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Abstract

Background: Recruitment to clinical trials is often problematic, with many trials failing to recruit to their target
sample size. As a result, patient care may be based on suboptimal evidence from underpowered trials or
non-randomised studies.

Methods: For many conditions patients will require treatment on several occasions, for example, to treat symptoms
of an underlying chronic condition (such as migraines, where treatment is required each time a new episode
occurs), or until they achieve treatment success (such as fertility, where patients undergo treatment on multiple
occasions until they become pregnant). We describe a re-randomisation design for these scenarios, which allows
each patient to be independently randomised on multiple occasions. We discuss the circumstances in which this
design can be used.

Results: The re-randomisation design will give asymptotically unbiased estimates of treatment effect and correct type I
error rates under the following conditions: (a) patients are only re-randomised after the follow-up period from their
previous randomisation is complete; (b) randomisations for the same patient are performed independently; and (c) the
treatment effect is constant across all randomisations. Provided the analysis accounts for correlation between
observations from the same patient, this design will typically have higher power than a parallel group trial with
an equivalent number of observations.

Conclusions: If used appropriately, the re-randomisation design can increase the recruitment rate for clinical
trials while still providing an unbiased estimate of treatment effect and correct type I error rates. In many
situations, it can increase the power compared to a parallel group design with an equivalent number of
observations.
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Background
Patient recruitment is often a major challenge for rando-
mised controlled trials (RCTs), and has been identified
as the number one research priority by leads of UK trials
units [1]. Reviews of publicly funded UK trials have
found that between 45-69 % fail to successfully recruit
to target [2, 3]. Another review of clinicaltrials.gov found
that 48,027 patients had taken part in 481 trials that
were at risk of being unable to address their primary re-
search question due to poor recruitment [4].
Failure to recruit patients in a timely manner can have a

major impact on patient care. It can lead to delays in
completing trials, which in turn can cause delays in suc-
cessful new treatments being adopted into routine clinical

practice. It can increase trial costs, resulting in fewer trials
being conducted. Finally, it can adversely impact the feasi-
bility of conducting trials for conditions with a small
patient pool. For example, a number of trials in patients
with sickle cell disease have been terminated early due to
insufficient recruitment [5]. As a result, care for patients
with less common conditions may be based on suboptimal
evidence from underpowered trials or non-randomised
studies.
For many conditions, patients will require treatment on

multiple occasions. For example, patients with an under-
lying condition for which symptoms recur will require
treatment for each new presentation of symptoms (e.g. pa-
tients with sickle cell disease require pain relief each time
they have a sickle cell pain crisis). Conversely, for some
conditions an intervention may be given on a repeated
basis until the patient is considered to be a treatment
success (e.g. patients undergoing fertility treatments may
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undergo multiple treatment cycles before becoming
pregnant).
The current norm for trials in these areas is for patients

to be randomised once; they are ineligible to be re-
enrolled into the trial a second time, even if they require
further treatment. However, allowing each patient to be
randomised on numerous occasions could increase the re-
cruitment rate. This is called re-randomisation [6, 7],
and has been used previously in trials of febrile neutro-
penia [8], irritable bowel syndrome [9], and influenza
vaccines [10].
The properties of re-randomisation have been previ-

ously discussed for specific settings by Nason and Follman
[11] and Dunning and Reeves [6]. This article describes
the properties of the re-randomisation design, where each
patient can be randomised multiple times, in a more
general framework. We demonstrate that, under certain
conditions, the re-randomisation design can provide un-
biased estimates of treatment effect, correct type I error
rates, and similar, or even increased power compared to
that of a parallel group trial of the same size.

Methods
Overview of the re-randomisation design
The re-randomisation design is implemented as follows:

1) Patients are entered into the trial as usual,
randomised to a treatment arm, and followed up
until all primary and secondary outcomes have been
collected

2) If a patient requires further treatment after
completing their initial follow up period, and they
still meet the inclusion/exclusion criteria, they may
be entered into the trial again, and re-randomised

3) This is repeated until the target sample size is met

Instead of aiming to recruit a specified number of pa-
tients, the re-randomisation design aims to recruit a speci-
fied number of observations. Consider a required sample
size of 200; instead of recruiting 200 patients, the re-
randomisation design allows recruitment of fewer patients
overall, provided the total number of times that these pa-
tients are entered into the trial is 200. For example, this
could be achieved by randomising 100 patients once and
50 patients twice (200 observations from 150 patients), or
by randomising 50 patients once and 50 patients 3 times
(200 observations from 100 patients). A summary of the
randomisation design is given in Table 1, and example
data from a re-randomisation trial is given in Table 2.
One key feature of the re-randomisation design is that

the number of times each patient is randomised is not
specified in advance. Instead, this will depend on the
needs of each individual patient. For example, some pa-
tients may require treatment only once during the trial

recruitment period; others several times. This means the
re-randomisation design can be used in settings where
the number of times a patient may require treatment is
unknown. This is in contrast to a crossover trial, where
every patient receives treatment a fixed number of
times.

Re-randomisation in the SWIM trial
We now discuss the concept of re-randomisation in the
context of the SWIM (Sickle With Ibuprofen & Mor-
phine) trial (ISRCTN97241637). SWIM compared the
effectiveness of ibuprofen to placebo in reducing the
amount of opioid consumed over four days for sickle cell
patients who were receiving patient-controlled analgesia
for an acute sickle cell pain crisis. Ibuprofen or placebo
was given for a maximum of four days, and the follow-
up period was for four weeks from hospital discharge. It
was expected that most patients would be discharged
within four days of randomisation, and so the follow-up
period for most patients would be under five weeks.
SWIM was designed as a parallel group trial, and pa-
tients could only be enrolled for one acute pain crisis.
The target sample size was 316 patients. The SWIM trial
had difficulties in patient recruitment and, as a result,

Table 1 – Overview of the re-randomisation design

Implementing a re-randomisation design

1) Patients are entered into the trial as usual, randomised to a
treatment arm, and followed up until all primary and secondary
outcomes have been collected;

2) If a patient requires further treatment after completing their initial
follow up period, they may be entered into the trial again, and
re-randomised;

3) This is repeated until the target sample size is met.

Requirements for the re-randomisation design to give unbiased
estimates of treatment effect and correct type I error rates

1) Patients are only re-randomised when they have completed the
follow-up period from their previous randomisation;

2) Randomisations for the same patient are performed independently;

3) The treatment effect is constant across all randomisation periods.

Asymptotic properties of different analytical approaches

Unadjusted analysis (ignoring patient effects)

1) Unbiased estimate of treatment effect;

2) Correct type I error rate;

3) Equivalent power to a parallel group trial with the same number of
observations in certain conditions (details provided in the text).

Adjusted analysis (accounting for patient effects)

1) Unbiased estimate of treatment effect (requires adjustment for
number of previous allocations to both the intervention and control
respectively when treatment effects carry over into subsequent
randomisation periods);

2) Correct type I error rates;

3) Increased power compared to a parallel group trial with the same
number of observations in most scenarios.
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was terminated early. Other trials in patients with sickle
cell disease have faced similar issues in recruitment, and
many have also terminated early [5].
Sickle cell disease is a lifelong condition, and many pa-

tients suffer from acute sickle cell pain crises on a recur-
ring basis. Over a one-year period 46 patients presented
121 times with an acute pain crisis (number of presenta-
tions per patient ranged from 1–11) at one of the SWIM
recruiting centres. 16 patients (35 %) presented only once,
and 30 patients (65 %) presented on multiple occasions.
The median number of presentations was 2 (IQR 1–3).
Based on these numbers, a re-randomisation design for
SWIM could have substantially increased the recruitment
rate, increasing the feasibility of conducting such a trial.

Properties of the re-randomisation design
We demonstrate in the following sections that the re-
randomisation design will provide asymptotically unbiased
estimates of treatment effect and correct type I error rates
under the following conditions:

(a)Patients are only eligible for re-randomisation when
the follow-up period from their previous randomisa-
tion is complete;

(b)Randomisations for the same patient are performed
independently for each randomisation period;

(c)The treatment effect is constant across all
randomisation periods.

