of odd variables such as
velocity. It ought also to appear inside the phase space increment in the denominator on the right hand side of
equation (1), but we note that velocity inversion has a Jacobian of unity and so it can be ignored.

It should be noted that Evans and collaborators assume the initial pdf f ( , 0)Γ to be symmetric in velocity
coordinates, such that the initial probability density at coordinates x v( , )2 2− is equal to the initial probability

density at coordinates x v( , )2 2 , or f M S f S( , 0) ( , 0)T
t tΓ Γ= . The integrated dissipation functionmay

therefore in effect be written in terms of the initial pdf evaluated at x v( , )1 1 and x v( , )2 2 . Assuming ergodic
consistency, the pdf at both these phase space points would be non-zero. Furthermore, as the duration of the
process goes to zero, these coordinatesmerge, the probability densities and phase space increments inside the
logarithm in equation (1) become equal and the integrated dissipation function vanishes.

Asmentioned earlier, the protocols of external forces considered using this procedure are often taken to be
time independent or time symmetric about the processmid-point. The integrated dissipation functionwas
clearly designed to compare the probabilities of generating trajectories and antitrajectorieswithout in the latter
case inverting velocities immediately and reversing the time sequence of forces. The symmetries assumedmake
the additional procedures unnecessary. It is an assessment of the likelihood of generating trajectory and
antitrajectory ‘within the same ensemble’, in amanner of speaking.

Ourmodified procedure formeasuring obversibility similarly requires us to compute the logarithmof the
ratio of probabilities of producing a trajectory and the antitrajectory, but the latter now consists of the process of
selecting a configuration from the initial pdf, inverting velocities and evolving under a reversed protocol, (see
figure 5(b)). This now concerns the initial probability density at phase space coordinates x v( , )2 2 , not x v( , )2 2− ,
and ourmeasure of obversibility is therefore a function of the initial pdf evaluated at x v( , )1 1 and x v( , )2 2 . The
logarithmon the right hand side of equation (1)would be replaced by f f S Sln[ ( , 0)d ( , 0)d( )]t tΓ Γ Γ Γ and this
would define amodified dissipation function and its time integral. To align themathematics to the procedure,
we ought to append a probability P S M S( )I t

T
tΓ Γ→ to the denominator to represent the conversion of St Γ to

M ST
t Γ , corresponding to the red arrow infigure 5, but this would be unity.We emphasise that the integrated

dissipation function used by Evans and collaborators is also a function of the initial pdf at x v( , )1 1 and x v( , )2 2 ,
but only by virtue of the assumed symmetry in velocity.

We can use themodified dissipation function as ameasure of obversibility according to our test procedure,
and the different perspectivemeans that we shall not be restricted to systems possessing a velocity symmetric
initial pdf and evolving under a time symmetric protocol.We do not assess whether a trajectory and
antitrajectorymight be generated ‘within the same ensemble’ since our assessment of the latter also includes the
application of a velocity inversion and a reverse protocol.

We shall explore themathematics of themodified dissipation function in the context of velocity asymmetric
initial pdfs in section 6. First, we note that although reversibility is automatic in systems governed by time
reversal symmetric deterministic dynamics, such that a test for it cannot provide ameasure of irreversibility, this
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is not the case in systems evolving by stochastic dynamics.We look at how tests of both obversibility and
reversibility can providemeasures of irreversibility for stochastic systems in the next section.

5.Measuring irreversibility in stochastic dynamics

In deterministic classical dynamics, the gain or loss of heat by a systemduring its evolution is represented by
inserting nonlinear terms in the equations ofmotion such that elementary phase space volumes are not
preserved. These terms represent the action of a thermostat or thermal environment. In their absence Liouville’s
theoremwould imply that theGibbs entropy of the system is conserved, a commonly raised objection to the use
ofHamiltonian dynamics as a framework for understanding irreversibility. In stochastic dynamics, by contrast,
the effects of the environment are represented by a noise term, and this destroys the automatic reversibility of the
dynamics. In addition, deterministic terms that explicitly break time reversal symmetry are often inserted.

It should be noted that stochastic equations ofmotion are an effective description of the behaviour after the
neglect of some detail in the systemor its environment. They can be referred to asmacrostate, projected or
coarse-grained dynamics, and the stochasticity is essentially a reflection of configurational uncertainty in the
parts of theworld that are not being considered in detail.

The stochastic evolution of a systemhas long been regarded as a suitable framework for discussing
irreversibility.We shall focus our attention on the recently developed concept of stochastic entropy production,
but a broader discussion extends back at least as far as Schnakenberg’s [34]model of entropy production
associatedwith a systemofmaster equations. Tomé and deOliveira have recently reviewed and developed this
approach [35]where entropy production and flow are related to a systempdf and the rate coefficients that
govern its evolution. The formof stochastic thermodynamics that we employ here, on the other hand, links these
concepts to the noisy equations ofmotion of systemdynamical variables instead of the deterministic evolution
of a systempdf. A stochastic production of entropy emerges, which upon averaging over realisations of the noise
will coincide with a pdf-based approach.

