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Abstract

In order to limit climate change from greenhouse gas emissions, governments have introduced

renewable portfolio standards (RPS) to incentivise renewable energy production. While the

response of industry to exogenous RPS targets has been addressed in the literature, setting

RPS targets from a policymaker’s perspective has remained an open question. Using a bi-

level model, we prove that the optimal RPS target for a perfectly competitive electricity

industry is higher than that for a benchmark centrally planned one. Allowing for market

power by the non-renewable energy sector within a deregulated industry lowers the RPS

target vis-à-vis perfect competition. Moreover, to our surprise, social welfare under perfect

competition with RPS is lower than that when the non-renewable energy sector exercises

market power. In effect, by subsidising renewable energy and taxing the non-renewable sector,

RPS represents an economic distortion that over-compensates damage from emissions. Thus,

perfect competition with RPS results in “too much” renewable energy output, whereas the

market power of the non-renewable energy sector mitigates this distortion, albeit at the cost

of lower consumer surplus and higher emissions. Hence, ignoring the interaction between RPS

requirements and the market structure could lead to sub-optimal RPS targets and substantial

welfare losses.
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1. Introduction

Concerns about climate change have spurred policymakers to implement measures to re-

duce greenhouse gas emissions. One of the challenges faced by regulators is to craft policies

that are compatible with profit maximisation and to allow polluting industries to reduce emis-

sions in a competitive market. Two commonly implemented policy instruments are cap-and-

trade (C&T) schemes and policies for promoting renewable energy (RE) technologies. While

the former directly limit GHG emissions, the latter do so indirectly by providing financial

incentives in the form of either subsidies or guaranteed revenue for RE producers. Examples

of C&T schemes are the EU Emissions Trading System (ETS), the Regional Greenhouse Gas

Initiative (RGGI), and California Assembly Bill (AB) 32. On the other hand, support for

RE adoption includes feed-in tariffs (FiT) and renewable portfolio standards (RPS). A FiT

allows producers to lock in future revenue through guaranteed prices for power generated

from RE sources, which provides access to capital on better terms for financing projects.

By contrast, RPS requires a certain percentage (or, a MWh amount in some U.S. states) of

electricity generation to originate from RE sources. Examples include RPS policies in various

U.S. states as well as the EU 20-20-20 targets (European Commission, 2009). In most cases,

producers are allowed to meet RPS by self-generation, procuring power from RE sources

via bi-lateral contracts, and purchasing RE certificates/credits (RECs) from secondary mar-

kets. The main difference between these two instruments is that while FiT is determined

by negotiation between RE producers and the government, the REC price is endogenously

determined by the supply-demand condition in the REC market. See Murphy and Rosenthal

(2006) for an approach to quantifying the marginal contribution of a given policy measure

that is included in a portfolio of several measures.

RPS has received some attention in the literature partly due to its popularity in the

U.S. and other countries. In contrast to the extant literature, we take a policy perspective to

explore the unintended consequences of a policymaker’s failure to account for market struc-

ture when setting the RPS target. To our surprise, we find that the RPS policy may actually

perform better under some market power. Early studies on RPS are mostly qualitative, fo-

cusing on description and explanation of RPS or comparison of RPS implementations among

U.S. states (Bird and Lokey, 2007; Holt and Wiser, 2007; Wiser and Barbose, 2008). There

is a handful of studies empirically identifying the impact of RPS on RE capacity. For example,

cross-sectional analyses are performed by Menz and Vachon (2006) and Adelaja and Hailu

(2008), and both conclude that a positive (not causal) relationship exists between RPS and

RE capacity. Using panel data design, Kneifel (2008) concludes that RPS resulted in no

statistically meaningful increase in RE capacity. However, when accounting for differences in

RPS coverage (i.e., among public utilities, investor-owned utilities, and power marketers, etc.,
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as well as existing capacity), Yin and Powers (2010) find that RPS spurred RE development.

A number of papers on RPS have focused on analyses of industry response or design

of RPS. For example, Boomsma et al. (2012) use real options to explore the response of a

power company facing exogenous stochastic REC prices. Treating the REC price as endoge-

nous, Chen and Wang (2013) examine the interactions among RPS, emissions trading, and

green energy programs by considering two aspects of RPS policy design: double-counting

and bundling. The theoretical analysis shows that bundling could be redundant in the pres-

ence of double-counting, which refers to the use of renewable energy both to satisfy the

RPS requirement (or to sell energy to other parties in form of RECs) and to sell energy

to consumers as green power to earn a premium. Policies that allow for double-counting

appear to be a better choice since they result in a higher social surplus. On a related note,

Chen et al. (2011) tackle via a complementarity model whether restrictions imposed on in-

state or out-of-state sales for the purposes of curtailing emissions in line with California’s

AB 92 would produce the same pattern of electricity generation. Amundsen and Mortensen

(2001) investigate REC and other tradeable permit markets via an equilibrium model in the

context of Danish legislation. Fischer (2010) explores the impact of RPS on the primary

market, i.e., the equilibrium electricity price. She finds that modest RPS targets may ini-

tially lower the equilibrium electricity price because the REC price serves as a subsidy for

RE. However, more stringent RPS targets cause non-renewable (NRE) production to reduce

drastically, thereby putting upward pressure on the equilibrium electricity price and provid-

ing consumers with a strong signal to reduce demand. By allowing for producers to behave

à la Cournot, Amundsen and Bergman (2012) show that the exercise of market power in the

presence of green certificates could have deleterious effects on social welfare by stymieing RE

producers. Tanaka and Chen (2013) extend this analysis to allow for the exercise of market

power by a dominant producer acting as a Stackelberg leader. The resulting mathematical

program with equilibrium constraints (MPEC) illustrates how an NRE producer with market

power can manipulate prices in both the primary and secondary markets with adverse conse-

quences for RE investors. Finally, Hibiki and Kurakawa (2013) consider a dominant-fringe

framework to compare social welfare under FiT and RPS. They find that FiT can achieve

higher social welfare than RPS when the marginal damage cost is relatively low.

Policy debate over the RPS target has received little attention partially because it is per-

ceived that the process is more akin to political negotiation rather than something grounded

in economic principles, i.e., as a result of equating marginal damage costs to marginal abate-

ment costs. This is a juncture that marks a point of departure between our paper and

extant work. Specifically, our paper focuses on comparing second-best RPS policies in a

decentralised industry with a first-best choice implemented by an idealised central planner.
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Towards this end, we assume that the decentralised settings have a policymaker that sets an

RPS target, while energy producers are followers. Our main objective is to compare optimal

RPS targets and to understand producers’ incentives under such policies as well as to gauge

their implications for social welfare. We, thus, consider three different settings by analysing

their solutions: (1) a (first-best) benchmark setting, in which a central planner controls all

aspects of the energy sector by maximising social welfare inclusive of the cost of damage from

emissions; (2) a perfectly competitive decentralised setting, in which generation decisions at

the lower level are made by price-taking NRE and RE sectors who take the RPS target as

well as the REC price as given, while a welfare-maximising policymaker at the upper level

determines the optimal RPS target; and finally (3) a decentralised setting as in (2) but with

an NRE sector that is allowed to exercise market power by behaving à la Cournot.

With its treatment of strategic interactions among distinct agents via a multi-level model,

our paper is similar in spirit to Sauma and Oren (2006) and Murphy and Smeers (2010).

Sauma and Oren (2006) assess transmission line investment by formulating the problem as

an equilibrium problem with equilibrium constraints (EPEC) with each producer investing in

generation capacity at an upper level and market clearing at the lower level comprising pro-

ducers’ generation and the system operator’s re-dispatching decisions. A welfare-maximising

social planner uses this EPEC to evaluate various transmission expansion proposals. Their re-

sults highlight the importance of accounting for market structure when assessing transmission

investment. To put it differently, a proactive social planner who explicitly considers the re-

sponse of strategic producers can lead to a better outcome as measured by social surplus than

a reactive planner who ignores generation capacity addition. Meanwhile, Murphy and Smeers

(2010) analytically explore capacity investments, forward contracting, and spot market dis-

patch in a duopoly. Their resulting tri-level model, which is more complicated than an EPEC,

is solved using a stylised representation of the electricity industry, i.e., constant marginal costs

and no transmission constraints. The authors find that the classical result of Allaz and Vila

(1993), i.e., that forward contracts may mitigate market power, may not hold when capacity

investments are required.

In a similar vein, we aim to derive closed-form solutions to a multi-level model but with the

intention of examining how policy may be designed. In particular, we formalise analytically

how the very nature of the energy sector’s equilibrium is affected when another decision-

making level is considered. Indeed, in decentralised settings, since the cost of the externality

from emissions is not directly borne by producers, their private incentives have to be aligned

with those of society via the RPS. We prove all of our results analytically by finding quasi-

closed-form solutions for bi-level models. To best of our knowledge, this is the first paper

that studies the endogenous setting of the RPS target from a policymaker’s perspective by
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considering the market structure with tradeable RECs.

