Stereoselective Synthesis of Densely Substituted Tetrahydroquinolines by a Conjugate Addition nitro-Mannich Reaction with Carbon Nucleophiles
James C. Anderson,* and Christopher D. Rundell
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

General Experimental

Unless otherwise stated, all reactions were carried out under an atmosphere of nitrogen. All glassware was flame dried under a stream of nitrogen before use. Cooling to $0^{\circ} \mathrm{C}$ was effected using an ice-water bath. Reactions were monitored by thin layer chromatography (TLC) using Polygram Sil G/UV 254 0.25 mm silica gel precoated plastic plates with fluorescent indicator. Sheets were visualised using ultraviolet light (254 nm), ninhydrin or KMnO_{4}, as appropriate. Flash chromatography was performed using Fluorochem silica gel $60,35-70 \mu \mathrm{M}$. The liquid phase was analytical grade 40-60 petroleum ether (pet. Ether) and ethyl acetate (EtOAc) unless otherwise stated.

Removal of solvents (in vacuo) was achieved using a Vacuubrand diaphragm pump or house vacuum and Büchi rotary evaporators.
All NMR data was collected using a Bruker AMX 300 MHz , Bruker AVANCE III 400 MHz , Bruker AVANCE 500 MHz or Bruker AVANCE III 600 MHz . Data was manipulated directly using Bruker XwinNMR (version 2.6), TopSpin (version 2.1) or Mnova (version 9.1.0). Reference values for residual solvents were taken as $\delta=7.26\left(\mathrm{CDCl}_{3}\right)$ and $2.51 \mathrm{ppm}(\mathrm{DMSO}-\mathrm{d} 6)$ for ${ }^{1} \mathrm{H}$ NMR; $\delta=$ $77.16 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$ for ${ }^{13} \mathrm{C}$ NMR. Multiplicities for coupled signals were denoted as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br} .=$ broad, apt. = apparent and dd = double doublet etc. Coupling constants (\mathcal{J}) are given in Hz and are uncorrected. Where appropriate, COSY, DEPT, HMBC, HMQC and NOE experiments were carried out to aid assignment. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignments correspond to the major diastereomer only. Mass spectroscopy data was collected on a Thermo Finnigan Mat900xp (EI/CI) VG-70se (FAB) and Waters LCT Premier XE (ES) instruments. Infrared data
was collected using a Perkin-Elmer 1600 FTIR machine as a thin film unless otherwise stated. Elemental analysis was performed on an Exeter Analytical Inc. EA440 horizontal load analyser. Melting points are uncorrected and were recorded on a Stuart Scientific SMP3 system.

Purification of Solvents and Reagents:

Commercial solvents and reagents were used as supplied or purified in accordance with standard procedures, as described below. THF, $\mathrm{Et}_{2} \mathrm{O}$ and Toluene were obtained from solvent towers, where the degassed solvent was passed through a 7 -micron filter under 4 bar pressure. Nitrostyrenes 5a, 5b, $\mathbf{5 c}, 5 \mathrm{e}, 5 \mathrm{f}$ and 5 g were synthesised according to a previous report. ${ }^{1}$ 4-bromo-2-iodoaniline was synthesised according to a previous report. ${ }^{2}$ Et2Zn (1.0M in Hexanes) \& $\mathrm{Me}_{2} \mathrm{Zn}$ (1.2 M in PhMe) were used as supplied from Sigma Aldrich.