Mathematically, these conditions can be expressed as
follows.

Condition (a). Assume that the time of the jth ran-
domisation is tj, and that the follow-up period for each
randomisation period is m. Then, condition (a) requires
that:

tj > tj−1 þm

Condition (b). Let Xij be a random variable indicating
which treatment the ith patient received during their jth
randomisation period. Then, condition (b) requires:

P Xij ¼ x j Xi;j−1
� � ¼ P Xij ¼ x

� �
; x ¼ 0; 1

Condition (c). Let βj be the treatment effect in ran-
domisation period j. Then, condition (c) requires:
βj = β for all j.
We discuss the rationale for each of these conditions

below.

Patients are only eligible for re-randomisation when the
follow-up period from their previous randomisation is
complete
This condition is required to ensure there are no over-
lapping treatment periods where the same data could
contribute to two separate observations. This is required
for unbiased estimates of treatment effect.
For example, consider a trial with a one-year follow-up

period. A patient is randomised to intervention, and then
is re-randomised 3 months later to control; for the next
9 months, any data collected on this patient would con-
tribute both to their initial randomisation to the interven-
tion, and their subsequent randomisation to the control.

Table 2 – Example of patient data from re-randomisation trial

Patient ID Randomisation
period

Treatment
allocation

Number of previous allocations
to intervention (1)

Number of previous allocations
to control (0)

Total number of times
patient randomised

1 1 1 0 0 1

2 1 0 0 0 1

3 1 0 0 0 2

3 2 0 0 1 2

4 1 1 0 0 2

4 2 0 1 0 2

5 1 1 0 0 4

5 2 0 1 0 4

5 3 1 1 1 4

5 4 1 2 1 4

6 1 0 0 0 6

6 2 0 0 1 6

6 3 0 0 2 6

6 4 1 0 3 6

6 5 1 1 3 6

6 6 0 2 3 6
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The comparison between treatment and control is clearly
invalidated in this scenario.

Randomisations for the same patient are performed
independently
The probability of allocation to an arm must not depend
on the patient’s allocations in their previous randomisa-
tion periods. This means that ‘patient’ should not be
used as a stratification or balancing factor in the ran-
domisation process (i.e. the randomisation procedure
should not be ‘forced’ to assign each patient to the inter-
vention and control an equal number of times). This is
required for (a) unbiased estimates of treatment effect;
and (b) correct type I error rates.
We first consider the issue of bias. Suppose the ran-

domisation procedure was stratified by patient [12], so
that those who received the control in their first ran-
domisation period would receive the intervention in
their next randomisation period, and vice versa. If only
sicker patients who had received the control in the first
randomisation period were re-randomised, all of these
patients would receive the intervention in the second
randomisation period. This would lead to a higher num-
ber of sicker patients in the intervention group, resulting
in a biased comparison between treatment arms. Under
independent randomisation however, the sicker patients
who received the control in the first randomisation
period and are then re-randomised would be equally
likely to receive the intervention or control in the sec-
ond randomisation period, ensuring comparable charac-
teristics in both groups.
Secondly, we consider the issue of type I error rate.

Observations from patients who are randomised mul-
tiple times will be correlated (that is, they will be more
similar to each other than to observations from other
patients). This can be viewed as a source of clustering
(observations clustered within patients). Performing all
randomisations for the same patient independently en-
sures that this clustering will be ignorable; that is, each
observation can be treated as independent (despite the
correlation) without adversely affecting the type I error
rate (although this will lead to a reduction in power)
[13]. Further details on why this is ignorable are avail-
able elsewhere [13].
In practice, randomisation can be performed by view-

ing each re-randomisation as a ‘new’ patient. A dummy
randomisation sequence for a re-randomisation trial is
shown in Table 2.

The treatment effect is constant across all randomisation
periods
The treatment effect should be the same in each ran-
domisation period. This means that a patient should re-
ceive the same benefit from the intervention (compared

to control) each time they are randomised. This condi-
tion is required to ensure unbiased estimates of treat-
ment effect.
When the treatment effect is not constant (i.e. the true

treatment effect differs across randomisation periods),
then a re-randomisation design will provide an ‘average’
treatment effect across periods. This could be misleading
in some situations. For example, consider a trial testing an
educational intervention. The entire benefit of this inter-
vention is conferred the first time the patient receives it
(as they are unlikely to learn anything new the 2nd or 3rd

time they receive it). Therefore, an estimate of treatment
effect which includes data from periods 2 and 3 will lead
to substantial downward bias, and misleading results.

Methods of analysis
There are two broad approaches to analysis which could
be used with the re-randomisation design:

(a)An analysis which treats all observations as
independent, even those from the same patient. We
refer to this as an ‘unadjusted’ analysis, as it does not
adjust for patient effects.

(b)An analysis which accounts for the correlation
between observations from the same patient (for
example, by including ‘patient’ as a random effect
in a mixed-effects model). We refer to this as an
‘adjusted’ analysis, as it adjusts for patient effects.

We describe the properties of each of these analysis
methods below, and a summary is given in Table 1. We
focus here on continuous outcomes, but these results
can easily be generalised to binary or time-to-event out-
comes analysed using a logistic regression or Cox model.

Treating all observations as independent (unadjusted
analysis)
In its general form, an unadjusted analysis for a continu-
ous outcome can be written as:

Y ij ¼ αþ βXij þ εij ð1Þ
where Yij is the outcome from the jth randomisation
period for the ith patient, Xij is a binary variable indicat-
ing which treatment was received, β is the treatment ef-
fect, and εij is a random error term which follows a
normal distribution with mean 0. This could be imple-
mented using a linear regression model.
The unadjusted analysis will have the following asymp-

totic properties, provided the conditions from the previ-
ous section are fulfilled:

(a)Unbiased estimate of the treatment effect
(b)Correct type I error rate
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(c)Equivalent power to a parallel group trial with the
same number of observations, under certain extra
conditions (discussed below)

We discuss each of these properties below.

Treatment effect estimate
The treatment effect from an unadjusted analysis, β ̂ , can
be calculated by subtracting the mean of the outcomes
in one group from the mean in the other group. Because
the treatment assignment is independent of patient, any
systematic differences in baseline characteristics between
randomisation periods, or between patients who are re-
randomised and those who are not, will average out be-
tween treatment groups. Therefore:

E β
� �

¼ β

This property will hold even if there are systematic dif-
ferences across randomisation periods, between patients
who are re-randomised and those who are not, or if the
treatment effect carries over into subsequent randomisa-
tion periods. We demonstrate this for the case when pa-
tients can be randomised up to two times in the
Additional file 1.

Type i error rate
The type I error rate will be asymptotically correct. This
is because, as discussed earlier, the clustering of observa-
tions within patients is a form of ignorable clustering,
and therefore does not need to be accounted for in the
analysis to obtain valid error rates. Further details on
this are provided elsewhere [13].

Power
Under certain conditions, an unadjusted analysis will
have equivalent power to a parallel group design (ana-
lysed using model (1)) with the same number of obser-
vations. This is because the variance of both treatment
effect estimates are the same. Formally:

Var β ̂RR
� � ¼ Var β ̂PG

� �

where β ̂RR and β ̂PG are the treatment effect estimates
from a re-randomisation and a parallel group design re-
spectively. This occurs when patient outcomes (Yij) take
the following form:

Y ij ¼ αþ βXij þ ui þ εij ð2Þ

where ui is a random-effect for the ith patient (generally
assumed to follow a normal distribution with mean 0),
and the probability of being re-enrolled does not depend
on the allocation or observed outcome from previous

randomisation periods, or on the patient-specific
random-effect (ui).
A proof of this for the case where patients are enrolled

up to two times is given in the Additional file 1, but the
essence is that the loss in precision from patients re-
randomised to the same treatment arm is offset by the
gain in precision from patients re-randomised to the op-
posing treatment arm.
Some of the key conditions implied by model (2) that

allow the power from an unadjusted analysis to be the
same as that from a parallel group trial are:

I. Patients’ expected outcomes are the same across
randomisation periods, conditional on any covariates
included in the analysis