The rest of this paper is organised as follows. Section 2 lays out the modelling assump-

tions. We develop the main mathematical model and derive analytical results in Section 3

for each type of market setting. Section 4 uses numerical examples to illustrate the insights,

while Section 5 summarises the work and offers directions for future research. All proofs of

the propositions may be found in the appendix.

2. Assumptions

Parameters

A Intercept of the inverse demand function ($/MWh)

Cn Cost of NRE production ($/MWh)

Cr Cost of RE production ($/MWh)

K Rate of increase in marginal cost of greenhouse gas emissions ($/MWh2)

Z Slope of inverse demand function ($/MWh2)

Primal Variables

α Optimal proportion of electricity from RE (–)

qn NRE production (MWh)

qr RE production (MWh)

q Total electricity consumption (MWh)

Dual Variables

pREC Market-clearing price for RECs ($/MWh)

We assume that there are two types of generators in the electricity industry: renewable

and non-renewable. Since we are interested in industry-wide effects, we aggregate these two

types of generators into sectors. Thus, effectively, we have distinct RE and NRE sectors in

the industry, each of which acts as if it were a conglomerate. For each sector, we assume

linear cost functions, cn(qn) = Cnqn and cr(qr) = Crqr, which reflect not only marginal

costs of generation but also amortised capital costs. Here, qn and qr are NRE and RE

production (in MWh), respectively. Although non-linear cost functions may be more realistic

in terms of capturing the effects of start-up costs, ramping constraints, and capacity limits,
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our aggregated treatment of the two sectors means that such attributes are less relevant than

in a firm-level analysis.

As for the demand side, we also aggregate it by representing consumers’ willingness to

pay as a linear inverse demand function, i.e., p(q) = A− Zq (in $/MWh), where q = qn + qr

is total consumption. We assume that A > Cr > Cn in order to ensure that there is an

equilibrium and to capture the general characteristic that RE has higher levelised costs than

NRE sources. Here, A > 0 (in $/MWh) and Z > 0 (in $/MWh2) are the intercept and slope

of the inverse demand function, respectively. The externality from emissions is included via a

damage function that is convex in only the generation from the NRE sector, i.e., d(qn) =
1
2
Kq2n

for K > 0. Here, K (in $/MWh2) is the rate of increase in marginal cost of emissions. Other

types of damage functions may be posited, but increasing marginal effects from emissions

capture the fact that atmospheric concentrations of greenhouse gases are more difficult to

reverse the greater that they are. In order to facilitate comparative statics of the resulting

solutions, we assume that K > Z.

We take a complementarity approach to model the interaction between a deregulated

electricity industry and a policymaker by assuming that the policymaker’s objective is to

maximise social welfare (SW) inclusive of damage costs. In order to explore the variation of

outcomes, we allow for the following market settings:

Central planning (CP) This benchmark setting has a central planner operating all power

plants in order to maximise SW considering damage from emissions. This results in a

single-level quadratic program (QP).

Perfect competition (PC) Generation decisions at the lower level are made by price-

taking RE and NRE sectors who take the RPS percentage target, α, as given and

maximise their profits inclusive of REC revenues or costs determined by pREC , the

shadow price of the RPS constraint. At the upper level, the policymaker sets the RPS

percentage in order maximise SW constrained by the lower-level mixed complementarity

problem (MCP). This bi-level program may be re-cast as an MPEC if each lower-

level problem is convex and may, thus, be replaced by its Karush-Kuhn-Tucker (KKT)

conditions (Gabriel et al., 2012; Zhou et al., 2011).

Cournot oligopoly (CO) This is the same as PC except that the NRE sector is dominant

and behaves à la Cournot, i.e., it is able to influence the electricity price, whereas the

RE sector remains a price taker.

Since we will examine three market structures, we denote ·̄, ·̂, and ·∗ as the optimal values for

decision variables in CP, PC, and CO settings, respectively. Finally, all decisions are made

for a representative time period without uncertainty in any underlying parameter values.
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3. Mathematical Model and Analytical Results

3.1. Central Planning

The CP selects generation of either type in order to maximise SW by solving the following

QP:

max
qn≥0,qr≥0

∫ qn+qr

0

p(q′)dq′ − cn(qn)− cr(qr)− d(qn) (1)

The KKT conditions for the problem in Eq. (1) are:

0 ≤ qn ⊥ −A+ Z(qn + qr) + Cn +Kqn ≥ 0 (2)

0 ≤ qr ⊥ −A+ Z(qn + qr) + Cr ≥ 0 (3)

Effectively, the CP internalises the cost of emissions, i.e., each sector produces up to the point

where its marginal revenue equals the marginal social cost, and the lack of REC revenues

deters RE production.

Because the CP’s QP is concave, globally optimal interior solutions may be obtained for

output and the equilibrium electricity price:

q̄n =
(Cr − Cn)

K
(4)

q̄r =

[

A− Cr −
Z
K
(Cr − Cn)

]

Z
(5)

q̄ =
A− Cr

Z
(6)

p̄ = Cr= Cn +Kq̄n (7)

The fraction of electricity from renewable sources under CP may be determined ex post as:

ᾱ ≡
q̄r

q̄
=

[

A− Cr −
Z
K
(Cr − Cn)

]

(A− Cr)
(8)

Proposition 1. Under an interior solution for CP, ceteris paribus increases in K result in:

(i) A decrease in the optimal NRE output.

(ii) An increase in the optimal RE output.

(iii) No change in the equilibrium electricity consumption.

(iv) No change in the equilibrium electricity price.
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(v) An increase in the proportion of electricity from RE.

Parts (i), (ii), and (v) of Proposition 1 are intuitive: greater marginal cost of damage from

emissions will induce the CP to substitute NRE output with RE output. However, parts (iii)

and (iv) are somewhat counterintuitive because one would expect consumption to decrease

as a result of higher marginal costs of damage from emissions. In fact, what happens is that

as long as qr > 0, the KKT conditions for optimality effectively equate the marginal costs

of output from RE and NRE sources, i.e., Cr = Cn +Kqn. Therefore, this relationship fixes

the equilibrium output, and further increases to K merely change the composition of output.

By contrast, as long as K is relatively low, i.e., Cr > Cn+Kqn, we have the following corner

solution in which the equilibrium energy output decreases with K:

q̄0n =
(A− Cn)

K + Z
(9)

q̄0r = 0 (10)

q̄0 =
(A− Cn)

K + Z
(11)

p̄0 =
(AK + ZCn)

K + Z
(12)

As for the equilibrium price, it is simply equal to the RE generation cost for an interior

solution, which is unaffected by K. In the event of a corner solution, the equilibrium price

increases with K to reflect the reduction in consumption required. In summary, with CP,

when K is relatively low, the optimal decision is to reduce consumption by curbing NRE

production as K increases without relying on RE sources. Once K is high enough to equate

the incremental cost of RE production to the incremental social cost of NRE output, it is

optimal to fix the total energy output (and, therefore, the equilibrium price) and to respond

to further increases in K by merely changing the mix of electricity generation.

Before moving on to settings with deregulated industries, it will be helpful to note that

ᾱ is the root of the following linear function:

Q̄(α,K) = −K (A− Cr)α− Z (Cr − Cn) +K (A− Cr) (13)

Assuming Q̄(0, K) > 0 guarantees that an interior solution exists and is unique because

Q̄(1, K) = −Z (Cr − Cn) < 0.

3.2. Perfect Competition

In a deregulated setting, each sector seeks to maximise its own profit at the lower level by

selecting the level of output taking into account the RPS set by the policymaker at the upper
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level. No sector directly faces the cost of damage from emissions, but the electricity industry

on aggregate is subject to the RPS constraint, which may impose an effective tax on the

NRE sector. We start with a case of perfect competition in which both NRE and RE sectors

are price takers. The bi-level problem is solved via backward induction by first tackling the

lower level, which can be re-cast as an MCP because each lower-level problem is convex. The

resulting MCP is parameterised by the upper-level’s RPS decision. Next, the bi-level problem

is re-cast as an MPEC by replacing the lower level by the parameterised MCP, which defines

the MPEC’s feasible set together with the upper-level constraint. Finally, assuming interior

solutions, we replace the MPEC by an unconstrained non-linear program (NLP).

3.2.1. Lower-Level MCP with Perfect Competition

At the lower level, each sector selects its production in order to maximise its profit, which

consists of revenues from electricity sales minus production costs. For the NRE sector, the

RPS requirement results in an extra cost resulting from the obligation to purchase RECs at

the equilibrium REC price, pREC (in $/MWh). By contrast, the RE sector collects revenues

from RECs in proportion to pREC and the RPS constraint. Since each of these problems

is convex, it may be replaced by its KKT conditions. Hence, the lower-level MCP in Eqs.