4-bromo-2-vinylaniline 9

A solution of 4-bromo-2-iodoaniline ($2.98 \mathrm{~g}, 10.0 \mathrm{mmol}$), potassium vinyltrifluoroborate ($1.34 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 12.0 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.16 \mathrm{~g}, 10 \mathrm{~mol} \%, 1.00 \mathrm{mmol})$ in DME $(30 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}(10$ ml) and left to stir for 18 hours at $85^{\circ} \mathrm{C}$. The reaction mixture was added brine $(100 \mathrm{~mL})$, the product was extracted with EtOAc (3 x 50 mL$)$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give the crude styrene 9 as a brown oil. Purification by column chromatography ($9: 1$ pet. Ether:EtOAc) gave the pure styrene 9 as a low melting brown solid ($980 \mathrm{mg}, 49 \%$); $\mathrm{R}_{\mathrm{f}}=0.23$ (9:1 pet. Ether:EtOAc); IR $\nu_{\max }$ (neat) $3413(\mathrm{~N}-\mathrm{H}), 1618(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}$, ArH), 6.67 ($1 \mathrm{H}, \mathrm{dd}, J=17.4,11.0 \mathrm{~Hz}, \mathrm{CH}), 6.56(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 5.63$ ($1 \mathrm{H}, \mathrm{dd}, J=17.4,1.2 \mathrm{~Hz}, C H$), $5.35(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.2 \mathrm{~Hz}, \mathrm{CH}), 3.75(2 \mathrm{H}$, s, NH) $;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.3(\mathrm{ArC}), 131.6(\mathrm{CH}), 131.4(\mathrm{CH})$,
$129.9(\mathrm{CH}), 126.3(\mathrm{ArC}), 117.9(\mathrm{CH}), 117.3\left(\mathrm{CH}_{2}\right), 111.2(\mathrm{ArC}) ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 198$ (100\%, $\mathrm{M}_{+} \mathrm{H}^{+}$); HRMS $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NBr}$ calcd. 197.9913 found 197.9911.
(E)-N-(4-bromo-2-((E)-2-nitrovinyl)phenyl)-1-phenylmethanimine 5d

Synthesised according to previous report. ${ }^{1}$
9 ($891 \mathrm{mg}, 4.50 \mathrm{mmol}$) gave 5d as a tan solid ($645 \mathrm{mg}, 43 \%$); mp $156-158^{\circ} \mathrm{C}$; $R_{f}=0.35$ ($9: 1$ pet. Ether:EtOAc); IR $v_{\text {max }}$ (neat) $1618(\mathrm{C}=\mathrm{N}), 1332(\mathrm{~N}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 8.34(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}$, $\mathrm{CH}), 7.95(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.70(2 \mathrm{H}, \mathrm{dd}, J=7.8,5.8 \mathrm{~Hz}, \mathrm{ArH}), 7.63-$ $7.49(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 162.0 (CHN), 151.1 (ArC), 139.4 (ArCH), 135.7 (ArCH), 135.5 (ArCH), 134.9 (ArCH), 132.7 (ArCH), $132.4(\mathrm{ArCH}), 129.9(\mathrm{ArCH}), 129.5(\mathrm{ArCH}), 129.3$ (ArCH), 129.1 (CH), 126.5 (ArC), $120.8(\mathrm{CH}), 119.7$ (ArC), 109.7 (ArC); m/z (CI) $331\left(100 \%, \mathrm{M}^{+}\right)$; HRMS C ${ }_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$ calcd. 331.0077, found 331.0076.

General Experimental - Dialkylzinc Addition

A solution of 5 (0.25 mmol) and $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{~mol} \%)$ in $\mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ over 30 minutes. A solution of $\mathrm{ZnEt} 2(0.375 \mathrm{~mL}$ of a 1.0 M solution in Hexanes, 1.5 equiv.) was added and the mixture stirred for up to 1 hour and then stirred for up to 2 hours at room temperature. The resulting suspension was re-cooled to $-78{ }^{\circ} \mathrm{C}$ over 30 minutes and TFA (2.5 equiv.) was added drop wise, stirred for up to 1 hour and then stirred for up to 1 hour at room temperature. The reaction was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, extracted with EtOAc or DCM ($3 \times 30 \mathrm{~mL}$), the combined organic layers washed with brine (100 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give the crude tetrahydroquinoline 6. Purification by column chromatography gave the pure tetrahydroquinoline.
((2R,3R,4R)-4-ethyl-3-nitro-2-phenyl-1,2,3,4-tetrahydroquinoline 6a

Prepared using the general procedure above using 5a. ($63 \mathrm{mg}, 0.25 \mathrm{mmol}$) to give after column chromatography cis,cis-6a brown oil ($44 \mathrm{mg}, 62 \%$); $\mathrm{R}_{\mathrm{f}}=$ 0.33 (1:1 DCM:Hexanes); IR $v_{\max }$ (neat) 3416 (N-H), 1545 (N-O), 1368 (N-O) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.32-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.08-7.16 (2H, m, ArH $), 6.82(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.68(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{ArH}), 4.98$ (1 H , app. $\mathrm{t}, J=2.9 \mathrm{~Hz}, \mathrm{CH} \mathrm{NO}_{2}$), $4.76(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{CHPh}), 4.25(1 \mathrm{H}, \mathrm{s}$, NH), 3.20 (1 H , ddd, $J=8.3,5.3,2.4 \mathrm{~Hz}, \mathrm{CHEt}), 1.69-2.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
 138.1 (ArC), $129.4(\mathrm{ArCH}), 129.1(\mathrm{ArCH}), 129.1(\mathrm{ArC}), 127.6(\mathrm{ArCH}), 126.8$ (ArCH), $121.2(\mathrm{ArCH}), 118.8(\mathrm{ArCH}), 114.7(\mathrm{ArCH}), 86.8(\mathrm{CH}), 54.6(\mathrm{CH})$, 41.8 (CHEt), $30.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $11.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m/z (ESI) 234 (100\%, M$\mathrm{H}_{3} \mathrm{NO}_{2}{ }^{+}$), (45\%, $\mathrm{M}_{+} \mathrm{H}^{+}$); HRMS C ${ }_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd. 283.1447, found 283.1448.
(2R,3R,4R)-4-ethyl-2-(4-fluorophenyl)-3-nitro-1,2,3,4-tetrahydroquinoline 6b