II. The within-patient variation is the same across ran-
domisation periods

III.The probability of being re-enrolled does not depend
on the treatment allocation or observed outcome
from previous randomisation periods, or on the pa-
tient’s underlying health status

Mathematically, these conditions can be expressed as
follows.
Condition (i) Let Zij represent a set of covariates that

are included in the analysis model, and j ≠ j' represent
different randomisation periods. Then:

E Y ij j Xij ¼ x;Zij ¼ z
� � ¼ E Y ij

0 j Xij
0 ¼ x ;Zij

0 ¼ z
� �

Condition (ii) This requires:
V(εij) = σε

2 for all j.
Condition (iii) Let Rij indicate whether the ith patient

was enrolled into the trial during the jth randomisation
period (where 1 denotes the patient was re-enrolled, and
0 indicates they were not), and c denote the current ran-
domisation period. Then:

P Ric ¼ 1 j ui;Y ij;Xij
� � ¼ P Ric ¼ 1ð Þ f or all j < c

If these conditions do not hold (or when patient out-
comes do not take the form of model (2)), then a re-
randomisation design with an unadjusted analysis will
generally lose power compared to a parallel group trial with
the same number of observations. The amount of power
lost will depend on how extreme the violation of these con-
ditions is. However, in some cases power can be recovered
by adjusting for any covariates which may explain these dif-
ferences. For example, if outcomes are expected to differ by
randomisation period, including randomisation period in
the model will increase power [14–16].

̂
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Accounting for patient effects (adjusted analysis)
There are several different methods of analysis which
can account for the correlation between observations
from the same patient. The most common are general-
ised estimating equations (GEE) [17] and mixed-effects
models [18]. For simplicity, we focus here on mixed-
effects models, although for continuous outcomes we
expect results for GEEs to be similar, as the treatment
effect estimates for both models will coincide.
A mixed-effects model with a continuous outcome

takes the same general form as model (2), i.e:

Y ij ¼ αþ βXij þ ui þ εij

where ui is a random-effect for the ith patient, and is
generally assumed to follow a normal distribution with
mean 0. The intraclass correlation (ICC), representing
the correlation between repeated measurements on each

subject, is defined as Var uið Þ
Var uið ÞþVar �ijÞð . This can easily be

generalised to a mixed-effects logistic regression model
for binary outcomes or a frailty model for time-to-event
outcomes.
The adjusted analysis will have the following asymp-

totic properties, provided the conditions from the earlier
‘Properties of the re-randomisation design’ section are
fulfilled (no overlapping follow-up periods, independent
randomisation, and constant treatment effect across ran-
domisation periods):

(a)Unbiased estimate of treatment effect (although
adjustment for the number of previous allocations to
intervention and control is required in certain cases;
more details are provided below)

(b)Correct type I error rates
(c) Increased power compared to parallel group trials

under certain conditions.

We discuss each of these properties below.

Treatment effect estimate
For a mixed-effects model, the overall treatment effect is
calculated by combining the within-patient and between-
patient estimates (weighted by the inverse of their vari-
ances) [18]. The overall treatment effect will therefore be
unbiased if these components are unbiased. If any compo-
nent is biased, than the overall treatment effect will also
likely be biased, although not necessarily to the same
extent.
We show in the Additional file 1 that an adjusted ana-

lysis will lead to unbiased estimates of treatment effect
in most scenarios, including situations when:

� There are differences in outcomes across
randomisation periods;

� There are differences in outcomes between single
and multiple randomised patients;

� Only patients who received the intervention (or only
patients who received the control) are re-
randomised;

� Only patients who experienced a poor outcome in
their initial randomisation period are re-randomised.

However, when the effects of different treatment arms
differentially carry over into subsequent randomisation
periods (e.g. when treatments change patients’ expected
outcomes for future randomisation periods in different
ways), the analysis must account for the number of pre-
vious allocations to each treatment arm to obtain un-
biased estimates of treatment effect (these covariates are
represented in columns 4 and 5 in Table 2).
We define carry over as follows. Let c denote the

current randomisation period, and f(y) as a distribution
function for y. Then:

f Y ic j Xic; Xij
� �

≠f Y icjXicð Þ f or all j < c

i.e. the distribution of the patient’s outcome in their
current randomisation period c depends on which treat-
ment they were allocated to in their previous randomisa-
tion periods.
Carry over could occur if the intervention (but not the

control) permanently improves patients’ health, so pa-
tients who received the intervention during the first ran-
domisation period will have better outcomes in the
second randomisation period than patients with the same
allocation in the second period but who received the con-
trol during the first randomisation period. Other scenarios
are also possible. For example, both the intervention and
control could permanently improve patient’s health, but
could do so by different amounts. Alternatively, they may
improve patient’s health by similar amounts, but the ef-
fects of the intervention may be longer lasting than the
control.

Type i error rate
This analysis method should asymptotically provide cor-
rect type I error rates for all scenarios in which the esti-
mated treatment effect is unbiased. However, it has been
previously noted that GEEs and mixed-effects models
have led to increased error rates in small sample situa-
tions [19, 20]. Therefore, with a small number of pa-
tients, a small-sample correction should be used.

Power
Because observations from the same patient are likely to
be correlated in most scenarios, adjusting for patient ef-
fects in the analysis can lead to increased power com-
pared to a parallel group trial with the same number of
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observations [16]. This will occur when the weight given
to the within-subject treatment comparisons is greater
than in the unadjusted analysis (which we have shown has
the same variance as a parallel group trial of the same
size). The extent to which power can be increased de-
pends on the number of observations per patient and the
within-patient correlation. This is shown in Figs. 1 and 2.
One scenario where an adjusted analysis may not provide
a large increase in power is when there are very few pa-
tients who have been re-randomised.

Simulation study
We performed a simulation study to evaluate the per-
formance of the re-randomisation design in a variety of
scenarios. We assessed the impact of different intra-
class correlation coefficients (ICC) and different re-
randomisation rates. We also assessed a number of
scenarios where a non-random subset of patients was
re-randomised, or when treatment effects differentially
carried over into subsequent randomisation periods.
We generated continuous outcomes from model (2)

above:

Y ij ¼ αþ βXij þ ui þ εij

where Yij is the outcome for the jth randomisation
period from the ith patient, β is the effect of treatment,
Xij is a binary variable indicating whether the patient

received the treatment or control, ui is the random effect
for the ith patient, and εij is an error term for the jth obser-
vation from the ith patient. Both ui and εij follow normal
distributions with mean 0 and variance σu

2 and σε
2 respect-

ively, and were generated independently. For all simulation
scenarios we fixed the total variance as σu

2 + σε
2 = 1. We

used simple randomisation to allocate observations to ei-
ther the intervention or control arm.
For each simulation scenario we compared two methods

of analysis; (a) ignoring patient effects (unadjusted analysis,
using model (1)), and (b) accounting for patient effects
using a mixed-effects regression model, with patient in-
cluded as a random-effect (adjusted analysis, using model
(2)). For the adjusted analysis based on a mixed-effects
model, we calculated p-values using a t-distribution, with
degrees of freedom calculated as the total number of pa-
tients and fixed parameters in the model subtracted from
the total number of observations [21].
For each method of analysis, we evaluated the estimated

treatment effect, the type I error rate, and the power. We
set the treatment effect to give 80 % power for a parallel
group trial with no re-randomisation based on the specific
simulation scenario. We used 5000 replications for each
scenario, in order to provide standard errors of 0.3 % and
0.6 % for the estimated type I error rate and power
respectively (assuming true values of 5 % and 80 %). All
simulations were performed using Stata 13.1. We repeated
the first two scenarios (varying the ICC and varying the

Fig. 1 Analytical results showing the increase in power through a re-randomisation design for different ICC values. This graph shows the difference in
power between an unadjusted analysis (ignoring patient-effects) and an adjusted analysis (accounting for patient-effects) for a re-randomisation design
across different ICC values. There are 100 patients who are randomised once, and 50 patients who were randomised twice (200 overall observations),
and the treatment effect is 0.40, with the within-patient standard deviation set to 1
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proportion of re-randomisations) with a binary outcome –
full details of the methods and results are presented in the
Additional file 1.