Under stochastic dynamics, a non-trivial assessment of reversibility, as conceived in section 4, is possible
since an antitrajectory is not automatically generated by the procedure of inverting velocities and applying a
reversed protocol of external forces starting at the end of a trajectory. The reason is that while the systemor
projected velocities are available for inversion, the velocity coordinates in the underlying dynamics that are not
retained in the projection are not. Similarly, it is only the system velocities that are available for inversion at the
beginning of a trajectory whenwe assess the obversibility. The situation can be illustrated by regarding the
configurations infigures 3 and 4 asmerely a small but visible part of awider rail network, and that whenwe
generate configuration 4 from configuration 2, we are not able to invert the velocities of the trains we cannot see,
and thus configuration 4might not necessarily evolve over time into configuration 3.

In order to assess the reversibility of a stochastic dynamical systemwe follow a procedure similar to that used
to assess obversibility in deterministic dynamics, butwith important differences. As before, we compute the
logarithmof the probability of producing a trajectory driven by a protocol, divided by the probability of
producing its antitrajectory. However, for the latter we select a configuration from the systempdf produced after
a given period of time, and then invert velocities and apply a reversed protocol. This quantity has been
investigated in the literature and is known as the stochastic entropy production [22–24, 26]. The key differences
with respect to the integrated dissipation function are: the time at which the initial coordinates for the
antitrajectory are selected; the absence, typically, of a phase space expansion/contraction factor associatedwith
the deterministic terms in the dynamics since the action of a thermostat is represented by the noise terms; and
the inclusion of probabilities associatedwith the stochastic evolution from initial tofinal coordinates.

Themathematical definition of stochastic entropy production is

( ) ( )
( )

( )
s

f T

f t P M T M M
ln

( , 0)

,
, (2)

t

I
T

t
T T

tot
⎡⎣ ⎤⎦

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥Δ Γ Γ

Γ Γ Γ

Γ Γ Γ Γ Γ
→ ′ =

→ ′

′ ′ → ′ ′ →

whereΓ and Γ′ are the initial and final coordinates of the trajectory andTt is a probability density for the path
taken between the two over a time interval t. Increments of phase space associatedwith the initial and final
coordinates and the paths should also appear in numerator and denominator but they cancel. The key point is
that the pdf in the denominator refers to configuration Γ′ and not MTΓ′.We have inserted a probability PI for
the inversion MTΓ Γ′ → ′ to align themathematics with the test procedure, but this probability would be unity,
and is typically not discussed in the literature. The procedure for assessing reversibility is illustrated infigure 6,
and the contrast with respect to the procedures infigure 5, particularly option (b), should be noted.

Similarly, we can assess obversibility in a stochastic dynamical systemby comparing the probability of
producing a trajectory driven by a protocol, to the probability of producing its antitrajectory through selecting a
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configuration according to the initial systempdf, before inverting velocities and applying a reversed protocol.
The logarithmon the right hand side of equation (2) would be replaced by

f T f P M T M Mln[ ( , 0) ( ) ( , 0) ( ) ( )]t I
T

t
T TΓ Γ Γ Γ Γ Γ Γ Γ→ ′ ′ ′ → ′ ′ → .Wemight still call this an integrated

dissipation function, but in contrast to equation (1) it involves the probabilities for paths aswell as initial
coordinates.

The relevance of stochastic entropy production to the second law and its status as ameasure of irreversibility
emerges fromwhat is called, in this context, the integral fluctuation relation [22]. It is quite straightforward to
demonstrate that the expected value of this quantity, taking into account the uncertainty in the initial condition
and the stochastic dynamics of the process, is never negative. The proof is

( )
( ) ( ) ( )

( )

s f T s

f t P T M M

exp d d ( , 0) exp ,

d d , 1, (3)

t

I t
T T

tot tot∫
∫

Δ Γ Γ Γ Γ Γ Δ

Γ Γ Γ Γ Γ

− = ′ → ′ −

= ′ ′ ′ → =

having inserted P 1I = , and this implies that s 0totΔ〈 〉 ⩾ , since z zexp( ) 1− ⩾ − for z ∈ . Significantly, this
holds for arbitrary initial statistics and process duration, so that the time evolution of stotΔ〈 〉 ismonotonic.
Numerous studies of stochastic dynamical systems have demonstrated that not only is this result reminiscent of
the second law, but also that explicit evaluations of stotΔ〈 〉 can be shown to correspond to the production of
thermodynamic entropy in various processes [25, 26].

Notice, however, that this outcome applies whetherwe run time backwards or forwards starting from the
initial condition. It is usually the case that stochastic dynamics are introduced as a phenomenological
description of evolution into the future, such that path probabilities for evolution into the past are not defined:
the past is supposed to be knownor recorded. This is not a requirement though. If we allow evolution into the
past, but accept a PastHypothesis, namely that retrodictions are expected to differ frompredictions of behaviour
in the future, then this could be accommodated by using a path probability densityT ( )t Γ Γ→ ′− that differs
fromT ( )t Γ Γ→ ′ [10]. The growth of stotΔ〈 〉 into the past would then be a reflection of an increasing uncertainty
of retrodiction in circumstances where the past behaviour is not recorded, andwould not then be the same as
thermodynamic entropy production. Something akin to the pattern formation and dissolution in figure 1would
arise if we take the dynamics to operate in both directions in time starting from the initial condition, possibly
with asymmetry. However, this does not spoil the demonstrated correspondence between themean production
of stochastic entropy and the generation of thermodynamic entropy for evolution into the future, and to
reiterate, stochastic dynamics into the past can readily be regarded as inadmissible.