Prepared using the general procedure above using 5b ($90 \mathrm{mg}, 0.33 \mathrm{mmol}$) to give after column chromatography cis,cis-6b yellow wax ($79 \mathrm{mg}, 80 \%$); $\mathrm{R}_{\mathrm{f}}=$ 0.30 (1:1 DCM:Hexanes); IR $v_{\max }$ (neat) 3386 (N-H), 1546 (N-O), 1367 (N-O) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (CDCl3, 600 MHz) $\delta 7.30-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.07-7.16(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 6.81-6.85(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.1 \mathrm{~Hz}, \mathrm{ArH}), 4.94$ (1H, dd, $J=3.3,2.6 \mathrm{~Hz}, C H N O 2), 4.75(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{CHAr}), 4.21(1 \mathrm{H}, \mathrm{s}$, NH), 3.20 (1 H , ddd, $J=8.3,5.4,2.6 \mathrm{~Hz}, \mathrm{CHEt}), 1.73-1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $\left.1.12\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 151 \mathrm{MHz}\right) \delta 163.0(\mathrm{~d}, J=$ $248.1 \mathrm{~Hz}, \operatorname{ArCF}$), 128.6 (d, $J=8.4 \mathrm{~Hz}, \operatorname{ArCH}$), 142.3 (ArC), 133.9 ($\mathrm{d}, J=3.8$ $\mathrm{Hz}, \mathrm{ArC}), 129.4$ (ArCH), 127.7 (ArCH), 121.2 (ArCH), 119.0 (ArC), 116.1 (d, J $=21.7 \mathrm{~Hz}, \mathrm{ArCH})$, $114.8(\mathrm{ArCH}), 86.9(\mathrm{CH}), 54.0(\mathrm{CH}), 41.6$ (CHEt), 30.6
$\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 19 \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-112.6(1 \mathrm{~F}, \mathrm{~s}, \mathrm{ArF})$; m / z (ESI) 301 ($100 \%, \mathrm{M}+\mathrm{H}^{+}$); HRMS $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{2}$ calcd. 301.1352, found 301.1364.
(2S,3R,4R)-4-ethyl-3-nitro-2-(thiophen-2-yl)-1,2,3,4-tetrahydroquinoline 6c

Prepared using the general procedure above using 5 c ($26 \mathrm{mg}, 0.10 \mathrm{mmol}$) to give after column chromatography cis,cis-6c as a brown oil (15 mg, 53\%); R_{f} $=0.33$ (1:1 DCM:Hexanes); IR $v_{\max }$ (neat) $3400(\mathrm{~N}-\mathrm{H}), 1546(\mathrm{~N}-\mathrm{O}), 1364(\mathrm{~N}-$ O) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.26-7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.04-7.16$ $(3 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, \mathrm{ArH}), 6.85(1 \mathrm{H}, \mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, \mathrm{ArH})$, $6.68(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, \mathrm{ArH}), 5.12(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{CHPh}), 5.05(1 \mathrm{H}$, app. t, $J=3.9 \mathrm{~Hz}, C H N O 2$), $3.37(1 \mathrm{H}$, app. dt, $J=8.5,4.7 \mathrm{~Hz}, \mathrm{CHEt}), 1.78-$ $1.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $151 \mathrm{MHz})$ ס $141.8(\mathrm{ArC}), 140.4(\mathrm{ArC}), 129.2(\mathrm{ArCH}), 127.7(\mathrm{ArCH}), 127.2$ (ArCH), 126.0 (ArCH), 125.9 (ArCH), 121.4 (ArC), 119.6 (ArCH), 115.4 (ArCH), $86.6(\mathrm{CH}), 51.5(\mathrm{CH}), 40.7(\mathrm{CHEt}), 29.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (ESI) 301 ($100 \%, \mathrm{M}+\mathrm{H}^{+}$); HRMS $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ calcd. 289.1011, found 289.1001.
(2R,3R,4R)-6-bromo-4-ethyl-3-nitro-2-phenyl-1,2,3,4-tetrahydroquinoline 6d