Varying the ICC
We generated outcomes from model (2). We varied the
ICC between 0.10, 0.25, 0.50, 0.75, and 0.90, while keeping
the total variance (σu

2 + σε
2) fixed at 1 (i.e. for increasing

ICCs, we increased σu
2 while reducing σε

2). For each sce-
nario, we kept the proportion of re-randomisations fixed.
We used 200 observations (100 patients randomised once,
50 patients randomised twice). For each ICC value we also
evaluated a set of completely independent observations
(200 patients randomised once) to compare the re-
randomisation and parallel group designs.

Varying the proportion of re-randomisations
We generated outcomes from model (2). We varied the
proportion of randomisations as follows: (a) 100 pa-
tients randomised once, 50 patients randomised twice;
(b) 100 patients randomised once, 25 patients rando-
mised four times; (c) 100 patients randomised twice; (d)
50 patients randomised four times; and (e) 25 patients
randomised eight times. For each scenario we set the
ICC to 0.50.

Scenarios where a non-random subset is re-randomised, or
outcomes differ across randomisation periods
We assessed a number of scenarios where the patients
who are re-randomised are systematically different than
those who are not, or when patients are in different
health states for each randomisation. We set the ICC to
0.50 for all scenarios.
We evaluated seven different scenarios:

� Scenario 1: Patients who are re-randomised are
sicker than those who are not

� Scenario 2: Patients who experienced a poor
outcome during their first randomisation are more
likely to be re-randomised

� Scenario 3: Patients who received the intervention
during their first randomisation are more likely to
be re-randomised

� Scenario 4: Patients who received the control during
their first randomisation are more likely to be re-
randomised

� Scenario 5: Patients’ health status changes for their
subsequent re-randomisation period

� Scenario 6: The intervention effect carries over into
subsequent randomisation periods

� Scenario 7: The intervention and control effects
carry over into subsequent randomisation periods by
different amounts

Fig. 2 Analytical results showing the increase in power through a re-randomisation design for different re-randomisation rates. This graph shows
the difference in power between an unadjusted analysis (ignoring patient-effects) and an adjusted analysis (accounting for patient-effects) for a
re-randomisation design across different re-randomisation rates. The number of total observations is fixed at 200; the number of individual patients
is calculated as: total observations/(1 + proportion of patients re-randomised). The ICC is 0.50, the treatment effect is 0.40, with the within-patient
standard deviation set to 1
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Scenario 1: Sicker patients re-randomised We used
200 observations (100 patients randomised once, 25 pa-
tients randomised four times). We generated outcomes
from the following model:

Y ij ¼ αþ βXij þ θZij þ ui þ εij

where Zij is a binary variable indicating whether the pa-
tient requires re-randomisation or not, and θ indicates
the average difference in outcomes between patients
who were re-randomised compared to those who were
not. We set θ = − 0.5.
Scenario 2: Patients who experience a poor outcome

are re-randomised We generated 150 independent pa-
tients using model (2). Patients with Yij < −0.44 were re-
randomised one more time. We selected −0.44 as a cut-off
as this corresponded to approximately 33 % of patients be-
ing re-randomised (leading to an average of 200
observations).
Scenario 3: Intervention patients more likely to be re-

randomised We generated 130 independent patients
using model (2). All patients who received the interven-
tion were re-randomised once more; patients who re-
ceived the control were not re-randomised. This led to
an average of 195 observations.
Scenario 4: Control patients more likely to be re-

randomised This was performed the same way as above,
except control patients were re-randomised and inter-
vention patients were not.
Scenario 5: Period effect (patients’ health status changes

for subsequent re-randomisation periods) We used 200
observations (50 patients randomised four times each).
We generated outcomes from the following model:

Y ij ¼ αþ βXij þ πZij þ ui þ εij

where Zij is a categorical variable indicating the re-
randomisation period (0, 1, 2, or 3), and π represents the
change in outcome for that re-randomisation period.
We set π =0.5. During the analysis, we adjusted for re-
randomisation period as an indicator variable.
Scenario 6: The intervention effect carries over into

subsequent randomisation periods We used 200 obser-
vations (50 patients randomised four times each). We
generated outcomes from the following model:

Y ij ¼ αþ βXij þ θAij þ ui þ εij

where Aij is a variable indicating the number of times
the patient has been allocated to the intervention in
their previous randomisations (from 0–3; this variable is
represented in column 4 of Table 2), and θ is the effect
on outcome for each additional previous time allocated
to the intervention. We set θ =0.4 (equivalent to the
treatment effect). Formally:

Aij ¼
Xc−1
j¼1

I Xij
� �

where c denotes the current randomisation period, and
I(Xij) = 1 if Xij = 1 and I(Xij) = 0 if Xij = 0.
In this scenario, the intervention increases the patient’s

outcome by 0.4, and this benefit carries through into
subsequent randomisation periods. Conversely, the con-
trol has no effect on outcome.
We performed three analyses for this scenario: (a) an

unadjusted analysis using model (1) that did not adjust
for Aij; (b) an adjusted analysis using model (2) that did
not adjust for Aij; and (c) an adjusted analysis using
model (2) that adjusted for Aij as an indicator variable.
Scenario 7: The intervention and control effects carry

over into subsequent randomisation periods by different
amounts We used 200 observations (50 patients rando-
mised four times each). We generated outcomes from
the following model:

Y ij ¼ αþ βXij þ θAij þ λBij þ ui þ εij

Where Aij and Bij represent the number of times the pa-
tient has been allocated to the intervention and control
respectively in their previous randomisation periods
(from 0–3; these variables are represented in columns 4
and 5 of Table 2), and θ and λ represent the effects on
outcome for each additional previous time allocated to
the intervention and control respectively. We set the
overall treatment effect to β = 0.4, as in previous scenar-
ios. We set θ =0.6 and λ =0.2, representing the change
from baseline for each previous allocation to interven-
tion and control. Formally:

Aij ¼
Xc−1
j¼1

I Xij
� �

and Bij ¼
Xc−1
j¼1

I Xij
� �

We performed four analyses for this scenario: (a) an
unadjusted analysis using model (1) that did not adjust
for either Aij or Bij; (b) an adjusted analysis using model
(2) that did not adjust for either Aij or Bij; (c) an adjusted
analysis using model (2) that adjusted for Aij as an indi-
cator variable, but did not adjust for Bij; and (d) an ad-
justed analysis using model (2) that adjusted for both Aij

and Bij using indicator variables.

A small number of patients
We performed a set of simulations to assess the perform-
ance of re-randomisation with a small number of patients.
We generated outcomes from model (2). We varied the
number of patients between 5, 10, 15, 20, 25, and 30, and
the number of randomisation periods for each patient be-
tween 2, 4, and 8. We assessed both simple randomisation,
and permuted blocks stratified by randomisation period.
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We performed two methods of analysis (both unadjusted
for patient-effects, based on model (1)); the first ignored
randomisation period, and the second adjusted for it using
indicator variables. For each scenario we set the ICC to
0.75. We set the treatment effect to 0 for all scenarios to
assess the type I error rate.

Results
Simulation results
Varying the ICC and the proportion of re-randomisations
Results are shown in Figs. 3 and 4. An analysis which
treated all observations as independent (unadjusted ana-
lysis) led to unbiased estimates of treatment effect, cor-
rect type I error rates, and identical power to a parallel
group design in all scenarios.
Accounting for patient-effects using a mixed-effects

model (adjusted analysis) also led to unbiased estimates of
treatment effect and correct type I error rate in all scenar-
ios. In most scenarios, it led to higher power than a paral-
lel group trial (>10 % absolute increase in some cases).
Gains in power were most pronounced when there was a
high ICC, or a large proportion of re-randomisations.
Simulation results for binary outcomes are shown in

the Additional file 1. Results were similar to simulations
involving continuous outcomes.