(14)–(16) consists of each sector’s KKT conditions for profit maximisation and the RPS

constraint:

maxqn≥0 pqn − cn(qn)− αpRECqn

⇒ 0 ≤ qn ⊥ −A+ Z (qn + qr) + Cn + αpREC ≥ 0 (14)

maxqr≥0 pqr − cr(qr) + (1− α)pRECqr

⇒ 0 ≤ qr ⊥ −A+ Z (qn + qr) + Cr − (1− α)pREC ≥ 0 (15)

0 ≤ pREC ⊥ qr − α (qn + qr) ≥ 0 (16)

For a given α, the analytical interior solution to the MCP in Eqs. (14)–(16) is:

q̂n (α) =
(1− α) [A− (αCr + (1− α)Cn)]

Z
(17)

q̂r (α) =
α [A− (αCr + (1− α)Cn)]

Z
(18)

p̂REC (α) = Cr − Cn (19)

p̂ (α) = αCr + (1− α)Cn (20)

Eqs. (19) and (20) indicate that the equilibrium REC price is simply the additional cost
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of RE production and the equilibrium electricity price is a weighted average of the two types

of production costs, respectively. The following proposition summarises the impact of the

RPS target on these lower-level decisions:

Proposition 2. Under an interior solution for the lower level of the PC, ceteris paribus

increases in the RPS target result in:

(i) A decrease in the optimal NRE output.

(ii) Either an increase or a decrease in the optimal RE output.

(iii) A decrease in the equilibrium electricity consumption.

(iv) No change in the equilibrium REC price.

(v) An increase in the equilibrium electricity price.

Intuitively, parts (i)–(iii) of Proposition 2 state that as the RPS target increases, total

quantity demanded decreases. However, while NRE production decreases monotonically with

α, the impact of RPS on RE production is ambiguous because it reduces overall production

while increasing RE’s share. By contrast, increasing the RPS target decreases not only total

production but also NRE’s share. Consequently, RE production first increases and then

decreases with the RPS target. Finally, the equilibrium electricity price needs to increase at

a rate of Cr − Cn with α in order to match the required subsidy to the RE sector.

3.2.2. Upper Level with Perfect Competition

If the lower-level problems are replaced by their KKT conditions, then the policymaker’s

bi-level problem may be re-cast as an MPEC to select the optimal RPS, α̂, in order to

maximise social welfare:

max{0≤α≤1}∪{qn,qr}∪{pREC} Eq. (1)

s.t. Eqs. (14)–(16)

Assuming an interior solution for the lower-level MCP and that 0 < α < 1, we can further

replace the MPEC with the following unconstrained NLP:

max
α

Aq̂n (α)

(1− α)
−

Z (q̂n (α))
2

2 (1− α)2
− Cnq̂n (α)−

Crq̂n (α)α

(1− α)
−

K (q̂n (α))
2

2
(21)

The KKT condition for the NLP in Eq. (21) is:

{

(Cn − Cr)
(

Z −K (1− α)2
)

+K (1− α) [A− (αCr + (1− α)Cn)]
}

[A− (αCr + (1− α)Cn)]
−1

Z2
= 0 (22)
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Since A− (αCr + (1− α)Cn) > 0, the only way for the KKT condition to be met is for the

expression in the curly brackets to equal zero. This effectively means finding the roots of the

characteristic quadratic Q̂ (α,K) = W (K)α2 +X (K)α + Y (K), where:

W (K) = 2K (Cr − Cn) > 0 (23)

X (K) = K [3 (Cn − Cr) + (Cn − A)] < 0 (24)

Y (K) = Q̄(0, K) + 2K (Cr − Cn) > 0 (25)

Thus, Q̂ (α,K) is a convex quadratic with the following properties:

1. Q̂ (0, K) = Y (K) > 0

2. Q̂ (1, K) = W (K) +X (K) + Y (K) = −Z (Cr − Cn) < 0

Consequently, we can conclude that Q̂ (α,K) has two roots, 0 < α1 < 1 and α2 > 1 such

that:

α1 =
−X(K)−

√

X(K)2 − 4W (K)Y (K)

2W (K)
(26)

α2 =
−X(K) +

√

X(K)2 − 4W (K)Y (K)

2W (K)
(27)

The solution we seek is α1, which is now labeled as α̂.

Although comparative statics may be performed directly on α̂ with respect to K using the

closed-form solution in Eq. (26), it is less tedious to manipulate the characteristic quadratic

that implicitly defines it, i.e., Q̂ (α̂,K) = W (K) α̂2 + X (K) α̂ + Y (K) = 0 (see Fig. 1).

Using this, we obtain the following:

Proposition 3. The optimal RPS target under PC increases with K, i.e., dα̂
dK

> 0.

Intuitively, a higher marginal cost of damage from emissions will lead the policymaker to

tighten the RPS requirement. Unlike the CP setting, the policymaker has no scope to reduce

consumption directly, but Proposition 2(iii) indicates that a higher α will indirectly lead to

such an outcome.

Next, from the geometry of the solution, we obtain the relative ordering of the optimal

RPS targets:

Proposition 4. The optimal RPS target under PC is greater than that obtained under CP,

i.e., ᾱ<α̂.
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The illustration of the proof is in Fig. 1: the root of the solid line indicates ᾱ. Starting

at α = 1, we can do a linear projection of Q̂ (α,K) from the point (1, Q̂ (1, K)). Such

a projection is precisely Q̄ (α,K). Due to the convexity of Q̂ (α,K), the result follows.

Intuitively, a higher RPS target is required under PC relative to CP because in a deregulated

industry, it is not possible for the policymaker to curb consumption to the extent that

the incremental cost of RE output matches the incremental social cost of NRE production.

Instead, by creating a secondary market for RECs, the policymaker introduces a distortion

in which “too much” RE output is used from a social welfare perspective. In effect, as long

as the policymaker has no control over consumption, the only recourse to curb emissions is

to incentivise RE production.

Using the same geometric properties, we can conclude the following technical aspects of

the optimal RPS target under PC:

Proposition 5. The RPS target under PC, α̂ ∈ (0, 1), exists and is a unique solution to the

policymaker’s problem in Eq. (21).

0 0.5 1 1.5
−1

0

1

2

3

4

5

α

Q
(α

,
K

)

 

 

Q̄(α, K)

Q̂(α, K)

Q∗(α, K)

Figure 1: Characteristic Functions, Q̄ (α,K), Q̂ (α,K), and Q∗ (α,K), for Representative Parameters

Other results pertaining to the impact of K now follow:

Proposition 6. Under an interior solution for PC, ceteris paribus increases in K result in:

(i) A decrease in the optimal NRE output.

(ii) Either an increase or a decrease in the optimal RE output.

(iii) A decrease in the equilibrium electricity consumption.

(iv) No change in the equilibrium REC price.
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(v) An increase in the equilibrium electricity price.

The intuition for Proposition 6 follows directly from Proposition 2 along with the mono-

tonically increasing impact of the damage cost on the optimal RPS target under PC. It is

worth contrasting the solution under PC with that under CP. Recall that with a corner solu-

tion under CP, the equilibrium electricity consumption decreases along with a concomitant

increase in the equilibrium electricity price even as no RE production occurs. In effect, for low

relatively levels of K, it is optimal to curb consumption. Once RE production is marginal,

further increases in the marginal damage cost lead to a change in the optimal production mix

without affecting either the equilibrium electricity consumption or price. Lacking such direct

control over the electricity industry, the policymaker in the PC setting can only indirectly

influence outcomes by implementing more stringent RPS targets (Proposition 4).

3.3. Cournot Oligopoly

We now have the NRE sector behaving à la Cournot at the lower level with the RE sector

still being a price taker. Again, the entire industry is subject to an RPS target imposed by

the policymaker. However, since the NRE sector is able to manipulate the electricity price,

such strategic behaviour will have implications for not only the industry equilibrium but also

the optimal RPS target. Conceptually, the solution approach to the bi-level problem is the

same as that in Section 3.2, i.e., replace the lower level by its KKT conditions to obtain an

MPEC and then use the optimal interior solutions from the lower level to re-cast the MPEC

as an NLP.