Prepared using the general procedure above using $5 \mathbf{d}$. ($83 \mathrm{mg}, 0.25 \mathrm{mmol}$) to give after column chromatography cis,cis-6d yellow wax ($72 \mathrm{mg}, 80 \%$); $\mathrm{R}_{\mathrm{f}}=$ 0.41 (9:1 pet. Ether:EtOAc); IR $v_{\max }$ (neat) 3376 (N-H), 1540 (N-O), 1334 (NO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.32$ - 7.43 (5H, m, ArH), $7.22-7.26$
(1H, m, ArH), $7.20(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, \operatorname{ArH}), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, ArH), $4.95\left(1 \mathrm{H}, \mathrm{dd}, J=3.3,2.3 \mathrm{~Hz}, \mathrm{CHNO}_{2}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{CHAr})$, $4.28(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.16(1 \mathrm{H}, \mathrm{ddd}, J=8.2,5.3,2.3 \mathrm{~Hz}, \mathrm{CHEt}), 1.71-1.95(2 \mathrm{H}$, $\left.\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 151 \mathrm{MHz}\right) \delta ~$ $141.6(\mathrm{ArC}), 137.6(\mathrm{ArC}), 131.9(\mathrm{ArCH}), 130.4(\mathrm{ArCH}), 129.3(\mathrm{ArCH}), 126.7$ (ArCH), 123.3 (ArC), $116.3(\mathrm{ArCH}), 86.3(\mathrm{ArCH}), 79.7(\mathrm{CH}), 54.5(\mathrm{CH}), 41.7$ (CHEt), $30.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $11.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m/z (ESI) $361\left(100 \%, \mathrm{M}+\mathrm{H}^{+}\right)$; HRMS $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2}$ calcd. 351.0552, found 361.0565.
(2R,3R,4R)-4-ethyl-3-nitro-2-(p-tolyl)-1,2,3,4-tetrahydroquinoline 6e

Prepared using the general procedure above using $5 \mathbf{e}$ ($106 \mathrm{mg}, 0.40 \mathrm{mmol}$) to give after column chromatography cis,cis-6e cream wax ($87 \mathrm{mg}, 73 \%$); $\mathrm{R}_{\mathrm{f}}=$ 0.30 (9:1 pet. Ether:EtOAc); IR $\nu_{\max }$ (neat) 3401 (N-H), 1542 (N-O), 1365 (NO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.18-7.25(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.09-7.14$ (2H, m, ArH), 6.79-6.82 (1H, m, ArH), $6.67(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, \mathrm{ArH}), 4.94$ ($1 \mathrm{H}, \mathrm{dd}, J=3.3,2.4 \mathrm{~Hz}, C H N O 2$), 4.71 ($1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{CHAr}$), $4.21(1 \mathrm{H}, \mathrm{s}$, NH), 3.18 (1 H , ddd, $J=8.2,5.3,2.5 \mathrm{~Hz}, \mathrm{CHEt}$), 2.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArCCH}_{3}$), 1.73$1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $151 \mathrm{MHz}) \delta 142.6(\mathrm{ArC}), 139.0(\mathrm{ArC}), 135.0(\mathrm{ArC}), 129.8(\mathrm{ArCH}), 129.4$ $(\mathrm{ArCH}), 127.6(\mathrm{ArCH}), 126.6(\mathrm{ArCH}), 121.3(\mathrm{ArC}), 118.7(\mathrm{ArCH}), 114.7$ (ArCH), $86.9\left(\mathrm{CHNO}_{2}\right), 54.4(\mathrm{CHAr}), 41.8(\mathrm{CHEt}), 30.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.3$ $\left(\mathrm{ArCCH}_{3}\right), 11.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{El}) 220$ (100\%, M-C2H6$\left.{ }^{+}\right)$, 296 (65\%, M+); HRMS $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd. 296.1519, found 296.1520.
(2R,3R,4R)-4-ethyl-3-nitro-2-(p-tolyl)-1,2,3,4-tetrahydroquinoline $6 \mathbf{f}$