Scenarios where a non-random subset is re-randomised, or
outcomes differ across randomisation periods
Results are shown in Table 3. An unadjusted analysis
led to unbiased estimates and correct type I error
rates in all scenarios. The loss in power compared to
a parallel group trial was 1.2 % or less in 5 of 7 sce-
narios, and <3.0 % in 6 of 7 scenarios. However,
when the intervention and control effects carried over
differentially into subsequent randomisation periods
(scenario 7), an unadjusted analysis lost 10.3 % power
compared to a parallel group design.
Adjusting for patient-effect using a mixed-effects

model led to unbiased estimates and correct type I
error rates for scenarios 1–5. In these scenarios, it
led to greatly increased power compared with a paral-
lel group trial (range 6.1–13.9 %). In scenarios 6 and
7 (when the intervention and/or control effects
carried over into subsequent randomisation periods),
the mixed-effects model required adjustment for the
number of previous allocations to intervention and/or
control in order to obtain unbiased estimates of treat-
ment effect. This analysis strategy still lead to in-
creased power compared to a parallel group trial
(13.3 % and 10.0 % increases for scenarios 6 and 7
respectively).

Fig. 3 Simulation results across different ICC values. We compared three methods of analysis: (a) analysis of a parallel group trial with 200
independent patients; (b) an unadjusted analysis (ignoring patient effects) of a re-randomisation design, with 100 patients randomised once, and
50 patients randomised twice; and (c) an adjusted analysis (accounting for patient effects using a mixed-effects model) of a re-randomisation
design, with 100 patients randomised once, and 50 patients randomised twice. The treatment effect estimates from all three methods of analysis
were unbiased. Standard errors for the estimated type I error rate and power are 0.3 % and 0.6 % respectively (assuming true values of 5 %
and 80 %)
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A small number of patients
Full results are shown in the Additional file 1. An un-
adjusted analysis led to an increased type I error rate
when there was a very small number of patients and ran-
domisation was performed using permuted blocks strati-
fied by randomisation period. However, type I error
rates were correct when simple randomisation was used,
when there were approximately 15 or more patients, or
when randomisation period was included as a covariate
in the analysis model.

Further issues to consider with re-randomisation
We now discuss some further issues to consider when
planning a trial using a re-randomisation design. These is-
sues include: (a) when can the re-randomisation design be
used in practice; (b) which covariates we should adjust for
in the analysis of a trial utilising re-randomisation; (c) how
to choose between a re-randomisation and crossover
design; (d) potential issues when using re-randomisation
in an open-label trial; (e) the number of times a patient
can be re-randomised; (f) after what length of time a

patient can be re-randomised; (g) how to consent patients;
and (h) what to do when patients are accidentally re-
randomised in a parallel group trial.

When can the re-randomisation design be used in practice?
There are two key factors which will determine whether
the re-randomisation design can be used in practice:

� The length of the follow-up period in relation to the
overall length of the recruitment period.

� Whether the assumption of constant treatment
effect across randomisation periods is likely to hold.

We discuss each of these issues in turn.

The length of the follow-up period
In order for re-randomisation to be beneficial, the follow-
up period for each patient must be short in relation to the
overall recruitment period. Consider a trial where the
follow-up period is one month, and the overall recruit-
ment period is expected to last for two years. Patients

Fig. 4 Simulation results across different re-randomisation proportions We compared two methods of analysis: (a) an unadjusted analysis (ignoring
patient effects); and (b) an adjusted analysis (accounting for patient effects using a mixed-effects model). The ICC was set to 0.50 for all scenarios.
The estimated treatment effect was unbiased for both methods of analysis. Standard errors for the estimated type I error rate and power are
0.3 % and 0.6 % respectively (assuming true values of 5 % and 80 %)
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recruited at the beginning of the trial could be enrolled
numerous times; similarly, patients recruited towards the
end of the recruitment period could also be enrolled sev-
eral times. Depending on how often patients require treat-
ment, re-randomisation has the potential to substantially
increase the recruitment rate in this scenario.
Conversely, consider a trial with a follow-up period of

18 months and recruitment period of two years. Only
patients recruited during the first six months of the re-
cruitment period could be enrolled a second time. In
this scenario, relatively few patients are likely to be re-

randomised, and so a re-randomisation design is unlikely
to be beneficial.

The assumption of a constant treatment effect across
randomisation periods
The key assumption required for the re-randomisation de-
sign to provide an unbiased estimate of treatment effect is
that the treatment effect is constant across randomisation
periods. Therefore, we suggest the re-randomisation design
only be used in situations where there is reason to believe
this assumption will hold. This indicates that a number of

Table 3 – Simulation results for scenarios where a non-random subset is re-randomised, outcomes differ across randomisation periods,
or treatment effects carryover into subsequent randomisation periodsa

Treatment effect = 0 Treatment effect = 0.4

Estimated
treatment
effect

Type I error
rate (%)

Estimated
treatment
effect

Difference in power vs.
parallel group trialb (%)

Scenario 1: Sicker patients are re-randomised

• Unadjusted for patient effects 0.0 5.1 0.4 −0.4

• Adjusted for patient effectsc 0.0 5.2 0.4 +10.8

Scenario 2: Patients who experienced a poor outcome are more likely to be
re-randomised

• Unadjusted for patient effects 0.0 4.4 0.4 −1.2

• Adjusted for patient effectsc 0.0 4.8 0.4 +6.1

Scenario 3: Patients who received the intervention are more likely to be re-randomised

• Unadjusted for patient effects 0.0 5.0 0.4 −0.3

• Adjusted for patient effectsc 0.0 4.8 0.4 +7.3

Scenario 4: Patients who received the control are more likely to be re-randomised

• Unadjusted for patient effects 0.0 4.7 0.4 −0.3

• Adjusted for patient effectsc 0.0 5.4 0.4 +7.0

Scenario 5: Patients’ health status changes for their subsequent re-randomisationd

• Unadjusted for patient effects 0.0 5.3 0.4 −1.0

• Adjusted for patient effectsc 0.0 5.1 0.4 +13.9

Scenario 6: The intervention effect carries over into subsequent randomisation periods

• Unadjusted for patient effects NA NA 0.4 −2.9

• Adjusted for patient effectsc NA NA 0.3 −22.9

• Adjusted for patient effectsc, and adjusted for number of previous allocations to the
intervention

NA NA 0.4 +13.3

Scenario 7: The intervention and control effects carry over differentially into subsequent
randomisation periods

• Unadjusted for patient effects NA NA 0.4 −10.3

• Adjusted for patient effectsc NA NA 0.3 −29.8

• Adjusted for patient effectsc, and adjusted for number of previous allocations to the
intervention

NA NA 0.5 +18.4

• Adjusted for patient effectsc, and adjusted for both the number of previous
allocations to the intervention and number of previous allocations to the control

NA NA 0.4 +10.0

aThe ICC was set to 0.50 for all scenarios. The number of observations was 200 for scenario 1 (100 patients randomised once, 25 patients randomised 4 times),
200 on average for scenario 2 (approximately 100 patients randomised once, 50 randomised twice), 195 on average for scenarios 3 and 4 (approximately 65
patients randomised once, 65 patients randomised twice), and 200 for scenarios 5, 6, and 7 (50 patients randomised four times)
bPower for the parallel group trial was set at 80 %
cAnalyses adjusted for patient-effects using a mixed-effects linear regression model, with a random intercept for patient
dBoth analyses adjusted for randomisation period as an indicator variable
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intervention types will be inappropriate to use in a re-
randomisation design. Examples include interventions
which can only be performed once (e.g. a type of surgery
that permanently changes a part of the body) or interven-
tions where the entire benefit is conferred during the first
treatment period (e.g. an educational intervention that is
learnt during the first allocation, and cannot be learned
again).
However, there may be some situations for which the

re-randomisation design may be useful even if the as-
sumption of constant treatment effect does not hold. For
interventions which are intended to be used on a repeated
basis (e.g. in situations where most patients require treat-
ment a large number of times), the average treatment ef-
fect across randomisation periods may be more relevant
to real world practice than the treatment effect from the
first randomisation period (which would be obtained from
a parallel group design), as this ‘average’ treatment effect
is more reflective of what occurs on a per-episode basis.
For example, consider an intervention that is very effect-