3.3.1. Lower-Level MCP with Cournot Oligopoly

At the lower level, the MCP still consists of the RE sector’s KKT conditions for profit

maximisation (Eq. (15)) and the RPS constraint (Eq. (16)). Since the NRE sector has market

power, its KKT condition is modified to:

maxqn≥0 p (qn + qr) qn − cn(qn)− αpRECqn

⇒ 0 ≤ qn ⊥ −A+ Z (qn + qr) + Zqn + Cn + αpREC ≥ 0 (28)

Assuming qn > 0, qr > 0, and pREC > 0, we can solve the MCP in Eqs. (15), (16), and

(28) analytically (albeit as functions of α):

q∗n (α) =
(1− α) [A− (αCr + (1− α)Cn)]

Z (α2 − 2α + 2)
(29)

q∗r (α) =
α [A− (αCr + (1− α)Cn)]

Z (α2 − 2α + 2)
(30)
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pREC∗
(α) =

(Cr − Cn)− (1− α) (A− Cr)

(α2 − 2α + 2)
(31)

p∗ (α) =
A (1− α)2 + αCr + (1− α)Cn

(α2 − 2α + 2)
(32)

Due to more complicated expressions, it is not as straightforward to do comparative

statics with respect to the RPS level. However, at least these closed-form solutions may be

manipulated further by defining F (α) = α2 − 2α+ 2, which is greater than or equal to 1 for

all values of α, and F ′ (α) = 2 (α− 1) ≤ 0 for all 0 ≤ α ≤ 1. Furthermore, it is possible to

compare the equilibrium electricity and REC prices in the PC and CO settings for the same

α:

Proposition 7. For a given RPS target, the equilibrium electricity price under CO is higher

than that under PC, i.e., p∗ (α) > p̂ (α).

Proposition 8. For a given RPS target, the equilibrium REC price under CO is lower than

that under PC, i.e., p̂REC (α) > pREC∗
(α).

Intuitively, by exercising market power, the NRE sector is able to increase the equilibrium

electricity price and lower the equilibrium REC price to its benefit. As a consequence of

market power, we also have the following results for NRE and RE outputs:

Proposition 9. For a given RPS target, the equilibrium NRE and RE outputs under CO

are less than those under PC, i.e., qn
∗ (α) < q̂n (α) and qr

∗ (α) < q̂r (α).

3.3.2. Upper Level with Cournot Oligopoly

As before, the lower-level problems may be replaced by their KKT conditions, thereby

rendering the policymaker’s bi-level problem as an MPEC to select the optimal RPS, α, in

order to maximise social welfare:

max{0≤α≤1}∪{qn,qr}∪{pREC} Eq. (1)

s.t. Eqs. (15), (16), (28)

Assuming that non-negativity constraints on the lower-level decision variables are satisfied

with strict inequalities and that 0 < α < 1, we can replace the MPEC with the following

unconstrained NLP:

max
α

Aq∗n (α)

(1− α)
−

Z (q∗n (α))
2

2 (1− α)2
− Cnq

∗
n (α)−

Crq
∗
n (α)α

(1− α)
−

K (q∗n (α))
2

2
(33)
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The KKT condition for the NLP in Eq. (33) is:

[A− (αCr + (1− α)Cn)]

Z2F (α)3
{[

Z (2F (α)− 1)−K (1− α)2
]

(Cn − Cr)F (α)

+ [A− (αCr + (1− α)Cn)]× [F (α) (K − 2Z) (1− α)

+2 (1− α)
[

Z (2F (α)− 1)−K (1− α)2
]]}

= 0 (34)

Since there is no apparent analytical solution to this KKT condition, we cannot derive the

optimal RPS fraction as we did for the PC setting. However, as in the PC setting, we can

manipulate the KKT condition to obtain more general insights about the behaviour of α∗.

We first note that the KKT condition in Eq. (34) holds as long as the expression in curly

brackets is equal to zero because [A−(αCr+(1−α)Cn)]

Z2F (α)3
is strictly positive. Denoting the terms in

the curly brackets of Eq. (34) as Q∗ (α,K), we can show that it is a cubic function whose

shape depends on the sign of K − 2Z since quartic terms cancel out. As shown in Fig. 1,

the dashed curve intersects the horizontal axis from positive to negative exactly once for

0 < α < 1, thereby indicating that a solution for α∗ exists and is unique. Unlike the PC

setting, proving that α∗ increases with the damage cost or is a unique optimum must be done

indirectly:

Proposition 10. The RPS target under CO, α∗ ∈ (0, 1), exists and is a unique solution to

the policymaker’s problem in Eq. (33).

Proposition 11. The optimal RPS target under CO increases with K, i.e., dα∗

dK
> 0.

Furthermore, we show that the maximised social welfare, denoted by w, has the following

order:

Proposition 12. The maximised social welfare under CO is greater than that for PC but

lower than that for CP, i.e., ŵ < w∗ < w̄.

Somewhat surprisingly, Proposition 12 indicates that PC results in the lowest maximised

social welfare. First, based on the discussion related to Proposition 4, the use of an RPS policy

in a PC setting results in an economic inefficiency as “too much” RE production occurs vis-à-

vis CP. The mechanism behind this can be explained as follows. Under CP, efficient resource

allocation can be achieved since the electricity price is equal to the marginal social cost, i.e.,

marginal production cost plus marginal damage cost or p̄ = Cr = Cn+Kq̄n. By contrast, the

policymaker can indirectly affect the market price only through the RPS target, α, under PC.

The electricity price is not equal to the marginal social cost as p̂ (α) = αCr+(1− α)Cn < Cr.

This leads to inefficient resource allocation, whereby the RE sector supplies more than the
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efficient level. A CO setting also results in an economically inefficient level of NRE and

RE output, but the NRE sector’s exercise of market power (by withholding its output) puts

downward pressure on RE output. While the decrease in total production and the resulting

increase in the electricity price under CO have a negative effect on social welfare, the decrease

in RE output has a positive impact on social welfare because it alleviates the distortion of

resource allocation under PC. At the same time, the policymaker tries to mitigate the NRE

sector’s potential to exercise market power by curbing the RPS target relative to the PC

level as shown in Proposition 13. Consequently, re-allocation of output from the RE sector

to the NRE one occurs under CO, which reduces the distortion under PC, thereby increasing

social welfare.

Finally, and related to Proposition 12, it is possible to prove that the optimal RPS target

has the following order:

Proposition 13. The optimal RPS target under CO is greater than that for CP but lower

than that for PC, i.e., ᾱ < α∗ < α̂.

Intuitively, the policymaker mitigates the NRE sector’s potential to exercise market power

by curbing the RPS target relative to the PC level. Indeed, the NRE sector benefits from

withholding generation, and a more stringent RPS target would play into its hands by facili-

tating the withholding of NRE production and increasing the equilibrium electricity price to

the detriment of consumers. Conversely, the optimal RPS target under CO is lower bounded

by the implied RPS target under CP.

4. Numerical Examples

4.1. Data

In order to gain further insights into the differences regarding the RPS targets and social

welfare among the three settings, we implement numerical examples using the following

parameter values: A = 100, Z = 0.01, K ∈ [0.01, 0.10], Cn = 20, and Cr = 80. Note that we

have set the renewable energy cost of production (inclusive of amortised capital costs) to be

higher than that of non-renewable energy. We allow the damage cost parameter to vary in a

range such that both corner and interior solutions are possible. For example, it is not until

K > 0.03 that the RE sector produces in all three settings. The case with K = 0 is trivial

because both central planning and perfect competition settings provide the same solution,

i.e., q̄n = 8000, q̄r = 0, and p̄ = 20, with a maximised social welfare of $320,000 and zero

profit for producers. Under Cournot oligopoly, q∗n = 4000, q∗r = 0, and p∗ = 60, and the NRE

sector makes $160,000 in profit with a maximised social welfare of $240,000. In order to cope
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with corner and interior solutions, the MPECs corresponding to the PC and CO settings are

implemented in GAMS with the NLPEC solver.

4.2. Main Insights

The impact of the damage from emissions on the RPS target is illustrated in Fig. 2.

First, regardless of the setting, higher K leads to increases in the RPS target, which was

proven in Propositions 1(v), 3, and 11. Apart from K ≤ 0.03 under the CP setting, the

optimal response to increasing emissions costs involves supplanting NRE production by RE

output. As noted in Eq. (9), for relatively low values of K, a corner solution is optimal

under CP since NRE production is still more cost effective than RE even when internalising

the cost of damage from emissions. Instead, the quantity demanded is reduced even as it

continues to be satisfied exclusively by the NRE sector. By contrast, in the settings with

deregulated electricity industries, the policymaker lacks control over generation and must rely

on gradually increasing the RPS target to induce more RE production to mitigate higher costs

of damage from emissions.

Second, following Propositions 4 and 13, the RPS target is highest under the PC setting

followed by, in order, CO and CP. Somewhat counterintuitvely, the CP setting results in

the lowest (implied) RPS target as the policymaker is able to internalise the cost of damage

from emissions and issue drastic cuts in consumption. As such, RE output is not needed at

all for relatively low levels of K and is deployed in modest proportions thereafter. Lacking

the scope to align private incentives of the sectors (to maximise profit) with societal ones

(to maximise welfare), the policymaker in the PC and CO settings cannot rely as much on

curbing consumption. Instead, it uses RECs to entice more RE production, thereby limiting

the damage from emissions but not reducing total consumption by as much as in the CP

setting. Thus, both the PC and CO settings result in a loss of welfare (as we shall explore

later) relative to the CP setting. Comparing the PC and CO settings, the potential exercise

of market power by the NRE sector in the latter prompts the policymaker to ease off on the

RPS target.