In the next sectionwe turn our attention to themathematical properties of the integratedmodified
dissipation function, with particular focus on those that rely on an assumption of velocity symmetry of the initial
pdf, and enquire into similar points of past-future symmetry and asymmetry.

Figure 6. Illustration of the procedure used to assess reversibility. The initial configuration adopted by a system is denotedΓ. It is
considered to evolve under a protocol, according to some probability, along a trajectory to assume configuration Γ′ after time t (upper
row of images) We also consider the probability that the systemmight adopt configuration Γ′ after time twithout specifying its
previous behaviour (lower row). After a velocity inversion, denoted by a red arrow, the system could follow an antitrajectory for a
further time tunder a reversed protocol, again according to some probability. For time reversal symmetric deterministic dynamics,
the probabilities of generating trajectory and antitrajectory in this way are the same and reversibility is automatic, but this is not so for
stochastic dynamics.
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6. Properties of the integrated dissipation function for a velocity asymmetric initial pdf

6.1. Notation
Evans and his collaborators have explored the properties of the dissipation functionwhile assuming that the pdf
of initial configurations is symmetric in velocity, presumablymotivated by a desire to investigate behaviour
starting from a canonical equilibrium state. In order tomake clear that our procedure for assessing obversibility
does not require such symmetry, while it remains possible to use a very similar dissipation function, we shall use
a different symbol.We define amodified dissipation functionω and its time integral through

( )

( )

( ) ( )

S s

f

f S S P S M S

( ) d ,

ln
( , 0)d

, 0 d
, (4)

t

t

s

t t I t
T

t

0

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∫ω Γ ω Γ

Γ Γ

Γ Γ Γ Γ

=

=
→

where f ( , 0)Γ is the pdf over phase space coordinatesΓ at t=0. The dynamics takeΓ into Ss Γ after a time
interval s. As before, note the difference between ( )ω Γ and ( )tω Γ , and also the explicit inclusion of a probability
PI (equal to unity) associatedwith the velocity inversion of St Γ . It is the integratedmodified dissipation function

( )tω Γ that has the closest similarity to the stochastic entropy production defined in equation (2) andwhichwill
receivemost of our attention. In order to proceed, we assume ergodic consistency in the form f S( , 0) 0t Γ ≠ if
f ( , 0) 0Γ ≠ .

Equation (4) should be contrastedwith equation (1) for the dissipation functionΩ given earlier:

( )
( )

( )
S s

f

f M S S
( ) d ln

( , 0)d

, 0 d
, (5)t

t

s
T

t t0

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∫Ω Γ Ω Γ

Γ Γ

Γ Γ
= =

which is employed under an assumption that f M f( , 0) ( , 0)TΓ Γ= . Although the velocity symmetry condition
is always clearly stated, definitions ofΩwith andwithout the velocity inversion operator inside the pdf f in the
denominator exist in the literature (for example comparing equation (2.6) in [16]with equation (1) in [19]) but
herewe explicitly include it.

Clearly tω might adhere tomany of the relationships satisfied by tΩ . Let us explore its properties.

6.2. Nonequilibriumpartition identity (NPI)
Weevaluate an expectation of the exponentiated integratedmodified dissipation functionweighted by the pdf at
t=0, indicated by a suffix 0 on the angled brackets:

( )
( ) ( )

( ) ( )

f S S

f
f

f S S

exp ( ) d
, 0 d

( , 0)d
( , 0),

, 0 d 1, (6)

t

t t

t t

0 ∫
∫

ω Γ Γ
Γ Γ

Γ Γ
Γ

Γ Γ

〈 − 〉 =

= =

wherewe have inserted P 1I = (andwill continue to do so fromnowon). This result is the counterpart of theNPI
derived by Evans and collaborators:

( )fd exp ( ) ( , 0) 1. (7)t∫ Γ Ω Γ Γ− =

These results are analogues of the integral fluctuation relation satisfied by the stochastic entropy production in
equation (3). The implication is that themean integratedmodified dissipation function is never negative:

fd ( ) ( , 0) ( ) 0, (8)t t 0∫ Γω Γ Γ ω Γ= 〈 〉 ⩾

though its time developmentmight not bemonotonic.

6.3. Evans–Searlesfluctuation theorem (ESFT)
A lack of velocity inversion symmetry in f ( , 0)Γ does not spoil theNPI but it does impact another property.