ive the first time it is given, but becomes gradually less ef-
fective each subsequent time it is used. If this intervention
will be used on a repeated basis for most patients in routine
clinical practice, then the treatment effect from the first
time it is given may be a misleading representation of what
will occur for the majority of times it is used. Conversely,
the average treatment effect across randomisation periods
will not be a perfect representation of what occurs each
time the intervention is used, but it is likely to be a better
representation than one based on only the first randomisa-
tion period. Furthermore, utilising a re-randomisation de-
sign allows the estimation of the treatment effect in each
separate randomisation period, allowing investigators to
determine whether the treatment does indeed maintain its
effectiveness when used on a recurring basis.
One issue to consider regarding the assumption of con-

stant treatment effect is whether we should formally check
this assumption during the analysis. For example, we
could fit a treatment-by-randomisation period interaction
to see whether there is evidence that the treatment effect
varies over time. If there is evidence of an interaction, we
could then use data from the first period only to estimate
the treatment effect (providing a similar estimate to that
of a parallel group trial). If there is insufficient evidence of
an interaction, one could use data from all randomisation
periods to estimate the treatment effect.
In practice, we would not recommend such an ap-

proach. This issue is similar to that of crossover trials
(which also assumes the treatment effect is constant
across periods) and factorial trials (which usually assumes
there is no interaction between treatment arms). Research
has shown that in both cases, choosing a method of ana-
lysis based upon the results of an interaction test will lead
to biased estimates of treatment effect and an increased

type I error rate [22, 23]. Therefore, we do not recom-
mend formal assessment of the assumption of whether
the treatment effect is constant across randomisation
periods to inform the primary method of analysis; instead,
we recommend only undertaking a re-randomisation
design if (a) there is sufficient confidence that the assump-
tion of constant treatment effect will hold; or (b) even if
this assumption does not hold, the average treatment ef-
fect across randomisation periods is of interest.

Covariate adjustment in re-randomisation trials
In many situations it may be useful to adjust for factors
associated with the re-randomisation design, such as
randomisation period, or the number of previous alloca-
tions to the intervention or the control. For example, if
patient outcomes systematically differ across randomisa-
tion periods, adjustment for period in the analysis will
increase power. If the effects of the intervention or con-
trol (or both) carry over into subsequent randomisation
periods, adjustment for the number of previous alloca-
tions to each will ensure unbiased estimates of treatment
effect when conducting an analysis which adjusts for
patient-effects, and will increase power when conducting
an unadjusted analysis. Because the method of analysis
needs to be specified prior to seeing the data, we recom-
mend routinely adjusting for these factors in the analysis
of trials employing re-randomisation. This approach will
ensure unbiased estimates and increased power in the
above situations, and should lead to only a small loss in
power when there are no differences across periods, and
when treatment effects do not carry over (provided the
number of randomisation periods is not too large).
In some cases, we may suspect that patients who are

enrolled a large number of times are different than those
enrolled a small number of times, and that adjustment
for the total number of times enrolled will increase
power. However, this is a post-randomisation factor, as it
conditions on the future (i.e. whether the patient will re-
quire further treatment after the current randomisation
period is finished). Including this in the analysis model
will therefore lead to bias, and should be avoided.

Re-randomisation with a small number of patients
Many of the results presented in this paper assume a
large sample size. Our simulation study demonstrated
that with a very small number of patients, some results
may not hold, and there is a risk of an increased type I
error rate. We found that adjustment for randomisation
period in the analysis controlled the type I error rate,
however given the limited number of simulation scenar-
ios we ran, further research into the properties of the re-
randomisation design with a small number of patients is
necessary.
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Re-randomisation vs. crossover designs
Re-randomisation and crossover designs both allow pa-
tients to be included in the trial for multiple treatment
periods, and therefore both could be used in certain set-
tings. As such, it is worth exploring their differences to
determine in which circumstances each design might be
preferred. There are two key differences between the
two designs: (a) the number of randomisation periods
for each patient; and (b) the method of randomisation.
We discuss each of these differences in turn.
In a crossover trial, the number of randomisation pe-

riods is the same for each patient, and is specified in ad-
vance. This design should therefore only be used when it
is known in advance that each patient will require treat-
ment at least the specified number of times during the
trial period. Conversely, in a re-randomisation trial, each
patient can have a different number of randomisation
periods, and this number does not need to be specified
in advance; it is based on the treatment requirements for
each individual patient during the recruitment period.
Therefore, the re-randomisation design can be used in a
wider range of settings than the crossover design.
The second key difference between the two designs is

the method of randomisation. Under the re-randomisation
design, randomisations for the same patient are performed
independently for each randomisation period. Patients may
receive both the intervention and control, but are not
‘forced’ to do so by the randomisation procedure. Conse-
quently, a within-patient comparison is only available for a
subset of patients. Conversely, the classic ‘AB/BA’ crossover
design does force patients to receive both the intervention
and control. A within-patient comparison will then be
available for all patients. As a result of the greater use of
within-patient comparisons, crossover trials will have
higher power than re-randomisation trials.
One disadvantage of forcing each patient to receive

both the intervention and the control (as in a crossover
trial) is that this approach can lead to bias if only a cer-
tain subset of patients return for their subsequent ran-
domisation periods; this issue was discussed earlier in
the methods section.
Another advantage of the re-randomisation design is

that it can still provide unbiased estimates when the ef-
fects of the different treatment arms differentially carry
over into subsequent randomisation periods. Conversely,
most types of crossover designs (particularly those with
two periods) cannot account for differential carryover, and
will produce biased estimates in these scenarios (Balaam’s
design is a notable exception [24]).
Therefore, if it is known in advance that each patient

will require treatment a specified number of times dur-
ing the trial period, there is little risk of patients drop-
ping out prior to completing each treatment period, and
treatment effects are unlikely to differentially carryover

into subsequent periods, an AB/BA crossover design
may be preferred as it will increase power compared to a
re-randomisation design. However, if any of these condi-
tions are in doubt, a re-randomisation design may be
preferred, as it will reduce the risk of bias compared to a
crossover design.

Use of re-randomisation in open-label trials
In some trials, patients may have a strong preference for
a particular treatment. For example, they may enrol in
the trial hoping to receive the new intervention. This
type of patient preference can have implications for
open-label trials where patients are aware of their treat-
ment allocation. If patients are allocated to their non-
preferred treatment group, they may lose interest in the
trial, and not adhere to treatment, or not return for their
follow-up assessments.
Although this is a potential problem for any trial in

which patients are aware of their treatment allocation, it
may be exacerbated in trials using a re-randomisation
design. For example, patients who experience a positive
outcome during their first randomisation period may be
upset if they do not receive the same treatment in subse-
quent randomisation periods. Conversely, patients who
do not experience a positive outcome during their first
randomisation period may re-enrol in the trial hoping to
receive a different treatment in their second randomisa-
tion period; they may therefore be disappointed if they
are allocated to the same treatment again. In both cases,
patients may be less likely to adhere to treatment or to
return for follow-up assessments during their subse-
quent randomisation periods, which could affect the val-
idity of the trial results. Therefore, careful consideration
regarding the possibility of a strong patient preference is
required before using a re-randomisation design in trials
for which patients are aware of their allocated treatment
group.

How many times can patients be re-randomised?
One issue to consider for the re-randomisation design is
the number of times a patient can be re-randomised. Al-
though in theory this could occur as often as treatment
is required by the patient during the recruitment period,
in practice in may be desirable to put an upper limit on
this to avoid situations where a small number of patients
contribute a large proportion of the total observations.
There are benefits and disadvantages to both lower

and higher upper limits. Allowing a high number of re-
randomisations will increase the recruitment rate, and
will also increase power if the analysis adjusts for
patient-effects. It may also increase generalizability by
ensuring that patients who require treatment more often
in usual clinical practice make up a representative pro-
portion of the trial observations.
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However, it could also reduce generalizability if a small
number of patients make up the bulk of observations.
For example, consider a trial where 20 patients contrib-
ute 200 observations; these patients may be less repre-
sentative of the study population than 200 individual
patients would be. A stricter upper limit, would negate
this disadvantage, but would also reduce the recruitment
rate. The choice of upper limit will likely depend on spe-
cific study characteristics, such as the overall sample
size, expected recruitment rate, how often patients are
expected to require treatment throughout the course
of the study, and whether patients who require treat-
ment much more frequently are likely to be systemat-
ically different to those who require treatment less
frequently.