The drivers for the dynamics of the optimal RPS targets also appear in the optimal NRE

and RE production (Figs. 3 and 4). As demonstrated in Propositions 1(i) and 6(i), q̄n and

q̂n decrease monotonically with K. Interestingly, in spite of the NRE sector’s incentive to

withhold generation in the CO setting, we actually observe q∗n > q̂n. This outcome is a

consequence of the fact that the policymaker in the CO setting recognises the potential for

market power and scales back the RPS target relative to the PC setting. Indeed, if it were

to set the RPS target in the CO setting equal to α̂, then the NRE sector would be more

successful at raising the equilibrium electricity price and, thus, reducing consumer surplus.
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Figure 2: Optimal RPS Targets
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Figure 3: Optimal NRE Production
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Figure 4: Optimal RE Production

Similarly, the impact of a higher cost of damage from emissions on RE production may

be traced back to the optimal RPS targets. Under the CP setting, the RE sector becomes

marginal once K > 0.03, and we observe a steady increase in its output as indicated in

Proposition 1(ii). In fact, there is a one-to-one correspondence between the rate of increase

in RE production and the rate of decrease in NRE output. By contrast, under the PC setting,

Proposition 6(ii) indicates that RE output may either increase or decrease with the damage

cost of emissions. In Fig. 4, we observe that RE output first increases but then decreases.

As noted in Fischer (2010), it becomes less costly to cut back on consumption when more

stringent reductions in emissions are required rather than subsidising RE production. A

similar pattern is observed in the CO setting, although the decline in RE production is more

gentle as it was never subsidised as heavily as in the PC setting. Finally, it is worth noting

that RE production is highest under the PC setting because of the economic inefficiency that

a distortion such as REC introduces. Since the RPS target is lower under the CO setting,
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there is less of this distortion, and RE production is lowest under the CP setting because the

marginal benefit of consumption is correctly matched with the marginal cost of production

inclusive of all externalities from emissions.

In Fig. 5, we sketch out the behaviour of the equilibrium electricity price as the damage

cost of emissions increases. First, as indicated in Proposition 1(iv), as long as the RE sector

is marginal, further increases in K do not affect p̄ as the consumption does not change.

Instead, only the production mix is altered to increase the proportion of RE output, and

the equilibrium electricity price is simply the RE production cost. By contrast, when K

is low enough for Cr > Cn + Kqn to hold, only NRE production is used, and reduction in

emissions is attained via reduction in consumption. Consequently, there is an increase in the

equilibrium electricity price only when a corner solution holds under CP. Next, since the RE

sector is given an effective subsidy in the form of RECs under the PC setting, there is “too

much” RE output from an efficiency perspective. This support for RE production (and tax

on the NRE sector) enables a reduction in emissions without a drastic cut in consumption,

which explains why the equilibrium electricity price is lower than under the CP setting.

Nevertheless, an increase in the cost of damage from emissions leads to an increase in the

equilibrium electricity price as indicated by Proposition 2(v). Under the CO setting, the

equilibrium electricity price is higher than under the PC setting because of the exercise

of market power by the NRE sector. However, because of the support for the RE sector,

total consumption is higher than in the CP setting, thereby resulting in a lower equilibrium

electricity price. Finally, the impact of K on p∗ is non-monotonic: when the damage cost of

emissions increases from 0.01, there is actually a decrease in the equilibrium electricity price.

This is a consequence of the NRE sector’s withholding generation, which creates scope to

increase total consumption once the RE sector is subsidised. Thus, a sufficient increase in

K means that the RE sector receives an increasing effective subsidy (see the REC price in

Fig. 6), which causes total consumption to increase. In fact when K increases from 0.01 to

0.02, total consumption increases from 4,000 MWh to 4,163 MWh. Subsequently, when K

increases to 0.03, total consumption decreases to 3,892 MWh.

Turning to the REC price in Fig. 6, it remains constant at Cr −Cn under the PC setting

as shown in Eq. (19), as well as in Propositions 2(iv) and 6(iv). Effectively, there is a constant

subsidy given to the RE sector funded by a constant tax on the NRE sector. However, in

the CO setting, the REC price increases with the cost of damage from emissions. Again,

this is because for low values of K, the NRE sector is able to exercise market power to boost

the equilibrium electricity price and to depress the REC price. With an increasing cost of

damage from emissions, the policymaker increases the RPS target, which ultimately dilutes

the impact of the NRE sector’s market power. Hence, in the limit, the REC price under CO
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Figure 5: Equilibrium Electricity Price
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Figure 6: Equilibrium REC Price

converges to that under PC.

Recall that the policymaker in the CP setting curbs consumption heavily relative to

the PC and CO settings. However, this means that the RE sector is not competitive with

the NRE one unless the cost of damage from emissions increases sufficiently. While this

results in the optimal solution from the perspective of social welfare (see Proposition 12),

it, nevertheless, delivers the worst outcome in terms of the cost of damage from emissions

(see Fig. 7). Conversely, the policymaker in the PC setting induces a greater reduction

in emissions without extensively curbing consumption at the tradeoff of an economically

inefficient transfer payment to the RE sector. The CO setting also results in a similar

outcome, but the cost of damage from emissions is higher than under the PC setting as the

policymaker refrains from mandating stringent RPS targets. Curiously, the cost of damage

from emissions briefly increases for values of K between 0.01 and 0.02, which is because K

increases faster than the decrease in NRE output. Otherwise, in all settings, the total cost

of damage from emissions decreases with K as curtailment of NRE output has a stronger

impact.

The crux of our policy findings is illustrated in Fig. 8, which reflects the order of the

maximised social welfare derived in Proposition 12. Breakdowns of the consumer surplus

and producer surplus are in Figs. 9 and 10. Recall that the CP setting delivers the socially

optimal outcome as the externality from emissions is internalised: the social cost of NRE

production increases with K, thereby resulting in a drastic reduction in consumption until

RE production is competitive. After that point, consumption remains constant with only

the generation mix shifting towards RE production. From an economic perspective, this is

optimal because the most efficient resource mix is used to meet demand even though emissions

remain relatively high. In effect, the CP implements a Pigouvian tax on emissions. Lacking

such control over resource allocation, the policymaker in the PC and CO settings cannot
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Figure 7: Cost of Damage from Emissions
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Figure 8: Maximised Social Welfare
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Figure 9: Consumer Surplus
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Figure 10: Producer Surplus

internalise the cost of damage from emissions. Indeed, curbing consumption or production is

not directly possible. Instead, the policymaker supports the RE sector via REC payments,

which are inefficient from an economic perspective as “too much” RE production occurs.

Thus, this distortion mitigates the cost of damage from emissions while maintaining a high

level of consumption but through economically inefficient transfer payments. Under the CO

setting, social welfare somewhat paradoxically increases relative to the PC setting. This is

because the exercise of market power by the NRE sector alleviates the distortionary effect of

the RPS mandated by the policymaker. Hence, the economically inefficient RE production

is pinned back, thereby leading to an increase in social welfare albeit at a cost to consumers

(in the form of higher prices) and increased emissions.

Probing more into the ordering of the maximised social welfare, we plot the level curves

of the welfare function in Fig. 11 for K = 0.04. Under the CP setting, the optimal solution

is 1500 MWh and 500 MWh from the NRE and RE sectors, respectively. Thus, the implied

RPS level is ᾱ = 0.25, and the maximised social welfare is $65,000. As we move away from

this point, we encounter lower iso-welfare contours. The binding RPS constraint through this
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point is qr =
(

ᾱ
1−ᾱ

)

qn, which has a slope of 1
3
in this case. Now, if we fix the RPS target to

0.25, then the lower-level MCPs in both the PC and CO settings will have equilibria that are

defined by the intersections of the best-response functions of the NRE and RE sectors with

the RPS constraint. However, these points will not be optimal for those settings. Indeed,

allowing the RPS target to vary traces out the loci of equilibria for the lower-level MCPs,

ĝ(qn) and g∗(qn), for PC and CO settings, respectively. The optimal solution for each of

these deregulated settings is identified by a tangency condition between its respective locus

and an iso-welfare contour. As can be seen from the figure, the locus of optimal solutions

for the PC setting is always outside that of the one for the CO setting. Hence, its tangency

with a level set of the social welfare function is at a lower value ($46,478 in this case with

(q̂n, q̂r) = (1030, 2650)) than that for the CO setting ($50,412 with (q∗n, q
∗
r) = (1226, 2392)).
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Figure 11: Iso-Welfare Contours and Loci of Optimal Solutions for the Lower Level for K = 0.04

4.3. Counterfactual Analysis

Instead of a bi-level analysis, a policymaker may instead use the implied RPS target from

solving a single-level QP in Eq. (1) as if the first-best outcome were possible. Since we have

proven that the implied RPS target, ᾱ, is less than the optimal RPS target required by both

the PC and CO settings, how much worse off would society be as a result of using the less

stringent mandate? Such a counterfactual analysis is worth pondering for two reasons. First,

the modelling effort necessary for a bi-level analysis may be too costly for a policy bureau,

thereby necessitating the use of the implied RPS target from solving a QP as if one were

operating under a CP setting. Second, the RPS targets that have been discussed in policy

circles are considerably lower than the ones that would lead to deeper cuts in CO2 emissions.