Using M S M ST
t

T
t* Γ Γ= , where St

* represents evolution under a reverse protocol, itmay be shown that
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( )
( ) ( )

( ) ( )
( )

( )
( )

( )

( )

( )

M S
f M S M S

f S M S S M S

f M S S

f M

f M

f M S S

ln
, 0 d

, 0 d
,

ln
, 0 d

, 0 d
,

ln
, 0 d

, 0 d
. (9)

t
T

t

T
t

T
t

t
T

t t
T

t

T
t t

T

T

T
t t

*

* *

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ω Γ
Γ Γ

Γ Γ

Γ Γ

Γ Γ

Γ Γ

Γ Γ

=

=

= −

The left hand side is the integratedmodified dissipation function for an antitrajectory (we indicate the reverse
protocol by the asterisk on tω ) of points S M Ss s

T
t* *Γ Γ= (for s t0 ⩽ ⩽ ) that arises from the velocity-inverted

final configuration M ST
t Γ of the trajectory of points Ss sΓ Γ= (for s t0 ⩽ ⩽ ) that evolves fromphase space

pointΓ. Clearly, themodified dissipation function integrated along the antitrajectory is not, in general, equal
and opposite inmagnitude to themodified dissipation function integrated along the trajectory. This would hold,
however, if f M f( , 0) ( , 0)TΓ Γ= such that the right hand side of equation (9) reduces to the negative of the
right hand side of equation (4), giving M S( ) ( )t

T
t t*ω Γ ω Γ= − .

The implication of this is that the statistics of the integratedmodified dissipation function do not necessarily
possess a symmetry [16] known as the ESFT. The probability density function for tω is

( )

( )
( )
( )

( )

( ) ( )

P f

f t
f

f t

f

( ) d ( , 0) ( ) ,

d , e
, 0

,
( ) ,

e d , 0 ( ) , (10)

t t t

t t

t

t

t t

t t t t

( )t

t

∫

∫

∫

ω Γ Γ δ ω Γ ω

Γ Γ
Γ

Γ
δ ω Γ ω

Γ Γ δ ω Γ ω

= −

= −

= −

ω Γ

ω

wherewewrite St tΓ Γ= and have used the condition of conservation of probability f f t( , 0)d ( , )dt tΓ Γ Γ Γ=
such that f t f( ) ln ( , ) ( , 0)t t t

⎡⎣ ⎤⎦ω Γ Γ Γ= . If f M f( , 0) ( , 0)TΓ Γ= and the protocol and reverse protocol are

identical, such that M( ) ( )t t
T

tω Γ ω Γ= − we canwrite

( )
( )

( )
( ) ( ) ( )

( )P f M

M f M M

P

( ) e d , 0 ,

e d , 0 ,

e ( ), (11)

t t t t
T

t t

T
t

T
t t

T
t t

t

t

t

t

∫
∫

ω Γ Γ δ ω Γ ω

Γ Γ δ ω Γ ω

ω

= − −

= +

= −

ω

ω

ω

which is the ESFT. In section 7we shall use an example to demonstrate the reliance of the ESFT on the velocity
symmetry of the initial pdf.

6.4. Symmetry and asymmetry in forward andbackward time evolution under a time independent protocol
There is a past–future symmetry in the evolution of t 0ω〈 〉 for positive and negative t if the initial pdf is

symmetric.We assume a time independent protocol that satisfies S M M St
T T

t=− andwrite

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
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f
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,
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, 0 d
,

d ( , 0)ln
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,
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, 0 d
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∫

∫

∫
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Γ Γ

Γ Γ
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Γ Γ

Γ Γ
Γ Γ

Γ Γ

Γ Γ
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Γ Γ

〈 〉 =

=

=

=

−
− −

− −

so t t0 0ω ω〈 〉 = 〈 〉− . If f M f( , 0) ( , 0)TΓ Γ≠ this outcome does not necessarily follow, but nevertheless
0t 0ω〈 〉 = at t=0 and is non-negative for t 0≠ , so there is a localminimum in t 0ω〈 〉 at t=0.
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6.5. Covariance
Nextwe investigate the significance of the reference time at which the initial pdf is defined.Wewrite

( ) ( )

( )
( )

( ) ( )

( )
( )

( ) ( )

f
f

f S S

f
f

f S S S S

f
f
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, 0 d
,
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, d

, d
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, d

, d
,

. (13)

t

t t

t t

t t

t

0

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∫

∫

∫
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Γ Γ

Γ Γ τ
Γ τ Γ

Γ τ Γ
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Γ τ Γ

ω

〈 〉 =

=

=
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τ τ
τ τ

τ τ

τ τ
τ τ

τ τ

τ

where SΓ Γ=τ τ andwe again take the protocol to be time independent. Themean integratedmodified
dissipation function for a period t is independent of the reference time at which the initial pdf is specified in these

circumstances. Similarly, for the unaveraged tω we have ( , 0)tω Γ = f f S Sln ( , 0)d ( , 0)d( )t t
⎡⎣ ⎤⎦Γ Γ Γ Γ =

f f S Sln ( , )d ( , )d( ) ( , )t t
⎡⎣ ⎤⎦Γ τ Γ Γ τ Γ ω Γ τ=τ τ τ τ τ τ , where the second argument of tω indicates the reference time.

It is of interest to compare equation (13) with a result referred to as covariance [36].We take care to show
explicitly theMT operator inside the phase space increment in the denominator (compare with equation (1)).
Again adding a second argument to the integrated dissipation function to indicate the reference time, wewrite
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+
+ +

+ +
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and hence ( , ) ( , 0)0 2Ω Γ τ Ω Γ=τ τ as shown in [36]. The initial value (i.e. when t = 0) of the integrated
dissipation function referred to time τ is equal to the integrated dissipation function for a period of length 2τ
when referred to time zero. This result appears to be a consequence of the special character of the system at zero
timewhere velocity symmetry of the pdf is assumed, aswell as the presence of the velocity inversion operator in
the definition of tΩ , but ismore complex than equation (13).