When can a patient be re-randomised?
One of the requirements of the re-randomisation design is
that the follow-up period from the previous enrolment
must be completed before a patient can be re-randomised.
However, it is possible to add a further requirement that
patients must wait an additional period of time after com-
pletion of their previous follow-up period before they can
be re-randomised (a washout period).
The primary benefit of a washout period is that it may

increase the likelihood of the treatment effect being con-
stant across all randomisations. This is particularly the
case when there is a concern that the effectiveness of a
treatment may vary according to which treatment the
patient received in their previous randomisation period.
This may be more likely to occur in drug trials, where
the effects of the treatment received during the second
randomisation period may be altered if some of the
treatment received during the first randomisation period
is still in the patient’s system. This is a common concern
in crossover trials [23]. A washout period reduces the
likelihood of the treatment effect being influenced by
the treatment received in the previous period, as the ef-
fects of the treatment given in the previous period have
had more time to wear off.
However, if the treatment effect is unlikely to be affected

by the treatment received in the previous period, then
allowing patients to be re-randomised as soon as the
follow-up period from their previous randomisation
period is complete, without need for a further washout
period, has two advantages. The first is that it can increase
the recruitment rate, as patients can be re-randomised
more quickly. Second, it is more reflective of what hap-
pens in practice (i.e. patients receive treatment when
required, regardless of how soon after completing the pre-
vious treatment period this is), and therefore will result in
a more pragmatic design, which may lead to greater exter-
nal validity [25].

How should patients be consented for re-randomised trials?
In a re-randomisation design, patient consent could be
taken in a number of ways. For example, they could be
consented:

� At each presentation
� For a specified period of time (i.e. to be enrolled

into the trial and randomised for any presentations
that occur within the next 6 months)

� At their initial presentation, and then confirm if
they wish to be included in the trial at each
subsequent presentation.

Further research is needed on this issue to determine
which approach is most acceptable to patients and trial-
ists, and it may be that the ideal consent model depends
on specific trial characteristics. In some cases, it may be
preferable to offer the option of which consent model
each patient would like to follow.

Accidental re-randomisation
In some parallel group trials for which patients are only
eligible to be enrolled once, some patients may acciden-
tally be enrolled a second time [26]. This may occur if a
new researcher is in charge of recruiting and enrolling
patients and does not realise the patient has already
been enrolled, or if the patient is enrolled at a different
centre to their initial enrolment.
There are two options regarding the analysis in this situ-

ation: the first is to exclude the patient from the analysis,
and the second is to include them. Excluding patients
from the analysis is generally an unsatisfactory approach,
as it goes against the intention-to-treat principle, and may
lead to a loss in power due to a smaller sample size.
Therefore, we do not recommend excluding patients
who were accidentally re-randomised from the ana-
lysis. The one exception to this is if (a) the patient was
re-enrolled before their follow-up period for the previ-
ous randomisation was complete; or (b) the treatment
effect is unlikely to be the same across randomisation
periods. In either of these scenarios, including these
patients in the analysis could lead to biased estimates
of treatment effect, and so excluding them may be a
preferable option.
If patients who were accidentally re-randomised are

included in the analysis, it is likely that an unadjusted
analysis (ignoring ‘patient’ in the analysis) will be the
preferred analysis strategy, as there are likely to be a
small number of patients with multiple observations. In
this situation, an adjusted analysis (including ‘patient’) is
unlikely to increase power compared to an unadjusted
analysis, and may be unstable due to the small number
of clusters.
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Applying re-randomisation to the SWIM trial
We now discuss some of the considerations above in the
context of applying a re-randomisation design to the
SWIM trial.

Is the assumption of constant treatment effect reasonable?
The first and most important issue is whether it is reason-
able to assume the treatment effect will be constant across
randomisation periods. Ibuprofen is commonly used on a
repeated basis, and there is no evidence that we are aware
of to suggest that its effectiveness varies over time. In
SWIM, ibuprofen was given for a maximum of four days;
given the follow-up period is 4 weeks after hospital dis-
charge, the ibuprofen should be gone from the patient’s
system by the time they are re-randomised.
It is also worth noting that ibuprofen (if shown to be

effective) would be given on a repeated basis to patients
each time they presented with an acute sickle cell pain
crisis. As such, even if the effectiveness of ibuprofen var-
ies over time (e.g. it becomes more or less effective each
time it is given), the average treatment effect over all
randomisation periods is more relevant than the treat-
ment effect the first time it is given (as would be ob-
tained from a parallel group trial), as this more closely
reflects clinical practice.
Therefore, we conclude that (a) the assumption that

the treatment effect will be constant across randomisa-
tion periods seems likely; and (b) even if this assumption
is incorrect, we are more interested in the average treat-
ment effect across randomisation periods than the treat-
ment effect in the first randomisation period. Therefore,
the re-randomisation design is appropriate for SWIM.

Should we limit the number of times each patient can be
enrolled?
The second issue to consider is the number of times
each patient could be enrolled in the trial. One concern
is that patients who present to hospital very frequently
may be different than those who present less frequently.
For example, they may have different levels of pain, or
may respond differently to treatment. It may therefore
be useful to limit the number of times each patient can
be enrolled to ensure results are not dominated by the
subset of patients who require treatment the most fre-
quently. Although there is no right answer for the upper
limit, choosing an upper limit in the range of 4–8 should
increase the recruitment rate enough to make recruit-
ment more feasible, while also ensuring no one patient
unduly influences the results.

Should we introduce an extra washout period before
patients can be re-enrolled?
The next issue to consider is when patients can be re-
randomised, that is, whether they can be re-enrolled

immediately after finishing their follow-up period, or
whether it would be beneficial to require they wait an
additional period of time before being re-enrolled. As
above, there is no right answer to this question. The pri-
mary reason to introduce an extra washout period is to
reduce the risk that the treatment effect is impacted
based on the treatment given in the previous randomisa-
tion period. However, as discussed previously, ibuprofen
should be out of the patient’s system by the end of their
follow-up period, so it seems unlikely that the treatment
effect in any randomisation period could be influenced
by the treatment received in the previous period. There-
fore, it seems reasonable to allow patients to be eligible
for re-enrollment as soon as their follow-up period is
complete.

How should we analyse SWIM?
In SWIM, we would expect a large proportion of pa-
tients to be enrolled on multiple occasions. Therefore,
adjusting for patient-effects in the analysis is likely to
lead to increased power compared to a parallel group
trial. We would therefore use a mixed-effects linear re-
gression model, with a random intercept for patient.
We would not expect outcomes to vary across random-

isation periods, or for the intervention or control effects
to carry over into subsequent randomisation periods.
However, we would adjust for these covariates regardless,
as there is likely to be little cost to doing so, and this ap-
proach will ensure unbiased estimates and increased
power if we are wrong.

Discussion
We have described a re-randomisation design, which al-
lows patients who have completed their follow-up period
to be re-randomised if they require further treatment.
This design focuses on recruiting a specified number of
observations, rather than patients. Importantly, the re-
randomisation design does not require the number of
times each patient is included to be specified in advance;
instead, this depends on the specific needs of each indi-
vidual patient, and so each patient can be enrolled a dif-
ferent number of times. This flexibility allows the re-
randomisation design to be used in a wide variety of set-
tings, including scenarios where the number of treat-
ment episodes for each patient is not known in advance.
Because patients are allowed to contribute multiple ob-

servations, the re-randomisation design will require fewer
overall patients than a parallel design; this could lead to
lower costs, improved recruitment rate, and shorter trial
durations. Additionally, when the correlation between
observations from the same patient is accounted for in the
analysis, this design will typically have higher power than
a parallel group trial with an equivalent number of obser-
vations. This means that the re-randomisation design
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could both increase the recruitment rate while simultan-
eously reducing the overall number of observations re-
quired, compared with a parallel group trial. This approach
could be particularly useful in trials of rare diseases, where
recruitment can be particularly challenging.