For example, a recent consulting report by E3 (Energy and Environmental Economics, 2014)

finds that a 50% RPS target for California would lead to a 20% greater reduction in emissions

than the baseline 33% target in the year 2030. However, the study also notes political (in
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Figure 12: Optimal NRE Production using ᾱ
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Figure 13: Optimal RE Production using ᾱ

the form of retail rate increases) and technical (due to overproduction of renewable energy)

challenges associated with the higher RPS target. Thus, there may be valid reasons for

policymakers to commit to more modest RPS targets. Consequently, we conduct a counter-

factual analysis as in Nasiri and Zaccour (2010) here in order to investigate what may be the

drawbacks of using more convenient RPS targets.

We run the lower-level MCP for the PC (Eqs. (14)–(16)) and the CO (Eqs. (15)–(16)

and (28)) while fixing the RPS target exogenously to its CP level, i.e., ᾱ. Comparing the

production (Figs. 12 and 13), we find that the looser RPS target in the counterfactual analysis

increases the NRE output and depresses the RE output (except for very high values of K).

In fact, the NRE production increases even relative to the CP setting (Fig. 3) as the total

consumption is not curbed in line with the damage costs of emissions.

The impact of fixing the RPS target to the CP proportion without curbing consumption

to internalise the social cost of emissions is to lower the equilibrium electricity price (Fig.

14). In effect, adopting the RPS target from CP without either adjusting for the externality

from emissions or offering the RE sector enough of a market share leads to an equilibrium

electricity price that is too low to mitigate the effects of emissions optimally. Although the

REC price under PC remains constant at Cr −Cn (as long as ᾱ > 0), the use of the CP RPS

target under the CO setting lowers the REC price (Fig. 15). Consequently, the incentives for

RE production in the CO setting are dampened and have less of an impact on emissions in

the PC setting as consumption remains relatively high even as RE output increases.

Given the policymaker’s lack of control over a deregulated electricity industry, its use of

CP-like RPS targets may lead to large welfare losses precisely from increases in emissions.

Indeed, while both consumers and producers in both PC and CO settings benefit from the use

of counterfactual RPS targets (due to lower prices and higher output, respectively), the costs

of externality are exacerbated (Fig. 16). Relative to the results in Fig. 7, the cost of damage
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Figure 14: Equilibrium Electricity Price using ᾱ
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Figure 15: Equilibrium REC Price using ᾱ
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Figure 16: Cost of Damage from Emissions using ᾱ
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Figure 17: Maximised Social Welfare using ᾱ

from emissions is an order of magnitude higher under the counterfactual runs. Although

higher values of K reduce some of these discrepancies, significant differences remain in the

cost of damage from emissions. Overall, this higher externality cost from the counterfactual

runs leads to a substantial reduction in the social welfare (Fig. 17). Under the PC setting,

there is a nearly 80% loss in welfare even for K = 0.1, an impact that is somewhat lower for

the CO setting at 50%. Again, this mitigation of the loss in welfare under the CO setting

may be attributed to the exercise of market power by the NRE sector, which curbs emis-

sions. Nevertheless, the counterfactual runs illustrate that the consequences of policymakers’

using easier-to-calculate RPS targets rather than those optimised for deregulated electric-

ity industries will be reflected in higher emissions rather than direct losses to consumers or

producers.
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4.4. Discussion of Results

By anticipating the profit-maximising production of lower-level NRE and RE sectors,

the policymaker at the upper level is able only to adjust the RPS target rather than to

intervene directly in the industry to assure a first-best outcome. Given this framework, we

have following central findings in our paper:

• In comparison to a first-best benchmark setting with a central planner who controls

all production, we find that RPS targets required in a decentralised industry are much

higher. Nevertheless, the outcome in a centralised setting is socially optimal because

the central planner is able to curb emissions by reducing consumption and NRE produc-

tion. Only when the marginal cost of damage from emissions increases does it become

necessary to introduce RE production. By contrast, in a decentralised industry, the

policymaker has no control over consumption and production. Thus, its only leverage

over producers is to mandate a more stringent RPS target, which leads to a decrease

in emissions without reducing consumption extensively. Consequently, the nature of

production and consumption outcomes is fundamentally different between centralised

and decentralised settings.

• While the decentralised settings result in deeper reduction of emissions without cur-

tailing consumption extensively, they, nevertheless, reduce social welfare relative to

the centralised setting. This is because a central planner internalises the cost of dam-

age from emissions and effectively treats it as a Pigouvian tax. Correspondingly, the

marginal benefit of consumption is precisely aligned with the marginal cost of produc-

tion, inclusive of the externality. Since the decentralised settings use the RPS to control

emissions, they result in “too much” RE production because the REC is an economic

distortion, i.e., a subsidy for the RE sector and a tax on the NRE sector.

• Intriguingly, the effect of this distortion is mitigated when the NRE sector is able to

exercise power, viz., by withholding production in order to raise the electricity price

and to lower the REC price. We, therefore, obtain the surprising result that social

welfare is actually higher when the NRE sector behaves à la Cournot.

5. Conclusions

In order to mitigate climate change, transitions towards more sustainable energy systems

have been proposed by the EU and many American states. For the electricity industry, the

foreseen reductions in CO2 emissions require even more drastic measures as many sectors of
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the economy, e.g., transportation, will rely on electrification to comply with targets. Compli-

cating the situation for policymakers is the fact that electricity industries were deregulated

in most OECD countries over the past thirty years in order to improve economic efficiency

by giving producers the price signals to commercialise new technologies. Thus, somewhat

paradoxically, policymakers have ceded more control over electricity industries while at the

same time requiring them to shift more towards renewable sources. In order to manage this

dilemma, the market-based renewable portfolio standard mechanism has been implemented

in many jurisdictions to incentivise higher production from the renewable energy sector.

In this paper, we take the perspective of a welfare-maximising policymaker who sets the

optimal RPS target but has no direct control over the production and consumption decisions

of a deregulated electricity industry. This separation is formalised via a bi-level model, and

unlike most other complementarity-based analyses of RPS, we make the target level endoge-

nous. We find that in a benchmark setting with a centralised electricity industry, the costs

of damage from emissions are internalised, thereby resulting in a substantial curb in con-

sumption and concomitant decrease in NRE production. Once the social cost of NRE output

equals the cost of RE production, consumption is no longer reduced, and NRE production

is substituted with RE, which means that the first-best solution is effectively to implement

a Pigouvian tax on NRE production. This implied RPS target turns out to be lower than

that in the PC and CO settings with deregulated electricity industries.

The seemingly counterintuitive ranking of RPS targets may be explained by the fact that a

policymaker in a deregulated industry no longer has control over production and consumption

decisions. As a result, it cannot internalise the cost of damage from emissions to allocate

resources efficiently. However, it can impose more stringent RPS targets, which lead to

more RE production even as consumption remains higher than in the CP setting. Thus,

the policymaker mitigates the impact of “too much” consumption by inducing substantially

more RE production. Relative to the socially optimal (but politically unrealistic) outcome

of the CP setting, the policymaker introduces an economic inefficiency to counter the effects

of an externality. For this reason, although the cost of damage from emissions is lower under

the PC and CO settings, the maximised social welfare in the CP setting is actually higher.

Moreover, this distortion is reduced under the CO setting as the NRE sector’s exercise of

market power subverts the RE sector’s position.

Given the difficulties of calibrating a bi-level model to capture the details of a deregulated

electricity industry and the political as well as technical challenges of mandating higher RPS

targets, it may seem reasonable for policymakers to use the easier-to-calculate implied RPS

targets from the CP setting. However, because these lower RPS targets maximise social wel-

fare only by curbing total consumption, which is another political difficulty in a deregulated

26



industry, their use in reality may substantially worsen outcomes. Indeed, our counterfac-

tual analysis indicates that setting RPS targets while not accounting for the deregulated

nature of electricity industries may lead to a significant increase in the cost of damage from

emissions and, thus, substantial welfare losses. Somewhat surprisingly, the welfare losses are

actually higher the less the potential for exercise of market power. Therefore, policymakers

who are contemplating RPS targets should craft them carefully to account for the incentives

of producers.