Further properties of themodified dissipation function are explored in appendix A.

7.Obversibility test in a simple system

A system characterised by a velocity asymmetric pdf is not an unusual situation and themodified dissipation
function can provide a framework for discussing irreversibility in its evolution, bymeans of the obversibility
assessment described in section 4. For example the pdf of a stationary state with non-zero spatial current is likely
to be asymmetric in velocity,making the dissipation function inappropriate.

In this sectionwe analyse a simple and familiarmodel in nonlinear dynamics [37] to illustrate several of the
properties of tω discussed in section 6. Consider a single particlemoving in two dimensions but constrained to
have constant kinetic energy. It is acted upon by an external force F that drives themomentumof the particle
towards a value p0. It is a deterministic dynamical system satisfying time reversal symmetry, with a time
independent protocol, andwhere all points in phase space (except for p p0= − )flow towards afixed point at
p p0= .
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The particlemomentum p evolves according to

p
F p F

F p

p
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d
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·
, (15)0

0

0
2

= = −
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such that F p p( ) · 0= , implying constancy of the energy:

p
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p
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t t

d

d
2 ·

d

d
2 · ( ) 0. (16)

2∣ ∣
= = =

The formof the dynamics has a basis inGauss’ principle of least constraint [16, 17].
We take F0 to be parallel to p0 so that F p p( ) 00 0× = , whichwith F p p( ) · 00 0 = implies F p( ) 00 = at the

fixed point.Wemultiply equation (16) by p0 andwrite p p p· cos0
2 θ= ∣ ∣ so that
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0
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θ
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= −

where θ is the angle between p and p0. Thenwith the transformation p F pt t ·2
0 0→ ∣ ∣ wehave

td(cos ) d 1 cos2θ θ= − or td d sinθ θ= − , for which the solution is

ttan[ ( ) 2] e tan[ (0) 2]. (18)tθ θ= −

The direction of particlemotion turns towards an angle ( ) 0θ ∞ = as time progresses.
We can determine two equivalent forms for the phase space compression factor:
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Furthermore, the probability density function f t( , )θ satisfies f t f(sin )θ θ∂ ∂ = ∂ ∂ , and using

f t t f
t
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d (0)
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, (20)θ θ

θ
θ

=

we can solve the dynamics for two interesting initial pdfs at t=0. First, consider case 1where the initial pdf is
uniform, f [ (0), 0] (2 )1

1θ π= − , and hence isotropic and velocity symmetric.We obtain
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Wealso consider case 2where f [ (0), 0] ( ) cos [ (0) 2]2
1 2θ π θ= − , which is anisotropic and velocity asymmetric:

we get
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As a consequence of the initial isotropy, there is a formof past-future symmetry for case 1,made evident as
follows. Define ϕ θ π= + such that sin 2 cos 2ϕ θ= and cos 2 sin 2ϕ θ= − . Hence
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However, a similar symmetry does not hold for case 2. The pdfs at t 1= − , 0 and 1 for cases 1 and 2 are illustrated
infigures 7(a) and (e), respectively and the presence and absence of symmetry between the past and future of the
two situations is clear.

Next we calculate the integratedmodified dissipation function for the initially isotropic case 1, definedwith
respect to a general reference time τ:

f

f t t
[ ( ), ] ln

[ ( ), ]

[ ( ), ]

d ( )

d ( )
. (24)t

1

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ω θ τ τ

θ τ τ
θ τ τ

θ τ
θ τ

=
+ +

Figure 7.The evolving pdfs as well as the properties of the integratedmodified dissipation function are contrasted for case 1 (parts (a)–
(d)) and case 2 (parts (e)–(h)), referring to the orientation dynamics of equation (15)with differing initial statistics. At t=0, the pdfs
ofmomentum for case 1 and case 2 are velocity symmetric and asymmetric, respectively.
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It is clear from conservation of probability that this is independent of τ andmay bewritten
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and themean integratedmodified dissipation function is also independent of τ:
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The non-negativity of this quantity is illustrated infigure 7(b). For large positive t, we have
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and a similar limiting behaviour emerges for large negative t. Indeedwe note that t tω ω〈 〉 = 〈 〉− .
We do not always expect themean integratedmodified dissipation function to evolve towards a constant.

This would correspond to a stationary state but not all nonlinear dynamical systems embody the action of a
thermostat. Our purpose has been instead to demonstrate with a practical example that this quantity can grow
symmetrically into both the past and future, and in a fashion irrespective of the starting time. This case is rather
analogous to the sequence illustrated infigure 1with regard to past-future symmetry and the arbitrariness of the
reference point in time.