Conclusion
If used appropriately, the re-randomisation design can
increase the recruitment rate for clinical trials while still
providing an unbiased estimate of treatment effect and
correct type I error rates. In many situations, it can in-
crease the power compared to a parallel group design
with an equivalent number of observations.

Additional file

Additional file 1: A re-randomisation design for clinical trials - Online
appendix. (DOCX 61 kb)

Abbreviations
GEE: Generalised estimating equations; RCT: Randomised controlled trial.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BCK: conception, design of simulation study, performed simulations,
developed mathematical concepts, wrote the manuscript. ABF: developed
mathematical concepts, performed simulations, critical revision of the
manuscript. CJD: design of simulation study, critical revision of the
manuscript. TPM: design of simulation study, critical revision of the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
No authors received specific funding for this work. Tim Morris is funded by the
MRC London Hub for Trials Methodology Research, grant MC_EX_G0800814.

Author details
1Pragmatic Clinical Trials Unit, Queen Mary University of London, London E1
2AB, UK. 2School of Public Health and Preventive Medicine, Monash
University, Melbourne, VIC 3004, Australia. 3Comprehensive Clinical Trials Unit,
University College London, London WC1E 6BT, UK. 4Hub for Trials
Methodology Research, MRC Clinical Trials Unit at UCL, London WC2B 6NH,
UK.

Received: 3 February 2015 Accepted: 7 October 2015

References
1. Tudur Smith C, Hickey H, Clarke M, Blazeby J, Williamson P. The trials

methodological research agenda: results from a priority setting exercise.
Trials. 2014;15(1):32.

2. McDonald AM, Knight RC, Campbell MK, Entwistle VA, Grant AM, Cook JA,
et al. What influences recruitment to randomised controlled trials? A review
of trials funded by two UK funding agencies Trials. 2006;7:9.

3. Sully BG, Julious SA, Nicholl J. A reinvestigation of recruitment to
randomised, controlled, multicenter trials: a review of trials funded by two
UK funding agencies. Trials. 2013;14:166.

4. Carlisle B, Kimmelman J, Ramsay T, MacKinnon N. Unsuccessful trial accrual
and human subjects protections: An empirical analysis of recently closed
trials. Clin Trials. 2014;12:77–83.

5. Haywood Jr C, Lanzkron S, Diener-West M, Haythornthwaite J, Strouse JJ,
Bediako S, et al. Attitudes toward clinical trials among patients with sickle
cell disease. Clin Trials. 2014;11(3):275–83.

6. Dunning AJ, Reeves J. Control of type 1 error in a hybrid complete two-period
vaccine efficacy trial. Pharm Stat. 2014;13(6):397–402.

7. Mills EJ, Kelly S, Wu P, Guyatt GH. Epidemiology and reporting of
randomized trials employing re-randomization of patient groups: a
systematic survey. Contemp Clin Trials. 2007;28(3):268–75.

8. Clark OA, Lyman G, Castro AA, Clark LG, Djulbegovic B. Colony stimulating
factors for chemotherapy induced febrile neutropenia. Cochrane Database
Syst Rev. 2003;3:CD003039.

9. Tack J, Muller-Lissner S, Bytzer P, Corinaldesi R, Chang L, Viegas A, et al.
A randomised controlled trial assessing the efficacy and safety of repeated
tegaserod therapy in women with irritable bowel syndrome with
constipation. Gut. 2005;54(12):1707–13.

10. DiazGranados CA, Dunning AJ, Kimmel M, Kirby D, Treanor J, Collins A, et al.
Efficacy of high-dose versus standard-dose influenza vaccine in older adults.
N Engl J Med. 2014;371(7):635–45.

11. Nason M, Follmann D. Design and analysis of crossover trials for absorbing
binary endpoints. Biometrics. 2010;66(3):958–65.

12. Rosenberger WF, Lachin JM. Randomization in Clinical Trials. New York: John
Wiley & Sons, Inc.; 2005.

13. Kahan BC, Morris TP. Assessing potential sources of clustering in individually
randomised trials. BMC Med Res Methodol. 2013;13:58.

14. Hernandez AV, Steyerberg EW, Habbema JD. Covariate adjustment in
randomized controlled trials with dichotomous outcomes increases
statistical power and reduces sample size requirements. J Clin Epidemiol.
2004;57(5):454–60.

15. Turner EL, Perel P, Clayton T, Edwards P, Hernandez AV, Roberts I, et al.
Covariate adjustment increased power in randomized controlled trials: an
example in traumatic brain injury. J Clin Epidemiol. 2012;65(5):474–81.

16. Kahan BC, Jairath V, Dore CJ, Morris TP. The risks and rewards of covariate
adjustment in randomized trials: an assessment of 12 outcomes from 8
studies. Trials. 2014;15:139.

17. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear
models. Biometrika. 1986;73(1):13–22.

18. Rabe-Hesketh S, Skrondal A. Multilevel and Longitudinal Modeling Using
Stata. College Station, Texas: Stata Press; 2012.

19. Kenward MG, Roger JH. Small sample inference for fixed effects from
restricted maximum likelihood. Biometrics. 1997;53(3):983–97.

20. Kahan BC. Accounting for centre-effects in multicentre trials with a binary
outcome - when, why, and how? BMC Med Res Methodol. 2014;14(1):20.

21. Kahan BC, Morris TP. Analysis of multicentre trials with continuous
outcomes: when and how should we account for centre effects? Stat Med.
2013;32(7):1136–49.

22. Kahan BC. Bias in randomised factorial trials. Stat Med. 2013;32(26):4540–9.
23. Freeman PR. The performance of the two-stage analysis of two-treatment,

two-period crossover trials. Stat Med. 1989;8(12):1421–32.
24. Balaam LN. A Two-Period Design with t2 Experimental Units. Biometrics.

1968;24(1):61–73.
25. Thorpe KE, Zwarenstein M, Oxman AD, Treweek S, Furberg CD, Altman DG,

et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a
tool to help trial designers. J Clin Epidemiol. 2009;62(5):464–75.

26. Yelland LN, Sullivan TR, Voysey M, Lee KJ, Cook JA, Forbes AB. Applying the
intention-to-treat principle in practice: Guidance on handling randomisation
errors. Clin Trials. 2015;12:418–423.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kahan et al. BMC Medical Research Methodology  (2015) 15:96 Page 17 of 17

dx.doi.org/10.1186/s12874-015-0082-2

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Overview of the re-randomisation design
	Re-randomisation in the SWIM trial
	Properties of the re-randomisation design
	Patients are only eligible for re-randomisation when the follow-up period from their previous randomisation is complete
	Randomisations for the same patient are performed independently
	The treatment effect is constant across all randomisation periods

	Methods of analysis
	Treating all observations as independent (unadjusted analysis)
	Treatment effect estimate
	Type i error rate
	Power
	Accounting for patient effects (adjusted analysis)
	Treatment effect estimate
	Type i error rate
	Power

	Simulation study
	Varying the ICC
	Varying the proportion of re-randomisations
	Scenarios where a non-random subset is re-randomised, or outcomes differ across randomisation periods
	A small number of patients


	Results
	Simulation results
	Varying the ICC and the proportion of re-randomisations
	Scenarios where a non-random subset is re-randomised, or outcomes differ across randomisation periods
	A small number of patients

	Further issues to consider with re-randomisation
	When can the re-randomisation design be used in practice?
	The length of the follow-up period
	The assumption of a constant treatment effect across randomisation periods

	Covariate adjustment in re-randomisation trials
	Re-randomisation with a small number of patients
	Re-randomisation vs. crossover designs
	Use of re-randomisation in open-label trials
	How many times can patients be re-randomised?
	When can a patient be re-randomised?
	How should patients be consented for re-randomised trials?
	Accidental re-randomisation
	Applying re-randomisation to the SWIM trial
	Is the assumption of constant treatment effect reasonable?
	Should we limit the number of times each patient can be enrolled?
	Should we introduce an extra washout period before patients can be re-enrolled?
	How should we analyse SWIM?


	Discussion
	Conclusion
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