Prepared using the general procedure above using 5 ($92 \mathrm{mg}, 0.30 \mathrm{mmol}$) give after column chromatography cis,cis-6f brown oil ($86 \mathrm{mg}, 86 \%$); $\mathrm{R}_{\mathrm{f}}=0.25$ (9:1 pet. Ether:EtOAc); IR $v_{\max }($ neat $) 3366(N-H), 1539(N-O), 1336(N-O) \mathrm{cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.51-8.04(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5$, $1.8 \mathrm{~Hz}, \mathrm{ArH}$) , $7.13-7.18(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.85(1 \mathrm{H}, \mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, \mathrm{ArH})$, $6.74(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, \mathrm{ArH}), 5.08(1 \mathrm{H}, \mathrm{dd}, J=3.3,2.4 \mathrm{~Hz}, \mathrm{CHNO})_{2}$, $4.92(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{CHAr}), 4.36(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}), 3.25(1 \mathrm{H}$, ddd, $J=8.2$, $5.4,2.3 \mathrm{~Hz}, \mathrm{CHEt}), 1.77-2.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta 134.7(\mathrm{ArC}), 129.7(\mathrm{ArC}), 129.5$ $(\mathrm{ArC}), 129.2(\mathrm{ArCH}), 129.2(\mathrm{ArCH}), 129.0(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 128.2$ (ArCH), $127.9(\mathrm{ArCH}), 127.6(\mathrm{ArCH}), 127.2(\mathrm{ArCH}), 126.7(\mathrm{ArCH}), 126.7$ (ArCH), $126.0(\mathrm{ArCH}), 124.3(\mathrm{ArCH}), 122.9(\mathrm{ArC}), 118.9(\mathrm{ArCH}), 114.8$ (ArCH), $86.8(\mathrm{CH}), 54.7(\mathrm{CH}), 42.0(\mathrm{CHEt}), 30.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; m / z (ESI) 333 ($100 \%, \mathrm{M}+\mathrm{H}^{+}$); HRMS $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd. 333.1603, found 333.1596.
(2R,3R,4R)-4-methyl-3-nitro-2-phenyl-1,2,3,4-tetrahydroquinoline $\mathbf{6 g}$

Prepared using the general procedure above using $\mathbf{5 g}$ ($101 \mathrm{mg}, 0.40 \mathrm{mmol}$) to give after column chromatography cis,cis-6g red oil ($56 \mathrm{mg}, 52 \%$); $\mathrm{R}_{\mathrm{f}}=0.40$ (9:1 pet. Ether:EtOAc); IR $v_{\max }($ neat $) 3349(N-H), 1544(N-O), 1367(N-O) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.28-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7$ $\mathrm{Hz}, \mathrm{ArH}), 7.12(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.83(1 \mathrm{H}, \mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, \mathrm{ArH}), 6.67(1 \mathrm{H}, \mathrm{dd}$, $J=8.0,1.2 \mathrm{~Hz}, \mathrm{ArH}), 4.85(1 \mathrm{H}, \mathrm{dd}, J=4.2,3.6 \mathrm{~Hz}, \mathrm{CHNO}$) , $4.82(1 \mathrm{H}, \mathrm{d}, J=$ $3.6 \mathrm{~Hz}, \mathrm{CHPh}), 3.45\left(1 \mathrm{H}, \mathrm{qd}, J=7.1,4.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.49(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta 142.3(\operatorname{ArC}), 138.1(\operatorname{ArC}), 129.1$ (ArCH), 129.1 (ArCH), $128.8(\mathrm{ArCH}), 127.7(\mathrm{ArCH}), 126.8(\mathrm{ArCH}), 122.4$ (ArC), 119.0 (ArCH), 114.7 (ArCH), 89.6 (CHPh$), 55.0\left(\mathrm{CHNO}_{2}\right), 33.6$ $\left(\mathrm{CHCH}_{3}\right), 22.7\left(\mathrm{CHCH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{El}) 206\left(100 \%, \mathrm{M}_{-} \mathrm{CH}_{4} \mathrm{NO}_{2}{ }^{+}\right), 268\left(65 \%, \mathrm{M}^{+}\right)$; HRMS $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd. 268.1206, found 268.1206.

Refereces:

1) Anderson, J.C.; Barham, J.P.; Rundell, C.D., Org. Lett., 2015, 17, 4090.
2) Fra, L.; Millán, A.; Souto, J. A.; Muñiz, K., Angew. Chem. Int. Ed., 2014, 53, 7349.