We can construct a pdf of values of the integratedmodified dissipation function generated for case 1 after a
time t. The pdf is defined by

( )P f( ) d [ , 0] [ , 0] , (28)t t t1∫ω θ θ δ ω θ ω= −
π

π

−

with f 1 (2 )1 π= and [ , 0]tω θ given by equation (25). For t=1, the pdf is shown infigure 7(c), andwe plot
P Pln[ ( ) ( )]t tω ω− against tω in part (d) to demonstrate that it satisfies the ESFT; a consequence of the velocity-

symmetric initial pdf and the time independent protocol.
We now turn to case 2where the initial pdf at t=0 is asymmetric in velocity. The integratedmodified

dissipation function is
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and themean integratedmodified dissipation function is f[ (0), 0] d (0) [ (0), 0] [ (0), 0]t t0 2∫ω θ θ θ ω θ〈 〉 =
π

π

−
with f cos [ (0) 2]2

1 2π θ= − and [ (0), 0]tω θ given by equation (29). This quantity is shown infigure 7(f) to
demonstrate its asymmetry with respect to the past and future, a consequence of the velocity asymmetry of the
pdf at t=0. The pdf of tω for t= 1 infigure 7(g) illustrates the distribution of outcomes, and in contrast to case 1,
the plot of P Pln[ ( ) ( )]t tω ω− against tω is nonlinear (shown as part (h)), demonstrating that the integrated
modified dissipation function for this asymmetric initial condition does not satisfy the ESFT.
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8. Revisiting the fundamental statistical postulate

Our discussion of asymmetry in the velocity statistics of a systemobliges us to revisit the fundamental postulate
of statistical physics: the allocation of equal probabilities, or credibility, to all accessiblemicrostates of a system
for the purpose of computing equilibrium averages, with the implication that pairs of velocity-inverted
configurations are taken to be equally credible.

Now, it is clear that the fundamental postulate is a simplified representation of reality, since allocation of
credibility depends on howmuch conditioning of the statistics is employed. Let us suppose that the present state
of a system is conditioned on its having evolved froma situation in the past (the imposition of a PastHypothesis)
as a result of the removal of a constraint. A gasmight be released froma small enclosure into a larger container
and allowed to come into equilibrium. Liouville’s theorem requires that the volume of phase space
corresponding to credible configurations in the past situation is preserved for an isolated system evolving
according toHamiltonian dynamics, and so only a tiny proportion of configurations in thewider phase space
corresponding to the larger container are actually credible under this conditioning.

For the purpose of determining statistical behaviour, however, this assessment can often be replaced by one
where credibility is extended across all available configurations, which is of course the fundamental postulate. It
is not quite the same as coarse-graining. It is a (largely) benign act of generosity thatmakes the averaging easier.
The circumstances would require the dynamics to bemixing, such that configurations that are credible
according to conditioning on the past are spread uniformly, in some sense, over thewider phase space, and a
sufficient period of timewill need to have elapsed since the constraint was released. These issues have been
considered before (e.g. [13]). Furthermore, the extension of credibility across the phase space wouldwork if the
function that is to be averaged is smooth over the phase space. For example, credibility can be extended fromone
to bothmembers of a velocity-inverted pair of configurations for the purpose of calculating themean system
energy since this property takes the same value in the two configurations. The procedure of extension of
credibility is amathematically convenientmake-believe.

Even if a set of probabilities of differingmagnitudes had been assigned to the original credible
configurations,mixingwould still tend to produce a broadly equal density of probability across thewider phase
space once equilibriumhas been established. The fundamental postulate would still be a very goodmake-believe
representation of the configurational credibility for the purposes of computing equilibrium averages ofmost
functions.

But there are functionswhose averages would not bewell represented by this extension and smoothing of
credibility, and themost obvious is an indicator function that would flag that a configuration had indeed evolved
from the specifiedmacrostate in the past. The velocity-inverted partners of configurations that are positively
flaggedwould very likely not have evolved from the originalmacrostate andwould be negatively flagged. The
reason is that if a configuration has evolved froma particularmacrostate in the past, then its velocity-inverted
partner, in the absence of external interactions, will evolve to a velocity-inverted image of thatmacrostate in the
future. A configuration that evolves to a physically similar version of the originalmacrostate will almost surely
not have evolved from thatmacrostate in the past and therefore is highly likely to be negatively flagged. This issue
is not the same as a Poincaré recurrence, but nevertheless a return to a (low volume)macrostate in the course of
the dynamics should also be ascribed a low probability.We assume that the time elapsed since the release of the
constraint is not infinite. The credibility of configurations taking into account conditioning on the past is
illustrated infigure 8.

The indicator function is a property of a configuration quite unlike energy. The function is not smooth over
the phase space and in particular its value is not likely to be the same for velocity-inverted partners. For the
purposes of averaging functions such as this, the fundamental postulate is a very poor representation of the
statistical weighting of the configurations. Functions that indicate relaxational behaviour or provide ameasure
of irreversibility will typically come into this category.

We have considered up to now that an equilibrium systemnecessarily has evolved from a prior situation and
that an appropriate conditioning of the probabilities assigned to each system configuration should be
performed. In other words, we have implemented a PastHypothesis and concluded that velocity asymmetry in
the systempdf is to be expected. But a different conditioning can eliminate this expectation and it is worth
considering some examples, partly to restore some faith in the fundamental postulate.