For future work, we envisage constructing a model that considers the realities of power

systems such as transmission constraints, nodal prices, and uncertainty in RE output as

in Baringo and Conejo (2013) and Maurovich-Horvat et al. (2015). The interaction of RPS

targets with smart-grid technologies such as electric vehicles and storage would also merit

investigation. Finally, allowing generation capacity expansion over time in a multi-period

model would enable a long-term analysis of RPS.
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Appendix: Proofs of Propositions

Proof of Proposition 1 The results follow from differentiating the CP solutions in Eqs.

(4)–(8) with respect to K.

Proof of Proposition 2 The results follow from differentiating the expressions in Eqs.

(17)–(20) with respect to α.

Proof of Proposition 3 Taking the total differential of Q̂ (α,K) and evaluating it at α =

α̂, we have dα̂
dK

= −
∂Q̂

∂K

∂Q̂

∂α

∣

∣

∣

∣

α=α̂

. We would like to show that this expression is positive. The proof

follows because first, its numerator, ∂Q̂
∂K

, is equal to (1− α̂) [(A− Cn) + (Cr − Cn) (1− 2α̂)],

which may be re-written as (1− α̂) {[A− (α̂Cr + (1− α̂)Cn)] + (Cr − Cn) (1− α̂)}. This

expression is positive because both terms inside the curly brackets are positive. From the

geometry of Q̂ (α,K), we also know that the denominator in the expression for dα̂
dK

is negative.

Specifically, ∂Q̂
∂α

∣

∣

∣

α=0
= −3K (Cr − Cn) − K (A− Cn) < 0 and ∂Q̂

∂α

∣

∣

∣

α=1
= −K (A− Cr) < 0.
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In other words, ∂Q̂
∂α

< 0 ∀α ∈ [0, 1] because the derivative of the parabola Q̂ (α,K) changes

sign only once. Hence, the overall expression for dα̂
dK

is positive.

Proof of Proposition 4 Suppose that it is the contrary, i.e., assume α̂≤ᾱ. Fixing K, we

define ξ (α) ≡ Q̂ (α,K)−Q̄ (α,K). Using the expressions for the characteristic functions, we

obtain ξ (α) = 2K (Cr − Cn) (1− α)2, which is also a convex quadratic with multiple roots at

α = 1. Thus, ξ (α) > 0 ∀α ∈ (0, 1). Furthermore, ξ′ (α) = 4K (Cr − Cn) (α− 1) < 0 ∀α ∈

(0, 1). Putting these attributes together, we have 0 ≡ Q̂ (α̂,K)≥Q̂ (ᾱ,K) > Q̄ (ᾱ,K) ≡ 0.

The first inequality follows from the assumption that α̂≤ᾱ and the fact that Q̂ (α,K) is

monotonically decreasing. Next, the second inequality stems from the fact that ξ (α) is

strictly positive for α ∈ (0, 1). Hence, we run into a contradiction and conclude that α̂ >

ᾱ.

Proof of Proposition 5 The sign of Q̂ (α,K) corresponds to the slope of the objective

function in Eq. (21). We have Q̂(1, K) = −(Cr −Cn)Z < 0, ∂Q̂
∂α

∣

∣

∣

α=1
= −(A−Cr)K < 0, and

Q̂(0, K) = Y (K) > 0. Therefore, the quadratic function Q̂ (α,K) crosses the horizontal axis

from positive to negative exactly once for 0 < α < 1, which means that the policymaker’s

problem in Eq. (21) has a unique maximum at α̂ ∈ (0, 1) that satisfies Q̂ (α̂,K) = 0.

Proof of Proposition 6 The results follow from a combination of Propositions 2 and 3:

(i) dq̂n(K)
dK

= ∂q̂n
∂α

∂α
∂K

< 0

(ii) dq̂r(K)
dK

= ∂q̂r
∂α

∂α
∂K

This is ambiguous in sign.

(iii) dq̂(K)
dK

= ∂q̂

∂α
∂α
∂K

< 0

(iv) dp̂REC(K)
dK

= 0

(v) dp̂(K)
dK

= ∂p̂

∂α
∂α
∂K

> 0

Proof of Proposition 7 Suppose not, i.e., assume that p̂ (α) ≥ p∗ (α). Using the interior

solutions for p̂ (α) and p∗ (α) in Eqs. (20) and (32), respectively, we obtain the following:

αCr + (1− α)Cn ≥ A(1−α)2+αCr+(1−α)Cn

F (α)
⇒ [αCr + (1− α)Cn] (F (α)− 1)− A (1− α)2 ≥ 0

⇒ A− [αCr + (1− α)Cn] ≤ 0

Since the last line contradicts the assumption that A − (αCr + (1− α)Cn) > 0, it must be

the case that p̂ (α) < p∗ (α).
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Proof of Proposition 8 Suppose not, i.e., assume that p̂REC (α) ≤ pREC∗
(α). Using the

interior solutions for p̂REC (α) and pREC∗
(α) in Eqs. (19) and (31), respectively, we obtain

the following:

(Cr − Cn)F (α) ≤ (Cr − Cn)−(1− α) (A− Cr)⇒ (Cr − Cn) (F (α)− 1)+(1− α) (A− Cr) ≤

0 ⇒ A− (αCr + (1− α)Cn) ≤ 0

Since the last line contradicts the assumption that A − (αCr + (1− α)Cn) > 0, it must be

the case that p̂REC (α) > pREC∗
(α).

Proof of Proposition 9 From Eqs. (17), (18), (29), and (30), q∗n (α) =
q̂n(α)
F (α)

and q∗r (α) =
q̂r(α)
F (α)

hold. Noting that F (α) > 1 for α ∈ (0, 1), we have q∗n (α) < q̂n (α) and q∗r (α) <

q̂r (α).

Proof of Proposition 10 The sign of Q∗ (α,K) corresponds to the slope of the objective

function in Eq. (33). We show that Q∗ (α,K) crosses the horizontal axis from positive to

negative exactly once for 0 < α < 1, which means that the policymaker’s problem in Eq.

(33) has a unique maximum at α∗ ∈ (0, 1) that satisfies Q∗ (α∗, K) = 0. We first note

Q∗(1, K) = Q̄(1, K) = −(Cr − Cn)Z < 0 and ∂Q∗

∂α

∣

∣

α=1
= ∂Q̄

∂α

∣

∣

∣

α=1
= −(A− Cr)K < 0, which

implies that Q∗(α,K) and Q̄(α,K) are tangent at α = 1. Note also that Q∗(0, K) > 0 since

Q∗(0, K) = 2(A − Cr)Z + 2(K − 2Z)(Cr − Cn) > 2Z2

K
(Cr − Cn) + 2(K − 2Z)(Cr − Cn) =

2(K−Z)2

K
(Cr − Cn) > 0. The first inequality is from the interior assumption Q̄(0, K) > 0.

There are three cases to consider:

(i) IfK−2Z > 0, then the coefficient of α3 in the cubic functionQ∗ (α,K) is positive, which

implies that the second derivative changes from negative to positive as α increases.

Noting that Q∗(1, K) < 0, ∂Q∗

∂α

∣

∣

α=1
< 0, and Q∗(0, K) > 0, Q∗ (α,K) crosses the

horizontal axis from positive to negative only once for 0 < α < 1.

(ii) If K − 2Z = 0, then Q∗ (α,K) becomes a quadratic function, and it also intersects the

horizontal axis from positive to negative only once for 0 < α < 1.

(iii) If K − 2Z < 0, then the coefficient of α3 in the cubic function Q∗ (α,K) is negative,

which implies that the second derivative changes from positive to negative as α in-

creases. When ∂2Q∗

∂α2

∣

∣

∣

α=1
≥ 0, Q∗ (α,K) is monotonically decreasing above Q̄(α,K)

for 0 < α < 1, and both are are tangent at α = 1. Thus, Q∗ (α,K) intersects the

horizontal axis from positive to negative only once for 0 < α < 1. When ∂2Q∗

∂α2

∣

∣

∣

α=1
< 0,

Q∗ (α,K) has an intersection with Q̄(α,K) at ά = 1 − (Cr−Cn)(2K−3Z)
(A−Cr)(K−2Z)

< 1 such that

Q∗(ά) = Q̄(ά) = 2(Cr−Cn)(K−Z)2

(K−2Z)
< 0. Consequently, Q∗ (α,K) and Q̄(α,K) are tan-

gent at α = 1. This implies that Q∗ (α,K) crosses Q̄(α,K) only once from above.

Hence, Q∗ (α,K) intersects the horizontal axis from positive to negative only once at

0 < α < ά < 1.
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Proof of Proposition 11 Taking the total differential of Q∗ (α,K) and evaluating it at

α = α∗, we have dα∗

dK
= −

∂Q
∗

∂K

∂Q∗

∂α

∣

∣

∣

∣

α=α∗

. We would like to show that this expression is positive.