For example, it is perfectly reasonable to imagine at some point separating the system into parts, after which
they no longer interact with one another. A box containing a gasmight be divided into two by the insertion of the
traditional partition. There would then be no requirement that a subsystemhas differing probabilities of
adopting eachmember of a velocity-inverted pair of configurations because the subsystem essentially has no
previous history uponwhich it can be conditioned. A velocity-inverted version of a given configurationwill not
evolve forwards in time in a fashion that retraces the previous history of its partner; it cannot do so beyond the
point in the past where the systemwas divided into subsystems.What this reveals is that for a system that is
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subject to externalmanipulation, such as division into parts, an imposed PastHypothesis can only refer back to
the last time a constraint on the systemwas changed. This has the conceptual advantage that we can avoid
iterating back in timewithout limit. Eliminating the capacity to invert velocities andmake the system retrace its
previous history amounts to a breakage of the time reversal symmetry of the dynamics at thosemoments. The
loss of prior conditioningwouldmean that the fundamental postulate would then be tenable, and standard
statistical averagingwould follow.

9. Conclusions

Irreversible behaviour remains a puzzle today, over 150 years after it was first quantified using the concept of
thermodynamic entropy production. This is certainly the case in the context of classical physics, the focus of our
discussions, and remains so froma quantumperspective [38]. The insights offered by Boltzmann [13, 29, 30]
based on the evolution of a system through its phase space provide themost appealing framework for a
microscopic understanding, while at the same time raising some additional concerns. If irreversibility is simply a
consequence of complex but time-reversible dynamics thenwhy does past behaviour not resemble the
predictions of development in the future?How is irreversibility to bemade distinct from the formation and
dissolution of patterns of the kind shown infigure 1? In the simplest presentation of Boltzmann’s ideas, it is
difficult to avoid the conclusion that entropy is currently at aminimum, quite at oddswith reality. This issue is
made very plainwhenwe attempt to quantify ameasure of irreversibility based on the dynamics and the statistics
of the initial state.

There is a certain consensus that an asymmetry in the nature of possible system configurations between the
past and futuremust be the fundamental rationale for irreversible behaviour of the kind alluded to in section 1.
This is known generically as the PastHypothesis [9], and it amounts essentially to a statement that directionality
in time is a consequence of very special initial conditions on a grand scale. Collective properties at earlier times,
such as an uneven division of energy or space between the components of a system, condition the statistics of
configurations at the present time. It is argued that such unevenness is not an expected feature of theworld at
later times. The resulting velocity asymmetry in the present configurational statistics identifies for us a preferred
mean direction of evolution and potentially ameasure of irreversibility.We have illustrated conditioning on the
past in a lighthearted fashion by considering the dynamics of trains on a rail network, the asymmetry being a
limitation tomotion in the same (forward) direction for all time once they have been setmoving.

Thesematters place a requirement on the design of ameasure of irreversibility for systems governed by time
reversal symmetric deterministic dynamics. Themeasuremust work for velocity asymmetric statistics and not
just the symmetric situation characteristic of canonical equilibrium. It is eminently possible that different
credibilities should be ascribed to velocity-inverted pairs of configurations in a statistical representation of the
system. In principle the PastHypothesis requires this even if the systemhas relaxed into an equilibrium state,
though the asymmetrymight be difficult to recognise for very long elapsed times. The intrinsic asymmetry could
also be eliminated if the system is prepared in specific ways, for example by separating it from a larger system. If
we assume a velocity symmetric probability density function (pdf) we are effectively declaring the past behaviour
to be dynamically inaccessible by velocity inversion, or of no interest since equilibrium is long-established.

Themean time-integrated dissipation function, developed by Evans and collaborators, has the appealing
property that, like thermodynamic entropy change, its value cannot be negative, though its development in time
is not necessarilymonotonic [20, 21]. It was designed for use in situationswith velocity-symmetric initial

Figure 8.An illustration of the credibility that should be assigned to configurations of a system, conditioned onwhether they evolve
according to time reversal symmetric dynamics from aparticularmacrostate in the past (or indeed to one in the future). For each
specification of coordinates there is a partnerwith an inverted set of velocities. By far themost common circumstance is that neither
partner evolves from (or to) the specified conditioningmacrostate, butwhere onemember of the pair does, the other is highly unlikely
to do so aswell, since its future is related to its partner’s past, and a recurrence of a low volumemacrostate along a single trajectory is
considered to be very improbable.
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statistics, but the definition of the dissipation function can be slightlymodified in order to accommodate
asymmetric statistics, andwe have proposed such a revised form that retainsmany of the interesting properties.

Themean time-integratedmodified dissipation function can be regarded as an indicator of what we have
called the obversibility of the dynamics and initial statistics, roughly the capacity that a given behaviour and its
time-reversed counterpartmight be equally likely to develop starting from a chosenmoment in time. It is
defined in terms of the probabilities that the systemmight adopt initial configurations fromwhich a trajectory
and its time-reversed antitrajectory partner followunder the dynamics, the latter after a velocity inversion.With
thismodification to the original procedure conceived by Evans and his collaborators we can accommodate
velocity-asymmetric pdfs. The point is illustrated infigure 5.

Themean time-integrated dissipation function (modified or not) increases into both the past and future, a
version of theminimumentropy problem. Evans and collaborators have argued on the basis of causality
[16, 39, 40] that the propagation of the dissipation function into the past is physically inadmissible even if it
seemsmathematically possible.

Whenwe consider stochastic dynamics, however, we do not need to focus such attention on the symmetry or
asymmetry of the statistics, normake an appeal to causal arguments to avoid aminimumentropy problem, since
in this framework the past-future asymmetry or PastHypothesis can be implemented through time reversal
asymmetric effective dynamical rules. In this spirit, if the past behaviourwere entirely recorded, rather than to be
retrodicted, thenmodelling evolution into the past using stochastic dynamics would be inadmissible and there
would be nominimumentropy problem. This is a distinct advantage of working in a framework of stochastic
rather than deterministic dynamics.

The concept ofmean stochastic entropy production has been developed as ameasure of irreversibility in a
framework of stochastic dynamics [22], and it emerges from a test of the reversibility of the dynamics. Stochastic
entropy production is defined in terms of the likelihoods that the systemmight adopt configurations fromwhich
a trajectory and its antitrajectory partner emerge under the dynamics, the latter after a velocity inversion, but in
this case the antitrajectory is to be initiated after the trajectory has been completed. This distinguishes the tests
for obversibility and reversibility, and provides themathematical difference between the integratedmodified
dissipation function and the stochastic entropy production. The point is illustrated by comparing figures 5 and
6. Bothmeasures of irreversibilitymay be usedwithin a framework of stochastic dynamics, but only the test of
obversibility is available if the dynamics are deterministic and time-reversal symmetric, since reversibility is then
automatic.

For deterministic dynamics, themean integratedmodified dissipation function is non-negative (the
essential property of ameasure of irreversibility) even if the initial pdf is velocity asymmetric. However, its
statistics will satisfy the ESFTunder a time symmetric protocol only if the initial pdf is symmetric in velocity, as
has been demonstrated using a simplemodel of isokinetic particle reorientation and figure 7.

Themean stochastic entropy production also cannot become negative, but its evolution ismonotonic [41].
Furthermore, it has been shown tomap onto the production of thermodynamic entropy in various cases [26].
The stochastic dynamics can accommodate a velocity symmetric pdf whilemaintaining a fundamental
asymmetry between evolution into the past and future, and thismeasure of irreversibility can satisfy a symmetry
(the detailedfluctuation relation) analogous to the ESFT [24].

To conclude, we have discussed the similarities and differences between twomeasures of irreversibility that
have emerged from studies of systems evolving under deterministic and stochastic dynamics. Thesemeasures
have been developed in order to quantify our understanding of the empirical phenomenon of thermodynamic
entropy production and the second law. In particular, we have noted that the test procedures that lie behind each
measure are very similar, differing only in the sequence of events considered. Both approaches can
accommodate a statistical asymmetry in the dynamical state of theworld, the likely underlying basis of the
phenomenon of irreversibility, and arguments can be advanced in each case to avoid an apparentminimum
entropy problem.We believe that it is important that these connections between the two viewpoints aremore
widely appreciated.
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AppendixA. Further properties of themodified dissipation function for asymmetric
velocity statistics

Weexplorewhether themodified dissipation function, designed to accommodate a velocity-asymmetric system
pdf, satisfies the dissipation theorem derived by Evans and collaborators in [42]. Since
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which yields the dissipation theorem for themodified dissipation function in the form
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analogous to the demonstration by Evans et al [42] in terms ofΩ.
WeakT-mixing dynamics are defined [19] such that B Blim ( ) ( ) lim ( ) ( )s s s s0 0 0Γ ω Γ Γ ω Γ〈 〉 = 〈 〉 〈 〉→∞ →∞ . By

insertingB=1 into equation (A.6), it can be shown that ( ) 00ω Γ〈 〉 = , and so for such dynamics a systemwill
clearly relax, acquiring time independent average properties B ( )t 0Γ〈 〉 as t → ∞, an outcome referred to as the
relaxation theorem [21]. The systemdiscussed in section 7, however, is obviously not an example of T-mixing
dynamics.

The assumption of velocity symmetry in the initial systempdf will have the following implicationwith
regard to B t td ( ) d〈 〉 .Wefirst investigate the properties of themodified dissipation function under velocity
inversion.We assume a time independent protocol such that S M M St

T T
t= − for any t.We note from

equation (4) that
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implying that M( ) ( )Tω Γ ω Γ= − if f M f( , 0) ( , 0)TΓ Γ= . For a function that is symmetric under velocity
inversion, B M B( ) ( )TΓ Γ= , this implies that
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This is nothingmore than Loschmidt’s conclusion that whenwe consider the evolution of a function (in this
case one that is velocity symmetric) under time reversal symmetric dynamics (with no explicit time dependence)
starting from an initial state with equal weightings of velocity-inverted configurations, wemust infer that any
particular change and its opposite are equally likely: the assumptions are consistent only with an equilibrium
situation. This is underlined by the further conclusion that themean of a function that is antisymmetric under
velocity inversion is zero in such circumstances, since
B t f B M f M B M f B( ) d ( , 0) ( ) d( ) ( , 0) ( ) d ( , 0) ( ) 0t

T T T
t t∫ ∫ ∫Γ Γ Γ Γ Γ Γ Γ Γ Γ〈 〉 = = = − = . Velocity asym-

metry in the initial pdf seems necessary to account for nonequilibrium effects, at least in the absence of a time
dependence in the force protocol.
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