The proof follows because first, its numerator, ∂Q∗

∂K
, is equal to:

(1− α∗)
{

(Cr − Cn) (1− α∗)F (α∗) + [A− (α∗Cr + (1− α∗)Cn)]
(

F (α∗)− 2 (1− α∗)3
)}

This expression is positive because the first term inside the curly brackets is positive, and

the second one may be re-expressed as [A− (α∗Cr + (1− α∗)Cn)]
(

(1− α∗)2 (2α∗ − 1) + 1
)

.

Since this is positive ∀α∗ ∈ (0, 1), we prove that ∂Q∗

∂K
> 0. Next, from Proposition 10 we know

that α∗ constitutes a globally optimal solution to the policymaker’s problem under the CO

setting. In other words, the second-order condition must be satisfied at α∗, thereby implying

that the second derivative of the objective function in Eq. (33) is negative. Consequently, we

have ∂Q∗

∂α

∣

∣

α=α∗ < 0. Hence, we prove that dα∗

dK
> 0.

Proof of Proposition 12 Eliminating α from parametric Eqs. (17) and (18), we derive

an implicit function Ĝ(qn, qr) = 0 for PC:

Ĝ(qn, qr) = Z(qn + qr)
2 − (A− Cn)qn − (A− Cr)qr = 0 (A-1)

which exhibits a conic curve. Furthermore, the locus within the range 0 < α < 1 that satisfies

Eqs. (14)–(16) for the lower level of PC can be derived explicitly as follows:

qr = ĝ (qn) =
A− Cr − 2Zqn +

√

(A− Cr)2 + 4Z(Cr − Cn)qn
2Z

(A-2)

ĝ (qn) is strictly concave as simple calculation yields ĝ′′ (qn) < 0. Similarly, from Eqs. (29)

and (30), we can derive an implicit function G∗(qn, qr) = 0 for CO:

G∗(qn, qr) = Z(qn + qr)
2 + Zq2n − (A− Cn)qn − (A− Cr)qr = 0 (A-3)

which also shows a conic curve. Moreover, the locus within the range 0 < α < 1 that satisfies

Eqs. (15)–(16) and (28) for CO can be expressed explicitly as follows:

qr = g∗ (qn) =
A− Cr − 2Zqn +

√

(A− Cr)2 + 4Z(Cr − Cn)qn − 4Z2q2n
2Z

(A-4)

g∗ (qn) is strictly concave as simple calculation yields g∗′′ (qn) < 0. From Eqs. (A-2) and

(A-4), ĝ (qn) > g∗ (qn) holds, which implies that the locus ĝ (qn) for PC is above the locus

g∗ (qn) for CO. We then compare the loci for PC/CO and the interior optimum (q̄n, q̄r) for
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CP. Simple calculation yields:

ĝ (q̄n)− q̄r =
−(A− Cr) +

√

(A− Cr)2 +
4Z(Cr−Cn)2

K

2Z
> 0 (A-5)

g∗ (q̄n)− q̄r =
−(A− Cr) +

√

(A− Cr)2 +
4Z(K−Z)(Cr−Cn)2

K2

2Z
> 0 (A-6)

Hence, the loci for PC/CO are above the optimum (q̄n, q̄r) for CP. Note that an outer iso-

welfare contour corresponds to lower social welfare from the strict concavity of the CP’s

objective function in Eq. (1). Thus, the maximised social welfare for CP is greater than that

for PC/CO. Furthermore, the iso-welfare contour that is tangent to the locus for PC should

be located outside that for CO. This implies that the maximised social welfare for CO is

greater than that for PC.

Proof of Proposition 13 We first derive the slopes of the loci for PC and CO. Taking

the total differentials of Eqs. (A-1) and (A-3) and evaluating them at (q̂n(α), q̂r(α)) and

(q∗n(α), q
∗
r(α)), respectively, we have

Ŝ(α) =
dq̂r(α)

dq̂n(α)
= −

∂Ĝ
∂qn

∂Ĝ
∂qr

∣

∣

∣

∣

∣

(qn,qr)=(q̂n(α),q̂r(α))

= −
A− Cn − 2α(Cr − Cn)

A+ Cr − 2[αCr + (1− α)Cn]
(A-7)

S∗(α) =
dq∗r(α)

dq∗n(α)
= −

∂G∗

∂qn

∂G∗

∂qr

∣

∣

∣

∣

∣

(qn,qr)=(q∗n(α),q
∗
r (α))

= −
(α2 − 2)A+ 2α(α− 2)Cr + (F (α)− 2α)Cn

α(α− 2)(A− Cr) + 2[αCr + (1− α)Cn − Cr]
(A-8)

The slope of the iso-welfare contour can be also obtained from Eq. (1) as follows:

S̄(qn, qr) =
dqr

dqn
= −1−

Cr − Cn −Kqn

A− Cr − Z(qn + qr)
(A-9)

We first prove ᾱ < α∗ by comparing the slopes, S∗ and S̄, at the locus point (q∗n(α), q
∗
r(α))

of CO when evaluated at α = ᾱ. In terms of Fig. 11, we draw a line from the origin, passing

through the point (q̄n, q̄r) corresponding to α = ᾱ, and examine the intersection of this line

and the locus for CO. We calculate the difference in the slopes as follows:

S∗(ᾱ)− S̄(q∗n(ᾱ), q
∗
r(ᾱ)) =

2(Cr − Cn)(K − Z)[K(A− Cr)
2 + Z(Cr − Cn)

2]

(A− Cr)[K2(A− Cr)2 + Z(2K − Z)(Cr − Cn)2]
> 0 (A-10)
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Thus, S∗(ᾱ) > S̄(q∗n(ᾱ), q
∗
r(ᾱ)) holds, i.e., the slope of the CO locus takes a greater value

than that of the iso-welfare contour at (q∗n(ᾱ), q
∗
r(ᾱ)). This means that we can find an inner

iso-welfare contour that is tangent to the locus for CO at a point (q∗n(α
∗), q∗r(α

∗)) to the left

of (q∗n(ᾱ), q
∗
r(ᾱ)). Otherwise, the slopes would diverge further and not lead to a tangency

between the iso-welfare contour and the CO locus. Therefore, ᾱ < α∗ holds true, noting that
qr
qn

= α
1−α

and that ᾱ and α∗ are unique solutions for 0 < α < 1.

Next, we prove α∗ < α̂ by comparing the slopes at the locus points of CO and PC for

some given α. In other words, we draw a line from the origin for some given α and examine

the intersections of this line and the loci for CO and PC. For a given α, we calculate the

difference between the slopes of the loci as follows:

Ŝ(α)− S∗(α)

=
2(1− α)[A− αCr − (1− α)Cn]

2

{A+ Cr − 2[αCr + (1− α)Cn]}{α(2− α)(A− Cr) + 2[Cr − αCr − (1− α)Cn]}

> 0 (A-11)

This implies that the slope of the PC locus takes a greater value than that of the CO locus

at any arbitrary α. For a given α, the difference of the slopes of the iso-welfare contours at

the locus points of CO and PC can also be derived as follows:

S̄(q∗n(α), q
∗
r(α)) − S̄(q̂n(α), q̂r(α))

=
[A− αCr − (1− α)Cn][Z(Cr − Cn)− (1− α)K(A− Cr)]

Z(Cr − Cn)[(Cr − Cn)− (1− α)(A− Cr)]
(A-12)

The expression in Eq. (A-12) is greater than zero for any α > ᾱ = 1 − Z(Cr−Cn)
K(A−Cr)

> 0, which

is the relevant case for our analysis. Now, consider the optimal RPS target α∗ for CO. From

the tangency condition of the CO locus and iso-welfare contour, S∗(α∗) = S̄(q∗n(α
∗), q∗r(α

∗)).

On the other hand, regarding the PC locus, we have Ŝ(α∗) > S∗(α∗) and S̄(q∗n(α
∗), q∗r(α

∗)) >

S̄(q̂n(α
∗), q̂r(α

∗)) from Eqs. (A-11) and (A-12), respectively (see Fig. 11). Consequently, we

have the relation Ŝ(α∗) > S∗(α∗) = S̄(q∗n(α
∗), q∗r(α

∗)) > S̄(q̂n(α
∗), q̂r(α

∗)), i.e., the slope of

the PC locus takes a greater value than that of the iso-welfare contour at (q̂n(α
∗), q̂r(α

∗)).

This means that we can find an inner iso-welfare contour that is tangent to the locus for PC

at a point (q̂n(α̂), q̂r(α̂)) to the left of (q̂n(α
∗), q̂r(α

∗)). Therefore, α∗ < α̂ holds true, noting

that α∗ and α̂ are unique solutions for 0 < α < 1.
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